A Boolean function on n variables is q-resilient if for any subset of at most q variables, the function is very likely to be determined by a uniformly random assignment to the remaining n-q variables; in other words, no coalition of at most q variables has significant influence on the ... more >>>
We show that unbounded fan-in boolean formulas of depth $d+1$ and size $s$ have average sensitivity $O(\frac{1}{d}\log s)^d$. In particular, this gives a tight $2^{\Omega(d(n^{1/d}-1))}$ lower bound on the size of depth $d+1$ formulas computing the PARITY function. These results strengthen the corresponding $2^{\Omega(n^{1/d})}$ and $O(\log s)^d$ bounds for circuits ... more >>>
A recent work of Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman (CCC 2014, Computational Complexity 2015) introduced the Compression problem for a class $\mathcal{C}$ of circuits, defined as follows. Given as input the truth table of a Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$ that has a small (say size $s$) circuit from ... more >>>