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Dept. of Computer Science
Rutgers University

mkoucky@paul.rutgers.edu

DETLEF RONNEBURGER §

Dept. of Computer Science
Rutgers University

detlef@paul.rutgers.edu

SAMBUDDHA ROY

Dept. of Computer Science
Rutgers University

samroy@paul.rutgers.edu

V VINAY

Dept. of Computer Science and Automation
Indian Institute of Science

vinay@csa.iisc.ernet.in

Electronic Colloquium on Computational Complexity, Report No. 41 (2001)

ISSN 1433-8092




Abstract

We extend the lower bound techniques of [14], to the unbounded-error
probabilistic model. A key step in the argument is a generalization of Nepom-
njaščiı̆’s theorem from the Boolean setting to the arithmetic setting. This gen-
eralization is made possible, due to the recent discovery of logspace-uniform
TC0 circuits for iterated multiplication [9].

Here is an example of the sort of lower bounds that we obtain: we show
that MAJ·MAJSAT is not contained in PrTiSp(n1+o(1), nε) for any ε < 1.
We also extend a lower bound of [14], from showing that SAT does not have
uniform NC1 circuits of size n1+o(1), to a similar result for SAC1 circuits.

1 Introduction

This work takes as its starting point the lower bounds presented by Fortnow in
[14], in which it was shown that SAT 6∈ DTiSp(n1+o(1), n1−ε), and its complement
SAT 6∈ NTiSp(n1+o(1), n1−ε).

The time-space tradeoffs of [14] have been extended in several ways. Lipton
and Viglas [19] and Fortnow and van Melkebeek [15] showed that better lower
bounds on time could be obtained, if smaller space bounds were considered. For
instance, it is shown in [15] that the set SAT 6∈ NTiSp(n1.4, no(1)). Tourlakis [26]
extended results of [14] and [19] further to a nonuniform setting where machines
can take no(1) advice. A survey of these developments can be found in [20].

More dramatically, results in the branching program model proved by Ajtai [1]
and extended by Beame et al. [7] show that deterministic time-space tradeoffs that
are nearly as strong can be obtained even for problems of much lower complexity
than SAT (i.e., problems in P), and even in the fully nonuniform setting. For in-
stance, specific instances of combinatorial problems in P are presented, that require
time Ω(n

√

logn/ log logn) on machines using space O(n1−ε). (Van Melkebeek
points out in [20] that the results of [7] seem to imply nothing about the complex-
ity of SAT, since the problems in P considered in that work are not known to be
reducible to SAT in time n logO(1) n.)

We extend the time-space tradeoffs in yet another direction. Instead of deter-
ministic or nondeterministic computation, we consider the seemingly much more
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powerful mode of unbounded-error probabilistic computation. Note that the class
PrTiSp(n logn, nε) is very powerful. It contains problems complete for PP under
≤p

m reducibility, and hence, by [24], it contains problems hard for the polynomial
hierarchy under ≤p

T reductions.
Just as the techniques of [14] do not yield lower bounds for SAT in the nonde-

terministic time- and space-bounded model (instead yielding results only for SAT),
our extensions do not yield lower bounds for SAT or MAJSAT, but only for prob-
lems complete for the second level of the counting hierarchy.

We had hoped to provide lower bounds on the size and depth of uniform arith-
metic circuits computing functions in the counting hierarchy, but we do not see
how do do this. However, we are able to extend the circuit lower bounds of [14] to
a larger class of circuits. Fortnow shows in [14] that SAT (and hence SAT) cannot
be solved by logspace-uniform NC1 circuits of size n1+o(1). A slight modification
of that proof shows that SAT cannot be solved by uniform SAC1 circuits of size
n1+o(1). (We sketch a proof in Section 4.)

Our main result (Theorem 3) can be extended along the lines of Tourlakis ([26])
to show that PrTime(n)PrTime(n)/no(1)

6⊆ PrTiSp(n1+γ , nε)/no(1).We omit the de-
tails of this extension.

2 Preliminaries

We assume that the reader is familiar with the standard notions of complexity the-
ory as can be found in the standard textbooks (i.e. [5, 22, 11, 28]). In particular, the
reader is assumed to be familiar with unbounded-error probabilistic oracle Turing
machines.

In this paper PrTimeA(t) denotes the class of languages that are decidable by
unbounded-error probabilistic Turing machines running in time t, with oracle A.

If C is a class of languages, then PrTimeC(t) is the union, over all A ∈ C, of
PrTimeA(t). We will use PrTiSp(t(n), s(n)) to denote the class of languages de-
cidable by an unbounded-error probabilistic Turing machine running in timeO(t(n))
and space O(s(n)).

We define the levels of the linear time version of the counting hierarchy as fol-
lows.

Definition 1 Given the first level of the linear time counting hierarchy relative
to oracle A, LCHA

1 = PrTimeA(n), we recursively define the higher levels as
LCHA

i+1 = PrTime(n)LCHA
i . The union over all levels gives the entire hierarchy



LCHA =
⋃

i LCHA
i . The unrelativized levels of this hierarchy are defined as usual

by using the empty set as an oracle: LCHi = LCH∅
i , LCH = LCH∅.

It can be verified that LCH is a relatively robust class that can be defined equiv-
alently using the linear-time analogs of #P or C=P, etc.

In order to prove our main result we will need the following theorem, which
can be proven by standard diagonalization techniques using the fact that a multi-
tape probabilistic Turing machine running in time t can be simulated on a two-tape
probabilistic Turing machine in time O(t) [8, 2].

Theorem 2 (Hierarchy Theorem) Let T and t be time-constructible functions. If
t ∈ o(T ) then PrTime(t) ( PrTime(T ).

As usual, TC0 denotes the class of languages decidable by constant depth, poly-
nomial-size threshold circuits, i.e., Boolean circuits that consist of unbounded fan-
in AND, OR, NOT and MAJORITY gates. We will also use arithmetic circuits over
the integers consisting of unbounded fan-in + and × gates (usual arithmetic addi-
tion and multiplication).

Further recall that SAC1 is the class of languages accepted by polynomial-size
circuits of depth O(logn) having unbounded fan-in OR gates and bounded fan-in
AND gates; it is equal to LogCFL: the class of problems logspace-reducible to a
context-free language [27]. Since LogCFL is closed under complement [4], it can
also be defined in terms of bounded fan-in OR gates and unbounded fan-in AND

gates. Recall also that NC1 ⊆ L ⊆ NL ⊆ SAC1.

3 Main Result

Our main result extends the time-space tradeoff of [14], where instead of giving
lower bounds for solving SAT with nondeterministic machines, we give lower bounds
for solving MAJ·MAJSAT with probabilistic machines. We will give the follow-
ing relation between the time and space required to solve problems from the second
level of the linear time counting hierarchy. We show in Section 3.2 that this implies
a lower bound on MAJ·MAJSAT.

Theorem 3 (Main Theorem) For every constant ε such that 0 < ε < 1, there
exists a constant γ > 0, such that

PrTime(n)PrTime(n) 6⊆ PrTiSp(n1+γ , nε).



More specifically, we show the next theorem, which implies our main result by
setting γ = min{a, d} − 1. It would be possible to determine more precisely the
relationship among γ, a and d, by examining more closely certain factors such as
the depth of uniform TC0 circuits for iterated product. We do not attempt such an
analysis here.

Theorem 4 For every 0 < ε < 1, and every a > 1, there exists a constant d > 1
such that if

PrTime(n) ⊆ PrTiSp(na, nε)

then
PrTime(n)PrTime(n) 6⊆ PrTime(nd).

The proof of this theorem is based on the following two lemmas. The first one
is an analog of Nepomnjaščiı̆’s Theorem [21]. We will prove it in Section 3.1.

Lemma 5 For any α > 1, and any 0 < β < 1, there is a constant τ(α, β) > 0
such that:

PrTiSp(nα, n1−β) ∈ LCHτ(α,β).

Lemma 6 For any rational d > 1, and any integer constant k ≥ 1, if

PrTime(n)PrTime(n) ⊆ PrTime(nd)

then
LCHk ⊆ PrTime(ndk−1

).

Proof of Lemma 6: For k < 3, the lemma is trivial, so assume that k ≥ 3. The
assumption PrTime(n)PrTime(n) ⊆ PrTime(nd) implies by a padding argument on

the oracle that PrTime(n)PrTime(ndi
) ⊆ PrTime(ndi+1

), for any i ≥ 1. Therefore,
for any 0 ≤ i < k − 2:

LCH
PrTime(ndi

)
k−i−1 = LCH

PrTime(n)PrTime(ndi
)

k−(i+1)−1

⊆ LCH
PrTime(ndi+1

)
k−(i+1)−1 .

Hence, LCHk = LCH
PrTime(nd0

)
k−1 ⊆ · · · ⊆ LCH

PrTime(ndk−2
)

1 ⊆ PrTime(ndk−1
).
2



We can use these two lemmas to prove Theorem 4.

Proof of Theorem 4: Let a > 1, and ε > 0 be given, and assume that

PrTime(n) ⊆ PrTiSp(na, nε).

Let b > 1 be such that bε < 1. Let τ(ba, 1 − bε) be the constant from Lemma
5, and let d < b1/(τ(ba,1−bε)−1) . We claim that

PrTime(n)PrTime(n) 6⊆ PrTime(nd).

Suppose on the contrary that

PrTime(n)PrTime(n) ⊆ PrTime(nd).

Then

PrTime(nb) ⊆ PrTiSp(nba, nbε)
⊆ LCHτ(ba,1−bε)

⊆ PrTime(ndτ(ba,1−bε)−1

),

where the first inclusion holds by a padding argument, the second follows from
Lemma 5, and the third from Lemma 6. This contradicts the Hierarchy Theorem. 2

3.1 Proof of Lemma 5

We want to show that any computation running in probabilistic time nα and space
n1−β for some constants α and β, lies in some level of the linear time counting
hierarchy.

We will prove this lemma in three steps. First, we will build a family of expo-
nentially large constant-depth arithmetic circuits computing the number of paths
from the start configuration to the accepting configuration in the configuration graph
of a PrTiSp(nα, n1−β)-machine running on an input x. Second, we will convert
this arithmetic circuit into a Boolean threshold circuit of roughly the same size and
depth. Third, we will show that the sets recognized by those large (but very uni-
form) threshold circuits are contained in some level of the linear time counting hi-
erarchy.

Step 1 - Construction of the arithmetic circuit

A probabilistic machine M running in space n1−β and time nα has at most
2O(n1−β) different configurations if it is run on input x of length n. W.l.o.g., we



may assume that each configuration is time-stamped; thus the configuration graph
of machine M is layered and acyclic. We want to count the number of paths from
the start configuration cstart to the accepting configuration caccept in the graph. All
these paths are of length nα

Let Vn be the set of configurations of M . We can count the number of paths
from cstart to caccept in the configuration graph as follows. First we pick nβ − 1
intermediate checkpoints c1, c2, . . . , cnβ−1 ∈ Vn, such that configuration ci is at
level inα−β in the configuration graph; next we count the number of paths from
cstart to caccept going through all these checkpoints; finally we take the sum over
all possible choices of the checkpoints:

#path(c0, cnβ , nα) =
∑

c1,...,c
nβ

−1
∈Vn

nβ−1
∏

i=0

#path(ci, ci+1, n
α−β),

where c0 = cstart, and cnβ = caccept.
We can easily compute the above expression with a depth 2 arithmetic circuit

consisting of one + gate and many × gates, provided that we know the number of
paths of length nα−β between all the pairs of nodes ci and ci+1. Since we take the
sum over |Vn|

nβ

= (2O(n1−β))nβ

= 2O(n) different combinations of check points,
the + gate has fan-in 2O(n), whereas the × gates have fan-in nβ + 1.

The preceding two paragraphs give a reduction: the problem of computing the
number of paths of length nα from c to c′ is reduced to the problem of counting
paths of length nα−β . By iterating this reduction α/β times, we obtain an arith-
metic circuit of depth 2α/β that has as its inputs the number of paths of length
nα/(nβ)α/β = 1 between any two configurations. The number of paths of length
1 between two configurations can be directly computed from input x by consider-
ing the transition relation of machine M .1

Note that the output of the arithmetic circuit is a number with polynomially
many bits in terms of n, since probabilistic machine M has running time nα.

It is straightforward to see that the total size of the circuit is 2O(n). We can
uniquely label a + gate at level k, that corresponds to the start- and endpoints c0 and
cnβ , by 〈+, k, c0, cnβ〉. A × gate at level k, that corresponds to the start- and end-
points c0 and cnβ , and the checkpoints c1, . . . , cnβ−1, can be labeled by 〈×, k, c0, . . . , cnβ〉.
Since there are at most 2O(n) such labels, the size of the circuit is exponential in n.

Further, the circuit is highly uniform. It is easy to determine if two gates g and
h are connected or not. This can even be done in linear time in terms of the length

1We omit here usual technical details arising from the possible non-integrality of nα, nβ , etc.



of the description of g and h, i.e., in time linear in n.

Step 2 - Conversion of the arithmetic circuit into a Boolean threshold circuit

Now we can use the recent result that iterated multiplication is in logspace uni-
form TC0 ([9], see also [3, 17]) along with the fact that iterated addition is in Dlog-
time-uniform TC0 ([6]) to convert the arithmetic circuit to a constant-depth Boolean
threshold circuit.

Let us assume that the output of the arithmetic circuit has ns bits. We replace
each + gate with the appropriate constant-depth threshold circuit of size 2O(n) with
ns outputs computing the iterated sum. Similarly we replace each × gate with a
subcircuit of polynomial size in n computing the iterated product of the nβ inputs
with ns bits. The resulting Boolean threshold circuit is also of size 2O(n) and it also
computes the number of s-t paths in the graph.

This Boolean circuit is not necessarily linear time uniform in terms of n, but
we show that we can determine whether two gates are connected or not in linear
time with access to an oracle from the linear time counting hierarchy. We can label
each gate g in the Boolean circuit with a label 〈la, ls〉, where la is the label of the
substituted + or × gate in the arithmetic circuit and ls is the relative label g has in
the addition/multiplication subcircuit.

We can reduce the question of whether two gates are connected in the Boolean
circuit to the connectivity question for the subcircuits. Two gates g and h are con-
nected either because they belong to the same subcircuit and are adjacent within
that subcircuit, or because they are in two adjacent subcircuits (a question we can
answer in linear time in terms of n), and one is an output gate and the other is a
matching input gate.

Since the addition circuits are Dlogtime uniform, they maintain the uniformity
of the Boolean circuit. The multiplication circuits are only logspace uniform. But
Nepomnjaščiı̆’s theorem ([21]) yields as a corollary that every set A ∈ L is con-
tained in Σ

O(n)
k ⊆ LCHk for some k. Therefore we can decide the connectivity

language for the multiplication subcircuits (and thus the entire circuit) in linear
time in terms of n as long as we have access to an oracle from the k-th level of
the linear time counting hierarchy. (Alternatively, one can use the recently-proved
theorem of Hesse [17], which improves [9] by showing that iterated product lies
in Dlogtime-uniform TC0.)

We have now constructed a family of Boolean threshold circuits {Cn} of size
2O(n) and depth O( 2α

β
), for which the set {(x, g, h) : h is an input gate of g in

C|x|} is in LCHk, for a suitable constant k. This constant depends on the exact
logspace uniformity of the TC0 circuits for iterated multiplication of nβ inputs of



size nα.

Step 3 - Putting the arithmetic circuit into LCH

Finally, we will show that the language decided by the circuit, that was obtained
in the previous step, lies in LCH. More precisely we will show by induction on j
that for any threshold circuit of depth j with the above mentioned size and unifor-
mity conditions, the set {(x, g) : gate g evaluates to 1 in the circuit C|x| on input
x} is in LCHj+k.

Without loss of generality we may assume that the threshold circuit only con-
tains majority and negation gates.

We may inductively assume that we can decide if a gate g in a depth j − 1
threshold circuit evaluates to 1, by a LCH(j−1)+k machine. So let us consider some
gate g on input x for a circuitC|x| of depth j. We can now randomly guess a gate h
and query a LCHk oracle to find out if h is an input to g. If not, then we make one
more random choice, depending on which we accept or reject. If h is an input to
g, then h belongs to a depth j − 1 subcircuit and thus by our induction hypothesis
we can query a LCH(j−1)+k oracle to determine whether h evaluates to 1 or not. If
g is a majority gate then we accept if and only if h evaluates to 1; if it is a negation
gate, we accept if and only if h evaluates to 0.

It is fairly straightforward to see that this probabilistic oracle Turing machine
runs in linear time and accepts (x, g) if and only if gate g evaluates to 1 on input
x. Since the running time is linear in n and we require access to a LCH(j−1)+k

oracle we can evaluate a threshold circuit of depth j and LCHk uniformity in the
complexity class PrTime(n)LCH(j−1)+k = LCHj+k.

So we can finally conclude that for any constants α and β the inclusion
PrTiSp(nα, n1−β) ⊆ LCHτ(α,β) holds, where τ(α, β) = O(α

β
) + k is a positive

integer. 2

3.2 Lower Bound for MAJ·MAJSAT

The lower bound that is obtained in the Main Theorem also implies a time–space
tradeoff for MAJ·MAJSAT.

Theorem 7 For every constant ε such that 0 < ε < 1, there exists a constant
γ′ > 0, such that

MAJ·MAJSAT 6⊆ PrTiSp(n1+γ′

, nε).

Remark: The statement of Theorem 7 gives essentially the same lower bound
for MAJ·MAJSAT as Theorem 3 gives for LCH2. If one were to compute, for a



specific ε, the precise value of γ that one obtains in Theorem 3, one would find that
the conclusion of Theorem 7 holds for any γ ′ < γ, but it is not clear that it would
hold for γ′ = γ.

To show this we will prove that MAJ·MAJSAT is complete for the second level
of the linear time counting hierarchy under a fairly restrictive reduction. Namely
we will map instances of any language from LCH2 to instances of MAJ·MAJSAT
of size O(n logO(1) n) via a reduction such that the i-th bit of the formula can be
computed in time O(logO(1) n) and logarithmic space (exactly as in the proof of
Theorem 2.4 of [15]). Such a reduction immediately implies Theorem 7.

Let us first define MAJ·MAJSAT. Given two disjoint sets x and y of Boolean
variables, consider the problems

MAJSAT = {ϕ(x) : ϕ(x) is true for ≥ 1
2

of

the assignments to x}

MAJ·MAJSAT = {ϕ(x, y) : ϕ(x, y) ∈ MAJSAT

for ≥ 1
2

of the assignments y to y}.

We will present the reduction of a setL ∈ LCH2 to MAJ·MAJSAT in two steps.
First we will show that L can be accepted in probabilistic linear time with very
restricted oracle access. Then we will show how to represent such a computation
by a MAJ·MAJSAT formula.

Consider a set L ∈ PrTime(n)PrTime(n) that is accepted by a linear time prob-
abilistic oracle machine MA, where A ∈ PrTime(n) via a machine M1. Since
PrTime(n) is closed under complement, there is a linear time probabilistic ma-
chine M0 deciding A. By standard techniques (see [13]) we can assume that for
every a ∈ {0, 1} and for every string x, the probability that Ma accepts on input
x is not equal to 1

2
; that is, the probability of accepting is always greater than one

half, or less than one half. We show how to accept L on a probabilistic linear time
machine N with an oracle C ∈ PrTime(n), such that N queries C exactly once
on each computation path, and where N accepts along the path if and only if the
query is answered YES. Our construction follows a proof by Torán [25].

The oracle C is defined as follows:

C = {(q1, a1, w1), (q2, a2, w2), . . . : ∀i Mai
accepts

input qi along computation path wi and

|{v : v < wi ∧ Mai
accepts qi along v}| = 2|qi|−1}.



It will be convenient for us to know a string x1 ∈ C and a string x0 6∈ C, for us to
refer to later.

Note that if ai is the correct answer to query qi then Mai
accepts qi on more

than 2|qi|−1 computation paths. Thus for exactly one computation path wi, the ma-
chine Mai

accepts qi along wi and also on 2|qi|−1 other computation paths lexico-
graphically less than wi. So for every sequence of oracle queries q1, . . . , qm there
is exactly one correct guess of answers a1, . . . , am and witnessesw1, . . . , wm such
that (q1, a1, w1), . . . , (qm, am, wm) ∈ C.

The machine N works as follows. It guesses a sequence of coin flips p
and a sequence of queries, answers and corresponding witnesses
q = (q1, a1, w1), . . . , (qm, am, wm) of length O(n), and then it simulates machine
M along path p using q to answer the oracle queries.

If the coin flips p do not correspond to a computation path of M generating
queries corresponding to q, or if the coin flips p correspond to a rejecting path of
M , then N rejects (by asking if x0 ∈ C).

Otherwise, the coin flips p do correspond to an accepting computation path of
M that generates the queries appearing in q (if the given oracle answers are sup-
plied). In this case, N accepts if and only if q ∈ C.

It is easy to see that the number of accepting computation paths of NC(x) is
equal to the number of accepting computation paths ofMA(x), since for every ac-
cepting path p of M there is exactly one corresponding sequence q for which NC

will accept. Thus x ∈ L if and only if the number of accepting paths of NC is
greater than or equal to 2|p|−1. Now via standard techniques (see e.g. [25]) we can
modify N so that the accepting probability threshold is one-half.

Furthermore, note thatN runs in linear time and queries the oracle exactly once
at the end of each computation, accepting if and only if the query answer is YES.
It remains to be shown that C ∈ PrTime(n).

Actually we show that C ∈ C=Time(n) ⊆ PrTime(n), where C=Time(n) is
defined as follows:

C=Time(n) = {A : x ∈ A iff ∃ a prob. linear time

machine M s.t. Pr[x ∈ L(M) ] = 1
2
}.

It is straightforward to verify that language {(q, a, w) : Ma accepts input q
along computation path w and |{v : v < w ∧Ma accepts q along v}| = 2|q|−1}
is in C=Time(n). Results of Fenner et al. [13] show that C=Time(n) is closed
under conjunctive reductions, and thus C ∈ C=Time(n).



Next we will show how to reduce computation of the machineNC to a formula
from MAJ·MAJSAT. We know that for anyC ∈ PrTime(n) there is a determinis-
tic machineMC taking two inputsx and y such that x ∈ C iffMC accepts (x, y) for
at least half of the possible values for y of length c|x| for some c. By the Fischer-
Pippenger construction [12] we can assume that MC is an oblivious machine (i.e.,
the position of the worktape heads depend only on the length of the input), running
in time n log n.

In [10] Cook gives a construction that reduces MC to a formula ϕC,n(x, y, z)

of size n logO(1) n, with the property that MC accepts (x, y) if and only if there is
an assignment to the variables z such that ϕC,n(x, y, z) is true. Furthermore, for
any (x, y), there is at most one such z. Let ψC,n(x, y, z, v) = (ϕC,n(x, y, z)∧ v)∨
(¬v ∧ (y1 ∨

∨

i zi)), where v is a new Boolean variable. Then for any string x
of length n, x ∈ C iff ψC,n(x, y, z, v) ∈ MAJSAT, (where we are making the
obvious correspondence between the string x ∈ {0, 1}∗ and an assignment to the
x variables in ψC,n).

Now consider the computation of the LCH2-machineNC . SinceC is reducible
in n logO(1) n time to MAJSAT, we can simulate NC by a probabilistic machine
N ′ running in time n logO(1) n with MAJSAT as an oracle. Furthermore, since
MAJSAT is easily seen to be paddable, we can assume that all queries made byN ′

have the same length. By application of the reduction outlined above, all queries
of the form “Is y in MAJSAT” made by N ′ on input x can be expressed by asking
if the string ψA,m(y, w) is in MAJSAT, where A = MAJSAT, m = |y| depends
only on the length of x, and w is a sequence of variables (as outlined above, with
some renaming).

Note that the set D = {(x, p, y) : N ′ on input x with coin flip sequence p
makes query y to the oracle} is accepted by a deterministic machine running in
time n logO(1) n. Thus, as above, we can use Cook’s reduction to construct effi-
ciently a formulaϕD,m′(x, p, y, z) such that (x, p, y) is inD if and only ifϕD,m′(x, p, y, z)
is in SAT.

Now observe that x is accepted by NC if and only if, for at least half of the
paths p, the query y asked by N ′ along path p is in MAJSAT. In turn, this hap-
pens if and only if for at least half of the assignments to the variables in p, for the
unique (y, z) such thatN ′ queries y along path p on input x (satisfying the formula
ϕD,m′(x, p, y, z)), the formula ψA,m(y, w) is in MAJSAT. This happens if and only
if the formula Φ(x, (p, y, z, v), w) = (v∧(ϕD,m′(x, p, y, z)∧ψA,m(y, w)))∨(¬v∧
(p1 ∨

∨

i yi ∨
∨

i zi) ∧ (w1 ∨ ¬w1)) is in MAJ·MAJSAT. 2



4 SAC1 Lower Bounds

In this section, we extend another result of Fortnow [14]. Fortnow shows that
SAT cannot be recognized by very small logspace-uniform NC1 circuits. Here,
we prove similar results about SAC1 circuits – although we have to be somewhat
particular about how “size” is defined.

Theorem 8 Neither SAT nor SAT can be solved by logspace-uniform SAC1 cir-
cuits having n1+o(1) wires.

Theorem 9 SAT cannot be solved by Dlogtime-uniform SAC1 circuits havingn1+o(1)

gates.

For both of these theorems, it will be convenient to make use of the following
technical result:

Theorem 10 [16] Every language that is accepted by a nondeterministic random-
access machine using t(n) time is also accepted by a nondeterministic multitape
Turing machine using time t(n) logO(1) t(n) time. This result also generalizes to
show that any random-access alternating Turing machine using time t(n) can be
simulated in time t(n) logO(1) t(n) on a multitape alternating Turing machine us-
ing the same number of alternations.

The proof of Theorem 8 follows very closely the proof of Theorem 5.1 in [14]
(attributed there to Harry Buhrman). Recall that QBFi denotes the set of true quan-
tified Boolean formulas with i alternating blocks of quantifiers, starting with ex-
istential quantifiers. Throughout this proof we adopt the notation of [14], where
Σ

t(n)
a(n) (Πt(n)

a(n)) denotes the class of languages accepted by alternating machines mak-
ing a(n) − 1 alternations, running for time t(n), where the start configuration is
existential (universal).

Proof of Theorem 8:
We begin by recalling the following fact from [14][Corollary 5.3]:

If SAT has circuits of size n1+o(1), then QBF2 ∈ Πn1+o(1)

2 .

The proof of this follows directly from [18] – but it is important for the proof that
the circuits under consideration have bounded fan-in (if the size of the circuit is
measured by the number of gates). We do not know if this implication holds when
unbounded fan-in circuits are considered. On the other hand, it is a simple matter



for a random-access machine to simulate a circuit in time bounded roughly by the
number of wires in the circuit. Thus we obtain the following.

Observation: If SAT has (unbounded fan-in) circuits with n1+o(1) wires, then
QBF2 ∈ Πn1+o(1)

2 .
Note that this is true, regardless of whether the circuits are uniform or not.
Next, we observe that the proof of Theorem 5.1 of [14] (without modification)

shows that, if SAT has (unbounded fan-in) circuits with n1+o(1) wires, then for a
slowly-growing (but unbounded) function s(n),

Σn log n
s(n) ⊆ Σp

2.

Now assume that SAT can be solved by logspace-uniform SAC1 circuits hav-
ing n1+o(1) wires. Under this assumption, we can see that NP = SAC1 = Σp

2.
Since SAC1 ⊆ NTiSp(nO(1), log2 n) [23], and since this latter class is contained
in

⋃

k Σ
O(n)
k [21], we now have the sequence of inclusions:

Σn log n
s(n) ⊆ Σp

2 = SAC1 ⊆
⋃

k

Σ
O(n)
k .

Now, we observe that this contradicts a simple diagonalization argument that shows

Σn log n
s(n) 6⊆

⋃

k

Σ
O(n)
k .

A similar argument shows that the same bound holds for SAT. 2

Recently van Melkebeek has observed that the uniformity condition in Theo-
rem 8 can be relaxed significantly, from logspace to NTiSp(nO(1), n1−ε) [20].

To prove our other lower bound for SAC1 circuits, we first need to observe that
they are easy to evaluate.

Lemma 11 If a set A has Dlogtime-uniform SAC1 circuits with n1+o(1) gates then
A ∈ Ntime(n1+o(1)).

Proof: Assume such a setA has a Dlogtime-uniform SAC1 circuit family {Cn}
∞
n=0.

Given input x of size n, our nondeterministic machine for A wants to verify that
Cn(x) = 1. It does that as follows.

Observe, Cn(x) = 1 iff there is a subcircuit of Cn that evaluates to one and
which consists of AND gates of bounded fan-in and OR gates of fan-in 1. Given
the input, we may guess such a subcircuit and verify that it really evaluates to one.



A description of the subcircuit is list of pairs 〈g, h〉, where g and h are gates of
the subcircuit and g is an input gate toh. The length of the description isO(n1+o(1)),
hence it may be guessed in time O(n1+o(1)). Using Dlogtime-uniformity of Cn, it
can be verified in timeO(n1+o(1)) that the description is indeed a subcircuit of Cn.

The subcircuit can be evaluated in bottom-up fashion on a deterministic random-
access machine in timeO(n1+o(1)), given that the description was guessed in topo-
logically sorted form. Hence by Theorem 10, it can be evaluated in non-deterministic
time O(n1+o(1)). If the subcircuit evaluates to one, we accept input x, otherwise
we reject it. 2

Remark: Although SAC1 ⊆ NTiSp(nO(1), log2 n) [23], it is not known how
to evaluate a nearly-linear-size SAC1 circuit in nearly-linear nondeterministic time,
using less than linear space. Similarly, although SAC1 is closed under complement
[4], known constructions involve squaring the circuit size.

A simple corollary to the previous lemma is the following statement that is sim-
ilar in flavor to (but much easier than) the version of the Karp-Lipton collapse that
we used in the proof of Theorem 8. Note that the uniformity condition is essential
here.

Corollary 12 If SAT has Dlogtime-uniform SAC1 circuits of sizen1+o(1) then QBF1

∈ Πn1+o(1)

1 .

Proof of Theorem 9: Assume that SAT is solved by Dlogtime-uniform SAC1

circuits having n1+o(1) gates. By Corollary 12, QBF1 ∈ Πn1+o(1)

1 . As in [14], it
follows that for a slowly-growing (but unbounded) function s(n),

Σn log n
s(n) ⊆ Σp

1.

The rest of the proof follows along the lines of the proof of Theorem 8. 2

References

[1] M. Ajtai. A non-linear time lower bound for Boolean branching programs. In
Proc. IEEE Symposium on Foundations of Computer Science (FOCS), pages
60–70, 1999.

[2] E. Allender. The permanent requires large uniform threshold circuits. Chicago
Journal of Theoretical Computer Science, article 7, 1999.



[3] E. Allender, D. Mix Barrington, and W. Hesse. Uniform circuits for division:
Consequences and problems. To appear in Proc. IEEE Conference on Compu-
tational Complexity, 2001.

[4] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two ap-
plications of inductive counting for complementation problems. SIAM Journal
on Computing, 18:559–578, 1989.
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