TR08-065 Authors: Noga Alon, Rina Panigrahy, Sergey Yekhanin

Publication: 20th July 2008 16:09

Downloads: 737

Keywords:

The Nearest Codeword Problem (NCP) is a basic algorithmic question in the theory of error-correcting codes. Given a point v in an n-dimensional space over F_2 and a linear subspace L in F_2^n of dimension k NCP asks to find a point l in L that minimizes the (Hamming) distance from v. It is well-known that the nearest codeword problem is NP-hard. Therefore approximation algorithms are of interest. The best efficient approximation algorithms for the NCP to date are due to Berman and Karpinski. They are a deterministic algorithm that achieves an approximation ratio of O(k/c) for an arbitrary constant c, and a randomized algorithm that achieves an approximation ratio of O(k/log n).

In this paper we present new deterministic algorithms for approximating the NCP that improve substantially upon the earlier work. Specifically, we obtain:

1. A polynomial time O(n/log n)-approximation algorithm;

2. An n^O(s) time O(k log^(s)n /log n)-approximation algorithm, where log^(s)n stands for s iterations of log, e.g., log^(2) n = log log n;

3. An n^O(log^* n) time O(k/log n)-approximation algorithm.

We also initiate a study of the following Remote Point Problem (RPP). Given a linear space L in F_2^n of dimension k RPP asks to find a point v in F_2^n that is far from L. We say that an algorithm achieves a remoteness of r for the RPP if it always outputs a point v that is at least r-far from L. In this paper we present a deterministic polynomial time algorithm that achieves a remoteness of Omega(n log k / k) for all k < n/2. We motivate the remote point problem by relating it to both the nearest codeword problem and the matrix rigidity approach to circuit lower bounds in computational complexity theory.