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Abstract

In the simultaneous message model, two parties holding n-bit integers x, y send messages to a

third party, the referee, enabling him to compute a boolean function f(x, y). Buhrman et al

[BCWW01] proved the remarkable result that, when f is the equality function, the referee can

solve this problem by comparing short “quantum fingerprints” sent by the two parties, i.e.,

there exists a quantum protocol using only O(logn) bits. This is in contrast to the well-known

classical case for which Ω(n1/2) bits are provably necessary for the same problem even with

randomization. In this paper we show that short quantum fingerprints can be used to solve

the problem for a much larger class of functions. Let R||,pub(f) denote the number of bits

needed in the classical case, assuming in addition a common sequence of random bits is known

to all parties (the public coin model). We prove that, if R||,pub(f) = O(1), then there exists

a quantum protocol for f using only O(logn) bits. As an application we show that O(log n)

quantum bits suffice for the bounded Hamming distance function, defined by f(x, y) = 1 if

and only if x and y have a constant Hamming distance d or less.
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1 Introduction

In the simultaneous message model (see [KN97]), two parties A, B holding n-bit strings x, y

send messages ax, by to a third party, called the referee, who wishes to compute a boolean

function f(x, y). In the randomized setting, a protocol specifies the probability distributions

of ax, by, and an M ×M boolean referee matrix D, such that for all x, y, the probability of

D(ax, by) = f(x, y) exceeds 1 − ε, where 0 < ε ≤ 1/3 is a fixed constant. (The choice of ε

affects the complexity only by a multiplicative constant.) Let R||(f) be the minimum number

of bits (i.e., dlog2Me) needed by any such protocol.

Buhrman et al [BCWW01] extended the above model to the quantum setting, in which A,

B send quantum states |ux >, |vy > in a Hilbert space of dimension M , and the referee makes

a decision based on some measurement on the the received combined state |ux > ⊗|vy >. They

proved the remarkable result that, when f is the equality function, the referee can solve this

problem by comparing short “quantum fingerprints” sent by the two parties, i.e., there is a

quantum protocol using only dlog2Me = O(log n) qbits. This is in contrast to the classical case

for which it is well known ([A96][BK97][NS96]) that Θ(n1/2) bits are necessary and sufficient

for the equality function.

In this paper we show that short quantum fingerprints can be used to solve a much larger

class of functions. To fix the notation, let Q||(f) denote the minimum number of qbits com-

municated by any quantum protocol. The error probability is bounded by a fixed constant

0 < ε ≤ 1/3.

Consider the public coin version (see [KN97]) of the (classical) simultaneous message model,

in which a common random bit sequence ξ is known to both A and B. In this model, A sends a

(deterministic) message ax,ξ, B sends a (deterministic) message by,ξ, and the referee makes the

decision D(ax,ξ, by,ξ) using a boolean matrix D. Let R
||,pub(f) denote the minimum number

of bits needed by any protocol in the public coin model. Our main result (Theorem 1) shows

that the complexity in the quantum model is closely related to that in the (classical) public

coin model.

Let f1, f2, · · · , fn be a sequence of functions where fn : {0, 1}
n × {0, 1}n → {0, 1}.

Theorem 1 If R||,pub(fn) = O(1), then Q||(fn) = O(log n).

One can regard the result of Buhrman et al [BCWW01] as a special case of Theorem 1, as

the equality function has complexity O(1) in the public coin model (see [KN97]). Let HAM
(d)
n

denote the boolean function such that HAM
(d)
n (x, y) = 1 if and only if the two n-bit strings x

and y have Hamming distance at most d. As an application of Theorem 1, we show that, for

any fixed d, R||,pub(HAM
(d)
n ) = O(1), and hence by Theorem 1 the problem HAM

(d)
n can be

solved with O(logn)-qbit quantum fingerprints.

Theorem 2 R||,pub(HAM
(d)
n ) = O(d2).

Corollary For any fixed d, Q||(HAM
(d)
n ) = O(logn).

In Theorem 1, the term O(logn) hides a large constant. Precisely, if R||,pub(fn) ≤ c, then
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Q||(fn) = 2
O(c) log n. It is natural to ask whether one may achieve Q||(fn) = O(R||,pub(fn) ·

logn) or better. (For comparison, note that it is known ([NS96]) that R||(fn) = O(R||,pub(fn) ·

n1/2).) The next theorem is a partial result in this direction.

Let FM be the set of all M × M real positive semidefinite matrices F with only non-

negative entries. Call two matrices G,G′ isomorphic, if they differ only by the naming of

rows and columns, i.e., G′ = PGQ for some permutation matrices P,Q. (Regard any G as a

weighted bipartite graph with vertex set [M ] × [M ], and with weight G(i, j) associated with

edge (i, j). Then G,G′ are isomorphic if and only if they are isomorphic if their associated

weighted graphs are isomporhic.) Let GM be the set of all G such that G is isomorphic to some

F ∈ FM . For any M ×M matrix K, define its convex width, w(K), as the smallest integer k

for which K can be expressed as the sum of k matrices in GM . Note that the referee matrix

used in [BCWW01] is the identity matrix, which has convex width 1.

Theorem 3 Let f : {0, 1}n → {0, 1} be a boolean function, and A is a protocol that

computes f in the public coin model using an M × M referee matrix D. Then Q||(f) =

O(w(D)5(1 + logw(D)) · (log2M + logn)).

Note that w(D) ≤M , and thus Theorem 3 can be regarded as an extension of Theorem 1.

The rest of the paper is devoted to the proof of the above theorems. Some open problems are

discussed in the last section.

2 Preliminaries

We review some material in [BCWW01]. Let H be a Hilbert space. The Hilbert space H ⊗H

can be decomposed into two orthogonal subspaces V +, V −, called the symmetric subspace and

the anti-symmetric subspace. Subspace V + is generated by the set of all states of the form

|v > ⊗|w > +|v > ⊗|w > for all |v >, |w >∈ H; and V − is generated all |v > ⊗|w > −|v >

⊗|w >. Consider the measurementMH corresponding to the above decomposition, with “+”

and “-” as the possible outcomes. Buhrman et al observed that the following simple fact is

very useful.

Fact 1 Perform measurementMH on the state |v > ⊗|w >. The probability of observing the

result “-” is equal to (1− | < v|w > |2)/2.

Let E : {0, 1}n → {0, 1}N , where N = O(n), be an error correcting code such that E(x)

and E(y) have Hamming distance greater than 0.4N for any distinct x, y. Let Ei(x) be the

i-th bit of E(x). For each x ∈ {0, 1}n, let

|ux >=
1

N1/2

∑

1≤i≤N

|i, Ei(x) > .

Note that | < ux|uy > | = 1 if x = y, and otherwise | < ux|uy > | < 0.6. By Fact 1, this

implies that if one performs the measurementMH on |ux > ⊗|uy >, the probability of seeing

“-” is equal to 0 if x = y, and otherwise is at least (1− 0.62)/2 = 0.37.
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We now describe Buhrman et al’s quantum protocol. Parties A, B send k copies of |ux >,

|uy > to the referee. The referee performs the measurement MH on each of the k copies

of |ux > ⊗|uy >, and declare x = y if and only if “-” is absent in the outcomes of all k

experiments. The error probability of this protocol is easy to analyze. It is always correct if

x = y. If x 6= y, the error probability is less than (1 − 0.37)k, which can be made arbitrarily

small by taking a large enough constant k.

For our purpose, we need to extend their method to obtain an estimate of | < u|v > |. As

before, perform measurementMH on k copies of |u > ⊗|v >. Let k
′ be the number of times

the answer “-” comes up. Define the output η as (1− 2k′

k )
1/2 if k′ ≤ k/2, and 0 otherwise. Let

∆ = η − | < v|w > |.

Lemma 1 Let β > 0. Then

Pr{|∆| > β} < 2e−kβ4/64.

We omit the proof of Lemma 1, which is a routine but tedious analysis using Chernoff’s

Inequality.

3 Proof of Theorem 1

Fix the error probability at ε = 1/10. Let c be a constant such that R||,pub(fn) ≤ c for all

n. Consider a public coin protocol computing fn using c communication bits. Let [M ] =

{1, 2, · · · ,M} be the message space where M = 2c , and let D : [M ] × [M ] → {0, 1} be the

referee matrix (D may depend on n). It is well known (Newman[N91]) that we can assume

that the public random string is uniformly chosen from a set of L = O(n) strings ξ1, ξ2, · · · , ξL.

Let ai(x) ∈ [M ], bi(y) ∈ [M ] be the messages sent by A,B to the referee when ξi is the public

string chosen. By definition,

|f(x, y)−
1

L

∑

1≤i≤L

D(ai(x), bi(y))| < ε. (1)

Our plan is to construct a quantum protocol with error probability bounded by 1/3, using

2O(c) log n communication qbits. Define the Hilbert space H = CM ⊗CL, where C is the set

of complex numbers. For each x, y ∈ {0, 1}n, associate vectors in H

|ux > =
1

L1/2

∑

1≤i≤L

|ai(x) > ⊗|i >,

|vy > =
1

L1/2

∑

1≤i≤L

|bi(y) > ⊗|i > .

Let At(x) be the set of i ∈ {1, 2, · · · , L} such that ai(x) = t, and Bt(y) be the set of

i ∈ {1, 2, · · · , L} such that ai(y) = t. It is clear that

|ux > =
1

L1/2

∑

1≤t≤M

|t > |ux,t >,
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|vy > =
1

L1/2

∑

1≤t≤M

|t > |vy,t >, (2)

where

|ux,t > =
∑

i∈At(x)

|i >,

|vy,t > =
∑

i∈Bt(y)

|i > .

Lemma 2
1

L

∑

1≤i≤L

D(ai(x), bi(y)) =
∑

1≤t,t′≤M

D(t, t′)
< ux,t|vy,t′ >

L
.

The proof of Lemma 2 is straighforward. Note that < ux,t|vy,t′ >= |Ax,t ∩ By,t′ | is a non-

negative integer. If we can estimate the quantity
<ux,t|vy,t′>

L for each pair t, t′, up to an additive

term ε/M2, then Lemma 2 allows us to estimate 1
L

∑

1≤i≤`D(ai(x), bi(y)) up to an additive

term ε. By Equation (1), this means we can accurately decide whether f(x, y) is 1 or 0.

Let τ, τ ′ ∈ {1, 2, · · · ,M}. Let k = 64(M 2/ε)4 loge(M
2/ε).

Lemma 3 By performing unitary transformations and quantum measurements on k copies

of |ux > ⊗|vy >, one can obtain a random output rational number η such that

Pr{|η −
< ux,τ |vy,τ ′ >

L
| >

ε

M2
} <

ε

M2
.

For the moment, assume that we have proved Lemma 3. Consider the following quantum

protocol. Parties A, B send kM 2 copies of |ux >, |vy > to the referee. For each of theM
2 pairs

(τ, τ ′) ∈ [M ]× [M ], the referee then obtains an estimate ηx,y(τ, τ
′) of the quantity

<ux,τ |vy,τ ′>

L

for every τ, τ ′, using k of these copies and the quantum procedure provided by Lemma 3. The

referee then declares f(x, y) = 1 if and only if
∑

τ,τ ′ D(τ, τ
′)ηx,y(τ, τ

′) > 1/2.

We now analyze the protocol. From Lemma 3 we conclude that, with probability at least

1−M2 ε
M2 = 1− ε,

|ηx,y(τ, τ
′)−

< ux,τ |vy,τ ′ >

L
| ≤

ε

M2
,

for all τ, τ ′. By Equation (1) and Lemma 2, we conclude that, for any x, y ∈ {0, 1}n, the prob-

ability is at least 1− ε for the following inequality to hold: |f(x, y)−
∑

τ,τ ′ D(τ, τ
′)ηx,y(τ, τ

′)| <

2ε = 1/5. Note that the latter inequality implies the following: f(x, y) = 1 if and only

if
∑

τ,τ ′ D(τ, τ
′)ηx,y(τ, τ

′) > 1/2. Therefore, the probability for the referee to make the

correct decision is at least 1 − ε > 2/3. This proves Theorem 1, as the protocol uses

O(M10(logM)(logM + logn)) qbits.

It remains to prove Lemma 3. For each of the k copies of |ux > ⊗|vy >, do the following.

First apply a unitary transformation to |ux > ⊗|vy > to obtain |u
′
x > ⊗|v

′
y >, where

|u′x > =
1

L1/2



|0 > ⊗|0 > |ux,τ > +
∑

t6=τ

|0 > ⊗|t > |ux,t >



 ,
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|v′y > =
1

L1/2



|0 > ⊗|0 > |vy,τ ′ > +
∑

t6=τ ′

|1 > ⊗|t > |vy,t >



 .

(Strictly speaking, we need to enlarge the Hilbert space H to C⊗H in order to accommodate

|u′x > and |v
′
y >.) Note that < u′x|v

′
y >=

<ux,τ |vy,τ ′>

L . We have thus reduced the problem to

the estimation of < u′x|v
′
y > from k copies of |u′x > ⊗|v

′
y >. By Lemma 1, this problem can be

solved by performing measurementsMH . Choose β = ε/M 2, and k = 64(M2/ε)4 loge(M
2/ε)

in Lemma 1. Lemma 3 then follows from the probability estimates in Lemma 1.

4 Proof of Theorem 2

We give a protocol in the public coin model using γd2 communication bits, where γ = 104. We

then prove that the probability for the referee to be correct is at least 2/3.

The random public string consists of a sequence of γd2n random bits, each of which is gen-

erated independently with probability p = 1/(2d) to be a 1. Write this string as z1, z2, · · · , zγd2

where each zi is an n-bit string. Party A sends the referee the string a = a1a2 · · · aγd2 where ai is

the inner product of x·zi mod 2. Similarly, Party B sends the referee the string b = b1b2 · · · bγd2

where bi is the inner product of y · zi mod 2. The referee decides that HAM
(d)
n (x, y) = 1 if and

only if the Hamming distance between a and b is less than γd2/2− qγd2 where

q = ((1−
1

d
)d + (1−

1

d
)d+1)/4.

Let ci = ai + bi. The Hamming distance between a and b is the number of 1’s among

c1, c2, · · · , cγd2 .

Lemma 4 Assume that the Hamming distance between x and y is k. Then each ci is an

independent random variable with probability αk being 1, where

αk =
1

2
−
1

2
(1−

1

d
)k.

To prove Lemma 4, note that ci = 1 if and only if zi · (x ⊕ y) = 1. That is, ci = 1

if and only if among the k bit positions in which x and y differ, zi has an odd number

of its bits equal to 1. Therefore, ci is a random bit with probability βk to be 1, where

βk =
∑

0≤i≤k
i:odd

(k
i

)

pi(1 − p)k−i. Let gk(x) = (px + (1 − p))k =
∑

0≤i≤k

(k
i

)

(px)i(1 − p)k−i. It is

easy to see that βk =
1
2(gk(1)− gk(−1)) = 1/2− (1−

1
d)

k/2 = αk. This proves Lemma 4.

Note that αk is an increasing function of k. By Lemma 4, we have reduced the analysis of

the protocol to the following problem. We have a coin with a fixed but unknown probability

s to yield result 1 when it is tossed. We want to distinguish the case s ≤ αd from the case

s ≥ αd+1, by observing c1, c2, · · · , cγd2 , the result of a sequence of γd2 independent tosses of

the coin. We adopt the rule that we declare s ≤ αd if and only if the number of 1’s is less than
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γd2/2− qγd2. To prove Theorem 2, we only need to show that the probability of making the

correct decision is greater than 2/3.

This is now just a routine calculation in elementary statistics, and we only give an informal

argument here. For a given s, the probability distribution of the number of 1’s is centered

around its expected value Ns = sγd2 with a standard deviation σ ≈ (sγd2)1/2 ≤ 100d. In our

decision rule, the cutoff point γd2/2 − qγd2 is exactly the midpoint between Nαd
and Nαd+1

.

Since Nαd+1
−Nαd

= γd2(αd+1−αd) = γd2 · (1− 1
d)

d/(2d) ≥ 2000d, the cutoff point is at least

10 standard deviations away from both Nαd
and Nαd+1

. Thus, the choice of this cutoff point

offers a very good discrimination between the hypothesis s ≤ Nd and s ≥ Nd+1.

5 Proof of Theorem 3

Fix the error probability at ε = 1/10. Given a protocol using referee matrix D in the public

coin model, we would like to construct a quantum protocol using O(w(D)5(1 + logw(D)) ·

(log2M + log n)) qbits.

We adopt the notation developed in the proof of Theorem 1. The goal is for A and B to

send the appropriate states to the referee, so that he can estimate accurately the quantity

J =
∑

1≤t,t′≤M

D(t, t′)
< ux,t|vy,t′ >

L
,

which is approximately f(x, y) by (1) and Lemma 2. By assumption, D =
∑

1≤`≤w(D)G` where

G` ∈ GM . Therefore,

∑

1≤t,t′≤M

D(t, t′)
< ux,t|vy,t′ >

L
=

∑

1≤`≤w(D)

(
∑

1≤t,t′≤M

G`(t, t
′)
< ux,t|vy,t′ >

L
). (3)

The next proposition offers a quantum protocol to estimate J through Equation (3).

Proposition 1 Let G ∈ GM be a matrix with all entries ≤ 1 . Then there is a quantum

protocol using O(w(D)4(1+ logw(D)) · (log2M + logn) qbits such that the referee can output

a rational number η satisfying the following condition:

Pr{|η −
∑

1≤t,t′≤M

G(t, t′)
< ux,t|vy,t′ >

L
| >

ε

w(D)
} <

ε

w(D)
.

Similar to the discussions in Section 3, the referee can apply Proposition 1 to G = G` for

each 1 ≤ ` ≤ w(D) to obtain an output η`(x, y). He then declares f(x, y) = 1 if and only if the

value
∑

1≤`≤w(D) η`(x, y) exceeds 1/2. In exactly the same way as in Section 3, one can prove

that this quantum protocol satisfies the requirements of Theorem 3.

It remains to prove Proposition 1. Without loss of generality, we can assume that G ∈ FM .

Since G differs from some G′ ∈ FM only in the naming of its rows and columns, any quantum

protocol satisfying the specification of Proposition 1 G′ can be made to work for G.
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Since G is a real semidefinite matrix, there exist a real diagonal matrix Λ = (δt,t′λt) with

only non-negative entries and a real orthogonal matrix R = (rt,t′) such that G = RΛR−1. Note

that R−1 is equal to RT , the transpose of R. Each λs is an eigenvalue of G, and the column

vector (r1,s, r2,s, · · · , rM,s)
T is the associated eigenvector. That is, for each 1 ≤ s, t ≤M ,

∑

1≤t′≤M

G(t, t′)rt′,s = λsrt,s. (4)

Recall that H is the Hilbert space CM ⊗CL. A function F : H ⊗H → C is called bilinear

if the following equation is valid:

F (
∑

`

µ`ψ`,
∑

`′

ν`′φ`′) =
∑

`,`′

µ∗`ν`′F (ψ`, φ`′),

where µ`, ν`′ are complex numbers and ψ`, φ`′ are states in H. It is well known that, for any

basis {e`} of H, a bilinear function F can be specified by its values F (e`, e`′) for all `, `
′.

Define a bilinear function Ĝ induced by G as follows: for all t ∈ [M ], i ∈ [L],

Ĝ(|t > |i >, |t′ > |i′ >) = G(t, t′)δi,i′ .

Using the fact that Ĝ is bilinear, we have from (2) that

Ĝ(|ux >, |vy >) =
∑

1≤t,t′≤M

G(t, t′)
< ux,t|vy,t′ >

L
. (5)

Given copies of |ux > ⊗|vy >, if the referee can estimate accurately the value of Ĝ(|ux >

, |vy >), then A, B can just send the referee the fingerprints |ux >, |vy > as in Section 3.

However, we don’t know how to estimate the value of a bilinear function in general. Instead,

our plan is to define a modified set of fingerprints |u′′x >, |v
′′
y > in such a way that < u′′x|v

′′
y >=

Ĝ(|ux >, |vy >). This immediately leads to a quantum protocol for proving Theorem 3,

since A,B can send the referee sufficiently many copies of |u′′x >, |v
′′
y >, so that the referee can

estimate < u′x|v
′
y > within the specification required by Proposition 1. Applying Lemma 1 with

β = ε/w(D), one can verify that k copies are sufficient, where k = (4w(D)/ε)4 loge(w(D)/ε).

To define the modified fingerprints, let

|u′x,s > =
∑

1≤t≤M

rt,s|ux,t >,

|v′y,s > =
∑

1≤t≤M

rt,s|vy,t > .

Define a new orthonormal basis {|b1 >, |b2 >, · · · , |bM >} of CM that corresponds to the set of

eigenvectors of D:

|bs >=
∑

1≤t≤M

rt,s|t >,

which can be inverted to give

|t >=
∑

1≤s≤M

rt,s|bs > .

8



A simple calculation using (2) shows

|ux > =
1

L1/2

∑

1≤s≤M

|bs > |u
′
x,s >,

|vy > =
1

L1/2

∑

1≤s≤M

|bs > |v
′
y,s > .

We now define the modified fingerprints in two steps.

Definition 1

|u′x > =
1

L1/2

∑

1≤s≤M

(λS)
1/2|bs > |u

′
x,s >,

|v′y > =
1

L1/2

∑

1≤s≤M

(λS)
1/2|bs > |v

′
y,s > .

Lemma 5 For each x, y ∈ {0, 1}n,

< u′x|v
′
y >=

∑

1≤t,t′≤M

G(t, t′)
< ux,t|vy,t′ >

L
.

Furthermore, ‖|u′x > ‖ ≤ 1 and , ‖|v
′
y > ‖ ≤ 1.

Proof of Lemma 5 Observe that

< u′x|v
′
y > =

1

L

∑

1≤s≤M

λs < u′x,s|v
′
y,s >

=
1

L

∑

1≤s≤M

λs
∑

1≤t,t′≤M

rt,srt′,s < ux,t|vy,t′ >

=
1

L

∑

1≤t,t′≤M

< ux,t|vy,t′ >
∑

1≤s≤M

λsrt,srt′,s.

But, using (4) and the orthogonality of the matrix (rt,s), we have

∑

1≤s≤M

λsrt,srt′,s =
∑

1≤s≤M

∑

1≤t′′≤M

G(t, t′′)rt′′,srt′,s

=
∑

1≤t′′≤M

G(t, t′′)
∑

1≤s≤M

rt′′,srt′,s

=
∑

1≤t′′≤M

G(t, t′′)δt′′,t′

= G(t, t′).

Thus we have

< u′x|v
′
y >=

1

L

∑

1≤t,t′≤M

< ux,t|vy,t′ > G(t, t′).

This proves the first assertion in Lemma 5.
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Exactly the same manuipulation gives

‖|u′x > ‖
2 =< u′x|u

′
x >=

∑

1≤t,t′≤M

G(t, t′)
< ux,t|ux,t′ >

L
,

implying ‖|u′x > ‖2 =
∑

1≤t≤M G(t, t)
<ux,t|ux,t>

L ≤
∑

1≤t≤M
<ux,t|ux,t>

L = 1. Similarly, one

obtains ‖|v′y > ‖
2 ≤ 1. This proves Lemma 5.

For any x, y ∈ {0, 1}n, define 0 ≤ θx, ψy ≤ π/2 such that cos θx = ‖u
′
x‖ and cosψy = ‖v

′
y‖.

The final modified fingerprints can now be defined as vectors in C ⊗ CM ⊗ CL. Let

|κ >, |κ′ > be any two fixed mutually orthogonal unit vectors in CM ⊗CL.

Definition 2

|u′′x > = |0 > ⊗|u′x > +sin θx|1 > ⊗|κ >,

|v′′y > = |0 > ⊗|v′y > +sinψy|1 > ⊗|κ
′ > .

It it easy to check that |u′′x >, |v
′′
y > are unit vectors, and that < u′′x|v

′′
y >=< u′x|v

′
y >. By

virtue of (5) and Lemma 5, we have then < u′′x|v
′′
y >= Ĝ(|ux >, |vy >). This completes the

proof of Proposition 1, and hence Theorem 3.

6 Discussions

The quantum protocol constructed in the proof of Theorem 1 uses O(M 10(logM)(logM +

logn)) = 2O(c) logn qbits, where M = 2c and c is the number of bits needed in the

classical public coin simultaneous message model. Theorem 3 gives an improvement to

O(M5(logM)(logM + log n)), since w(D) ≤M for any D.

A further improvement can be made to give O(M 4(logM + logn)) (but is still 2O(c) log n).

Let F ⊆ [M ] × [M ] be the set of (t, t′) with f(t, t′) = 1, and F ′ be the complement of F .

Costruct quantum fingerprints

|ux > =
1

(LM)1/2





∑

(t,t′)∈F

|00 > ⊗|t, t′ > |ux,t > +
∑

(i,j)∈F ′

|01 > ⊗|t, t′ > |ux,t >



 ,

|vy > =
1

(LM)1/2





∑

(t,t′)∈F

|00 > ⊗|i, j > |vy,t′ > +
∑

(t,t′)∈F ′

|10 > ⊗|t, t′ > |vy,t′ >



 .

One can verify that |ux >, |vy > are unit vectors, and that | < ux|vy > | ≥ (1 − ε)/M if

f(x, y) = 1, and | < ux|vy > | ≤ ε/M if f(x, y) = 0. This leads to the O(M 4(logM + logn))-

qbit quantum protocol. We remark that a similar improvement using this idea can be made

to the number of qbits needed in Theorem 3.

We conclude with some open problems concerning the power of quantum fingerprinting.

10



1. Is it true that Q||(f) = O(R||,pub(f) · log n)? It is even conceivable that Q||(f) =

O(R||,pub(f) + log n).

2. Is there some converse to Theorem 1? For example, is it possible that any function f

with Q||(f) = O(logn) must satisfy R||,pub(f) = O(1)? Is it possible that any function f with

Q||(f) = O(logn) must satisfy R||(f) = O(n1−ε) ? (Recall that R||(f) is the complexity in the

basic (no public coin) model.)

3. Can one improve the bound R||,pub(HAM
(d)
n ) = O(d2) given in Theorem 2? Can one get

better bounds on Q||(HAM
(d)
n ) as a function of n and d?

4. Develop lower bound techniques for Q||(f). As a first step, one may restrict the class of

quantum protocols to those based on estimating | < ux|vy > |. This gives rise to interesting

questions on the embedding of graphs in vector spaces. For example, a bipartite graph G =

([N ]× [N ], E) is said to have a (d, δ1, δ2)-threshold embedding, if there exist two mappings φ, ψ

from the set [N ] to the set of all unit vectors in Cd such that (a) | < φ(x)|ψ(y) > | ≥ δ1 if

(x, y) ∈ E, and (b) | < φ(x)|ψ(y) > | ≤ δ2 if (x, y) 6∈ E. Can one characterize those G for

which there is a (poly(N), δ1, δ2) threshold embedding where δ1 > δ2 ≥ 0 are fixed constants?

This is closely related to the question of characterization of functions f with Q||(f) = O(logn).

Acknowledgments We thank Yaoyun Shi for his valuable suggestions for improving the

paper, including the O(M 4(logM + logn))-qbit quantum protocol mentioned in Section 6.
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