Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ALEXANDER HEALY:
All reports by Author Alexander Healy:

TR07-047 | 15th May 2007
Dan Gutfreund, Alexander Healy, Tali Kaufman, Guy Rothblum

A (De)constructive Approach to Program Checking

Program checking, program self-correcting and program self-testing
were pioneered by [Blum and Kannan] and [Blum, Luby and Rubinfeld] in
the mid eighties as a new way to gain confidence in software, by
considering program correctness on an input by input basis rather than
full program verification. Work in ... more >>>


TR06-058 | 25th April 2006
Alexander Healy

Randomness-Efficient Sampling within NC^1

Revisions: 1

We construct a randomness-efficient averaging sampler that is computable by uniform constant-depth circuits with parity gates (i.e., in AC^0[mod 2]). Our sampler matches the parameters achieved by random walks on constant-degree expander graphs, allowing us to apply a variety expander-based techniques within NC^1. For example, we obtain the following results:

... more >>>

TR05-087 | 9th August 2005
Alexander Healy, Emanuele Viola

Constant-Depth Circuits for Arithmetic in Finite Fields of Characteristic Two

We study the complexity of arithmetic in finite fields of characteristic two, $\F_{2^n}$.
We concentrate on the following two problems:

Iterated Multiplication: Given $\alpha_1, \alpha_2,..., \alpha_t \in \F_{2^n}$, compute $\alpha_1 \cdot \alpha_2 \cdots \alpha_t \in \F_{2^n}$.

Exponentiation: Given $\alpha \in \F_{2^n}$ and a $t$-bit integer $k$, compute $\alpha^k \in \F_{2^n}$.

... more >>>

TR04-087 | 13th October 2004
Alexander Healy, Salil Vadhan, Emanuele Viola

Using Nondeterminism to Amplify Hardness

We revisit the problem of hardness amplification in $\NP$, as
recently studied by O'Donnell (STOC `02). We prove that if $\NP$
has a balanced function $f$ such that any circuit of size $s(n)$
fails to compute $f$ on a $1/\poly(n)$ fraction of inputs, then
$\NP$ has a function $f'$ such ... more >>>




ISSN 1433-8092 | Imprint