Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 034 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

COUNTING IN UNIFORM T(C°

JUI-LIN LEE

ABSTRACT. In this paper we first give a uniform AC? algorithm which uses
partial sums to compute multiple addition. Then we use it to show that
multiple addition is computable in uniform TC® by using count only once
sequentially. By constructing bit matrix for multiple addition, we prove that
multiple product with poly-logarithmic size is computable in uniform 7'C° (by
using count k + 1 times sequentially when the product has size O((logn)*)).
We also prove that multiple product with sharply bounded size is computable
in uniform AC?.

1. INTRODUCTION

In this paper we study basic counting techniques inside uniform 7C°. We adopt
function algebraic approach, for it requires less background and has more mathe-

matical (or at least machine-independent) favor.

The study of complexity classes related to parallel computation is nowadays more
important since parallel computing is thought to be useful. In theoretical computer
science there are several well-developed parallel models. We will focus on Boolean

circuits because remarkable separation results [11],[17] are based on it.

Recall that AC? is the class of predicates computable by polynomial size, con-
stant depth, unbounded fan-in circuits with gates AND, OR, NOT. Majority gate
is define as follows: M AJ(z) = 1 if at least a half bits in the binary string z are
Us, else MAJ(z) = 0. TCO is the class of predicates computable by polynomial
size, constant depth, unbounded fan-in circuits with gates AND,OR, NOT, M AJ.

In the 80’s, two important separation results were proved. The first result is
the separation of AC® and AC°(p), where p is a prime and AC®(m) is AC? plus
modular m counting gates. [9], [1] gave superpolynomial lower bounds for the size

of circuits computing parity in AC?. (Later [18], [11] proved exponential lower
bound for parity.) The second result [17], inspired from [16], proved that AC? -
AC°(p) - AC°(pq), where p,q are distinct primes. However, very little is known

beyond AC%(pq) so far.

What are uniform classes (and why do we study them)? Uniformity means the
way by which we construct those circuits. Since it is more difficult to show that a
function is computable in class with quite restricted uniformity than in non-uniform

class, maybe the uniform condition can be helpful to prove separation results.

A weakness of this attempt is that those results [11],[17] easily imply the sepa-
ration in uniform cases. (Note that uniform AC® C non-uniform AC? and modular
counting gates are quite uniform. Therefore the separation of uniform TC? and
non-uniform AC? trivially separates TC? and AC? with uniformity.) And so far

Date: August 29, 1997.
1991 Mathematics Subject Classification. Primary: 03D15; Secondary: 68D15, 68D25.

1



2 JUI-LIN LEE

we do not know how to use uniformity to either simplify [11], [17], or prove separa-
tion on uniform classes beyond AC%(pq). (Perhaps the only exception is [2].) Even
though, since non-uniform approach does not do better recently, it may be worth a
while to consider uniform approach. To do so, a better understanding in uniform
circuit classes is necessary.

In Section 2 we summarize basic tools (Lemmas 2.5,2.7,2.10,2.13,2.17) in func-
tion complexity class Ag (or function algebra Ag, in convention), which characterizes
uniform AC°®. We also introduce function algebra Tj (= Ao + count), which corre-
sponds to uniform TC®. (Here count(z) is the number of 1’s in the binary string
z. Note that count is equivalent to M AJ under AC? reduction.) Sections 3,4 are
basically formalization of the following: convert numbers into bits, apply count
at each column, rewrite results into bits. (The idea is straightforward, and these
two sections are merely for completeness.) In Section 5 we give an Ay algorithm
to compute multiple addition by partial sums. This algorithm is new for it is not
given explicitly before. In Section 6 we show how one can do partial sum in Ag if
its size is small enough. This avoids the not-constantly many uses of weak mul-
tiple addition or sharply bounded counting (that is, count with poly-logarithmic
bits). Therefore multiple addition needs to use count only once sequentially. In
Section 7 we prove that multiple product with sharply bounded value is computable
in Ag. In Section 8 we prove a new result that, by using multiple addition itera-
tively, multiple product with poly-logarithmic size is computable in Ty. If we de-
fine Ag(count)y, = {f € Tg : f is defined by using count nestedly at most k& times},

then multiple product H z(T,1) < 2r(1ogn) is computable in Ao(count)p41 pro-

vided that z € Aq, deg(p) = k, and n is the size of inputs.

Though all constructions here are based on function algebras Ag, Ty, the author
believes that it will not be too difficult for readers to convert the algorithms to
their favorite systems.

2. BACKGROUND

In this section we review some basic results in uniform complexity classes AC?, T'C°.
Instead of using circuit approach, we use function complexity classes Ag,Ty. Fol-
lowing the convention of [6], we call them function algebras. Roughly speaking,
a function algebra is the smallest class of functions containing some basic func-
tions and closed under some construction rules. Examples of construction rules are
composition, iteration, recursion with some limitation. The advantage of function
algebraic approach is that it is machine independent. We will define a function al-
gebra Aq which characterizes uniform AC?. (For details see [6].) Then we introduce
another function algebra 7y which corresponds to uniform 7'C?. Finally we define
Ao (count)y, that is, the class of functions (in Ty) which uses count sequentially at
most k many times.

All functions in this paper have domain and codomain N = {0,1,2,3,...}.

Definition 2.1. zero(z) = 0, so(z) = 2z, s1(z) = 22 4+ 1, ¥ (2y1,...,2,) = zy,
pad(z,y) = 2W -2, 2] = flogy(x + 1)], z#y = 2"MW, (2)mod2 = = — 2
lz/2|, Bit(i,z) = ([z/2'])mod2, |x[z = |lz]|, [z|s41 = |[z[| for k > 2, 7 =

T1,Za,. .., T, means asequence of natural numbers, and | 7| = maz(|z1],. .., |Tm]).



COUNTING IN UNIFORM TC° 3

Definition 2.2. Suppose that ho(n, Z), hi(n, T) < 1. The function f is defined
by CRN (concatenation recursion on notation) from g, hg, hq if

f0,7) = 9(7),
F(50(n), T) = snon ) (f(n, F)) For n >0,
f(s1(n), ?) = Shl(n,?)(f("a ?))

Definition 2.3. Ajg is the smallest class of functions containing the basic functions
zero, sq, 1,1y, |¢|, #, Bit(i, z), and closed under composition and CRN.

In [12] Tmmerman developed the notion of first order definability which captures
uniform circuits without involving sequential or alternating Turing machines. Be-
cause of the robustness of this class, people believe this notion is the right notion
of uniform ACP?. In [6] Clote proved that Aq = FO, where FO is one version of
uniform AC? defined by first order definability.

We will not use this result later, for we will develop all necessary tools directly

in A().

Definition 2.4. A function f is sharply bounded (or double sharply bounded) if
there is an A function g such that f(Z) < |g(T")| (or f(T) < |lg(T)I]).

Let n = |Z’|, then it is easy to show that f is sharply bounded iff f < p(n)
for some polynomial p, and f is double sharply bounded iff f < clogn for some
constant c.

Now we recall some useful results from [3], [7], [8]. Lemmas 2.5,2.7 are from [7].
We give a direct proof of Lemma 2.10 (so that one needs not deal with bounded
arithmetic TAC"). For Lemmas 2.13,2.17, we add remarks to resolve vagueness or
gap of their original proofs.

Sharply bounded quantifiers are of the forms 3z < |t|, V& < |¢|. Lemma 2.5
shows that Ag is closed under sharply bounded quantification.

Lemma 2.5. If g,h € Ag and f s defined by
f(.»,;):{l £3i < lg(@)] [h(i2) = 0],

0 else,
then f € Ag.
Proof. See [T]. O

Definition 2.6. The function f is defined from ¢, h by sharply bounded p-operator
if
fz) =
lg(x)] else.
This is denoted by f(z) = pi < |g(z)| [A(3,z) = 0].

Since in such case “h(f(x), ) = 07”7 can be easily checked, we also call it sharply
bounded search.

Lemma 2.7. Aq is closed under the sharply bounded p-operator.
Proof. See [T]. O



4 JUI-LIN LEE

Definition 2.8.
xxy = pad(x,y) + v,
J
Seg(z,i,j) = Z?k_iBit(k, z) for 1 < j,
k=i
MSP(z,j) = |x/27],
LSP(z,j) =2 —2 - MSP(x,j).
Obviously z xy, Seg(x,1,5), MSP(x,j), LSP(x,j) are computable in Ag.
Definition 2.9. Maxzindex(f,x) = pi < || Vk < 2| (f(k) < f(2)).
Lemma 2.10. If f € Ag, then Mazindex(f,x) is in Ag.

Proof. Although this is a consequence from Proposition 9.4 in [8], we give a direct
proof here. For 0 < i,j < ||, define P(¢,7) = 1 if f(i) > f(j), else 0. Now for any
i < || we use CRN to encode a function F(i,2) = P(:,0) % P(¢,1) % - - P(4,|x]).
Then f(¢) is a maximumiff F'(i, z) = 212141 _ 1. Now we may use pi < |z| [F(i,z)=
217141 _ 1] to obtain such i. O

Definition 2.11. F' is definable from g, hg, h1 by k-BRN (k-bounded recursion on
notation) for k € N if

FO,7) = g(7),
F(2n, ) = ho(n, &, F(n, T)) if n > 0,
Fn+1,7) = hi(n, T, F(n, 7)),

and 0 < F(n, Z) < k for all n, 7.

Definition 2.12. The function f is defined from g, hg, k1, by weak k-BRN (weak,
k-bounded recursion on notation) if f(xz, @) = F(|z|, @) and F(x, @) is definable
from g, hg, h1 by k-BRN.

Note that the number of steps in iterated recursions of k-BRN and weak k-BRN
are |z| and ||z|| respectively.

Lemma 2.13. Ag is closed under weak k-BRN.
Proof. See [7] and next remark. O

Remark 2.14. Since k is a constant, we may modify the proof in [7] by assuming
that k + 1 is of the form 22", With this the encoding and decoding of sequences
would be much more easier. (Weak multiplication || - |y| is not needed.)

Definition 2.15. count(z) is the number of 1’s in the binary expression of z, i.e.,

count(0) = 0,
count(so(x)) = count(x), provided z > 0,
count(si(x)) = count(z) + 1.

And Tj is the smallest class containing basic functions zero, sg, s1, i¢, |z|, #,
Bit(i, z), count, and closed under composition and CRN. (That is, Ty = Ag+count.)



COUNTING IN UNIFORM TC° 5

Definition 2.16. Sharply bounded counting sbcount(z,y) is defined as follows:

count(z) if @ <l|y|,

sbeount(z,y) = {

0 else.
This means count(z) for small z.
Lemma 2.17. sbecount(x,y) € Aq.

Proof. The idea is to use sharply bounded p-operator to compute every bit of
sbcount(x,y), and then concatenate those required bits into sbcount(x,y). For
detail see Lemma “BSUM is in FO” in [3]. O

Remark 2.18. In [3], the proof of BSUM € FO has a gap. We fix it as follows. For
xz > |y| or z = 0, we simply output 0. Suppose that 0 < z < |y|. We may assume
that || is of the form 2™ by the following modification.

Let & = z — 2lol=1 4 22721 4 jg computable in Ay and |&] = 2/*l2. Since
lyl > 1,

6 times

—_—~~—
Ayl < l® + 1yl* + [y + lyl> + |yl + 1 = |y#y# - #yl.

Hence

6 times

52|y|2 2
<270 < (20y))” < ydy#E - #y |

lvls

. ||
£<2277 < 9?
6 times

We may use § = y#y# ---#y instead of y. Therefore |&| = 21*12) & < ||, and
sbeount(z,y) = sbcount(z,y).

The rest of this proof is basically a direct translation from the proof in [3]. Note
that CRN, weak k-BRN and sharply bounded p-operator are used.

Why do we need this modification? Without it, we will need to do weak multiple
addition to compute the indices of those bits which we are going to concatenate
together (to get sbecount(z,y)). As we will see in Section 5, this may need to use
sbeount again, with smaller size (shrinking by log). Repeating this argument, the
applications of sbcount or weak multiple addition are not constantly many times!
To avoid this, we may need some neat coding tricks. However, the computation of
those indices does not need weak multiple addition nor sbcount if |z| is of the form
2m,

Convention. Consider any Ag function f(Z). If f(Z) < |¢g(T)| for some term
g(7T), then count(f(Z)) = sbecount(f(T),g(Z)) is in Ag. Hereafter we simply
denote sbeount(f(7T),g(T)) by sbecount(f(T)) for sharply bounded f(7Z), and
we call this the sharply bounded counting of f(7Z").

Remark 2.19. The resolution of this gap in [3] was pointed out by Carlos Parra, who
suggested that “It suffices to consider the case |z| = 2™.” With other examples
the author realized that this simple assumption is extremely useful. (Also see

Lemma 8.9.)

Definition 2.20. For f € Tj, we define deg.oun:[f] the count degree of f. F =
(f1, f2y .-, fm) is a construction sequence if each f; is either a basic function in Tp,
or a composition of f;, fy with j, k < i, or f; is obtained by CRN with g = f;, hq =
fros P1 = fry, J, ko, k1 < ¢. Here we associate the construction sequence F' with the



JUI-LIN LEE

(=]

way of the construction: encode this by a sequence of m elements, each element is of
the forms (0, 7) (the i-th basic function), (1, 7, k) (composition f; o f), (2, 7, ko, k1)
(CRN from fj, fio, fz,). For a construction sequence F', we define degcount[fi, F]
for i < m inductively (according to the code of construction):

(1) If f; is a basic function other than count, then deg.oun:(fi, F] = 0.

(2) If f; = count, then deg.ount[fi, F] = 1.

(3) If fi = fj o fx in F, then degeount[fi, F] = degeount(fi, F1+ degeount[fr, F.
(4) If f; is obtained by CRN with g, hg, hy in F', then

degcount[fi; F] = mam(degcount[g; F]; degcount[ho; F]a degcount[hlg F])

degeount[f] = min{degeount[f, F] : [ € F}. Ao(count)ndéf{f € Ty : degeount|[f] <

n}. Such f is called count n times sequentially.

3. BIT MATRIX FOR MULTIPLICATION AND MULTIPLE ADDITION

In this section, we formalize the following: Given n numbers z(1), z(2), ..., z(n),
we may define a bit function F': N x N — {0, 1} by F(¢,§) = Bit(j, z(¢)). If z(d) is
an Aq function, then F(i, ) is obviously in Ag.

Definition 3.1. Function F' is called a bit function if Im(F) C {0,1}.
Assume that F': N™+2 — {0, 1} and & = 21, %9,...,Tpm, then F(7F,i,j) is called
bit matriz with respect to . Here i, j are indices of row, column. The multiple

addition of bit matrix F' is defined as follows.

Sum(F, 7)< ii 2 (7,1, j).

i=0 j=0

Fzample 3.2. In elementary school the following method is taught as the first step
of multiplication: Let || = n1, |y| = na. First, multiply Bit(0,y) with z, write it
down on row 0 from bit ny — 1 to bit 0, that is, shift to left by one bit. Second,
multiply Bit(1l,y) with z, write it down on row 1 from bit n; to bit 1. (Then
shift to left by one bit.) Repeat this write-shift procedure until Bit(ny — 1,y) - z is
written on row ny — 1.

Formally,

. ndef | Bat(e CBit(j —i,2) ifj >
Fol, iy {0 P ) 2

Then Fy € Ag and @ -y = Sum(Fy, z,y).
[s(=)]
Ezample 3.3. Let 2(T,i) € Ay (or Tp). To compute > z(7T,1), the first step is

=0
to define bit matrix

Fo(T i j)_{ Bit(j,z(7,4)) ifi < |s(7T)],

YT 0 else.

Then Fy € Ag (or Tp) and Sum(Fy, ) = z2(T,1).



COUNTING IN UNIFORM TC° 7

4. COLUMN COUNTING PROCESS

In this section, we formalize column counting process (CCP), which is an efficient
way to accelerate multiple addition.

Definition 4.1. Bit matrix F'(Z',-,) is column bounded by s(Z") if for any i >
s(@) and any j, F(7,1,j) = 0. F is row bounded by ¢(T") if for any j > t(Z’) and
any 7, F'(T,4,7) = 0.

Suppose that bit matrix Fu(7Z, -, ) is column bounded by s(Z") and row bounded
s(T)-1

by ¢(Z"). First apply count to column j by > Fo(Z,i,j) for 0 < j < (7).
i=0

This can be done in Ty while s(Z') is sharply bounded. We may denote column
counting for column j by C;. Next we can generate a new bit matrix 7y (as in
Section 3): write down Cy at row 0, shift to left by one bit, write down C at row
1, shift to left by one bit, etc. Note that Sum(Fy, T) = Sum(Fy, T). However,
to sum Fy is easier because to compute Sum(Fy, T') is the same as to compute a
multiple addition with |s(Z")| many numbers, much less than s(Z") many.

Since count may apply to any binary string with polynomial size, inside 7g
we shall only consider the case that Fy is column bounded by a sharply bounded
function.

The following is just the formalization of column counting process. (Those who
are not interested in details may skip to Remark 4.14.)

Lemma 4.2. |z -y| < |maz(z#z, y#y)|.
Proof. Since 2|z| < |z|? 4+ 1 = |z# x|, this implies
2yl < lzl + Iyl < maa(@la], 2yl) < maz(ja#al, o) = [maz(zHz, yiy)).
O

FEzample 4.3. Consider z -y and Fy in Example 3.2. From Lemma 4.2, Fj is row
bounded by [t(z,y)| where t(z,y) = maz(z#z,y#y) € Ao. Also Fy is column
bounded by |y|.

[s(Z)I

Frample 4.4. Consider Y. z(7Z,i) and Fy in Example 3.3. In this case Fjy is
=0
column bounded by |s(Z)|+ 1. Since

[s(Z")l
Y ST S+ (T maKogigtom (T )]
= (1 +1s(F)]) - 2(F, Maindea(=(F, ), s(F)))],

by Lemma 4.2 Fj is row bounded by |maz(s1#s1, sa#s2)|. Here s1 = 1+ |s(T)| €
Ag and s2 = 2(7T, Mazindex(2(T,),s(T))) € Ag. Note that sy € Ag is from
Lemma 2.10.

Definition 4.5. Bit matrix F' is called upper triangular if for any j < i and any
7z, F(7,i,7) = 0. F is upper triangular with width < w(7Z) if F(7,4,j) = 0 for
J<iorj>i+w(T).

Frample 4.6. In Example 3.2, Fy is upper triangular with width < |z].



8 JUI-LIN LEE

Lemma 4.7. If bit matriz F(7T,4,j) € To and F is column bounded by |s(T)|,

then Y F(7,i,j) € To.
i=0

Proof. In order to do the column counting, we first encode column F(7T’,-,j) to

number G(7T, j). By CRN,

oo [s(=)]-1
Gw NEY 2w = Y. 2T <2 <o
i=0 =0
is in Ty. Then count(G(7T,j)) = > F(7T,i,j) € Tp. O
=0

Lemma 4.8. If bit matriz F(7,1,j) € Ao and F is column bounded by ||s(T)||,
then Y F(7T,1,j) € Ao.

+=0

Proof. Since G(7,j) < 25 is sharply bounded, count(G(7,j)) is in Ag by

sharply bounded counting. O
Definition 4.9. (Column counting process) Let bit matrix Fy(Z, 4, j) be col-
00 .
umn bounded by |s(Z")| and G(Z7,j) = Y 2'Fo(T,1,j), then
=0

FL(7, k) Bit(k, 21 count (G(F, j))).
We denote this by CCP(Fy) = Fy.
Lemma 4.10. If Fyy is row bounded by t(T°) and column bounded by s(T), and
Fy = CCP(Fy), then Sum(Fy, T) = Sum(F,, T) < oo.

Proof. The column bound and row bound guarantee that Sum(Fy, Z') is finite.
The equality can be derived from definition. O

Lemma 4.11. If Fo(T,i,j) € To is column bounded by |s(T")|, then Fy = CCP(Fy)
is upper triangular with width < ||s(T)|| and Fy € Ty.

Proof. By Definition 4.9 and Lemma 4.7. O

Lemma 4.12. If F1(7T,i,j) € Ao is upper triangular with width < ||s(Z")||, then
Fy = CCP(F1) is upper triangular with width < |s(T)|s and Fy € Aq.

Proof. Similar to Lemma 4.11. Any count in this case i1s in Ay because of sharply
bound counting. O

Remark 4.13. Note that there is no column bound condition in Lemma 4.12. In
this case the column counting process is still possible; we may convert F} into a
column bounded function (see Lemma 5.1).

Remark 4.14. (Weakness of Column Counting Process) Suppose that we
want to compute multiple addition y z; by CCP and |z;| < m for 1 <7 < n. First

i=1
we define Fy(i, j) = Bit(j, z;), F1 = CCP(Fy), Fo = CCP(Fy), etc. Then the width
of fi is |n|, the width of F5 is |n|s, etc. Although the sequence a1d§f|n|1 decreases
very fast at the beginning, when a; = 2, aj31 = |2| = 2. Then ajy2 = ajp3 = - - = 2,
the sequence stops decreasing, i.e., CCP becomes very inefficient when a; = 2. On



COUNTING IN UNIFORM TC° 9

the other hand, we are not sure about the existence of Ty function H(k, 4, j) which
equals F(4, 7). (This circuit is mentioned in [5] and [4].) To limit the use of CCP to
constant times, we shall give an Ag algorithm which uses partial sums to compute
multiple addition. (See Section 5.)

5. PARTIAL SUM ALGORITHM FOR MULTIPLE ADDITION

Suppose that Fy is column bounded by s(7Z'), applying CCP we get Fy =
CCP(Fy), Fy = CCP(F1),...,Fy = CCP(Fy_1),... such that F} is upper tri-
angular with width < |s(Z")|x. Lemma 5.1 converts F to multiple addition for at
most |s(7Z)|r many numbers.

Lemma 5.1. If bit matriz Fy(Z,4,7) is upper triangular with width < |s(T)|x,
then

B gyl { PPt L0 52 1Tl and 1= = ls(F )+ 1
HI)= Fr(#,i,j) else

is column bounded by |s(Z)|x and Sum(B, T) = Sum(Fy, T).

Proof. B is obtained by shifting upward the nonzero part of each column in F} so
that it is column bounded by |s(Z")|;. And then the sum of B is the same as the
sum of F}. O

Now we consider bit matrix B(7,j),1 < i < 5,0 < j <t. (For convenience we
always assume that s > 2.) Define the multiple addition of B as follows:

sum(B)E 3™ 3" 21 B(i, j).

i=1 j=0

We may assume that |Sum(B)| < ¢t + 1. (Suppose not, let ' = ¢ + |s| + 1, then
|Sum(B)| < |s-2'*!| = |s| +t+2 = ' + 1. That is, we may consider every number
z as 0...0z such that the multiple addition will not overflow.)

Definition 5.2. (Partial sum)
Let s, fixed, t > 15 > 11 > 0,

] I

PSum(B, 1, 1)< 3" 3" 97 B(i, j)

i=1j=I,
is called the partial sum of B between column Iy, ;.

Remark 5.3. Sum(B) and PSum(B,ls,11) look as follows:

B(1,t) --- B(1,,) --- B(LL) --- B(1,0)
B(2,t) -~ B(20) - B(2,L) --- B(2,0)
+) B(s,t) --- B(s,l) --- B(s,h) --- B(s,0)

Sum(B)



10 JUI-LIN LEE

0 0 B(1,1) B(1,;) 0 0
0 0 B(2,1) B(2,;) 0 0
+) 0 -+ 0 B(s,ly) -+ B(s,h) 0 - 0

PSum(B,lz,ll)
Lemma 5.4. Ifls > 1y > 1y, then
Bit(lz, PSum(B, 13, 11)) = Bit(lz, PSum(B, 12, 11))

Proof. PSum(B,l3,l1) = PSum(B,ls,la+1)4+ PSum(B,ls,11). Since the first par
is a multiple of 2"+ Bit(ly, PSum(B,ls,11)) = Bit(ly, PSum(B,ls,11)). O

The key idea is that if I, —Iy > |s|4+1, then Bit(ly, Sum(B)) is almost determined.

Lemma 5.5. Iflo—1; > |s|+1,t > 1y >} >0, and Bit(l;—1, PSum(B,ls, 1)) =
0, then Bit(ly, Sum(B)) = Bit(ls, PSum(B, 15, 1h)).

Proof. By Lemma 5.4, Bit(ly, Sum(B)) = Bit(ly, PSum(B,15,0)). Tt suffices to
consider PSum(B,l3,0). Now PSum(B,ls,0) = PSum(B,ls,l1) + PSum(B,l; —
1,0). The tail part PSum(B,l; —1,0) < s-(2"" —1) < 2145l Since I, — 1 > 1) + 3],
adding the tail part to PSum(B,ly,11) at most changes the (I3 — 1)-th bit from 0
to 1. This implies Bit(ls, Sum(B)) = Bit(ly, PSum(B,ls,11)). O

Remark 5.6. Actually Lemma 5.5 shows that ”carry may occur at most once.”
Since PSum(B,l; — 1,0) is quite small, if we add it to PSum(B, s, 1) bit-by-bit,
during this procedure the (I3 — 1)-th bit may alter at most once. That is, the status
of the (I — 1)-th bit could be: 0 - 0 — --- — 0 (always 0), 1 - 1 — --- — 1
(always 1),0 - -+ —-0—1— .- =1 (from0to1),1—---—=1—-0—--- =0
(from 1 to 0). And the subsequences 0 — 1 — 0, 1 — 0 — 1 are not possible.

For convenience we identify PSum(B,[,l') = PSum(B,[,0) for I’ < 0.
In Lemma 5.5, if Bit(ly — 1, PSum(B,ls,11)) = 1, then we may compare two
partial sums to see whether the carry occurs.

Theorem 5.7. Letly — 1 > |s| + 1.
(1) IfBlt(lg —l,PSum(B,lg,l])) = Blt(lz —l,PSUm(B,lg —1,[1 —1)) = 1, then
Bit(lz,PSum(B,lg,l])) = Bit(lz,PSum(B,lg,l] - 1))
(2) If Bit(la—1, PSum(B,l3,11)) = 1 and Bit(la—1, PSum(B,ls—1,1; —1)) =0,
then Bit(ly, PSum(B)) = 1 — Bit(ly, PSum(B,ls,11)).

Proof. By Lemma 5.4, Bit(ly — 1, PSum(B,ls,l1 — 1)) = Bit(ly — 1, PSum(B, 1> —
1,[] — 1)) Now PSum(B,lz,h — 1) = PSum(B,lz,l]) + ghi—1 Z B(l,ll — 1)
i=1

When we add the tail part 2711 Z B(i,l1 — 1) to PSum(B,ls,11), according to
i=1
Remark 5.6, two cases may happen:

(1) The status of the (I3 — 1)-th bitis 1 — 1 — .-+ — 1 (always 1): In this case
Bit(ZQ, PSUTTL(B, lg, ll)) = Blt(ZQ, PSUTTL(B, lg, ll - 1))

(2) The status of the (I3 — 1)-th bitis 1 — -+ =1 -0 — -~ — 0: In
this case Bit(ly, PSum(B,ls,li — 1)) = 1 — Bit(ly, PSum(B,ls,11)). Since
Bit(l; — 1, PSum(B, 15,11 — 1)) = 0, by Lemma 5.5

Blt(lg,SUm(B)) =1- Bit(lg, PSum(B, 12, 11))



COUNTING IN UNIFORM TC° 11

O

Now we define PSy(B,l) = PSum(B,l,l —k), and we will just consider the case
k > |s|+ 1. Then by induction we have the following generalization of Theorem 5.7.

Theorem 5.8. Let k > |s| + 1, and define a(l) = Bit(l, PS,(B,1)),b(l — 1) =

Bit(l — 1, PSi(B, 1)), which look as follows:
PSy(B,1) o a() b(I=1)
PSy(B,l-1) : -+ -+ a(l=1) b(l-2)
PSk(B, 2) o e a(l—2) b(1-3)
(1) Ifb(l—l) =b(l-2)=---=b(m) =1, anda(l-1) = a(l-2) = --- = a(m) = 1,
then Bit(l, PSum(B,l,m)) = Bit(l, PSi(B,1)).
(2) Ifb(l-1)=b(1-2)=---=b(m) =1, a(l-1) =b(l-2) = - - = a(m+1) =1,

and a(m) = 0, then Bit(l, Sum(B)) = 1 — Bit(l, PSy(B,1)).
By Theorem 5.8, Remark 5.6, we have:
Algorithm 5.9. (Partial sum algorithm)
Let a(l) = Bit(l, PSp(B,1)),b(l— 1) = Bit(I—1, PSi(B,1)) for all I, and let & >
|s|+ 1, then the function Bit(l, Sum(B)) is determined by the following algorithm:
(1) If (I — 1) = 0, then Bit(l, Sum(B)) = a(l).
(2) Hb(l-1)=b(1-2)=---=b(m)=1,b(m—1) =0, then:
(a) If there exist an h such that { > h > m, then Bit(l, Sum(B)) = 1 — a(l).
(b) Else Bit(l, Sum(B)) = a(l).

Remark 5.10. Tf a(l), b(l) are given, then the determination of Bit(l, Sum(B)) is
computable in Ag

6. PARTIAL SUM IN Ag

In this section, we show how to compute partial sum in Ay when the width of
upper triangular bit matrix is quite small.

Lemma 6.1. For any ¢ > 1, c|z|y is double sharply bounded.

¢ times

Proof. claly < [|22[°] < [(22)#(22)# - - - #(22)l2. U

Lemma 6.2. |z|5 - |y|3 is double sharply bounded.
¢ times

Proof. Let tc(m)déf(Qm)#(Qx)# o (22).

If 2 =1 or y = 1, the proof is obvious. We may assume that z,y > 2. Note
that £ > 2 implies |z|, > 2 for all n. If \/|z|2» > |z|3 and \/|y|2 > |y|3, then the
following inequality holds:

lzdtyla > [|2] - |yl
> x|z + |ylz — 1
|2]2]ylz — 1
> 20z|3- Jyls — 1

> [z[3yls.



12 JUI-LIN LEE

Note that A = {2 : v/|z|» < |z|3} is a finite set. Let ¢ be an upper bound of
{lz|3 : v/|z|2 < |z|3}. By Lemma 6.1, for z € A, we have

|z|s - [yls < clyls < [Ee(lyl)l2-
O does . ence
(So does y.) H
Imaz(tc(|2]), te(lyl), 2#y)|2 = maz([t.(|z])|2, [t(lyD)|2, [2F#yl2) > |2]3 - yla.

O
Lemma 6.3. 21°l4 . |y|5 is double sharply bounded.
Proof. By Lemmas 6.2 and 6.1,
21 Jyla < 2ela - yla < 21l < 1(20)#(21)]2
for some 1. (]

Erample 6.4. Fix k > 3. If an Ay function 2(F,i) < |u(F)p(< 2/4x+1) for
lo(=,8)|x—1
0 < i< |[v(Z)|k, then the following Ay algorithm computes oo 27T, i)
=0
(1) y(@,i) = 2¢(¥1) _ 1, Such y is double sharply bounded. So it is computable
in Ag by sharply bounded search.
(2) Concatenate y(Z,0),y(Z",1),...,y(T, |v(Z)|x) into a binary sequence by
the following way:
Bit(l, y(&,w)) if j =w-2lub+ 41
0 <1< 2l
0 < w< [o(Z)k;
0 else.

The definition of G(77, j) is obviously in Ag.
|,U|kA2|"L|k+1 )
(3) Now define H(Z') = > 2 -G(7,j). H(T) € Ao is by CRN. Note
j=0
that H(7) is sharply bounded by Lemma6.3. Now sharply bounded counting
implies that

G(Z,j) =

|’U(T7i)|k_1

sbeount(H(T)) = Y. 2(F,i)
is computable in Ayg.

Remark 6.5. In Example 6.4, we avoid using weak multiplication |z| - |y|, which
may cause circular argument.

Theorem 6.6. Multiplication x -y is in Ty. Furthermore, there s an algorithm
which computes x -y and uses count once sequentially.

Proof. From Example 3.2, we get the bit matrix for 2 - y. Now we apply CCP
twice so that the width is about |y|3. By Lemma 5.1, we can convert the bit
function into the column bounded form which we may apply multiple addition.
From Example 6.4, we know how to calculate partial sum in Ag. By partial sum
algorithm, Bit(i,z - y) can be determined. Note that only at the first CCP we do
need the function count. In the rest of this computation sharply bounded counting

(in Ag) will be sufficient. O
Corollary 6.7. Multiplication x - |y| is in Aq.



COUNTING IN UNIFORM TC° 13

Proof. Similar to Theorem 6.6, except that sharply bounded counting is sufficient
for the first CCP. O

Remark 6.8. Now we apply partial sum algorithm to numerical approximation.

oQ
Suppose that u = >~ v;; and 1 > vy > vy > -+ > 0. (The upper bound 1 is for
i=1

simplicity.) We can express real number v; by > F(i,j) - 279, where I'm(F) C
j=1

{0,1}. Then the multiple addition of F' is u. Column j is called bounded by p(j)
if for all 4 > p(j), F(i,j) = 0. Now we focus on cases with polynomial column
bounds, say, p(j) = cj* with constant ¢ > 0 and integer & > 0. We have the
following similar result: To determine Bit(—t, u), it suffices to consider the partial
sum

(1) p(s(t))

PS(Fity=) Y F(i,j)27,

j=t =0
where s(t) =1+ (k+ ¢)|t| +2+d, ¢ > 0, and constant d depends on ¢ and e. Note
that the number 2 provides the first two bits a(+),b(:) in Algorithm 5.9. Let

a(—t) = Bit(—t, PS(F;t)),
b(—t—1) = Bit(—t—1,PS(F;t)).
Now we may extend the partial sum algorithm over negative integers to determine
Bit(—t,u). (This may not be in Ag for it may not halt.)

7. SHARPLY BOUNDED MULTIPLE PRODUCT

In this section we show that multiple products with sharply bounded values are
computable in Ag. First we show that exponentiation with sharply bounded value
is computable in Ag (Theorem 7.6). Then multiple products with sharply bounded

k

values can be factorized as [] pj* in Ag. With this one can use sharply bounded
i=1

search to find out the least positive integer which is a multiple of p;* for i = 1 to

k. (Note that k,p;* are all sharply bounded, and then pj* is computable in Ag.)

Lemma 7.1. The function
r— | . f0<y<
dsbrem(z,y,u) = z—l=/yly y < Juls
0 else
15 in Ag.
Proof. Since the rational number 1/y has periodic binary expression, and its period
has length < y < |u|2, we can use sharply bounded p-operator to compute its

periodic part and non-periodic part in Ag. With this it is easy to compute quotient
and remainder. O

z(mody) is defined as pi < y[y | (z —i)]. If 2, y are both sharply bounded, then
|z/y], z(mody) are computable in Ag.

Lemma 7.2. The function

hi(z,s,y,u) = {

¥ (mody) if 0 <y < |ula,s < |uls

0 else



14 JUI-LIN LEE

15 in Ag.
Proof. Since %" (mody) < y < |uls, its size is bounded by |u|3. We may construct
a short sequence (ag, a1, ..., as) such that a; = zQI(mody). Then a;41 = aﬁ(mod
y) and it is computable in Ag.

Now the size of this short sequence < |u|z - |u|3 is double sharply bounded by

Lemma 6.2. Hence by sharply bounded p-operator this sequence (and then ay) is
computable in Ajg. O

Lemma 7.3. The function

ho(z,t,y,u) = {

#(mody) if0 <y < Jula,t < Jul;
0 else
15 in Ag.

S

Proof. Let t = S_t; - 2" t; € {0,1}, then z'(mody) = [[ a;(mody) where a; is
/=0

i:t;=1

1=

defined in Lemma 7.2. Now define

{bi “ait1(mody) ifti41 =1,
bi+1 =

b; else.

By sharply bounded p-operator the short sequence (bg,...,bs) and z'(mody) are
computable in Ajg. O

Lemma 7.4. The predicate

1 ifpisaprime and p < |u|
Plp,w) = {0 else
15 in Ag.

Let p; be the i-th prime number. (Question: For sharply bounded p;, is the
function i — p; in Ag? Tt is count once in Tp.)

Lemma 7.5. Ift is large enough, then 28 < [] p;.

pi<t
Proof. By prime number theorem, when ¢ is large enough, 1 — ¢ < [log, [] pil/t
pi<t
for small € > 0. Then
llog. II pil/(1—¢) log, I pi
2«92 p;<t — (2(1/1—5)) pist H pi.
pi<t

(We can choose ¢ such that 201/1=¢) < e.) O

Theorem 7.6. The sharply bounded exponentiation function
Mt ot <
E(z,t,u) = {I ifat < ul

0 else
15 in Ag.

Proof. We may assume that z > 1,¢ > 1. If ¥ < |u|, then it is easy to show that
y < |u|s. Hence 2° = pi < |u|[i = #!]. By Lemma 7.5, we can replace “i = z!” by
Wy —

i = z'(mody) for y < |u|s.” Lemmas 7.1,7.3, and sharply bounded quantification
show that it is computable in Ag. O



COUNTING IN UNIFORM TC° 15

Theorem 7.7. Ifz t are in Ag and t(z) is double sharply bounded, then the sharply
bounded multiple product function

t(z)
z(z,j) if the product < |u
(o, u) = ,-1;[1 (z,7) if the p < ul

0 else
15 in Ag.
Proof. First, each z(z, j) < |u|. Hence we can factorize z(z,j) to ] p"(#0p) in
Ag, where pre)
r(z,7,p) = pk < |u|Fw, v < |u|[P(p,u) Ap* = wAw-v=z(zj) Av(modp) # 0].
(This is computable in Ag by Lemma 7.4, Theorem 7.6, and the fact that “sharply
bounded multiplication and division are computable in Ag.”) Then

t(z)

t(z) .
H Z(I;]) = H pJE:l ( 7.7717).
i=1 |

Uu

p<|
: : t=) : :
Since t(z) is double sharply bounded, > r(z, j, p) is computable in Ag.
i=1

()
2 r(@,4,p) . .

Now ¢, = pi=t < |u| is computable in Ag by Theorem 7.6. Instead of

constructing a bit matrix for multiple addition (as in Section 8) we use sharply

bounded p-operator:
i(z)
H z(x,j) = pw < |ul[w> 0AVp < |u| [P(p,u) — ¢ | w]].
j=1
Note that w is sharply bounded and hence ¢; | w can be verified in Ajg. O

Now if #(z) is sharply bounded in Theorem 7.7, will the sharply bounded multiple
t(z)

product be in Ag? If [] z(z,7) < |ul, then |{j < t(z) : z(z,j) > 1} < |uls. The
j=1

crucial part will be: Is the sparse counting function (with respect to polynomial ¢)

count(z) if count(z) < q(|z|2)

0 else

spcount(x) = {
computable in Ag? The answer is yes.

Lemma 7.8. spcount(z) € Ag.

Proof. We use the idea in [14], Lemma 3: there are about n/log.n many primes
less than n(= |z|). If count(z) < |n|® (k is the degree of ¢), then there exists a
small prime p such that Vi, j < n[i # j, Bit(i,z) = Bit(j,z) = 1 — i # j(modp)].

Now we prove this claim. Consider A = {i—j : j < ¢ < n, Bit(i,z) = Bit(j,z) =
1}, then |A| < |n|*®. Each a € A has less than |n| many prime factors. Then in
the first |n|?**1 primes there is a prime p such that p { a for all a € A. When
n is large enough, p < |n|***2. We can first compute p by sharply bounded pu-
operator. Then we construct a binary string with length < p < |n|***2 and it
has the same cardinality as {i < n : Bit(i,z) = 1}: for 0 < j <p—-1,b(j) =1




16 JUI-LIN LEE

iff 30 < n[i = j(modp)]. (This maps {¢ < n : Bit(i,z) = 1} into {j : j < p}
injectively.) Now by CRN, Lemma 2.17, |[{j < p : b(j) = 1}| is computable in
Ag. O

Theorem 7.9. If z,t are in Ay and t(x) is sharply bounded, then the sharply
bounded product function
t(x)

, z(z,j) if the product < |u
fowy = 4 L1 =(3) i the product <
0

else
15 in Ag.

Proof. Similar to Theorem 7.7. First we use Lemma 7.8 to verify that |{j < () :
T(:r)

z(z,j) > 1}| < |uls. For the sum ) »(z,j,p) we can use Lemma 7.8 and partial
ji=1

sum algorithm. Hence 1t is computable in Ag. O

Remark 7.10. Theorem 7.6 is inspired by [15], in which “cl®lz € uniform AC? for
constant ¢” is proved. That proof uses Lemma 7.5 and Nepomnjaséij’s technique.
In this paper the corresponding function algebraic part of Nepomnjasé¢ij’s technique
is probably the sharply bounded p-operator and the fact “|z|3-|y|s is double sharply
bounded.”

8. MULTIPLE PRODUCT WITH POLYLOGARITHMIC SIZE

We are going to explore the power of partial sum algorithm a little bit more.
Here we investigate exponentiation and multiple product. Although we know that
2% is too large for NC' to compute, some kind of weak exponentiation is computable
n T().

If bit function f is column bounded by s and row bounded by t, f can be seen
as a matrix of size < s x t. We may imagine that number z as a 1 x |z| matrix.
If we do not use CCP and partial sum algorithm, the bit matrix for product = - y
has size < |y| x (Jz| + |y|). Then if we multiply the bit matrix of z - y and the bit
matrix of z, we will get a bit matrix with size < (|y| - |z|) x (|z| + |y| + |2])-

FEzample 8.1. Define Fy for z - y as follows:

. Bit(i,y) - Bit(j —i,z) ifj > i,
F](I,y,l,]):{ 0 ( y) (j ) elsje._

Then the size of Fy < |y| % (|z| + |y|) and Sum(Fy,z,y) =z -y

[ee] [ee]
Sum(Fy,xz,y) = ZZQJ Fi(z,y,1,j)

i=0 j=0

=Y "> "2 Bit(i,y) - Bit(j — i, z)
i=0 j>i

(Set u=j—1.)

= Z 2 Bit(i,y)[Y _ 2" Bit(u, z)]



COUNTING IN UNIFORM TC° 17

Now we use Fy and z to define Fs for (z - y) - 2:

BZt(],Z)FH(I,y,Z,l—]) 1“23;
0<i<lyl,
Fo(z,y,z, k1) = 0<j <z,
k=lyl-j+3
0 else.
Tt is easy to verify that the size of Fy < (Jy| - |2]) x (|2| + |y| + |2])-
Lemma 8.2. In Frample 8.1, Fy € Ag and Sum(Fs,z,y,z) =2 -y - 2.

Proof. Since the size of Fo < (|y| - |2]) x (|z| + |y| + |z|), Fa(z,y,2z,k,1) = 0 for
k> |yl -|z| or I > |z| + |y| + |z|. Hence we only need to consider sharply bounded
k,l. The multiplication |y|-j and the sharply bounded search of j are in Ay because
j is sharply bounded. Hence Fy € Ag. The equality is easy to verify. O

With Fa, CCP, and partial sum algorithm, the computation for 2 - y - z only
needs to use count once sequentially.

Remark 8.3. Given function f(7), if there is an Ag bit matrix F(7Z,1,j), which
is column sharply bounded, and Sum(F, ) = f(Z), then f € Aq(count);.

In Example 8.4 we make uniform the size of numbers z,y,z to 2. With the
same trick we may compute F,(7Z,1,j) by some Ay function F(n, 7, 4,j). (See
Lemma 8.9.)

FEzample 8.4. Let m = max(||z||, |lyll, ||z]]), then 2 > maz(|z|, |y|, |2|). Define Fy
for z - y:
Bit(i,y) - Bit(j —i,2) if j >4,
F](;l‘,y,i,j): 1< 2M,
0 else.
Then F; € Ay, the size of F; < 2™ x (2™ 4 2™), and Sum(F1,z,y) =z - y.

Now we define Fy from Fy,z for z -y - z:

Bit(j,z) - Fi(z,y,0,1—7) ifl>j,
0<i<2m,
FQ(IJszJkJI): OSj<2ma
k=j-2m4i;

0 else.

Then Fy € Ag. This is much easier to compute because M SP takes over the job
which is previously done by weak multiplication. It is obvious that Sum(Fy, z,y) =
z-yand Sum(Fs,z,y,2z) = -y - z. We get this advantage by allowing more 0’s in
the bit matrix.

n
Consider [] z(). Suppose that 2™ > mazo<i<n(|2(i)]). We may define bit
i=0
matrices Fy, Fs, ..., F,, as we have done in Example 8.4. By induction, Fj, is of
size < 27" x (n 4 1)2™. In order to do CCP, we need to force 27" to be sharply

bounded. Lemma 8.5 shows that it is possible for some special cases.

Lemma 8.5. If n < |yl|2/|yls and p is a polynomial, then p(||z||)" is sharply
bounded.



18 JUI-LIN LEE

Proof. Since p(||z||)» < 2%1%1s for some constant k, it suffices to show that |z|3 - n
is double sharply bounded.
We prove this in 4 cases:
(1) If ly]2 = 1 (or 2), then |y|a/|yls = n = 1. Hence |z|3-n is double sharply
bounded.
For the following three cases we may assume that |y|z > 2.
(2) If z <y, then |z]3-n < |23 [yl2/]yls < [ylo.
(3) If |yls < |z]s < 3yls, then
|2]s-n < Jzla - [yla/lyls < 3lyl2 < [1291°] < |(2y)#(2y)#(2y)]o-
(4) If mlyls < |z|s < (m 4+ 1)]y|s for some m > 3: Let b = |y|s,a = |z|s, this
implies 27" < |y|ls < 2" — 1. Then |z|3 - |y|a/|yls < a(2" — 1)/b.
Consider double sharply bounded term |z#y|s:
|atyls = (2705 > 2] [yl > [als +lyls =22 27" 42571 -2,
(This is from fact |p-q| > |p|+ |¢| — 2.) Tt suffices to show that a(2° — 1)/b <
9a=1 4 9b=1_ 9
From the hypothesis (m + 1)b > a > mb, a(2° — 1)/b < (m + 1)(2° — 1).
We need to show that (m 4 1)(20 — 1) < 2mb-1 4 20-1_9(< 201 4 9b-1_ 9)
for m > 3 and b > 2. This can be easily proved by induction on m,b.
O

Remark 8.6. In general, if n < |yla/|ylp+1 for & > 2, then p(|z|z)" is sharply
bounded.

Remark 8.7. Original idea of Lemma 8.5: For y < z, if |y|2/|y|s is monotone in-
creasing, then

|zls - [yla/1yls < [z]s - |e]2/]2]s < |2
is double sharply bounded. Unfortunately |y|2/|y|s is not monotone increasing.
However, it doesn’t damage Lemma 8.5.
Ezample 8.8. Given z(Z,1),m = m(T) = mazo<i<n(||2(T,1)|]). We may define
n

bit matrix F(n, @, -,-) for [] z(Z, ) as follows:

=0

Bit(i, (7, 1)) - Bit(j — i,z(7,0)) ifj>1,
P(L,7,0,5) = i<

0 else.

For all n > 1, define
Bit(j,z(@,n+1)) - F(n, T ,i,l—j7) ifl>j,
0<i<2nm
Fn+1,7,k1) = 0<y<2m
k=yj 2" 41
0 else.

It is easy to verify that Sum(F(n,-,-, ), T) =

[

z(Z,i) by the technique in

.

Lemma 8.2 and induction.

Lemma 8.9. In Ezample 8.8, if n < |t(T)| and z(T i) € Ty, then F(n, T, k,l) €
To. If n < |t(T)|2 and 2(T, 1) € Ao, then F(n, T, k1) € Aq.



COUNTING IN UNIFORM TC° 19

Proof. Consider n < [t(T)|. F(n,T) is of size < 2™" x (n 4 1)2™, where 27" is
computable in Ag. For any k < 2™" let

k=g, -2mn=D 45 oom=2 4oy g
with 0 < j,, < 2™ for 1 < w < n. Inductively

i . . —_ —_ . n . . n .
H B w)) - F — § > E
! (n,f’ k’,l)— w=2 Zt(]w’Z(I’ )) (1, I’jl’l w:2jw) lfl_w:2]wJ

0 else.

Since jw(< 2™) and n are all sharply bounded, >~ j, is in Ty. If n is double

w=2

sharply bounded and z € Ag, then > j, is in Aqg.
w=2

O

Remark 8.10. The 2™ size assumption is the key which makes simple recursion
n
possible in Lemma 8.9. In this case it depends on multiple addition > j,,.
w=2
Theorem 8.11. If z(7Z,i) € Ao, p is a polynomial, n < |yla/|yls, m = |7,
and |2(7,1)| < p(logm) for 0 < i < n, then multiple product Prod(z; Z,y,n) =

I1 2(7, 1) is count once in Ty.
i=0

Proof. From Lemma 8.9, F for [] z(7Z,1) is definable in Ay. Lemma 8.5 shows
i=0
that F(n, T, ) is column bounded by sharply bounded terms. Hence CCP is
applicable. Now we can apply partial sum algorithm to F' for [] z(7,1). O
=0
Since the product in Theorem 8.11 still has polylogarithmic size, we can apply
Theorem 8.11 iteratively to get:

Theorem 8.12. If z(7,i) € Aq, p is a polynomial, n < (|yl2/|yl3)*, m = |7
and |z(7,1)| < p(logm) for 0 < i < n, then multiple product Prod(z; T

IT 2(7,%) € Ao(count)y.

i=0

Corollary 8.13. If z(%',i) € Ao, p,q are polynomials, deg(q) = k, n < q(||yl]),
m = |Z'|, and |2(7,1)| < p(logm) for 0 < i < n, then Prod(z; T ,y,n) =

[1 2(Z,%) is computable in Ag(count)yyi.
=0
Proof. Tt is because q(||y[|) < (Jyl2/lyla)**". O

Actually the restriction “n < q(||y|])” is not necessary: if | [T z(Z", )| < ¢(logm)
=0
and n < | 7|, then |{i : 2(7Z,i) > 1}| < q(logm). By Lemma 7.8, we can define
another Ay function Z and I < ¢(logm) such that 2(Z,i) > 1 for ¢ < [ and
l n
I12(7,4) = I] 2(F,i). Hence we have:
=0 i=0

Corollary 8.14. If z(%,i) € Ay, p is a polynomial of degree k, n < m = | T,

and | ] 2(7,1)| < q(logm), then [[ z2(T,1) is computable in Ag(count)gyi.
i=0 i=0



20 JUI-LIN LEE

|p(|y|z):

We shall give some examples. A trivial one is |z it is computable in

Ag((3011,nt)deg(p)+1 .

Ezample 8.15. n! for n < |z|2/|z|3 is computable in Ag, for it is sharply bounded.
To compute (|z|2)!, it suffices to divide this product into |z|3 many subproducts:

lz|o lz|o

T=Ts 2TeTs ]2
R 1 61 N O S | O

i=1 . x| L ||

: z_|:|§+1 z_(|z|3—1)|i|§+1

(Minor adjustment to round up numbers like |z]2/|2|5 to integers is needed.) Now
each subproduct is sharply bounded and computable in Ay. (Each subproduct <
(|.’l’|2)|z|2/|z|3 < lelslzl=/lels = 2'”'2.) Now the product of subproducts is computable
in Ag(count); by Theorem 8.11 since |z|s < |x]2/|2|3 for all but finite .

Ezample 8.16. By Stirling’s formula, (lyZJE) is sharply bounded. Hence (lyib) € Ap.

Now we consider the case that z(Z,¢) is not sharply bounded, but with a simple
form.

Frample 8.17. Consider (2'3”' + 1)|y|2. We define the corresponding F' as follows:

Bit(j, 2”1 + 1) ifi =0
J 2zl
0 else.
and for n > 1,
F(n,z,k,l) ifk’<2”;
F(n)‘raial_|-7~'|) 1f12|1'|,
F(n+1,z,k,1)= k=97 44
0<i<2™
0 else.
Inductively,
F(1,z, Bit(0,k),l — count(|k/2])) if 1> count(|k/2]),
F(n,z k1) = k’<2”—1;

0 else.

If n < |y|a, then Fi(n,-,-, ) is computable in Aq (because |k/2] < 2”72 is sharply
bounded). Since F' is column sharply bounded, we can use CCP and partial sum
algorithm to compute (21*1 4 1)l¥l2 in Ag(count);. By this, we can also compute

(Iyilz) € Ao(count):

@14 vl = % ('32'2)21'“!.

=0

Since (Iyilz) is sharply bounded, we may choose # = y so that

() = seatiel + 0l -+ Dl - 1.
However, multiple addition does worse than sharply bounded search in this ex-

lyl2 i
ample: we shall compute (Iyilz) in Ag and use ) (lyi|2)21'|z| for (2'“”' + 1)|y|2.
=0



COUNTING IN UNIFORM TC° 21

Frample 8.18. Consider
r|-1
(lzl: 21')|y|2.
=0
This is computable in Ay by (2'“”' — 1)'3"2. If we consider the multiple addition for
this, we may construct F' with range {0,1, —1}; |f.|251 20 =9kl 1 = 1~2|x|+(—1)~20,

i=0
which is a sequence with elements 0,1, —1. Asin Example 8.17, F'is column sharply

bounded. For the counting we can separate F' into two parts, positive part P and
negative part N:

P(n,m,z,i,j) = F(n,m,y,z,g) lfF(n’l"z’Z’J)ZOa

0 else.
K —F n,z,y,i,j ian,l‘,y,i,j Soa
N(n, @ y.i,j) = 0 ( ) else.( )

By summing up both parts Sum(P), Sum(N), we get (217l — )lvlz = Sum(P) —
Sum(N).

However, we may apply the trick in Example 8.18 to show the following result.
Lemma 8.19. If z1(T,1),22(T, 1) € Ao, n < |yl2/|yl3, p is a polynomial, m =
| 7|, and count(z1 (T, 1)), count(z2( T, 1)) < p(logm) fori < n, then [ (z1(7F,i)—

i=1
29( T, 1)) is computable in Ag(count);.

Examples 8.16,8.18 show some weakness of the multiple addition method. Now
we show more of that.

Remark 8.20. Suppose that we want to compute (|z|2)! by defining F in a very
economic way. First we define a Ty function h which searches the position of the
i-th non-zero bit:

J
hii,z) = j if k§0 Bit(k,z) = 1,

0 else.
Then h is computable in Ty by sharply bounded search. (Question: is it computable
in Ag when i is p(]|z||) for some polynomial p? The answer is yes.)

Now we define Sp for the size of F':
Sr(1)=1,Sp(n+ 1) = Sp(n) - count(n + 1).

Then F is defined as follows:
Bit(j,1) ifi=0;

Fed,j) = 0 else.
F(n,z,j,l—h(i,n+1)) ifk=Spn)-(i—1)+7,
1 <i < count(n + 1),
Fn+ 1,2, k1) = 0<j<Sr(n),
13 i+ 1)
0 else.

The intuitive idea of F' is from Example 8.17: When we multiply the bit matrix
with a new number (n + 1), we simply skip those zero bits in the binary expression

of (n + 1). Hence the column size of F(n,-,-,-)is Sp(n) = [] count(i), and for
i=1



22 JUI-LIN LEE

r < Sp(n), the r-th row has non-zero entry. (Actually every row has exactly one
non-zero entry, but this is not important—any product defined in Example 8.8 with
count(z(7x,0)) = 1 has this property.)

We do not know whether F(|z|2,z,, ) is computable in 7p. Anyway, even
F(|z|2, @, -, ) is computable in Tp, it doesn’t help because the column size is not
sharply bounded!

2" 1 mo 2m_1
Lemma 8.21. T[] count(n) = [] i), If m = |z|3, then [] count(n) is not
n=1 i=1 n=1

sharply bounded. -
Proof. The first part is by induction. From induction hypothesis

2™ty 2™ 1 m m+1
H count(n) = H (1 + count(n)) = H(z + 1)(7) = H i(iTl).
n=2m n=0 i=1 =2
Then
gm+l_q 2™ _1 g2m+l_q m m+1
H count(n) = H count(n) - H count(n) = HZ(T) . i(20)
n=1 n=1 n=2m i=1 =2
m m m+1
=T+ m 41y =TT - m4 1) = T 4.
=2 =2 i=1
2m_1
Now we estimate [] count(n). For 1 <k <m, k(m—k)>m—1. Then
n=1

m
k

K (m = k)078) = [k(m — k))(5) > (m = 1)(%),

Applying this for all k € [1,m — 1], we get
HZ(T) > (m— 1)2m2_2m.
i=1

Then |

2Mm _2 5

(m—1)"=2 >(z3/2)" = > oUzla=2)12l2/8 > ) (I21a=2)/8

O

Remark 8.22. We may combine the techniques in Example 8.18, Remark 8.20 to
see whether it is possible to compute |z|3!. We construct the bit matrix in the
following way:
(1) Express every number by Y 5;2¢ with b; € {—1,0, 1} such that |[{i : b; # 0}]
is minimal in all possible expressions. (See Example 8.18.)

(2) Omit all those 0 rows. (See Remark 8.20.)

Although we can construct the bit matrix in such an economic way, the matrix
size is not sharply bounded: First we denote by alt(z) the alternation of z. (For
example, = (110011101)3, 11 — 00 — 111 — 0 — 1, then alt(z) = 5.) Then

2™ —1 mo .

IT alt(n) = 1 1) (The proof is similar to Lemma 8.21.) Since the size of
n=1 i=

minimal expression for n is ©(alt(n)), the size of the corresponding matrix for |z|s!
is not sharply bounded.



COUNTING IN UNIFORM TC° 23

Remark 8.23. The remaining hope we may have for multiple addition method is
that if each column of the bit matrix is sparse, then we can apply Lemma 7.8
and compute it in Ag. This seems unlikely. We may consider the computation of
[(|z]2/]2]3)1]* with |z|2/|z|3 = 2™ — 1 for some m. First [(|z]2/|z]3)!]? is sharply
bounded, then by Theorem 7.9 it is computable in Ag. Now we show that there is
a column with more than (logn)*¥ many 1’s for any constant k.

Consider the F' constructed for [(|z]2/|2z]3)!] - [(|z|2/|z]3)!] as in Example 8.8.
Consider the m bits binary expression of i = b bl _,...bibi < 2™ — 1 in the first
[(|z|2/|2]3)!], then there is a rev(i) = bibL .. b1 _ b in the second [(|z]a/|2]3)!]. If
we choose bit bi = 1 from i in the first product, we then automatically choose bit
bi =1 from rev(i) in the second product so that bi .25=1.pi .2m=F = 9m=1 There
are 2™ — 1 many i’s in the first product. Hence any product of this kind (for every
i, choose b}, = 1 from 7 at the first part and then automatically do the same choice
from rev(i)) will always have the value 2(m=1):(2"~1) "that is, it appears at column

(m—1)-(2™ —1). (Note that unit bit is at column 0.) Then how many 1’s of this
2m_1
kind will appear in column (m — 1) - (2™ — 1)? ] count(q).
i=1
2m_1
Now by Lemma 8.21 we estimate a lower bound for [] count(i):
i=1

2™ -1
[T count(i) > (jala/2) =257 > 2rle-

i=1

)- lzlo/lzlz—1
2 .

For any constant k, (logn)* < 2Flzls Tt is quite obvious that

zlo/|x|s =1
2

Concluding Remark: Now we see enough evidences of the weakness of multiple
addition method. However it seems to be the only method (as far as T know) to
compute some not-sharply-bounded multiple products inside weak uniform 7C°.
We now summarize the possible steps (according to this paper) to minimize the use
of count in multiple products:

(|zla —2) > kl|z|s.

(1) Partition the product into subproducts with sharply bounded values, then
compute subproducts in Ag (by Theorem 7.9): this may eliminate some un-
necessary use of multiple addition method.

(2) If some numbers have sizes > p(logn) for any polynomial p, we shall expect
that there are no more than O(logn/ loglog n) many, and all but finitely many
of them can be expressed as z; — z5 by sparse 21, z9: in this case we can apply
Lemma 8.19. (If there are more than (logn/loglogn)* many numbers with
non-polylogarithmic size for k > 1, we will have very little chance to compute
the result by Lemma 8.19: we need to have all but finite of them expressible
as z1 — zy by sparse z1, z2, and then there is a partition of subproducts (for
these numbers) such that all but finite subproducts have sparse difference
expression. And we will need to apply Lemma 8.19 repeatedly, at each time
the above condition holds, untile we get the final result.)

Research problems:

(1) Although z!¥! is known in P-uniform T'C?, it is not known to be in L. A sim-
pler question is: 31*l € Ty? And a more simpler one is: 3llell” ¢ Ao (count),?



24

JUI-LIN LEE

(2) Is Ag(count)y for k > 0 strictly increasing? This problem is not the same as

TCY C TCY ¢ TCY in [10], for we allow using AC? circuit inside. A natural
attempt for this separation problem is “3”$”k € Ao(count)p\Ao(count)y—17”

The final goal of problem (2) is to separate TC° and NC! by showing
that Ag(count)y, does not collapse. (On the other hand, the function tree(z),
defined as an OR-AND alternating tree on the input z, needs to be used at
most once sequentially for any uniform NC?! function. This is from the fact
“tree is complete in NC! under AC® or DLOGTIM E reduction.” See [6].
For a direct function algebraic proof, see [13].)

Acknowledgments. Sections 3,4, 5,6,8 are from the author’s Ph.D. thesis [13].
I gratefully acknowledge the many valuable suggestions of Professors Ward Henson,
Carl Jockusch, Lou van den Dries, and Kequan Ding during the preparation of
the thesis. T also wish to thank Heng-Huat Chan, Peter Clote, Kousha Etessami,
Neil Immerman, Jan Krajicek, Carlos Parra, Pavel Pudlak for helpful discussions,
suggestions, and comments. Finally, I want to express my deepest gratitude to
my advisor Professor Gaisi Takeuti, who initiated this work by a very “simple”

question: How to do multiplication in uniform NC'?

(1]
(2]

(3]
(4]
(5]
(6]

(9]
(10]
(11]
[12]
(13]

[14]
(15]

(16]

REFERENCES

M. Ajtai. E% formulae on finite structures. Annals of Pure and Applied Logic, 24:1-48, 1983.
E. Allender and V. Gore. A uniform circuit lower bound for the permanent. STAM Journal
on Computing, 23(5):1026-1049, October 1994.

D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. In SCT:
Annual Conference on Structure in Complexity Theory, pages 47-59, 1988.

D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC'. Journal
of Computer and System Sciences, 41:274-306, 1990.

A. K. Chandra, L.. Stockmeyer, and U. Vishkin. Constant depth reducibility. STAM Journal
on Computing, 13(2):423-439, 1984.

P. Clote. Sequential machine independent characterizations of the parallel complexity classes
AlogTIME, AC*, NC*, and NC. In Feasible Mathematics: A Mathematical Sciences Insti-
tute Workshop held in Ithaca, New York, June 1989, pages 49-69. Birkhauser, 1990.

P. Clote. On polynomial size frege proofs of certain combinatorial principles. In Clote &
Krajicek (Eds.), Arithmetic, Proof Theory, and Computational Complerity, pages 162-184.
Clarendon Press, 1993.

P. Clote and G. Takeuti. First order bounded arithmetic and small boolean circuit complexity
classes. In Feasible Mathematics IT: A Mathematical Sciences Institute Workshop, pages 154—
218. Birkhauser, 1995.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Math-
ematical Systems Theory, 17:13—-27,1984.

A. Hajnal, W. Maass, P. Pudldk, M. Szegedy, and G. Turidn. Threshold circuits of bounded
depth. Journal of Computer and System Sciences, 46(2):129-154, 1993.

J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18-th
Annual ACM Symposium on Theory of Computing, pages 6—20, 1986.

N. Immerman. Expressibility and parallel complexity. STAM Journal of Computing,
18(3):625-638, June 1989.

J.-L. Lee. Count and tree in uniform NC'. PhD thesis, Department of Mathematics, Uni-
versity of Illinois at Urbana-Champaign, 1997.

J. B. Paris and A. Wilkie. Counting Ag sets. Fundamenta Mathematicae, 127:67-76, 1986.
C. M. Parra. Uniformity and bounded arithmetic below P. PhD thesis, Department of Math-
ematics, University of Illinois at Urbana-Champaign, 1996.

A. Razborov. Lower bounds on the size of bounded-depth networks over a complete basis
with logical addition. Mathem. Notes of the Academy of Sci. of the USSR, 41(4):333-338,
1987.



COUNTING IN UNIFORM TC° 25

[17] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.
Tn ACM Symposium on Theory of Computing (STOC), pages 77-82, 1987.

[18] A. C. Yao. Separating the polynomial-time hierarchy by oracles. In 26-th Annual Symposium
on Foundations of Computer Science, pages 1-10, 1985.

MATHEMATICAL INSTITUTE, ACADEMY OF SCIENCES OF THE CZECH REPUBLIC
F-mail address: 1lee@math.cas.cz



