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Abstract

In the multi-armed bandit problem, a gambler must decide
which arm of � non-identical slot machines to play in a se-
quence of trials so as to maximize his reward. This classical
problem has received much attention because of the simple
model it provides of the trade-off between exploration (trying
out each arm to find the best one) and exploitation (playing
the arm believed to give the best payoff). Past solutions for
the bandit problem have almost always relied on assumptions
about the statistics of the slot machines.

In this work, we make no statistical assumptions whatso-
ever about the nature of the process generating the payoffs of
the slot machines. We give a solution to the bandit problem
in which an adversary, rather than a well-behaved stochastic
process, has complete control over the payoffs. In a sequence
of � plays, we prove that the expected per-round payoff of our
algorithmapproaches that of the best arm at the rate �����	� 1 
 3 � ,
and we give an improved rate of convergence when the best
arm has fairly low payoff.

We also consider a setting in which the player has a team
of “experts” advising him on which arm to play; here, we give
a strategy that will guarantee expected payoff close to that of
the best expert. Finally, we apply our result to the problem of
learning to play an unknown repeated matrix game against an
all-powerful adversary.

1 Introduction

In the well studied multi-armed bandit problem, originally
proposed by Robbins [9], a gambler must choose which of �
slot machines to play. At each time step, he pulls the arm of one
of the machines and receives a reward or payoff (possibly zero
or negative). The gambler’s purpose is to maximize his total
reward over a sequence of trials. Since each arm is assumed
to have a different distribution of rewards, the goal is to find
the arm with the best expected return as early as possible, and
then to keep gambling using that arm.

The problem is a classical example of the trade-off be-
tween exploration and exploitation. On the one hand, if the
gambler plays exclusively on the machine that he thinks is

best (“exploitation”), he may fail to discover that one of the
other arms actually has a higher average return. On the other
hand, if he spends too much time trying out all the machines
and gathering statistics (“exploration”), he may fail to play the
best arm often enough to get a high total return.

As a more practically motivated example, consider the
task of repeatedly choosing a route for transmitting packets
between two points in a communication network. Suppose
there are � possible routes and the transmission cost is re-
ported back to the sender. Then the problem can be seen as
that of selecting a route for each packet so that the total cost
of transmitting a large set of packets would not be much larger
than the cost incurred by sending them all on the single best
route.

In the past, the bandit problem has almost always been
studied with the aid of statistical assumptions on the process
generating the rewards for each arm. In the gambling example,
for instance, it might be natural to assume that the distribution
of rewards for each arm is Gaussian and time-invariant. How-
ever, it is likely that the costs associated with each route in
the routing example cannot be modeled by a stationary distri-
bution, so a more sophisticated set of statistical assumptions
would be required. In general, it may be difficult or impossi-
ble to determine the right statistical assumptions for a given
domain, and some domains may be inherently adversarial in
nature so that no such assumptions are appropriate.

In this paper, we present a variant of the bandit problem
in which no statistical assumptions are made about the gen-
eration of rewards. In our model, the reward associated with
each arm is determined at each time step by an adversary with
unbounded computational power rather than by some benign
stochastic process. We only assume that the rewards are cho-
sen from a bounded range. The performance of any player is
measured in terms of regret, i.e., the difference between the
total reward scored by the player and the total reward scored
by the best arm.

At first it may seem impossible that the player should
stand a chance against such a powerful opponent. Indeed, a
deterministic player will fare very badly against an adversary
who assigns low payoff to the chosen arm and high payoff
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to all the other arms. However, in this paper we present
a very efficient, randomized player algorithm that performs
well against any adversary. We prove that the regret suffered
by our algorithm is at most � ��� 2 
 3 � � log � � 1 
 3 � , where �
is the number of arms and � is the number of time steps. Note
that the average per-time-step regret approaches zero at the
rate ��� � � 1 
 3 � .

We also present more refined bounds in which the depen-
dence on � is replaced by the total reward of the best arm (or
an assumed upper bound thereof).

Our worst-case bounds may appear weaker than the bounds
proved using statistical assumptions, such as those shown by
Lai and Robbins [6] of the form ��� log � � . However, when
comparing our results to those in the statistics literature, it is
important to point out two differences between our framework
and theirs:

1. They define the regret as the difference between the ex-
pected total reward of the player and the maximum of
the expected total rewards of any arm. Our definition,
in contrast, measures regret with respect to the specific
sequence of payoffs actually generated by the adversary.

2. They assume that the distribution of rewards that is asso-
ciated with each arm is fixed as the number of iterations
� increases to infinity. In contrast, our bounds hold for
any finite � , and, by the generality of our model, these
bounds are applicable when the payoffs are randomly (or
adversarially) chosen in a manner that does depend on � .

While it might seem that the apparent weakness of our bounds
is a result of the adversarial nature of our framework, in fact,
each of the differences described above suffices to show that
an upper bound of � � log � � is impossible in our model. This
holds even when the rewards are generated randomly and in-
dependently of the player’s actions as in the standard statistical
framework.

Consider the first difference. In a statistical setting, the
difference in the definition of the regret corresponds to the
difference between the maximum expected total reward of
any arm and the expected maximum total reward of any arm
in a sequence of � trials. These two measures can be far
apart since, due to random variation, the expected maximum
is typically much larger than the maximal expectation. As
shown by Cesa-Bianchi et al. [2], this idea can be used to
construct a lower bound for the regret of any algorithm of the
form Ω � � � log � � .1

We prove a stronger lower bound in Section 6 that is based
on the second difference. We describe a distribution over the
rewards of the different arms, which depends on � , for which
the regret of any player is Ω �

�
� � � .

A non-stochastic bandit problem was also considered by
Gittins [4] and Ishikida and Varaiya [5]. However, their ver-
sion of the bandit problem is very different from ours: they

1In fact, this lower bound holds for the stronger full information game
described in Section 3.

assume that the player can compute ahead of time exactly
what payoffs will be received from each arm, and their prob-
lem is thus one of optimization, rather than exploration and
exploitation.

Our algorithmis based in part on an algorithmrecently pre-
sented by Freund and Schapire [3], which in turn is a variant
of Littlestone and Warmuth’s [7] weighted majority algorithm,
and Vovk’s [10] aggregating strategies. In the setting analyzed
by Freund and Schapire (which we call here the full informa-
tion game), the player on each trial scores the reward of the
chosen arm, but gains access to the rewards associated with
all of the arms (not just the one that was chosen).

In some situations picking the same action at all trials
might not be the best strategy. For example, in the packet
routing problem it might be that no single route is good for the
whole duration of the message, but switching between routes
from time to time can achieve a better performance. We give
a variant of our algorithm which combines the choices of �
strategies (or “experts”), each of which recommends one of
the � actions at each iteration. We show that the regret with
respect to the best strategy is ��� � 2 
 3 � � ln � � 1 
 3 � . Note that
the dependence on the number of strategies is only logarithmic,
and therefore the bound is quite reasonable even when the
player is combining a very large number of strategies.

The adversarial bandit problem is closely related to the
problem of learning to play an unknownrepeated matrix game.
In this setting, a player without prior knowledge of the game
matrix is playing the game repeatedly against an adversary
with complete knowledge of the game and unbounded compu-
tational power. It is well known that matrix games have an as-
sociated value which is the best possible expected payoff when
playing the game against an adversary. If the matrix is known,
then a randomized strategy that achieves the value of the game
can be computed (say, using a linear-programming algorithm)
and employed by the player. The case where the matrix is
entirely unknown was previously considered by Baños [1] and
Megiddo [8], who proposed two (extremely inefficient) strate-
gies whose per-round payoff converges to the game value.
For the same problem, we show that by using our algorithm
the player achieves an expected per-round payoff in � rounds
which efficiently approaches the value of the game at the rate
��� � � 1 
 3 � . This convergence is much faster than that achieved
by Baños and Megiddo.

Our paper is organized as follows. In Section 2, we give
the formal definition of the problem. In Section 3, we describe
Freund and Schapire’s algorithm for the full information game
and state its performance. In Section 4, we describe our basic
algorithm for the partial information game. In Section 5, we
show how to adaptively tune the parameters of this algorithm
when no prior knowledge is available. In Section 6, we give
a lower bound on the regret suffered by any algorithm for
the partial information game. In Section 7, we show how
to modify the algorithm to use expert advice. Finally, in
Section 8, we describe the application of our algorithm to
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repeated matrix games.

2 Notation and terminology

We formalize the bandit problem as a game between a player
choosing actions and an adversary choosing the rewards as-
sociated with each action. The game is parameterized by the
number � of possible actions, where each action is denoted
by an integer � , 1 ����� � . We will assume that all the
rewards belong to the unit interval � 0 � 1� . The generalization
to rewards in ���	��
�� for arbitrary ���
 is straightforward.

The game is played in a sequence of trials ��� 1 � 2 ��������� � .
We distinguish two variants: the partial information game,
which captures the adversarial multi-armed bandit problem;
and the full information game, which is essentially equivalent
to the framework studied by Freund and Schapire [3]. On each
trial � of the full information game:

1. The adversary selects a vector � ��� ��� � 0 � 1 ��� of current
rewards. The � th component ��� ��� � is interpreted as the
reward associated with action � at trial � .

2. Without knowledge of the adversary’s choice, the
player chooses an action by picking a number � � ��

1 � 2 �������!� � � and scores the corresponding reward�"��# ��� � .
3. The player observes the entire vector � �$� � of current re-

wards.

The partial information game corresponds to the above de-
scription of the full information game but with step 3 replaced
by:

3’. The player observes only the reward �	��# ��� � for the chosen
action �$� .

Let %'& ��)(+*��, 1 �"��# ��� � be the total reward of player - choos-
ing actions � 1 �.� 2 �������!��� * .

We formally define an adversary as a deterministic rule
mapping the past history of play � 1 ���������.�$� � 1 to the current
reward vector � ��� � . (Since all our results are worst-case with
respect to the adversary, there is no additional power to be
gained by allowing the adversary to be randomized). As a
special case, we say that an adversary is oblivious if it is
independent of the player’s actions, i.e., if the reward at trial� is a function of � only. Clearly, all of our results, which are
proved for a non-oblivious adversary, hold for an oblivious
adversary as well.

As our player algorithms will be randomized, fixing an
adversary and a player algorithm defines a probability distri-
bution over the set

�
1 ��������� � � * of sequences of � actions.

All the probabilities and expectations considered in this pa-
per will be with respect to this distribution. For an oblivious
adversary, the rewards are fixed quantities with respect to this
distribution, but for a non-oblivious adversary, each reward

�"� �$� � is a random variable defined on the set
�
1 �������!� � � � � 1

of player actions up to trial �0/ 1. We will not use explicit
notation to represent this dependence, but will refer to it in the
text when appropriate.

The measure of the performance of our algorithm is the
regret, which is the expected value of the difference between
the total reward of the algorithm and the total reward of the
best action. Formally, we define the expected total reward of
algorithm - by

E ��% & � �� E � 1 1�2�2�2�1 �43 5 *6 ��, 1

� � # ��� �87 �
the expected total reward of the best action by

% best
�� max

1 9;:<9 � E � 1 1�2�2�2�1 � 3 5 *6 ��, 1

� : �$� � 7 �
and the regret of algorithm - by = & �� E ��% & �>/?% best � This
definition is easiest to interpret for an oblivious adversary
since, in this case, % best truly measures what could have been
gained had the best action been played for the entire sequence.
However, for a nonoblivious adversary, the definition of regret
is a bit strange: Although it still compares the total reward
of the algorithm to the sum of rewards that were associated
with taking some action @ on all iterations, had action @ been
taken, the rewards chosen by the adversary would have been
different than those actually generated, since the variable � : �$� �
depends on the past history of plays � 1 ������������� � 1. Although
the definition of =A& looks difficult to interpret in this case, in
Section 8 we prove that our bounds on the regret for a non-
oblivious adversary can also be used to derive an interesting
result in the context of repeated matrix games.

3 The full information game

In this section, we describe an algorithm, called BDCFEHG�C ,
for the full information game which will also be used as a
building block in the design of our algorithm for the partial
information game. The version of BDCFEHG�C presented here is
a slight variant2 of the algorithm introduced by Freund and
Schapire [3] as a generalization of Littlestone and Warmuth’s
Weighted Majority [7] algorithm.BDCFEIG	C is described in Figure 1. The main idea is simply
to choose action � at time � with probability proportional to
� 1 JLK ��M�NPO � Q , where KSR 0 is a parameter and T � ��� � is the total
reward scored so far by action � . Thus, actions yielding high
rewards quickly gain a high probability of being chosen.

The following is a straightforward variant of Freund and
Schapire’s Theorem 2. For completeness, a proof is provided
in Appendix A.

2These modifications enable BDCUEHG	C to handle gains (rewards in V 0 W 1 X )
rather than losses (rewards in V�Y 1 W 0 X ).
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Algorithm Hedge
Parameter: A real number KSR 0.
Initialization: Set T � � 1 � : � 0 for �H� 1 ��������� � .

Repeat for ��� 1 � 2 ������� until game ends
1. Choose action � � according to the distribution � ��� � ,

where � � ��� � � � 1 JLK ��M N O ��Q( �: , 1 � 1 J K � M��!O ��Q �
2. Receive the reward vector � ��� � and score gain � � # ��� � .
3. Set T � �$� J 1 � : ��T � ��� � J � � ��� � for �H� 1 ��������� � .

Figure 1: Algorithm BDCFEIG	C for the full information game.

Lemma 3.1 For K?R 0, and for any sequence of reward vec-
tors x � 1 � ��������� x ��� � , the probability vectors p ��� � computed by
Hedge satisfy

*6 ��, 1

p �$� ��� x ��� ��� � ( * ��, 1 � : �$� ��	 ln � 1 J K � / ln �K
for all actions @ � 1 ��������� � .

Taking expectations with respect to the random choice of plays
and using standard approximations for the ln function gives a
lower bound on the expected gain:

Theorem 3.2 For K R 0, the expected gain of algorithm
Hedge in the full information game is at least

E ��% Hedge� � % best ln � 1 JLK � / ln �K� % best / K
2

% best / ln �K �
Thus, it can easily be shown that, for an appropriate choice
of K , BDCFEHG�C suffers regret at most

�
2 � ln � in the full

information game.

4 The partial information game

In this section, we move to the analysis of the partial in-
formation game. We present an algorithm 
 ����� that runs
the algorithm BDCFEIG	C of Section 3 as a subroutine. ( 
 ����
stands for “Exponential-weight algorithm for Exploration and
Exploitation.”)

The algorithm is described in Figure 2. On each trial � ,
 ����� receives the distribution vector � �$� � from B CFEHG	C , and
selects an action � � according to the distribution ˆ� �$� � which
is a mixture of � �$� � and the uniform distribution. Intuitively,

Algorithm Exp3
Parameters: Reals KSR 0 and � � � 0 � 1 � .
Initialization: Initialize BDCFEIG	C .

Repeat for ��� 1 � 2 ������� until game ends
1. Get the distribution � �$� � from BDCFEHG�C .

2. Select action � � to be @ with probability
ˆ� : ��� � � � 1 /�� � � : �$� � J���� � .

3. Receive reward ����# ��� �0� � 0 � 1 � .
4. Feed the simulated reward vector ˆ� ��� � back toBDCFEHG�C , where

ˆ� : �$� � ��� �� � � � # �$� �
ˆ� � # ��� � if @ �)�$�

0 otherwise.

Figure 2: Algorithm 
 ����� for the partial information game.

mixing in the uniform distribution is done in order to make
sure that the algorithm tries out all � actions and gets good
estimates of the rewards for each. Otherwise, the algorithm
might miss a good action because the initial rewards it observes
for this action are low and large rewards that occur later are
not observed because the action is not selected.

After 
 ����� receives the reward ����# ��� � associated with the
chosen action, it generates a simulated reward vector ˆ� �$� � forBDCFEIG	C . As BDCUEHG	C requires full information, all components
of this vector must be filled in, even for the actions that were
not selected. For actions @��� � � not chosen, we set ˆ� : ��� � to
be zero. For the chosen action � � , we set the simulated reward
ˆ� � # �$� � proportional to � � # ��� � � ˆ� � # �$� � . This compensates the
reward of actions that are unlikely to be chosen and guarantees
that the expected simulated gain associated with any fixed
action @ is proportional to the actual gain of the action, i.e.,
that E ��# � ˆ� : �$� ��� � 1 ������������� � 1 ������ � : ��� � for any fixed choice
of � 1 ���������.�$� � 1. The constant scaling factor ��� � is used to
guarantee that the rewards fed back to BDCFEIG	C are in the range� 0 � 1� as required. From this perspective, it is necessary to mix
in the uniform distribution with the distribution generated byBDCFEIG	C in order to ensure that the simulated reward before
scaling, � � # ��� � � ˆ� � # �$� � , is not too large.

We now give the main theorem of this paper, which bounds
the regret of algorithm 
 ����� .

Theorem 4.1 For K R 0, � � � 0 � 1� , the expected gain of
algorithm Exp3 is at least

E ��% Exp3� � 1 /��K � % best ln � 1 J K � / � ln �� �
4



� % best / � � J K
2
	 % best / � ln �K � �

By making an appropriate choice of the parameters � and K
we get the following bound.

Corollary 4.2 If � � % best and algorithm Exp3 is run
with input parameters: K � 3

�
� 4 � ln � � � � and � �

min � 1 � 3
�
� � ln � � � � 2 � ��� , then the regret of algorithm Exp3

is at most = Exp3 � 3
3

�
2
� 2 
 3 � � ln � � 1 
 3 �

Proof of Theorem 4.1. We begin by showing a lower bound
on the total reward ( � �F��# �$� � for any sequence � 1 ���������.�$� :

*6 � , 1

�F��# ��� � � � � *6 ��, 1

ˆ� ��# ��� � ˆ�"��# ��� �
� � � *6 � , 1

�
� 1 / � � � � # ��� � ˆ� � # ��� � J �

� ˆ� � # ��� � 	
� � 1 / � � �� *6 ��, 1

� ��# �$� � ˆ�"��# ��� �
� � 1 / � � �� *6 ��, 1

� ��� � � ˆ� �$� � (1)

� � 1 / � � ���K
�

ln � 1 JLK � *6 ��, 1

ˆ� : �$� � / ln ����� (2)

Equation (2) holds for any action @ by Lemma 3.1 since the
simulated reward vectors ˆ� �$� � are fed back to BDCFEHG�C at each
time step. For any @ � � we have

E � ˆ� : ��� � � � E� 1 1�2�2�2 1 ��#
	 1 � E � # � ˆ� : ��� � � � 1 �������.���$� � 1 ��� E � 1 1�2�2�2�1 � #�	 1 � ˆ� : ��� � � �� � � : ��� �
ˆ� : ��� � J � 1 / ˆ� : �$� � � � 0 �

� �
� E � � : ��� � �!� (3)

Thus, taking expectations in (2), we get that

E

5 *6 ��, 1

�"��# ��� � 7
� � 1 / � � ���K

5 �
�

� *6 ��, 1

E ��� : �$� � ��� ln � 1 J K � / ln � 7 �
As the inequality holds for all @ , we get the bound of the
theorem. The bound on regret follows from the fact that
ln � 1 J K � � K / K 2 � 2 for KSR 0. �

To apply Corollary 4.2, it is necessary that an upper bound� on % best be available for tuning K and � . For example, if the
number of trials � is known in advance then, since no action

Algorithm Exp3 � 1
Initialization: Set � : � 1 and ˜T�� : � 0 for �H� 1 ��������� � .

1. Set � ��� � : � 2 � . Restart 
 ����� and let the parametersK and � of 
 ���� be as in Corollary 4.2 (with � set to� ��� � ).
2. Let 
 ���� choose an action � � . After the reward � � # ��� �

is received, update
˜T � # : � ˜T � #>J � � # ��� � � ˆ� � # �$� � .

3. If max � ˜T � R � ��� � / � � �
Then set � : ��� J 1 and goto 1.
Else goto 2.

Figure 3: Algorithm 
 �����I��� for the partial information game
when a bound on % best is not known.

can have payoff greater than 1 on any trial, we can use � � �
as an upper bound.

If the rewards � � ��� � are in the range ���	��
�� , �L 
 , then
 ����� can be used after the rewards have been translated
and rescaled to the range � 0 � 1 � . Applying Corollary 4.2
with � � � , this gives a bound on regret of the form
��� �8
'/ � � � 2 
 3 � � ln � � 1 
 3 � . For instance, this is applica-
ble to a standard loss model where the “rewards” fall in the
range � / 1 � 0 � .

Finally, in our definitionof the game, we have assumed that
the game always ends after � trials. However, we can get the
same bounds on the regret even if we allow the adversary to end
the game after an arbitrary trial of the adversary’s choosing.
The reason is that this case can be reduced to the previous one
by having the adversary generate reward zero on all rounds
after the original game ends.

5 Guessing the maximal reward

In the last section, we showed that algorithm 
 ����� yields
a regret of ��� � 2 
 3 � � ln � � 1 
 3 � whenever an upper bound �
on the total expected reward % best of the best action is known
in advance. In this section, we describe an algorithm 
 �����H���
which does not require prior knowledge of a bound on % best,
and whose regret is at most ���8% 2 
 3

best � � ln � � 1 
 3 � for % best �
Ω � � 3 � .

Our algorithm 
 �����H��� , described in Figure 3, proceeds
in rounds, where each round consists of a sequence of trials.
We use � � 1 � 2 ������� to index the rounds. On round � , the
algorithm “guesses” a bound � ��� � for the total reward of the
best action. It then uses this guess to tune the parameters K
and � of 
 ����� . On iteration � , after 
 ����� chooses action � �
and receives reward � � # ��� � , the estimate ˜T � # of the total reward
of action �$� is incremented by ����# ��� � � ˆ� � # ��� � . Dividing the
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reward by the probability of taking the action guarantees that
the expected value of each estimate is correct, i.e., E � ˜T : ��� � � �( ����P, 1 � : �$� � � for all 1 � @ � � and all 1 � � � � , where
˜T : ��� � denotes the value of ˜T : at the end of trial � . Using
these estimates, the algorithm detects (approximately) when
the actual gain of some action has advanced beyond � ��� � .
When this happens, the algorithm increments � and restarts
 ����� with a larger bound on the maximal gain.

The performance of the algorithm is characterized by the
following theorem.

Theorem 5.1 For � � 2, the regret suffered by algorithm
Exp3 � 1 is at most= Exp3 2 1 � 43 �8% 2 
 3

best
3

�
� ln � J � 2 3

�
ln � � �

(We did not attempt to optimize the constants in this theorem.)
The proof of the theorem is divided into two lemmas. The

first bounds the regret caused by each round, and the second
bounds the number of rounds. We define the followingrandom
variables: � � denotes the trial on which the � th round begins
and = denotes the total number of rounds (i.e., the value of� on the last trial � ). For notational convenience, we also
define ����� 1 to be � J 1, and we define ˆ� : ��� � � � � ˆ� : ��� � for

1 � @ � � , 1 � � � � . Note that ˜T : ��� � �)( �� � , 1 ˆ� : ��� � � .
Lemma 5.2 For any action @ and for every round 1 � � �+= ,
the gain of Exp3 � 1 during the � th iteration is lower bounded
by *	��
 1 � 16��, *	� �"��# ��� ��� *	��
 1 � 16��, *	� ˆ� : ��� � / � ��� � 2 
 3 3

3
�

2
3

�
� ln �L�

Proof. We use Equation (2) from the proof of Theorem 4.1.
We replace � � ˆ� : ��� � by ˆ� : �$� � and separate the term involving( * ��
 1 � 1��, *	� ˆ� : �$� � into two terms as follows:

*	��
 1 � 16��, *	� � � # ��� �
� � 1 / � � �K �

�
ln � 1 J K � * ��
 1 � 16��, *	� ˆ� : �$� � / ln ����

� *	��
 1 � 16��, *	� ˆ� : ��� � / � � J K
2
	 *	��
 1 � 16��, *	� ˆ� : �$� � / � ln �K � �

We bound the second occurrence of the sum by adding
non-negative terms: ( *	��
 1 � 1��, * � ˆ� : ��� � � ( *	��
 1 � 1��, 1 ˆ� : ��� � �
˜T : ��� � � 1 / 1 � . From the definition of the termination con-
dition, we know that ˜T : ��� � � 1 / 1 � � � ��� � . Substituting this
bound and our choices for K and � into the last equation above
we get the statement of the lemma. �

The next lemma shows that, with high probability, there
are not too many rounds.

Lemma 5.3 Let � � 2, % best
� � , and � ��� log2 % best � .

Then for any � � 3, P
� = R��0J � � � 10 � 2 � 2 � 5 � 
 3 � 5 
 3 � % 2 
 3

best.

Proof. (Sketch) The idea of the proof is simple. If algorithm
Exp3 � 1 terminated round number � J � before iteration � ,
then the value of at least one of the � estimators ˜T 1 ��������� ˜T �
at iteration � has to be larger than � ���'J)� � / � � � ���'J)� � ,
where � ��� � is the value of the parameter � used on round � .
However, the expected value of the estimator is % best � � ��� � ,
so reaching round �;J � implies a large estimation error. Simple
arguments from probability theory show that the probability
of such a large error in any of the estimators is very small.
(Details given in Appendix B.) �
Proof of Theorem 5.1. Since the theorem holds triviallywhen% best � � , we assume without generality that % best

� � .
We fix some action @ , partition the expected total gain into

runs, and bound the gain from each round using Lemma 5.2:

E

5 *6 ��, 1

�"� # ��� �87 � E �� �6� , 1

*	��
 1 � 16��, *	� �F��# ��� ����
� E �� �6� , 1

*	��
 1 � 16��, *	� ˆ� : ��� ����
/ 3 3

�
� ln �

2
E

5 �6
� , 1

� ��� � 2 
 3 7
� E

5 *6 � , 1

� : ��� � 7
/ 6 � 5 3

�
� ln � E � 22 � 
 3 � �

If we now choose @ to be the action with the largest gain, then
the first term is equal to % best and the second term bounds the
regret. To bound the second term we separate the expectation
into the sum of a typical term and the atypical terms and then
use Lemma 5.3.

E � 22 � 
 3 � � 22 O! � 3 Q 
 3 " � = ���0J 3 �

J$#6 ��, 3

22 O! �	�%� 1 Q 
 3 " � =)R&��JL� �
� � 16 % best

� 2 
 3

J � 4 % best
� 2 
 3 � 10 � 2 � � 5 
 3% 2 
 3

best

#6 ��, 3

2 � �
� 6 � 5 % 2 
 3

best J 6 � 5 � 5 
 3 �
This gives the statement of the theorem. �
6 A lower bound

In this section, we prove an information-theoretic lower bound
on the regret of any player, i.e., a lower bound that holds
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even if the player has unbounded computational power. More
precisely, we show that there exists an adversarial strategy
for choosing the rewards such that the expected regret of any
player algorithm is Ω �

�
� � � . Observe that this does not

match the upper bound for our algorithms 
 ���� and 
 �����H���
(see Corollary 4.2 and Theorem 5.1); it is an open problem to
close this gap.

The adversarial strategy we use in our proof is oblivious to
the algorithm; it simply assigns the rewards at random accord-
ing to some distribution, similar to a standard statistical model
for the bandit problem. The choice of distribution depends
on the number of actions � and the number of iterations � .
This dependence of the distributionon � is the reason that our
lower bound does not contradict the upper bounds of the form
��� log � � which appear in the statistics literature [6]. There,
the distribution over the rewards is fixed as ��� � .

For the full information game, matching upper and lower
bounds of the form

��� � � log ��� were already known [2].
Our lower bound shows that for the partial information game
the dependence on the number of actions increases consid-
erably. Specifically, our lower bound implies that no up-
per bound is possible of the form � ����� � log � �
	 � where
0 �+KS 1, �SR 0.

Theorem 6.1 There exist some positive constant ��R 0 and
natural number � 0 such that for any number of actions
� � � 0 and any number of iterations � � � there exists a
distributionover the rewards assigned to different actions such
that the expected regret of any algorithm is at least � �

� � .

The lower bound on the expected regret implies, of course,
that for any algorithm there is a particular choice of rewards
that will cause the regret to be larger than this expected value.

Proof. (Sketch) We construct the random distribution of the
rewards as follows. One of the � actions is chosen uniformly
at random to be the “good” action. The � rewards associated
with the good action are chosen independently at random to
be 1 with probability 1 � 2 J � � � � � and 0 otherwise for
some small constant � R 0. The rewards associated with the
other actions are chosen independently at random to be 0 or 1
with equal odds. Then the average optimal reward per trial is
1 � 2 J � � � � � . On the other hand,we show that the difference
between the distributions of rewards of good and bad arms is
so slight that, in � trials, the algorithm cannot detect which is
the good arm with sufficient reliability. More precisely, there
is a constant probability that the good action is sampled only
2 � � � times and the total gain is at most � � 2. From this a
lower bound, on the expected regret can be derived. (Details
omitted for lack of space.) �
7 Combining the advice of many experts

Up to this point, we have considered a bandit problem in
which the player’s goal is to achieve a payoff close to that of

the best single action. In a more general setting, the player
may have a set of strategies for choosing the best action. These
strategies might select different actions at different iterations.
The strategies can be computations performed by the player or
they can be external advice given to the learner by “experts.”
We will use the more general term “expert” (borrowed from
Cesa-Bianchi et al. [2]) because we place no restrictions on
the generation of the advice. The player’s goal in this case is
to combine the advice of the experts in such a way that its total
reward is close to that of the best expert (rather than the best
single action).

For example, consider the packet routing problem. In this
case there might be several routing strategies, each based on
different assumptions regarding network load distribution and
using different data to estimate current load. Each of these
strategies might suggest different routes at different times, and
each might be better in different situations. In this case, we
would like to have an algorithm for combining these strategies
which, for each set of packets, performs almost as well as the
strategy that was best for that set.

Formally, at each trial � , we assume that the player, prior
to choosing an action, is provided with a set of � probability
vectors  : �$� ��� � 0 � 1 ��� , @ � 1 ��������� � , ( �� , 1 � :� ��� � � 1. We
interpret  : �$� � as the advice of expert @ on trial � , where the� th component � :� �$� � represents the recommended probability
of playing action � (as a special case, the distribution can be
concentrated on a single action, which represents a determin-
istic recommendation). If the adversary chooses payoff vector� ��� � , then the expected reward for expert @ (with respect to
the chosen probability vector  : ��� � ) is simply  : ��� � � � �$� � . In
analogy of % best, we define

˜% best
�� max

1 9 : 9�� E � 1 1�2�2�2�1 � 3 5 *6 � , 1

 : ��� ��� � �$� � 7 �
so that the regret ˜= & �� E � % & �;/ ˜% best measures the expected
difference between the player’s total reward and the total re-
ward of the best expert.

Our results hold for any finite set of experts. Formally, we
regard each  : ��� � as a random variable, which is an arbitrary
function of the random sequence of plays � 1 ���������.�$� � 1 (just
like the adversary’s payoff vector � ��� � ). This definition allows
for experts whose advice depends on the entire past history as
observed by the player, as well as other side information which
may be available.

We could at this point view each expert as a “meta-
action” in a higher-level bandit problem with payoff vector
defined at trial � as �� � � 1 ��� � �$� � ���������� � � � � � � ��� � � . We could
then immediately apply Corollary 4.2 to obtain a bound of
��� � 2 
 3 � � log � � 1 
 3 � on the player’s regret relative to the best
expert (where � is an upper bound on ˜% best). However, this
bound is quite weak if the player is combining many experts
(i.e., if � is very large).

We show below that the algorithm 
 ����� from Sec-

7



Algorithm Exp4
Parameters: Reals KSR 0 and � � � 0 � 1 �
Initialization: Initialize BDCFEIG	C (with � replaced by � )

Repeat for ��� 1 � 2 ������� until game ends

1. Get the distribution � �$� �0� � 0 � 1� � from BDCUEHG	C .

2. Get advice vectors  : ��� � � � 0 � 1��� , and let� �$� � : �)( �: , 1 � : �$� �  : �$� � .
3. Select action ��� to be @ with probability

ˆ� : ��� � � � 1 /�� � � : �$� � J���� � .

4. Receive reward ����# ��� �0� � 0 � 1 � .
5. Compute the simulated reward vector ˆ� ��� � as

ˆ� : �$� � ��� �� � �F��# �$� �
ˆ� ��# ��� � if @ �)� �

0 otherwise.

6. Feed the vector � ��� �+� � 0 � 1 � � to BDCUEHG	C where� : ��� � ��  : �$� ��� ˆ� �$� � .
Figure 4: Algorithm 
 ����� for using expert advice in the
partial information game.

tion 4 can be modified yielding a regret term of the form
��� � 2 
 3 � � log � � 1 
 3 � . This bound is very reasonable when
the number of actions is small, but the number of experts is
quite large (even exponential).

Our algorithm 
 ����� is shown in Figure 4, and is only
a slightly modified version of 
 ���� . ( 
 ����� stands for
“Exponential-weight algorithm for Exploration and Exploita-
tion using Expert advice.”)

As before, we use BDCUEHG	C as a subroutine, but we now
apply BDCFEHG�C to a problem of dimension � rather than � .
At trial � , we receive a probability vector � �$� � from BDCFEHG�C
which represents a distribution over strategies. We compute
the vector � ��� � as a weighted average (with respect to � �$� � ) of
the strategy vectors  : ��� � . The vector ˆ� �$� � is then computed
as before using � ��� � , and an action � � is chosen randomly. We
define the vector ˆ� ��� � � � 0 � 1�$� as before, and we finally feed
the vector � ��� � � � 0 � 1 � � to B CFEHG	C where � : ��� � ��  : ��� � � ˆ� ��� � .
Theorem 7.1 For K R 0, � � � 0 � 1� , and for any family of
experts, the expected gain of algorithm Exp4 is at least

E ��% Exp4 � � 1 /��K � ˜% best ln � 1 J K � / � ln �� �� ˜% best / � � J K
2
	 ˜% best / � ln �K � �

Proof. From the definitions above, we have that

p �$� � � x̂ �$� � � �6: , 1
� : ��� �  : ��� � � x̂ ��� � � q ��� � � y �$� � �

Thus, for all @ , using (1) from the proof of Theorem 4.1, and
then applying Lemma 3.1, we have

*6 ��, 1

�"��# ��� � � � 1 /�� � �� *6 ��, 1

p ��� � � x̂ ��� �
� � 1 /�� � �� *6 ��, 1

q ��� � � y ��� �
� � 1 /�� � �K �

�
ln � 1 J K � *6 � , 1

� : ��� � / ln � � �
Taking expectations and using (3), we see that

E � � : ��� � �>� E �  : ��� � � x̂ ��� � � � �
� E �  : �$� ��� x ��� � �

and the theorem follows as in the proof of Theorem 4.1. �
Analogous versions of Corollary 4.2 and Theorem 5.1 can

be proved in which � ln � is replaced in the regret by � ln � .

8 Nearly optimal play of an unknown
repeated game

The bandit problem considered up to this point is closely re-
lated to the problem of playing an unknown repeated game
against an adversary of unbounded computational power. In
this latter setting, a game is defined by an ���	� matrix - .
On each trial � , the learner (or row player) chooses a row � of
the matrix. At the same time, the adversary (column player)
chooses a column @ . The learner then receives the payoff -'� : .
In repeated play, the learner’s goal is to maximize its expected
total payoff over a sequence of plays.

Suppose in some trial the learner chooses its next move� randomly according to a probability distribution on rows
represented by a (column) vector � � � 0 � 1� � , and the ad-
versary similarly chooses according to a probability vector
� � � 0 � 1 ��
 . Then the expected payoff is � * -�� . Von Neu-
mann’s famous minimax theorem states that

max� min� � * -� � min� max� � * -� �
where the max and min are over all distribution vectors � and
� . The quantity � defined by the above equation is called the
value of the game given by matrix - . In words, this says
that there exists a mixed (randomized) strategy � for the row
player that guarantees expected payoff at least � , regardless of
the column player’s action. Moreover, this payoff is optimal in
the sense that the column player can choose a mixed strategy
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whose expected payoff is at most � , regardless of the row
player’s action.

Thus, if the learner knows the matrix - , it can compute a
strategy (for instance, using linear programming) that is certain
to bring an expected optimal payoff � on each trial.

Suppose now that the game - is entirely unknown to the
learner. To be precise, assume the learner knows only the
number of rows of the matrix, and a bound on the magnitude
of the entries of - . The main result of this section is a proof
based on the results in Section 4 showing that the learner can
play in such a manner that its payoff per trial will rapidly
converge to the optimal maximin payoff � . This result holds
even when the adversary knows the game - , and also knows
the (randomized) strategy being used by the learner.

This problem of playing a repeated game with incom-
plete information was previously considered by Baños [1] and
Megiddo [8]. However, these previously proposed strategies
are extremely inefficient. Not only is our strategy simpler and
much more efficient, but we also are able to prove much faster
rates of convergence.

In fact, the application of our earlier algorithms to this
problem is entirely straightforward. The learner’s actions are
now identified with the rows of the matrix and are chosen
randomly on each trial according to algorithm 
 ���� , where
we tune K and � as in Corollary 4.2 with � � � , where � is
the total number of rounds of play.3 The payoff vector � ��� � is
simply the column @ � of - chosen by the adversary on trial � .
Theorem 8.1 Let - be an unknown game matrix in ������
�� ��� 

with value � . Suppose the learner, knowing only � , 
 and � ,
uses the algorithm sketched above against any adversary for
� trials. Then the learner’s expected payoff per trial is at least

� / 3 � 
 / � � 3

� � ln �
2 � �

Proof. We assume that ���	�.
�� � � 0 � 1 � ; the extension to the
general case is straightforward. By Corollary 4.2, we have

E

5 *6 ��, 1

-���# : # 7 � E

5 *6 ��, 1

�F��# ��� � 7
� max� E

5 *6 ��, 1

� � ��� �87 / 3
3

�
2
� 2 
 3 ��� ln � � 1 
 3 �

Let p be such that � � maxp minq p* - q � minq p * - q. Then

max� E

5 *6 � , 1

� � ��� �87 � �6 ��, 1

� � *6 � , 1

E � � � ��� � �
� *6 ��, 1

E � p � x �$� � � � *6 ��, 1

E � p * - q � � � � �
3If
�

is not known in advance, the methods developed in Section 5 can be
applied.

where q � is a distribution vector whose @�� th component is 1.�
Note that the theorem is independent of the number of

columns of - , and, with appropriate assumptions, the theorem
can be easily generalized to adversaries with an infinite number
of strategies. If the matrix - is very large and all entries are
small then even if - is known to the player, our algorithm may
be an efficient alternative to linear programming.

The generality of the theorem also allows us to handle
games in which the outcome for given plays ��� @ is a random
variable (rather than a constant -A� 1 : ). Finally, as pointed out
by Megiddo [8], such a result is valid for non-cooperative,
multi-person games; the average per-trial payoff of any player
using this strategy will converge rapidly to the maximin payoff
of the one-shot game.
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A Proof of Lemma 3.1

Let � � �)( �� , 1 � 1 JLK �!M N O ��Q . For 1 �L� � � ,� ��� 1� � � �6 ��, 1

� 1 J K �!M N O ��Q � 1 J K ��� N O � Q� �
� �6 ��, 1

� 1 J K �!M N O ��Q � 1 J K �"� ��� � �� �
� 1 JLK ( ���, 1 � 1 J K ��M�N4O ��Q � � ��� �� �

where we used the fact that ��� �$� � � � 0 � 1 � for the inequality.
Thus

ln
� * � 1� 1

� *6 ��, 1

ln
� ��� 1� �

� *6 ��, 1

ln

�
1 J K ( ���, 1 � 1 J K �!M N O ��Q �"� �$� �� � �

� *6 ��, 1

K ( ���, 1 � 1 J K ��M�N O ��Q � � ��� �� �
� K *6 ��, 1

�6 ��, 1

� � ��� � �F� ��� � �
Observing that � 1 � � and � * � 1

� � 1 J K � ( 3 #�� 1
� � O ��Q for

any @ , we obtain the statement of the lemma. �
B Proof of Lemma 5.3

To get the upper bound we use" � = R��0J � �� " ��� @ : ˜T : ��� � R � � ��J � � / �� ��� J � �	�
� �6: , 1

" �
˜T : ��� � R � ��� J � � / �� ��� JL� �
�

and " �
˜T : � � � R � ���0J � � / �� � � J � ���� Var � ˜T : ��� � �
� � � � J � � / E � ˜T : ��� � ��/ �� O! �	��Q � 2

by Chebychev’s inequality. Since

E � ˜T : ��� � �>� E

5 *6 � , 1

ˆ� : ��� �87 � E

5 *6 � , 1

� : �$� � 7
and the � ˆ� : �$� � / � : ��� � � form a sequence of martingale differ-
ences, we have

Var � ˜T : � � � � � E

5 *6 ��, 1

� ˆ� : �$� � /?� : ��� � � 2 7 � � 4 �

Observe that the probability of selecting action @ at trial � ,
given that this trial is within the first � J � rounds, is at least� � � � � J � � � � . Also observe that increasing the probability
of selecting action @ to � on trials after � J � rounds are
completed does not change the probability of starting �>J ��J 1
rounds in � trials. Therefore we can, for the sake of our upper
bound, assume that the probability of selecting action @ at any
trial up to � is at least � . Evaluating Equation (4), we get

Var � ˜T : ��� � � � E

5 *6 � , 1

� 1 / � � � : ��� � 2� 7
� E

5 *6 � , 1

� : �$� �� 7 � % best� �
Since E � ˜T : �$� � �0� % best, % best

� � , � � 3 and by our choice
of � , it can be verified that� ��� JL� � / E � ˜T : ��� � ��/ �� ��� J � � � 0 � 42 � % best

� 2 � �
Thus," �

˜T : ��� � � � ���0J � � / �� ��� JL� �
�
� % best

� 0 � 42 � 2 � % 2
best
� 22 � � � 10 � 2 � �% best � 2 
 3

2 � 5 � 
 3 �
Summing over all actions @ gives the lemma. �
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