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Abstract

We show that an LK proof of size m of a monotone sequent (a se-
quent that contains only formulas in the basis ∧,∨) can be turned into
a proof containing only monotone formulas of size m

O(log m) and with
the number of proof lines polynomial in m. Also we show that some
interesting special cases, namely the functional and the onto versions
of PHP and a version of the Matching Principle, have polynomial size
monotone proofs.
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1 Introduction

The study of the propositional monotone sequent calculus was proposed in
[Pud98] in an attempt to find a proof complexity version of the monotone
Boolean circuits. This calculus is simply the restriction of the full propo-
sitional sequent calculus to formulas in basis {∨,∧}. Further motivation
for this calculus is given by the fact that it can be viewed as an extension
of resolution and as a subsystem of the intuitionistic propositional calculus
[Bil00].

Classical results of Razborov [Razb85] and others in computational com-
plexity theory show that monotone Boolean circuits are substantially less
powerful than circuits that use also negation. There are monotone func-
tions that can be computed by monotone circuits of exponential size only,
while they can be computed by polynomial size circuits if negation is allowed
[T87]. Therefore it was conjectured that a similar gap should be between
proof systems that do not use negation and those that do. Contrary to this
expectation we show that the gap is at most quasipolynomial. More pre-
cisely, a proof of size m can be transformed into a monotone proof of size at
most mO(log m). Furthermore, if one counts only the number of proof lines,
then our simulation is polynomial.

Our proof uses an idea from circuit complexity, the so called slice func-
tions (see [Weg87]). These are monotone functions such that, for some k, the
value of the function is 0 on all inputs with less than k ones and it is 1 on
all inputs with more than k ones. For such functions their circuit complexity
does not depend essentially on whether we use negations or not. While slice
functions are very special monotone Boolean functions, we apply the idea to
arbitrary monotone sequents.

We also show that in some special cases the simulation is in fact poly-
nomial. We consider two well-known variants of the Pigeon Hole Principle
(PHP). The Onto PHP (OPHP) states that there is no one-to-one correspon-
dence from a set of n+ 1 elements onto a set of n elements. The Functional
PHP (FPHP) states that there is no one-to-one function from a set of n+ 1
elements into a set of n elements (a correspondence differs from a function
in that each element may have more than one image in the former, but not
in the latter). All three principles PHP, OPHP, and FPHP, have been used,
often interchangeably, in the literature. As a matter of fact, Cook and Reck-
how considered the FPHP in their original paper. We show that for proofs
of OPHP and FPHP the monotone simulation of LK proofs is polynomial.
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Thus, using a result of Buss [Bus97] that (all versions of) PHP have poly-
nomial proofs in the sequent calculus, we get also polynomial size monotone
proofs of the two versions of PHP.

Finally, we consider the monotone formulation of the Matching Principle
that appears in [IPU94] and get polynomial size monotone proofs as well.

2 Monotone Calculus

All our propositional formulas are over the basis {∧,∨,¬}. We say that a
formula is in De Morgan normal form if all the negations occur in front of the
variables. For every formula ϕ, let p(ϕ) be a formula in De Morgan normal
form that is equivalent to ϕ. Observe that p(ϕ) is uniformly obtained from
ϕ by pushing the negations to the atoms according to the De Morgan rules.
Observe that p(¬¬ϕ) = p(ϕ), and that the size of p(ϕ) is linear in the size
of ϕ.

We will assume some familiarity with the propositional fragment of the
Gentzen sequent calculus as defined, eg., in the book by Takeuti [Tak87].
By an abuse of notation we use LK for the propositional fragment, as we
do not consider other than propositional proofs (this concerns also other
notation). The Monotone Sequent Calculus (MLK) is the subsystem of LK
in which all formulas are positive; that is, all formulas are over the monotone
basis {∧,∨}, thus the negation rules are prohibited. Note that there are no
monotone formulas that are tautologies, so the concept of a monotone true
statement makes sense only in the sequent calculus. On the other hand most
of the studied tautologies can easily be presented as monotone sequents.

We define LK-De Morgan to be the subsystem of LK in which all formulas
are in De Morgan normal form; that is, all formulas have the negations pushed
down to the atoms, and the negation rules are only allowed over variables.

The size of a proof is the number of symbols in it. We say that a proof
is tree-like if each sequent is used at most once as a premise of a rule.

Lemma 1 The sequents ` p(ϕ), p(¬ϕ) and p(ϕ), p(¬ϕ) ` have tree-like LK-
De Morgan proofs of size linear in the size of ϕ.

Proof : The proof is by induction on the structure of ϕ. If ϕ is atomic, say
x, then the sequents ` x,¬x and x,¬x ` are derivable in one step from
the axiom x ` x. Suppose next that ϕ is of the form ψ ∧ θ. By induction

3



hypothesis, the sequents ` p(ψ), p(¬ψ) and ` p(θ), p(¬θ) have tree-like LK-
De Morgan proofs of size linear in the sizes of ψ and θ respectively. By means
of weakening we derive ` p(ψ), p(¬ψ), p(¬θ) and ` p(θ), p(¬ψ), p(¬θ). Right
∧-introduction followed by right ∨-introduction gives ` p(ψ)∧ p(θ), p(¬ψ)∨
p(¬θ). The size of the proof is clearly linear in the size of ϕ. The sequent
p(ψ) ∧ p(θ), p(¬ψ) ∨ p(¬θ) ` is derived similarly. When ϕ is of the form
ψ ∨ θ reason dually. Finally, suppose that ϕ is of the form ¬ψ. By induction
hypothesis, the sequent ` p(ψ), p(¬ψ) has a tree-like LK-De Morgan proof
of linear size in the size of ψ. Since p(¬¬ψ) = p(ψ), we immediately have a
tree-like LK-De Morgan proof of ` p(¬ψ), p(¬¬ψ) of the same size. Reason
similarly for the sequent p(¬ψ), p(¬¬ψ) `. tu

Theorem 1 Let Σ and Γ be sequences of formulas. If Σ ` Γ has a tree-like
LK-proof of size S, then p(Σ) ` p(Γ) has a tree-like LK-De Morgan proof of
size O(S).

Proof : Suppose that Σ ` Γ has a tree-like LK-proof P of size S. Consider
the following transformation of P . First, replace each formula ϕ in P by
p(ϕ). For each right ¬-introduction rule in P of the form

Σ′, ϕ ` Γ′

Σ′ ` ¬ϕ,Γ′,

we simulate the inference

p(Σ′), p(ϕ) ` p(Γ′)

p(Σ′) ` p(¬ϕ), p(Γ′)

in the new proof by means of a cut with ` p(ϕ), p(¬ϕ), which can be derived
in O(S) steps according to Lemma 1. Similarly, each left ¬-introduction rule
in P is replaced by an inference involving a cut with p(ϕ), p(¬ϕ) `. The size
of the new proof is clearly O(S). tu

Theorem 2 Let Σ and Γ be sequences of monotone formulas with all vari-
ables within x1, . . . , xn. Suppose that for every i ∈ {1, . . . , n} there exists a
monotone formula ϕi such that the sequents Σ ` xi, ϕi,Γ and Σ, ϕi, xi ` Γ
have tree-like MLK-proofs of size at most R. Then, if Σ ` Γ has a tree-like
LK-proof of size S, then it has a tree-like MLK-proof of size O(S +RS).
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Proof : Suppose that Σ ` Γ has a tree-like LK-proof of size S. Since Σ and Γ
are sequences of monotone formulas, we have that p(Σ) = Σ and p(Γ) = Γ.
Therefore, by Theorem 1, the sequent Σ ` Γ has a tree-like LK-De Morgan
proof P of size O(S). Consider the following transformation on P . First,
add Σ to the left of each sequent and Γ to the right of each sequent by
weakening on the axioms. Then, replace each occurrence of ¬xi in P by ϕi.
It remains to see how to simulate the rules of ¬-introduction. Consider such
an application in P

Σ′, xi ` Γ′

Σ′ ` ¬xi,Γ′.

We need to simulate the inference

Σ,Σ′, xi ` Γ′,Γ

Σ,Σ′ ` ϕi,Γ′,Γ.

This is straightforward: derive Σ ` xi, ϕi,Γ, cut on xi, and apply some
structural rules. The simulation of a left ¬-introduction rule is symmetrical
by means of a cut with Σ, ϕi, xi ` Γ. The size of the new proof is clearly
O(S +RS). tu

3 Monotone simulation of LK

Recall the following definitions and Lemmas from [AGG00]. For every n and
k ∈ {0, . . . , n}, let THn

k : {0, 1}n → {0, 1} be the Boolean function such
that THn

k(a1, . . . , an) = 1 if and only if
∑k

i=1 ai ≥ k, for every (a1, . . . , an) ∈
{0, 1}n. Each THn

k is called a threshold function.
Monotone threshold formulas are defined the following way: th1

0(x) := 1,
th1

1(x) := x, th1
k(x) := 0 for every k > 1, and for every n > 1 and k ≥ 0,

define the formula

thn
k(x1, . . . , xn) :=

∨

(i,j)∈In
k

(th
n/2
i (x1, . . . , xn/2) ∧ th

n−n/2
j (xn/2+1, . . . , xn)),

where In
k = {(i, j) : 0 ≤ i ≤ n/2, 0 ≤ j ≤ n − n/2, i + j ≥ k} and n/2 is

an abbreviation for bn/2c. It is straightforward to prove that thn
k(x1, . . . , xn)

computes the Boolean function THn
k . On the other hand, it is easy to prove,

by induction on n, that the size of thn
k(x1, . . . , xn) is bounded by nO(log n).

Recall that if A and B are formulas and x is a variable that may or may
nor occur in A, the notation A(x/B) stands for the formula that results of
replacing every occurrence of x in A by B (simultaneously).
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Lemma 2 ([AGG00]) If A is a monotone formula, the sequents (i) A `
x,A(x/0), (ii) A(x/1), x ` A have tree-like MLK-proofs of size quadratic in
the size of A.

Lemma 3 ([AGG00]) For every n,m, l ∈ IN with 0 < m ≤ n and 0 ≤ l ≤
n, the sequent

thn
m−1(x1, . . . , xl/0, . . . , xn) ` thn

m(x1, . . . , xl/1, . . . , xn)

has MLK-proofs with nO(1) lines and size nO(log n).

The polynomial bound on the number of proof lines is not stated explicitly
in [AGG00], but an easy inspection of the proof gives it.

The next lemma easily follows from the definitions of the threshold for-
mulas.

Lemma 4 For every n, k ∈ IN with k > n, the sequents

(i) thn
k(x1, . . . , xn) `, and

(ii) ` thn
0 (x1, . . . , xn)

have tree-like MLK proofs with nO(1) lines and size nO(log n).

For k, i ∈ IN with 0 ≤ k ≤ n and 1 ≤ i ≤ n, the k-pseudocomplement
of xi is, by definition, the monotone formula thn

k(x1, . . . , xi/0, . . . , xn). The
next Lemma guarantees that the hypothesis of Theorem 2 hold for any of the
k-pseudocomplement formulas and any monotone sequent Σ ` Γ with vari-
ables within x1, . . . , xn such that Σ contains thn

k(x1, . . . , xn) and Γ contains
thn

k+1(x1, . . . , xn).

Lemma 5 For every k, i ∈ IN with 0 ≤ k ≤ n and 1 ≤ i ≤ n the sequents

(i) thn
k(x1, . . . , xn) ` thn

k+1(x1, . . . , xn), thn
k(x1, . . . , xi/0, . . . , xn), xi

(ii) xi, th
n
k(x1, . . . , xi/0, . . . , xn), thn

k(x1, . . . , xn) ` thn
k+1(x1, . . . , xn)

have tree-like MLK-proofs with nO(1) lines and size nO(log n).

Proof : The first sequent follows from Lemma 2 (i) and right weakening intro-
ducing thn

k+1(x1, . . . , xn). For the second sequent observe that from Lemma 2
(ii) we have xi, th

n
k+1(x1, . . . , xi/1, . . . , xn) ` thn

k+1(x1, . . . , xn). Moreover,
thn

k(x1, . . . , xi/0, . . . , xn) ` thn
k+1(x1, . . . , xi/1, . . . , xn) by Lemma 3. The se-

quent in (ii) is obtained by cutting and then adding thn
k(x1, . . . , xn) by left

weakening. 2
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Theorem 3 Let Σ ` Γ be a monotone sequent with n variables. If Σ ` Γ
has an LK-proof of size S, then Σ ` Γ has a tree-like MLK-proof with SO(1)

lines and size SO(1) · nO(log n).

Proof : By Theorem 2 and the well known result that tree-like LK poly-
nomially simulates LK [Kra95], it will be sufficient to simulate tree-like
LK-De Morgan proofs by tree-like MLK proofs. Let P be a tree-like LK-
De Morgan proof of Σ ` Γ of size S. By the previous lemma and Theo-
rem 2, for each k ∈ {0, . . . , n} we obtain tree-like MLK proofs of the se-
quents thn

k(x1, . . . , xn),Σ ` Γ, thn
k+1(x1, . . . , xn) each one with S lines and

size S · nO(log n). Finally, n consecutive cuts give us a proof of the sequent
thn

0 (x1, . . . , xn),Σ ` Γ, thn
n+1(x1, . . . , xn) from which we obtain the theorem

using Lemma 4. 2

Corollary 1 Tree-like MLK quasipolynomially simulates LK on monotone
sequents. In particular, tree-like MLK quasipolynomially simulates MLK.

The careful reader will notice that the proof of Theorem 3 shows that
the number of lines of the resulting MLK proof is polynomial in n and the
number of lines of the original LK proof. This observation reveals that any
proof of a superpolynomial gap between LK and MLK, if any, should focus
on size and not on the number of lines.

Finally, since every MLK-proof can be polynomially simulated by a proof
in the intuitionistic calculus JK (see [Bil00]) we get the following.

Corollary 2 The intuitionisitic calculus JK quasipolynomially simulates LK
on monotone sequents.

Note, however, that this is unlikely for intuitionistically valid nonmono-
tone sequents, see [BP00].

4 Pigeon-hole and Matching Principles

We consider the following propositional formulations of PHP, OPHP and
FPHP: We let PHPn+1

n be the sequent

n+1∧

i=1

n∨

j=1

pi,j `
n∨

k=1

n+1∨

i,j=1

i6=j

(pi,k ∧ pj,k).
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We let OPHPn+1
n be the sequent

n+1∧

i=1

n∨

j=1

pi,j ∧
n∧

j=1

n+1∨

i=1

pi,j `
n∨

k=1

n+1∨

i,j=1

i6=j

(pi,k ∧ pj,k).

Finally, we let FPHPn+1
n be the sequent

n+1∧

i=1

n∨

j=1

pi,j `
n∨

k=1

n+1∨

i,j=1

i6=j

(pi,k ∧ pj,k) ∨
n+1∨

k=1

n∨

i,j=1

i6=j

(pk,i ∧ pk,j).

Using Corollary 2 and Buss’ polynomial size LK proofs of the PHP we
give another proof of the main result of [AGG00].

Theorem 4 ([AGG00]) PHPn+1
n has MLK-proofs of size quasipolynomial

in n.

We can improve this result showing that the principles OPHP, FPHP and
a Perfect Matching Principle PM that we introduce later admit polynomial
size MLK proofs.

Theorem 5 FPHPn+1
n and OPHPn+1

n have tree-like MLK-proofs of size poly-
nomial in n.

Proof : Buss proved that PHPn+1
n has a Frege proof of size polynomial in n,

and therefore, so do FPHPn+1
n and OPHPn+1

n . Since tree-like LK polyno-
mially simulates any Frege system [Kra95], they also have polynomial-size
tree-like LK-proofs. We first consider FPHPn+1

n . For every i ∈ {1, . . . , n+1}
and j ∈ {1, . . . , n}, let ϕij be the formula

∨
j′ 6=j pi,j′ where j ′ ranges over

{1, . . . , n}. Let LFPHPn+1
n be the left hand side of the sequent FPHPn+1

n ,
and let RFPHPn+1

n be the right hand side of the sequent FPHPn+1
n . We claim

that the sequents

LFPHPn+1
n ` pi,j, ϕij,RFPHPn+1

n (1)

LFPHPn+1
n , ϕij, pi,j ` RFPHPn+1

n (2)

have tree-like MLK-proofs of size polynomial in n. The result will follow
for FPHPn+1

n by Theorem 2. For sequent (1) reason as follows. For every
j ′ ∈ {1, . . . , n}, we have pi,j′ ` pi,1, . . . , pi,n,RFPHPn+1

n by right weakening
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on the axiom pi,j′ ` pi,j′ and structural rules. By left ∨-introduction we get∨n
j=1 pi,j ` pi,1, . . . , pi,n,RFPHPn+1

n . Left weakening and left ∧-introduction

gives LFPHPn+1
n ` pi,1, . . . , pi,n,RFPHPn+1

n . Finally, some structural rules
and right ∨-introduction give sequent (1). For sequent (2) reason as follows.
For every j, j ′ ∈ {1, . . . , n + 1} such that j 6= j ′, we have pi,j, pi,j′ ` pi,j ∧
pi,j′ easily. Left weakening, right weakening and right ∨-introduction gives
LFPHPn+1

n , pi,j, pi,j′ ` RFPHPn+1
n . Finally, left ∨-introduction for every j ′ 6=

j gives sequent (2). As regards OPHPn+1
n , one simply needs define ϕij as∨

i′ 6=i pi′,j where i′ ranges over {1, . . . , n+ 1}, and reason analogously. tu

Let us be given a graph G = (V,E) on n = 3m nodes. We consider the
following matching principle PMn formulated in [IPU94]. If X is a set of m
edges forming a perfect matching in G and Y is an m− 1 subset of V , then
there is some edge (u, v) ∈ X such that neither u nor v are in V . To encode
this principle as a monotone sequent we use variables xi,k for i ∈ [m] and
k ∈ [3m] whose intended meaning is that the node k is in the i-th edge of the
matching, and variables ¬yi,k for i ∈ [m − 1] and k ∈ [3m] whose intended
meaning is that the node k is the i-th element in Y . We will encode the fact
that there is a perfect matching on m edges in G by an m× 3m matrix such
that in each row there are exactly two 1’s and in each column there is at
most one 1. Notice that our formula has depth 3.

X(1) :=
∧

i∈[m]

∨

k,k′∈[3m],k 6=k′

(xi,k ∧ xi,k′)

X(2) :=
∧

i∈[m]

∧

k,l,h∈[3m],k 6=l 6=h6=k

(¬xi,k ∨ ¬xi,l ∨ ¬xi,h)

X(3) :=
∧

i,i′∈[m],i6=i′

∧

k∈[3m]

(¬xi,k ∨ ¬xi′,k)

Similarly, we will encode that Y is anm−1 subset of V , by an (m−1)×3m
matrix in which for each row there is exactly one 0 and in each column there
is at most one 0 (recall that the presence of a node in Y is indicated by a
negated variable).

Y (1) :=
∧

i,i′∈[m−1],i6=i′

∧

k∈[3m]

(yi,k ∨ yi′,k)

Y (2) :=
∧

i,∈[m−1]

∧

k,k′∈[3m],k 6=k′

(yi,k ∨ yi,k′)
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Y (3) :=
∧

i∈[m−1]

∨

k∈[3m]

¬yi,k

The last formula that we introduce means that there is an edge such that
neither of its endpoints is in Y .

XY :=
∨

i∈[m]

∨

k,k′∈[3m],k 6=k′

(xi,k ∧ xi,k′ ∧ (
∧

i∈[m−1]

yi,k) ∧ (
∧

i∈[m−1]

yi,k′))

Then the the PM3m principle is expressed by the following sequent:

(1) X(1), X(2), X(3), Y (1), Y (2), Y (3) ` XY

It is easy to see that this sequent can be transformed in a monotone sequent.
Consider the formulas X⊥(i) := ¬X(i) for i = 2, 3, and Y ⊥(3) := ¬Y (3).
Then (1) is equivalent to the monotone sequent

X(1), Y (1), Y (2) ` X⊥(2), X⊥(3), Y ⊥(3), XY

Notice that, as observed in [IPU94], PM3m can be reduced to OPHPm
m−1.

However we need to define the PHP variables pi,j as pi,j :=
∨

k∈[3m](xi,k∧¬yj,k)
which is not a monotone formula. Therefore the reduction cannot be proved
in MLK. Either way we can get polynomial size MLK proofs for PM3m

principle directly.

Theorem 6 PMn has tree-like MLK-proofs of size polynomial in n.

Proof : The proof follows the same lines of the previous Theorem given that
[IPU94] gave polynomial size LK proofs for PMn. Define for each i ∈ [m]
and for each k ∈ [3m] the pseudocomplement formula ϕx

i,k for xi,k as:

ϕx
i,k :=

∨

k′,k′′∈[3m],k′ 6=k′′, k′,k′′ 6=k

(xi,k′ ∧ xi,k′′)

For each i ∈ [m − 1] and for each k ∈ [3m] define the pseudocomplement
formula ϕy

i,k for yi,k as

ϕy
i,k :=

∧

k′∈[3m],k′ 6=k

yi,k′

We prove that for each i ∈ [m], for each j ∈ [m− 1] for each k ∈ [3m] the
following sequents have polynomial size tree-like MLK proofs:
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(1) X(1), xi,k, ϕ
x
i,k ` X(2)⊥, X(3)⊥

(2) X(1) ` xi,k, ϕ
x
i,k, X(2)⊥, X(3)⊥

(3) Y (1), Y (2), yj,k, ϕ
y
j,k ` Y (3)⊥

(4) Y (1), Y (2) ` yj,k, ϕ
y
j,k, Y (3)⊥

The theorem then follows by the same argument used in the previous The-
orem. We prove sequents (1) and (2). Sequents (3) and (4) follow by an
argument similar to that of FPHP. Observe that X(2)⊥, X(3)⊥ are the fol-
lowing formulas

X⊥(2) :=
∨

i∈[m]

∨

k,l,h∈[3m],k 6=l 6=h6=k

(xi,k ∧ xi,l ∧ xi,h)

X(3)⊥ :=
∨

i,i′∈[m]i6=i′

∨

k∈[3m]

(xi,k ∧ xi′,k)

For sequent (1) reason as follows: for each k′ 6= k we have proofs of the
sequents xi,k ∧ xi,k′ ` xi,k. By left ∨-introduction on all the previous proofs,
we can derive

∨
k′∈[3m], k′ 6=k(xi,k ∧ xi,k′) ` xi,k. From this, by right weakening

we have
(5)

∨

k′∈[3m] ,k′ 6=k

(xi,k ∧ xi,k′) ` xi,k, ϕ
x
i,k

For each k′ 6= k′′ ∈ [3m], with k′, k′′ 6= k we can derive xi,k′∧xi,k′′ ` xi,k′∧xi,k′′ .
From this, by right weakenings, we can derive xi,k′ ∧ xi,k′′ ` xi,k, ϕ

x
i,k. By left

∨-introductions on these proofs we obtain

(6)
∨

k′,k′′∈[3m] k′,k′′ 6=k

(xi,k′ ∧ xi,k′′) ` xi,k, ϕ
x
i,k

Finally by left ∨-introduction between (5) and (6), left weakening, and left
∧-introduction we obtain X(1) ` xi,k, ϕ

x
i,k, from which (1) follows by right

weakenings.
For sequent (2) reason as follows: for each k′ 6= k′′ ∈ [3m], k′, k′′ 6= k,

we have proofs of the sequents xi,k, (xi,k′ ∧ xi,k′′) ` (xi,k ∧ xi,k′ ∧ xi,k′′). By
weakenings and right ∨-introduction we obtain xi,k, (xi,k′ ∧ xi,k′′) ` X⊥(3).
By right ∨-introductions on all previous proofs we have xi,k, ϕ

x
i,k ` X⊥(3)

from which the sequent (2) follows by two weakenings, left and right. tu
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5 Conclusions and open problems

We do not know if our simulation of LK by MLK (of monotone sequents)
can be improved to a polynomial simulation. The bottleneck of our proof are
the threshold formulas. To get a polynomial simulation it would suffice to
replace them by monotone formulas of polynomial size and find polynomial
size proofs of the properties of these formulas (lemmas 3 and 4). While there
are explicit constructions of polynomial size monotone threshold formulas (an
easy corollary of the construction of log-depth sorting network [AKS83]), it
is at all not clear whether the conditions can be proven for such formulas by
polynomial size proofs (in fact, even in full LK). The most direct approach
would be to formalize the proof of [AKS83] in MLK. This would require,
in particular, to prove that the expander graphs used in the construction
have the expansion properties. We are not aware of any ‘low level’ proof of
the expansion properties, thus this seems to be an essential obstacle. The
following observation may be helpful for proving that MLK polynomially
simulates LK.

Proposition 1 Suppose that it is possible to construct polynomial size mono-
tone threshold formulas such that the sequents of Lemmas 3 and 4 have poly-
nomial size proofs in LK. Then MLK polynomially simulates LK (with re-
spect to monotone tautological sequents).

Proof : Suppose we have such formulas and proofs. We will show how to
transform the nonmonotone proofs of the sequents of Lemmas 3 and 4 into
monotone ones. Then the theorem follows using the same proof as in Theo-
rem 3.

Let us denote by τn
k the formula for THn

k , with variables x1, . . . , xn. We
prove by induction on n that for the formulas τn

0 , . . . , τ
n
n the sequents have

monotone polynomial size proofs. For n = 1 the proofs are just constant size.
Assume we have proven this statement for n. Then we first define auxiliary
formulas σn+1

i by
σn+1

i := τn
i ∨ (τn

i−1 ∧ xn+1)

for i = 1, . . . , n, σn+1
0 := 1 and σn+1

n+1 is the conjunction of n + 1 variables.
To get polynomial size monotone proofs of the properties of σn

0 , . . . , σ
n+1
n+1

from those of τn
0 , . . . , τ

n
n is a simple task. Then we use the argument of

Theorem 3 with σn
0 , . . . , σ

n+1
n+1 to construct polynomial size monotone proofs

of τn
0 , . . . , τ

n+1
n+1 . tu

12



As expander graphs proved to be very useful in many applications, it may
be of independent interest to know if a tautology expressing such a property
for some graph has polynomial size proofs. Let ρn

k be a (nonmonotone)
formulas expressing THn

k and such that the basic conditions have polynomial
size LK proofs for these formulas. Let G be a graph such that for some k
and l, every set of vertices X of size k expands to size l by G, which means
that there are at least l vertices that either belong to X or are connected by
an edge to X. Let the set of vertices of G be {1, . . . , n} and the set of edges
of G be E. The following tautology expresses the expansion property of G:

ρn
k(x1, . . . , xn) → ρn

l (x1 ∨
∨

(1,j)∈E

xj, . . . , xn ∨
∨

(n,j)∈E

xj)

The interesting case is when the degree of G is constant and for some con-
stants 0 < ε < δ < 1, k is asymptotically εn and l is asymptotically δn.

The complexity of MLK proofs of the general PHP is also an open prob-
lem. Thus it is not totally excluded that this tautology can be used to show
a superpolynomial gap between LK and MLK.
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