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Abstract

D. Boneh and R. Venkatesan have recently proposed an approach
to proving that a reasonably small portions of most significant bits of
the Diffie–Hellman key modulo a prime are as secure the the whole key.
Some further improvements and generalizations have been obtained by
I. M. Gonzales Vasco and I. E. Shparlinski. E. R. Verheul has obtained
certain analogies of these results in the case of Diffie–Hellman keys
in extensions of finite fields, when an oracle is given to compute a
certain polynomial function of the key, for a example the trace in the
background field. Here we obtain some new results in this direction
concerning the case of so-called “noisy” oracles.
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1 Introduction

Let IFq denote a finite field of q elements.
D. Boneh and R. Venkatesan [1] have proposed an approach to proving

that about n1/2 of most significant bits of the Diffie–Hellman key modulo
an n-bit prime are as secure as the whole key. Unfortunately the proof
of their main result is not quite correct (because the multipliers in their
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proof of Theorem 2 of [1] are not uniformly distributed thus Theorem 1 of
their paper does not apply). The proof of Theorem 3 in [1], dealing with
other cryptosystems, suffers from a similar problem. Their results have been
corrected and generalized by I. M. Gonzales Vasco and I. Shparlinski [6, 7].
A detailed survey of several other results of this type (including the RSA
cryptosystem and the discrete logarithm problem) has recently been given
in [5].

E. R. Verheul [10] among several other results, considers a similar prob-
lem for the Diffie–Hellman key in arbitrary finite fields. However instead
of studying the security of the most significant bits the paper [10] deals
with the security of values of sparse polynomials at the values of the Diffie–
Hellman keys. More precisely, let us fix an element γ ∈ IFq and a polynomial
F (X) ∈ IFq[X]. It has been shown in [10], under certain natural conditions,
that if we are given an oracle which for each pair (γx, γy) with some inte-
gers x and y returns the value of F (γxy), than this oracle can be used to
construct a polynomial time algorithm to compute the Diffie–Hellman key
γxy. We remark that polynomials F can be of very large degree (thus direct
solving the equation F (γxy) = A is not feasible) but contain a reasonably
small number of monomials. The result has been motivated by applications
to the proof of security of a certain new cryptosystem, see [2, 8, 10].

Here we obtain a generalization of Theorem 24 of [10] to the “noisy” case,
when oracle returns the result only for a certain very small fraction of inputs
and returns an error message for other inputs.

2 Preparations

The following estimate on the number of zeros of sparse polynomials is a
version of the similar result from [3, 4].

Lemma 1 For r ≥ 2 elements a1, . . . , ar ∈ IF∗q and integers τ1, . . . , τr ∈ ZZ
let us denote by Q the number of solutions of the equation

r∑

i=1

aiz
τi = 0, z ∈ IF∗q.

Then
Q ≤ 3(q − 1)1−1/(r−1)d1/(r−1),
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where
d = min

1≤i≤r
max
j 6=i

gcd(τj − τi, q − 1).

Proof. It has been shown in Lemma 7 of [3] and Lemma 4 of [4], see also
Lemma 3.4 of [9], that

Q ≤ 2

⌊
q − 1

dL1/(r−1)e − 1

⌋

where L = (q − 1)/d.
If L ≤ 3r−1 then

3q1−1/(r−1)d1/(r−1) ≥ 3qL−1/(r−1) ≥ q > Q.

Otherwise
⌈
L1/(r−1)

⌉
− 1 ≥ 2L−1/(r−1)/3 and the result follows. ut

Let us fix an element ϑ ∈ IFq of multiplicative order t.

Lemma 2 For r ≥ 2 elements a1, . . . , ar ∈ IF∗q and integers e1, . . . , em we
denote by W the number of solutions of the equation

r∑

i=1

aiϑ
eiu = 0, u ∈ [0, t− 1].

Then the bound
W ≤ 3t1−1/(m−1)D1/(m−1),

holds, where
D = min

1≤i≤m
max
j 6=i

gcd(ej − ei, t).

Proof. We write ϑ = g(q−1)/t where g is a primitive root of IFq and note that
each solution u ∈ [0, t− 1] of the previous exponential equation gives rise to
(q − 1)/t distinct solutions

zj = gu+tj, j = 0, . . . , (q − 1)/t− 1,

of the equation
r∑

i=1

aiz
τi = 0, z ∈ IF∗q.
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where τj = ej(q − 1)/t. Remarking that

gcd(τj − τi, q − 1) =
q − 1

t
gcd(ej − ei, t),

from Lemma 1 we obtain that

W ≤ 3
t

q − 1
(q − 1)1−1/(m−1)

(
q − 1

t
D
)1/(m−1)

= 3t1−1/(r−1)D1/(m−1)

as claimed. ut

3 Security of Polynomial Transformations of

the Diffie–Hellman Key

Let γ ∈ IFq be an element of multiplicative order t.
As in [10] we consider an m-sparse polynomial

F (X) =
m∑

i=1

ciX
ei ∈ IFq[X], (1)

where c1, . . . , cm ∈ IF∗q and e1, . . . , em are pairwise distinct modulo t.
Let 0 < ε ≤ 1.
Assume that we are given an oracle OF,ε such that for every x ∈ [0, t−1],

given the values of γx and γy, it returns F (γxy) for at least εt values of
y ∈ [0, t− 1] and returns an error message for other values of y ∈ [0, t− 1].

The case ε = 1, that is, the case of a “noise-free” oracle has been consid-
ered in [10].

We are ready to prove the main result. For simplicity we assume that t
is a prime number, although analogues of our result hold for composite t as
well. Nevertheless this case allows us to simplify some arguments and it is
also one of the most practically important cases, see [2, 8, 10].

Theorem 3 Let t be prime, m ≥ 2 and let an m-sparse polynomial F be
given by (1). Assume that

1 ≥ ε ≥ 6t−1/(m−1).

Given an oracle OF,ε, there exists a probabilistic algorithm which given γx and
γy makes the expected number of at most 2mε−1 calls of the oracle OF,ε, ex-
ecutes polynomial number (m log q)O(1) arithmetic operations in IFq per each
call and returns γxy for all pairs (x, y) ∈ [0, t− 1]2.
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Proof. If x = 0 the result is trivial. Let us consider a pair (x, y) ∈ [0, t− 1]2

with x 6= 0.
Let U be the set of u ∈ [0, t−1] for which the oracle, given the values of γx

and γy+u returns the value of F
(
γx(y+u)

)
. By the conditions of the theorem

|U| ≥ εt. We also remark that if γy is known then for any v ∈ [0, t − 1] the
value of γy+v can easily be computed as well.

Put ϑ = γx.
Select a sequence of elements v uniformly and independently at random

in the interval [0, t− 1] and for each of them feed γx and γy+v in the oracle

OF,ε until we find an element u ∈ U and thus find the values of F
(
γx(y+u)

)
.

Let call this element u1. The expected number of oracle calls to find such
an element is ε−1 ≤ 2ε−1.

Assume that for some integer k, 2 ≤ k ≤ m, we have selected k − 1
elements u1, . . . , uk−1 ∈ U with

det (ϑeiuj)k−1
i,j=1 6= 0. (2)

We select elements v uniformly and independently at random in the interval
[0, t− 1] until we find an element uk ∈ U such that

det (ϑeiuj)ki,j=1 6= 0. (3)

We remark that the last determinant vanishes than uk satisfies an equation
of the form

∆1ϑ
e1uk + . . .+ ∆kϑ

ekuk = 0

where, by the assumption (2), we have

∆1 = det (ϑeiuj)k−1
i,j=1 6= 0.

Applying Lemma 2 we obtain that the number of elements uk ∈ U which
satisfy the condition (3) is at least

|U| − 3t1−1/(k−1) ≥ |U| − 3t1−1/(m−1) ≥ 1

2
|U|.

Thus such an element uk ∈ U can be found in the expected number of at most
2ε−1 oracle calls with γx and γy+v where elements v are selected uniformly
and independently at random in the interval [0, t− 1].

5



          

Therefore after the expected number of at most 2mε−1 oracle calls we ob-
tain m elements u1, . . . , um ∈ U with corresponding values of Aj = F (ϑy+uj)
for each j = 1, . . . ,m and such that

det (ϑeiuj)mi,j=1 6= 0.

The rest of the proof follows essentially the same arguments as the proof of
Theorem 24 of [10]. Indeed, we see that we have a nonsingular system of
linear equations

m∑

i=1

ciϑ
eiujϑeiy = Aj, j = 1, . . . ,m,

from which the vector (c1ϑ
e1y, . . . , cmϑ

emy) can be found and thus we obtain
the values of γe1xy, . . . , γemxy. Because m ≥ 2 and t is prime, at least one
of e1, . . . , em (which are pairwise distinct modulo t) is relatively prime to t.
Say if gcd(e1, t) = 1 we define an integer f1 ∈ [1, t− 1] from the congruence
f1e1 ≡ 1 (mod t) and compute

γxy = (γe1xy)f1 .

Remarking that besides the expected number of oracle calls is 2mε−1 and that
the rest of the algorithm can be implemented in deterministic polynomial in
m log q time, we obtain the desired result. ut

4 Remarks

Let q = pr. Then the trace function

Tr(X) =
r−1∑

i=0

Xpi

provides a natural example of a polynomial of the form (1). This function
as well as the function

L(X) =
∑

0≤i 6=j≤r−1

Xpi+pj

have been studied in [2] (with r = 6). Our results imply a stronger version of
Lemma 2.1 of [2] and thus give more security assurance to the proposed there

6



        

cryptosystem. The same comment also applies to the proposed in [8] XTR
public key cryptosystem which is based on a more computationally efficient
modification of the ideas of [2]. In particular, our results imply a stronger
version of Lemma 5.3 of [8].

It is interesting to replace the condition that for each x ∈ [0, t − 1] the
oracle OF,ε returns F (γxy) for at least εt values of y ∈ [0, t− 1] with a more
natural condition that the oracle OF,ε returns F (γxy) for at least εt2 pairs
(x, y) ∈ [0, t− 1]2.

It would also be very important to obtain similar results for the case
where the oracle returns the correct value of F (γxy) for a certain portion
of inputs and returns wrong results for other inputs (instead of the error
message, thus wrong outputs cannot be immediately identified).
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[5] M. I. González Vasco and M. Näslund, ‘ A survey of hard core functions’,
Preprint , 2000, 1–25.

7
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