
Lower Bounds for the Sum of Graph–driven Read–Once Parity

Branching Programs

Matthias Homeister?

Institut für Numerische und Angewandte Mathematik
Georg–August–Universität Göttingen

Lotzestr. 16–18, 37083 Göttingen, Germany
homeiste@math.uni-goettingen.de

Abstract. We prove the first lower bound for restricted read–once parity branching programs
with unlimited parity nondeterminism where for each input the variables may be tested according
to several orderings.

Proving a superpolynomial lower bound for read–once parity branching programs is still a challeng-
ing open problem. The following variant of read–once parity branching programs is well–motivated.
Let k be a fixed integer. For each input a there are k orderings σ1(a), . . . , σk(a) of the variables
such that for each computation path activated by a the bits are queried according to σi(a) for some
i, 1 ≤ i ≤ k. This model that we call k–⊕BP1s for convenience strictly generalizes all restricted
variants of read–once parity branching programs for that lower bounds are known. We consider a
slightly more restricted version, i.e. the sum of k graph–driven ⊕BP1s with polynomial size graph–
orderings. We prove lower bounds for linear codes and show that the considered variant strictly
generalizes well–structured graph–driven ⊕BP1s as well as (⊕, k)-BPs examined by Savický and
Sieling in [24].

Keywords: read–once parity branching programs, lower bounds, computational complexity.

1 Introduction

Parity branching programs are a model of sequential space bounded computation, where the parity repre-
sentation mode is used. Recently, exponential lower bounds for graph–driven read–once parity branching
programs have been proved (see [8], [4] and [5] and [15] for a restricted variant called well–structured and
[9] for general ones). In this paper the first lower bounds are proven for a read–once parity branching
programs with restricted parity nondeterminism possibly testing the variables in several orderings for
each assignment.

A branching program (BP for short) B on the set of Boolean variables {x1, . . . , xn} is a directed acyclic
graph with one source and one target. The outdegree of the target and the indegree of the source are
both equal to zero. The source is joined to its successors by unlabeled directed edges. The nodes different
from the source and the target, the so–called branching nodes, are labeled with Boolean variables and
the outgoing edges are labeled with 1 or with 0.

The size of a BP B denoted by SIZE (B) or by |B| is the number of its nodes.

A branching program is called deterministic if the source has exactly one successor, and each branching
node is left by not more than one 0- and one 1-edge.

An input a ∈ {0, 1}n activates all edges labeled with ai outgoing from nodes labeled with xi, for
i = 1, 2, . . . , n. Moreover, the edges leaving the source are activated by all elements of a ∈ {0, 1}n.

A computation path for an input a ∈ {0, 1}n in a BP B on {x1, . . . , xn} is a path in B from the source
whose edges are activated by a. Such a path is called an accepting one, if it leads to the target.

A parity branching program (⊕–BP for short) is a branching program equipped with the parity repre-
sentation mode. It represents a Boolean function f : {0, 1}n → {0, 1} defined as follows. f(a) = 1 if and
only if the number of accepting computation paths for a is odd.

? Supported by DFG grant Wa 766/4-2

Electronic Colloquium on Computational Complexity, Report No. 68 (2003)

ISSN 1433-8092

2

A nondeterministic branching program (∨–BP for short) uses the common nondeterministic represen-
tation mode. An input a ∈ {0, 1}n is accepted if and only if there is an accepting computation path under
a.

If a branching program is deterministic, then the above mentioned representation modes coincide.

The best known lower bound on the size of unrestricted deterministic BPs is of order Ω
(

n2

(logn)2

)

. It

was proved by Nechiporuk [22] in 1966. Consequently, restricted models have been studied intensively.
(See [29] for an overview.) Here we can only review those results closely related to ours. Nevertheless, the
breakthroughs for read–k–times BPs due to Borodin, Razborov, and Smolensky (see [6]) and Thathachar
(see [27]), and for semantic super–linear length BPs due to Ajtai, Beame, Saks, Sun, and Vee (see [1], [2],
and [3]) must be mentioned.

A branching program is called read–once (BP1 for short) if on every path from the source to the
target each variable is tested at most once.

Ordered binary decision diagrams (OBDDs), introduced by Bryant ([10], [11]), are deterministic BP1s
with the following additional property. There is a permutation σ of the set {1, 2, . . . , n} such if node v
labeled with xσ(j) is a successor of node u labeled with xσ(i), then i > j. As for proving lower bounds, the
existence of a global variable ordering ensures that one can proceed as follows. Having put a cut through
a σ–OBDD representing f at distance of say k from the source, the number of distinct subfunctions f |π,
where π ranges over all paths from the source to the frontier nodes of the cut, is a lower bound on the
σ–OBDD size of f .

OBDDs are highly restricted branching programs. Many even simple functions have exponential
OBDD–size (see [7], [12]).

To maintain the essence of the above subfunction argument for more general models, the following
observation is useful. If B is a deterministic BP1 on {x1, x2, . . . , xn}, then for each input a ∈ {0, 1}n there
is a variable ordering σ(a) according to which the bits of a are queried. But not every combination of
variable orderings can be implemented by deterministic BP1s. Only those resulting from graph orderings,
independently introduced by Gergov and Meinel (see [13]) and Sieling and Wegener (see [26]), are possible.

Definition 1. A graph ordering G is a deterministic BP1 such that each branching node has outdegree
two, and each variable is tested on each path from the source to the target exactly once.

A BP1 B is called a graph–driven one guided by a graph ordering G over the same set of variables as
B, if the following condition is satisfied.

For an arbitrary input a ∈ {0, 1}n, the list of variables inspected on every computation path for a in
B is a subsequence of the corresponding list resulting from G.

For every deterministic BP1 B, it is easy to construct a graph ordering G that guides B. But it is
clear that there are BP1s that are not guided by a graph ordering. Of course, OBDDs are graph–driven
deterministic BP1s. A more general example is given in Figure 1.

⊕-OBDDs were introduced by Gergov and Meinel in [14], they have been intensively studied in [28]
from a theoretical point of view. Heuristics for a successful practical implementation are due to Meinel
and Sack (see [23], [20], [21]). Examples of functions showing that ⊕-OBDDs are more powerful than
OBDDs are given in [14].

Graph–driven ⊕–BP1s have a strictly larger descriptive power than both deterministic BP1s and
⊕-OBDDs with respect to polynomial size. This follows from results due to Sieling [25].

Up to now, proving superpolynomial lower bounds on the size of ⊕–BP1s is a challenging open problem
in complexity theory.

The notion of well–structured graph–driven BP1s was introduced in [26].

Definition 2. A graph–driven ⊕BP1 is called well-structured if there is a function level mapping from
the nodes of B to the nodes of the ordering G in the following way. For any node v that under an input
is traversed on a path in B, in G the node level(v) is traversed under this input and is labeled with the
same variable.

1 Introduction 3

0

x4

x1

x4x4

x2

x3

x3x2

x4

0 0 11

11 0

x2

1

1

x1

t
t

s s

0

1

x3

x2

w1

w3w2

w4 w5

w7w6

v

Fig. 1. A graph ordering and a graph–driven BP1 guided by this ordering.

In [8] exponential lower bounds of magnitude 2Ω(
√
n) on the size of well–structured graph–driven ⊕–

BP1s for certain linear code functions have been proved. Well–structured ⊕–BP1s and ∨–BP1s have been
further investigated in [4] and [5]. In [4] a strongly exponential lower bound for integer multiplication
is proved. In [5] polynomial size well–structured ⊕–BP1s are separated from polynomial size general ⊕–
BP1s. In [15] the method for proving lower bounds has been simplified and further lower bounds have
been proved.

The first lower bounds for graph–driven ⊕BP1s without the restriction being well–structured have
been presented in [9]. Moreover, the following characterization of all graph–driven ⊕BP1s that are graph–
driven has been proved there.

Proposition 1. Let B be a ⊕–BP1 on the set of variables {x1, x2, . . . , xn}. Then there exists a graph–
ordering G such that B is guided by G if and only if the following condition is satisfied. For each input a
there is an ordering σ(a) of {x1, x2, . . . , xn} such that on each computation path for a the bits of a are
queried according to σ(a).

Thus interest in the following natural generalization arises.

Definition 3. Let k be any positive integer. A k–⊕BP1 is a ⊕BP1 with the following additional restric-
tion. For each input a there are not more than k variable orderings σ1(a), . . . , σk(a) such that on each
computation path for a the bits of a are queried according to σi(a) for some i, 1 ≤ i ≤ k.

By means of this proposition it gets plain that the computational power of graph–driven ⊕BP1s
equals that of 1–⊕BP1s. To express this, for any branching program model M , let the set P(M) consist
of all sequences of Boolean functions that can be represented by a branching program of type M of
polynomially bounded size.

Proposition 2. P(graph–⊕BP1)= P(1–⊕BP1).

Next we observe that in terms of computational power 2–⊕BP1s strictly generalize
graph–driven ⊕BP1s. In [9] it has been proved that each graph–driven ⊕BP1 representing the func-
tion

� n
C ∨

� n−1,1
R+ has exponential size, where

4

x4 x4

x3

x2

x1

x4x4

x2

x4

0 0 11

1

1

1

0 0

1 0

x1

t

s s

t

v1

x2 v2 x3

x2

v4
v6

v7

v3

v5

10

x3

w1

w4

w2

w6 w7

w3

w5

Fig. 2. A well–structured graph–driven ⊕BP1 guided by a graph ordering.

� n
C =

{

1 if each column of X contains exactly one 1;

0 otherwise.

� n−1,1
R+ =

1 if n− 1 rows of X contain exactly one 1

and one row contains two 1s;

0 otherwise.

Moreover, a ⊕BP1 is constructed which represents this function succinctly. That ⊕BP1 is in fact a
2–⊕BP1, since it is constructed by joining two OBDDs to a source of fanout 2. One OBDD tests the
variables in a rowwise and the other one in a columnwise manner. We state this observation as

Corollary 1. P(1–⊕BP1) is a proper subset of P(2–⊕BP1).

Definition 4. A ⊕BP1 B is a sum of k graph–driven ⊕BP1s driven by a sequence of graph–orderings
G = (G1, . . . , Gk), if B consists of k disjoint ⊕BP1s B1, . . . ,Bk joined to a common source such that for
each i, Bi is guided by Gi.

We call such a B a G–driven sum of graph–driven ⊕BP1s.

In the next section we present a lower bound method for sums of graph–driven ⊕BP1s in order to
prove lower bounds for this model with the additional restriction that the orderings have polynomial size,
i.e. |G| = |G1| + . . . + |Gk| = nO(1). To explain the connection to well–structured graph–driven ⊕BP1s
we prove the following observation.

Proposition 3. A Boolean function f is representable by a polynomial–sized well–structured
graph–driven ⊕BP1 B if and only if f is representable by a polynomial–sized graph–driven ⊕BP1 B ′

guided by a polynomial–sized ordering G.

Proof. First we have to show that the condition is necessary. Let B′ be guided by G given. To transform B′

into a well–structured graph–driven ⊕BP1 one has to rebuild B′ such that a level function as claimed in

1 Introduction 5

Definition 2 can be chosen. This is tractable by multiplying some nodes and so assigning them to different
levels. Since the number of levels is less or equal to SIZE (G) there is a well–structured graph–driven ⊕BP1
guided by G with SIZE (B) ≤ SIZE (B′) · SIZE (G).

Now assume that the condition is fulfilled. In [4] the following is shown. Given a polynomial–sized
well–structured graph–driven ⊕BP1 guided by an ordering. Then there is a ordering G such that B is
guided by G with SIZE (G) ≤ 2 · n · SIZE (B) and the condition being well–structured is fulfilled. The
claim follows.

The following propositions state the connection between sums of graph–driven ⊕BP1s driven by an
ordering G of polynomial size and well–structured graph–driven ⊕BP1s. Both of them are direct con-
sequences of Proposition 3. By P(k∗–⊕BP1) we denote all functions representable by polynomial
size sums of graph–driven ⊕BP1s guided by a sequence of graph–orderings G = (G1, . . . , Gk) with
|G| = nO(1).

Proposition 4. P(wsGraph–⊕BP1)= P(1∗–⊕BP1).

For the next proposition we have to observe the following. The 2–⊕BP1 for
� n

C ∨
� n−1,1

R+ constructed
in the context of Corollary 1, is guided by two graph–orderings of polynomial size, since it is constructed
by joining two OBDDs.

Proposition 5. P(wsGraph–⊕BP1) is a proper subset of P(2∗–⊕BP1).

We conclude that the notion of a (G1, . . . , Gk)–driven sum of graph–driven ⊕BP1s with polynomial
size graph-orderings is a natural restriction.

In [24] exponential lower bounds for pointer functions on the size of (⊕, k)–BP1s are proved. A (⊕, k)–
BP1 is a read–once BP with the source being the only nondeterministic node, where k denotes the fan–out
of the source. We prove that our model strictly generalizes (⊕, k)–BPs. By P((⊕, k)–BP1) we denote the
set of functions representable by polynomial size (⊕, k)–BPs. First we observe that each (⊕, k)–BP B
can be considered as a sum of k graph–driven ⊕BP1s guided by itself. So we can construct a sequence of
k graph–orderings driving B of the same size as B, and conclude P((⊕, k)–BP1) ⊆ P(k∗–⊕BP1). To see
that this containment is proper consider the functions f kn defined on the variables X = {x0, . . . , xn−1}
that are examined in [24]. The set X is partitioned in k(k + 1) blocks Bi,j , 1 ≤ i ≤ k + 1, 1 ≤ j ≤ k, and
if necessary, some remaining variables. Each block Bi,j consists of log n subblocks of size

s = b
n

k(k + 1) logm
c.

For our purpose we consider only the blocks B1,1, . . . , B1,k. We have not changed the functions from [24],
in order to facilitate checking the references. Each B1,j computes a binary representation of a pointer
p(j). Each of the log n bits of p(j) is determined by the majority of the s bits in one of the log n subblocks
of the block Bi,j . f

k
n(x) outputs 1 if and only if all bits addressed by the pointers equal 1, i.e.

xp(1) = xp(2) = . . . = xp(k) = 1.

In [24] it is proved that fkn has no representation by polynomial size (⊕, k)–BPs for k ≤ (1/2−γ) log n
for some γ > 0. In the following we like to show that f kn can be represented by ⊕OBDDs of size O

(

nk+2
)

.
The following algorithm computes fkn .

1. Guess the binary representation of the pointers p1, . . . , pk.
2. Verify this choice and check, whether xp(1) = xp(2) = . . . = xp(k) = 1.

We illustrate step 2 for a certain guess. We test the variables according to an ordering, such that for
each subblock of some B1,j all s variables are tested successively. If we read a bit xi that is adressed by
one of the guessed pointers the computation stops, or 0 is the output. Since each majority vote can be
accomplished by O

(

s2
)

nodes, step 2 describes an OBDD of size O
(

n2
)

. All nk OBDDs of this kind
can be constructed with a common ordering and in fact the algorithm stated as steps 1 and 2 describes
a ⊕OBDD for fkn , since for each input step 2 accepts it if and only if the pointers are correct and all
adressed bits equal 1.

6

Proposition 6. For k ≤ (2/3) log1/2 n it holds that P((⊕, k)–BP1) is a proper subset of P(k∗–⊕BP1).

Proof. For k constant the claim follows immediately by the above presented construction of the ⊕OBDD
of size O

(

nk+2
)

. For nonconstant k we are able to apply the same padding arguments that are used in
[24] to prove Theorem 15 of that paper.

2 A lower bound criterion for sums of graph–driven ⊕BP1s

In more restricted models like deterministic BP1s, ⊕OBDDs or graph–driven ⊕BP1s (1–⊕BP1s, resp.)
the nodes or sets of nodes reached by certain partial assignments represent subfunctions of the function
represented by the whole diagram. This is not the case for sums of graph–driven ⊕BP1s, but certainly
there is some connection between the functions represented by the nodes and the function represented
by the whole diagram. . First we collect some notation. For a partial assignment α to some variables, the
subfunction fα, or f |α, results by setting all variables in V(α) to the constants according to α. Sometimes
it is more convenient to express fα, or f |α, as f(α). A function f is called essentially dependent on
the variable xi, if different settings to this variable result in different subfunctions, i.e. fxi=0 6= fxi=1.
For a partial assignment α the subfunction f(α) formally depends on all variables in X, but indeed
is not essentially dependent on the variables set by α. The following definition forms the basis of our
examinations.

Let B be a ⊕BP1 driven by a graph–ordering G. By � G(f) we denote the span of all subfunctions
f |π , where π is a path from the source to a node w in G and f |π results from f by setting the variable
according to the labels of the nodes and edges on π.

Let B be a sum of k graph–driven ⊕BP1s B1, . . . ,Bk. Since Res(B) = Res(B1) + . . . + Res(Bk) we
are motivated to consider the direct sum of spaces � G1

(g1) + . . .+ � Gk
(gk) for functions g1, . . . , gk with

g1 + . . .+ gk = f .

Lemma 1. Let B = (B1, . . . ,Bk) be a (G1, . . . , Gk)–driven sum of ⊕BP1s representing f . Then there are
functions g1, . . . , gk with f = g1 + . . .+ gk such that

SIZE (B) ≥ dim �
2

(

� G1
(g1) + . . .+ � Gk

(gk)
)

.

Proof. We define � (B) = span �
2
{Resv | v ∈ B}. Observe that SIZE (B) ≥ dim �

2 � (B). For B =
(B1, . . . ,Bk) we set g1 = Res(B1), . . . , g

k = Res(Bk) and prove that � G1
(g1) + . . . + � Gk

(gk) ⊆ � (B).
Then the claim follows, since g1 + . . .+ gk = Res(B) = f .

Let gi |π be any generating element of the vector space � Gi
(gi) for some i = 1, . . . , k, and let α be

the partial assignment to the set of variables {x1, x2, . . . , xn} associated with the path π in Gi. Since the
branching program Bi is guided by the graph orderingGi, we are led to nodes v1, v2, . . ., vν when traversing
Bi starting at the source according to the partial assignment α. Consequently, gi |π =

∑ν
j=1 Resvj , and

so every generating element of � G1
(g1) + . . .+ � Gk

(gk) is contained in � (B). The claim follows.

In order to apply this lemma as a lower bound criterion, we have to examine the spaces � G1
(g1) +

. . .+ � Gk
(gk) for all decompositions f = g1 + . . .+ gk of f . For a special case this is done in Lemma 2.

To describe the setting of that lemma, we need further notation.

We examine how to combine several partial assignments. For partial assignments α1, . . . , αν with
pairwise disjoint domains V(αi), i = 1, . . . , n, we denote by (α1, . . . , αν) the assignment α defined on
V(α1) ∪ . . . ∪V(αν) as

α(xj) :=

α1(xj) if α1(xj) is defined;
...

...

αν(xj) if αν(xj) is defined.

If the domains V(αi), i = 1, . . . , n are not pairwise disjoint, it is required that for all 1 ≤ i, j ≤ ν and for
all xk ∈ V(αi)∩V(αj), the assignments to xk are equal for αi and for αj , i.e. αi(xk) = αj(xk). Then the

2 A lower bound criterion for sums of graph–driven ⊕BP1s 7

notion α = (α1, . . . , αν) as defined above is well–defined. Now it is clear, that V(α1, . . . , αν) =
⋃ν
i=1 V(αi).

By V(α) we denote the complement {x1, . . . , xn} −V(α).

Let v = (v1, . . . , vk) be in G1 × . . . × Gk. We denote by V (vi) the variables that are tested in Gi on
a path from the source to vi, excluding the variable tested in vi. Let α1, . . . , αk be partial assignments
such that αi corresponds to a path from the source of Gi to vi.

Definition 5. Given a sequence of graph–orderings G1, . . . , Gk and v = (v1, . . . , vk) ∈ G1× . . .×Gk, we
call a tuple (α1, . . . , αk) of partial assignments a v-assignment, if

– for 1 ≤ i ≤ k, αi corresponds to the path from the source of Gi to vi, and
– for 1 ≤ i, j ≤ k, αi equals αj on V (vi) ∩ V (vj), i.e., αi(x) = αj(x) for all x in V (vi) ∩ V (vj).

We consider a v-assignment α = (α1, . . . , αk) as an assignment defined on V(α1)∪. . .∪V(αk). An easy
way getting v-assignments is truncating for some a ∈ {0, 1}n the k paths in G1, . . . , Gk simultanously.

Lemma 2. Let B be a (G1, . . . , Gk)–driven sum of graph–driven ⊕BP1s representing f and let v be in
G1×. . .×Gk. For i = 1, . . . , k let Ai be some set of assignments to V(vi), such that each α in A1×. . .×Ak

is a v-assignment. Moreover, for all α ∈ A1 × . . . × Ak let there be some assignment δ, defined on the
variables not set by α with

f(α, δ) = 1, and, f(α′, δ) = 0,

for each α′ ∈ A1 × . . .×Ak − {α}.

Then SIZE (B) ≥ min{|Ai| ; i = 1, . . . , k}.

Proof. Since the proof for some arbitrary k is a straightforward but rather technically involved conse-
quence of the case k = 2, we begin with the latter. We wish to apply Lemma 1 and, to this end, we prove
that for each pair of functions g1, g2 with g1+g2 = f the dimension of the space � + = � G1

(g1)+ � G2
(g2)

has a dimension greater or equal to min{|A1|, |A2|}. To derive a contradiction we assume the opposite.
Since {g1|α ; α ∈ A1} ⊆ � + and {g2|β ; β ∈ A2} ⊆ � +, the assumption dim � 2 � < min{|A1|, |A2|} implies
for some α ∈ A1, β ∈ A2 linear dependencies that we can state (after renaming the indices) as

g1|α = g1|α1
+ . . .+ g1|αµ , and

g2|β = g2|β1
+ . . .+ g2|βν , (1)

with µ, ν ≥ 0, αi ∈ A1 − {α} for 1 ≤ i ≤ ν and βj ∈ A2 − {β} for 1 ≤ j ≤ µ. Since the setting of this
lemma postulates some δ such that f(α, β, δ) = 1, we get that

g1|α(α, β, δ) + g2|β(α, β, δ) = f(α, β, δ) = 1. (2)

From (2) we derive in four steps a contradiction. First we apply the linear dependencies (1) and get

1 =

µ
⊕

i=1

g1|αi(αi, β, δ) +
ν
⊕

j=1

g2|βj (α, βj , δ). (3)

Since g1|αi(αi, β, δ) + g2|β(αi, β, δ) = f(αi, β, δ) = 0 and g1|α(α, βj , δ) + g2|βj (α, βj , δ) = f(α, βj , δ) = 0,
we conclude that

1 =

µ
⊕

i=1

g2|β(αi, β, δ) +
ν
⊕

j=1

g1|α(α, βj , δ). (4)

Again, we apply the linear dependencies (1). Consequently,

1 =

µ
⊕

i=1

ν
⊕

j=1

g2|βj (αi, βj , δ) +

µ
⊕

i=1

ν
⊕

j=1

g1|αi(αi, βj , δ) (5)

=

µ
⊕

i=1

ν
⊕

j=1

f(αi, βj , δ) = 0. (6)

8

Contradiction.

Now we consider the case k > 2. For applying Lemma 1, we have to prove that for each choice of k
functions g1, . . . , gk with g1 + . . . + gk = f the dimension of the space � + = � G1

(g1) + . . . + � Gk
(gk)

has a dimension greater or equal to min{|Ai| ; i = 1, . . . , k}. To derive a contradiction we assume the
opposite. For all i = 1, . . . , k, {gi|αi ; α

i ∈ Ai} ⊆ � +. So, dim �
2

� < min{|Ai| ; i = 1, . . . , k} implies for
some αi0 ∈ Ai, i = 1, . . . , k (after reindexing) the existence of the following linear equations.

gi|αi0 = gi|αi1 + . . .+ gi|αi
µ(i)

, (7)

with αij ∈ Ai − {α
i
0} for j > 0 and i = 1, . . . , k. Furthermore, by the setting of this lemma there is some

δ = δ(α1
0, . . . , α

k
0) such that for α ∈ A1 × . . .×Ak

f(α, δ) = 1, if and only if,α = (α1
0, . . . , α

k
0).

Consequently, for α = (α1
j(1), . . . , α

k
j(k))

g1|α1
j(1)

(α, δ) + . . .+ gk|αk
j(k)

(α, δ) = 1, (8)

if and only if j(1) = . . . = j(k) = 0.

Since during the proof we have to deal with a huge number of summands, we express them by sets
Σ of elements in {1, . . . , k} × {0, 1}k. The significance of this definition is described by the following
interpretation φ : {1, . . . , k} × {0, 1}k → � n.

For convenience we identify (i, b1, . . . , bk) and (i, (b1, . . . , bk)). We consider a σ = (i, b) with i ∈
{1, . . . , k} and b = (b1, . . . , bk) ∈ {0, 1}

k. From b we derive k sets of indices I1(b), . . . , Ik(b), Ij(b) ⊆
{0, . . . , µ(j)} according to (7), by defining

Ij(b) :=

{

{0} if bj = 0;

{1, . . . , µ(j)} if bj = 1,

for j = 1 . . . k. Informally, bj = 0 corresponds to the left side of equation (7) and bj = 1 to the right side.
Now we set

φ(i, b) =
⊕

(j(1),...,j(k))∈I1(b)×...×Ik(b)

gi|αi
j(i)

(α1
j(1), . . . , α

k
j(k), δ). (9)

So, informally, the i in σ = (i, b) determines the index of the function gi. Making use of this notation, for
some set Σ of such elements, we define

φ(Σ) =
⊕

σ∈Σ
φ(σ).

In the end of this proof, we have restated the case k = 2 in terms of this notation. The reader may now
already refer to that. Now we consider two rules (R1) and (R2), associated with the identities (7) and
(8).

(R1) While Σ contains an element (i, b) with bi = 0,
• remove (i, b) from Σ,
• add (i, b′) to Σ, where b′ results from b by skipping bit i.

(R2) For each b ∈ {0, 1}k consider S(b) = Σ ∩ {(1, b), . . . , (k, b)}. For b 6= (0, . . . , 0) and S(b) 6= ∅, remove
all elements in S(b) from Σ and add all elements in S(b) = {(i, b) ; i = 1, . . . , k} − S(b).

Informally, (R1) expresses an application of the linear dependencies (7). (R2) expresses an application
of (8) with j(ν) 6= 0 for some ν ∈ {1, . . . , k}.

2 A lower bound criterion for sums of graph–driven ⊕BP1s 9

Correctness of (R1).We show that, if Σ ′ is derived from Σ by applying rule (R1), then φ(Σ ′) = φ(Σ).
We just observe that in the notation of (R1)’s description, some φ(i, b) with bi = 0 consists of a sum of
terms of the form gi|αi0(a, δ), with a ∈ A1 × . . . × Ak and a(x) = αi0(x) for α

i
0 is defined on x. This is

the case, since in the setting of (9) we have Ii(b) = {0}. Applying (7) on each of these summands we get
φ(i, b) = φ(i, b′).

Correctness of (R2). We observe that

φ(S(b) ∪ S(b))

=
∑

i=1,...,k

φ(i, b)

=
⊕

(j(1),...,j(k))∈I1(b)×...×Ik(b)

f(α1
j(1), . . . , α

k
j(k), δ)

= 0,

for b 6= 0 by (8). So φ(S(b)) = φ(S(b)), for b 6= (0, . . . , 0), and the correctness of (R2) follows.

The contradiction. Next we show that one obtains by alternating applications of (R1) and (R2) for

Σ0 = {(1, 0, . . . , 0), . . . , (k, 0, . . . , 0)}

via

Σ0
R1
→ Σ1

R2
→ Σ2

R1
→ Σ3

R2
→ Σ4

R1
→ . . .

R1
→ Σ2k−1

R2
→ Σ2k,

the set Σ2k = ∅. Then we get the desired contradiction

1 = f(α1
0, . . . , α

k
0 , δ) = φ(Σ0) = φ(Σ2k) = φ(∅) = 0.

Let for any Boolean vector b, |b| denote the number of bits bi being 1. We show that Σ2i consists of all
elements (j, b) such that

– b ∈ {0, 1}k with |b| = i and bj = 0.

Note that then Σ2k is indeed empty. For Σ0 the claim holds by definition. Let us assume that for Σ2i the
claim holds. Then we get by rule (R1) that Σ2i+1 consists of all (j, b) such that

– |b| = i+ 1 and bj = 1.

By applying rule (R2) the stated situation is achieved immediately. Note that in neither of the two cases
an element is produced twice, since otherwise the conclusion φ(Σi) = φ(Σi+1) would not be true.

Now putting all parts of this proof together the claim of this lemma follows. To illustrate this proof we
finally restate the case k = 2 in its terminology. For Σ0 = {(1, 0, 0), (2, 0, 0)} we get φ(Σ0) = 1 in line with
(2). We get Σ1 = {(1, 1, 0), (2, 0, 1)} corresponding to (3) and Σ2 = {(2, 1, 0), (1, 0, 1)} corresponding to
(4). Applying rule (R1) we get Σ3 = {(2, 1, 1), (1, 1, 1)} in line with (5) and by rule (R2) we get Σ4 = ∅,
corresponding to (6).

The next lemma deals with the situation that in the setting of Lemma 2 for two nodes vi and vj
with i 6= j the same sets of variables are tested, i.e. V(vi) = V(vj). Then the condition that each α in
A1 × . . . × Ak is a v-assignment implies that |Ai| = |Aj | = 1. But in that situation for some α̃ defined
on V(vi) = V(vj) we can combine those nodes reached according to G1 and those reached according to
G2 to one set. This is possible, since the assignments in Ai and Aj are not independently combinable. In
each v-assignment(α1, . . . , αk) we have αi = αj .

Lemma 3. Let B be a (G1, . . . , Gk)–driven sum of ⊕BP1s representing f and let v be in G1 × . . .×Gk.
For i = 1, . . . , k let Ai be some set of assignments to V(vi), such that Ai = Aj for V(vi) = V(vj), 1 ≤
i ≤ j ≤ k. Let A contain each α in A1 × . . .×Ak with αi = αj for Ai = Aj.

10

We assume that each α ∈ A is a v-assignment and that for all α ∈ A there is some assignment δ,
defined on the variables not set by α with

f(α, δ) = 1, and, f(α′, δ) = 0,

for each α′ ∈ A−{α}.
Then SIZE (B) ≥ min{|Ai| ; i = 1, . . . , k}.

Proof. First we recapitulate the preceding arguments in a slightly modified way. Let B be a (G1, . . . , Gk)–
driven sum of ⊕BP1s representing f and let v be in G1 × . . . × Gk. For i = 1, . . . , k let Ai be some set
of assignments to V(vi), such that each α ∈ (α1, . . . , αk) is a v-assignment. Then we get with the proof
of Lemma 2 that dim �

2

(

span �
2
{g1|α1 ; α1 ∈ A1} + . . . + span �

2
{gk|αk ; α

k ∈ Ak}
)

≥ min{|Ai| ; i =
1, . . . , k}. With the proof of Lemma 1 we get the following. There are functions g1, . . . , gk with g1 + . . .+
gk = f such that SIZE (B) ≥ dim �

2

(

span �
2
{g1|α1 ; α1 ∈ A1}+ . . .+ span �

2
{gk|αk ; α

k ∈ Ak}
)

.

Now we turn to the proof of this lemma and assume that A1 = A2 and that for each α̃ ∈ A1 and
each (α3, . . . , αk) ∈ A3× . . .×Ak the sequence (α̃, α̃, α3, . . . , αk) is a v-assignment. We show that in this
situation the claim of the lemma holds and the claim on the general setting follows by repeating this
argument.

Considering the proof of Lemma 1 it is easy to see that there are functions g2, . . . , gk with g2+. . .+gk =
f such that

SIZE (B) ≥ dim �
2

(

span �
2
{g2|α2 ; α2 ∈ A2}+ . . .+ span �

2
{gk|αk ; α

k ∈ Ak}
)

.

Now we can apply Lemma 2 and get that dim �
2

(

span �
2
{g2|α2 ; α2 ∈ A2} + . . . + span �

2
{gk|αk ; α

k ∈

Ak}
)

≥ min{|Ai| ; i = 2, . . . , k}. The claim follows.

In the next proposition we state the observation that we are able to set some of the variables on that
some sum of graph–driven ⊕BP1s is defined to constants without a blow–up of the size. This may be
considered to be plain, but it follows with results in [9] that it can be necessary to change the ordering.

Proposition 7. Let B be a (G1, . . . , Gk)–driven sum of ⊕BP1s in the variables {x1, . . . , xn} representing
f . Then for a variable xi and a Boolean constant e there is a sum of graph–driven ⊕BP1s B′ in the
variables {x1, . . . , xi−1, xi+1, . . . , xn} that is guided by some orderings (G′1, . . . , G

′
k) representing fxi=e

with SIZE (B′) ≤ SIZE (B).

Furthermore, for some v-assignment α with α(xi) = e provided α is defined on xi, there is some
v′ ∈ G′1 × . . .×G′k such that α is a v′-assignment.

Proof. The standard method to set xi to e is the following. For all xi-nodes v redirect all edges reaching
v to the e-successor of v. Observe that applying this method results in a sum of graph–driven ⊕BP1s
representing fxi=e. In the same way we get from G = (G1, . . . , Gk) a sequence of read–once BPs G′ =
(G′1, . . . , G

′
k) on the variables {x1, . . . , xi−1, xi+1, . . . , xn}. To see that B′ is driven by G′ consider some

assignment a to {x1, . . . , xn} and observe that if for some λ in Gi the variable xν is tested before xµ,
ν, µ 6= i, then the same holds in G′i.

The latter claim follows immediately by the construction of G′.

3 Lower bounds for linear codes

A linear code C is a linear subspace of � n
2 . Our first explicit lower bound is for the characteristic function

of such a linear code C, that is fC : � n
2 → {0, 1} defined by fC(a) = 1 ⇐⇒ a ∈ C. To this end we will

give some basic definitions and facts on linear codes.

The Hamming distance of two code words a, b ∈ C is defined to be the number of 1’s of a ⊕ b. The
minimal distance of a code C is the minimal Hamming distance of two distinct elements of C. The dual
C⊥ is the set of all vectors b such that a1b1 ⊕ . . . ⊕ anbn = 0, for all elements a ∈ C. A set D ⊆ � n

2 is
defined to be k-universal, if for any subset of k indices I ⊆ {1, . . . , n} the projection onto these coordinates
restricted to the set D gives the whole space � k

2 .

The next lemma is well–known. See [18] for a proof.

3 Lower bounds for linear codes 11

Lemma 4. If C is a code of minimal distance k + 1, then its dual C⊥ is k–universal.

The following theorem shows how to apply our lower bound criterion to linear codes.

Theorem 1. Let C ⊆ � n
2 be a linear code of minimal distance d whose dual C⊥ has minimal distance

d⊥.
Then each sum of k ⊕BP1s guided by a sequence of graph–orderings G = (G1, . . . , Gk) representing

its characteristic function fC has size bounded below by 2Ω(min{d,d⊥}/2k)/(|G1| · . . . · |Gk|).

Proof. Let B be a sum of graph–driven ⊕BP1s guided by G = (G1, . . . , Gk) representing f = fC . We set
l := min{d, d⊥}− 1. Observe, that the code C is both of distance l+1 and l–universal. We wish to find a
tuple v and sets of partial assignments A1, . . . , Ak such that we can apply Lemma 3. We use an inductive
approach and in order to make the proof readable we define the following predicate P .

We define P (i) to hold if and only if

– there is a tuple v = (v1, . . . , vi) ∈ G1 × . . .×Gi,

– there are sets of variables V
(i)
1 , . . . , V

(i)
i with V

(i)
j ⊆ V(vj) and |V

(i)
j | ≥ l/2i such that for j, k ≤ i,

either V
(i)
j = V

(i)
k or V

(i)
j ∩ V

(i)
k = ∅,

– there is a set Ai of assignments with | Ai | ≥ 2n/(|G1| · . . . · |Gi|) such that for j = 1, . . . , k each a ∈ Ai

passes in Gj the node vj , and
– |

⋃

j≤iV(vj)| ≤ l/2 + l/4 + . . .+ l/2i.

Before we inductively show that P (k) holds, we argue how P (k) implies the claim. Since our aim is

to find convenient assignments defined on V
(k)
1 , . . . , V

(k)
k , first according to Ak we set all variables in

V ′ =
⋃

j<i

(V(vj)− V
(k)
j),

to constants. Since there are at most 2|V
′| assignments defined on |V ′|, we can fix some γ with V(γ) = V ′

such that for
Aγ = {α ∈ Ak |α(x) = γ(x) for x ∈ V ′},

we have
| Aγ | ≥ 2n−|V(γ)|/(|G1| · . . . · |Gk|).

Now by a similar argument we choose sets A1, . . . , Ak by decomposing Aγ according to V
(k)
1 , . . . , V

(k)
k .

Let V be a set of variables. For each subset M ⊆ V, there are at most 2|V|−|M | assignments defined

on V −M . For j = 1, . . . , k we apply this to M = V
(k)
j and V = {x1, . . . , xn}−V(γ) and define Aj as the

projection of Aγ onto V
(k)
j . Since the elements of Aγ differ only on variables contained in V, projecting

Aγ to M = V
(k)
i results in at least

| Aγ |/2
|V−M | =

(

2n−|V(γ)|/(|G1| · . . . · |Gk|)
)

/2n−|V(γ)|−|V (k)
i |

different partial assignments. Thus we can choose sets A1, . . . , Ak such that Ai consists of partial assign-

ments defined on V
(k)
i with size

|Ai| ≥ 2|V
(k)
i |/(|G1| · . . . · |Gk|) ≥ 2l/2

k

/(|G1| · . . . · |Gk|).

Next we apply Proposition 7 for transforming B into a sum of graph–driven ⊕BP1s B′ representing
f |γ , i.e. we set all variables in V(γ) according to γ. Moreover, there is a sequence of graph–orderings
G′ = (G′1, . . . , G

′
k) and some v′ ∈ G′1 × . . .×G′k such that each v-assignment a becomes a v′-assignment

a′ with

a′ =

{

a(x) if x 6∈ V(γ);

undefined if x ∈ V(γ).

12

In line with Lemma 3 we let A contain each α in A1 × . . . × Ak with αi = αj for Ai = Aj . It is
plain that each element of A is a v′-assignment. Thus, to apply Lemma 3 we only have to find for each
α ∈ A some partial assignment δ defined on the variables not tested up to v with f(α, γ, δ) = 1 and
f(α′, γ, δ) = 0 for each α′ ∈ A with α′ 6= α. We do this with the help of the following standard arguments
on linear codes that are due to Jukna ([18]).

Since |
⋃

j≤iV(vj)| ≤ l/2 + l/4 + . . . + l/2i < l we get by the l-universality the existence of some δ
as claimed. f(α′, γ, δ) = 0 for α′ 6= α follows since the hamming distance of two accepting assignments
has to be greater or equal to l. Now we get with Lemma 3, that SIZE (B′) ≥ min{|Aj | ; j = 1, . . . , k} ≥

2l/2
k

/(|G1| · . . . · |Gk|) and the claim follows.

In the setting of this theorem P (1) holds. We consider all nodes of G1 at depth l/2 from the source.
Thus for each such node v and each path π leading from the source to v exactly l/2 variables are tested
on π. One of these nodes is passed by 2n/|G1| of these paths. We denote this node by v1 and define A1

to contain all the assignments associated with these paths. We set V
(1)
1 = V(v1) and see that P (1) holds.

P (i− 1) implies P (i). For each node w of Gi we denote by

old(w) = V(w) ∩
⋃

j<i

V(vj),

all variables tested on the path from the source of Gi to w that are already tested on the path from the
source to some vj , j < i. By

new(w) = V(w) −
⋃

j<i

V(vj),

we denote those variables in V(w) not tested on a path to some vj , j < i. Let C be the set of all nodes
w of Gi such that

– |new(w)| = l/2i and |old(w) ∩ V
(i−1)
j | < l/2i for all j = 1, . . . , i− 1,

or,

– |new(w)| < l/2i, |old(w)∩ V
(i−1)
j | = l/2i for some j ∈ {1, . . . , i− 1}, and |old(w)∩ V

(i−1)
m | < l/2i, for

all m with V
(i−1)
m 6= V

(i−1)
j .

Since each path in Gi passes exactly one node of C, there is some node vi such that | Ai−1 |/|Gi| paths

associated with elements of A pass it. We determine sets V
(i)
1 , . . . , V

(i)
i in line with P (i). To this end we

have to distinguish two cases, dependent on the choice of vi.

(1) Case |new(vi)| = l/2i. After definition of C we additionally get |old(vi) ∩ V
(i−1)
j | < l/2i for all

j = 1, . . . , i− 1.

First we define
V

(i)
i = new(vi),

and
V

(i)
j = V

(i−1)
j − old(vi),

for j = 1, . . . , i− 1. Then |V
(i)
i | = l/2i and |V

(i)
j | ≥ l/2i−1 − l/2i = l/2i for j = 1, . . . , i− 1.

(2) Case |new(vi)| < l/2i. In addition it holds that |old(vi)∩V
(i−1)
j | = l/2i for some j ∈ {1, . . . , i−1}

and for all V
(i−1)
m 6= V

(i−1)
j it holds that |old(vi) ∩ V

(i−1)
m | < l/2i. Let j(1), . . . , j(λ) be all indices such

that
|old(vi) ∩ V

(i−1)
j(1) | = . . . = |old(vi) ∩ V

(i−1)
j(λ) | = l/2i.

Recall that by the choice of the sets V
(i−1)
j , V

(i−1)
j(1) = . . . = V

(i−1)
j(λ) and for j ∈ {j(1), . . . , j(λ)} and

m 6∈ {j(1), . . . , j(λ)}, V
(i−1)
j and V

(i−1)
m are disjoint. We define

V
(i)
j :=

{

old(vi) ∩ V
(i−1)
j for j ∈ {j(1), . . . , j(λ)};

V
(i−1)
j − old(vi) for j 6∈ {j(1), . . . , j(λ)}.

4 Summary 13

Note that |V
(i)
j | ≥ l/2i for j = 1, . . . , i. So P (i) holds and the claim follows.

Now we are able to formulate the following corollary, that states our first lower bound for an explicitly
defined function. Recall that the r–th order binary Reed–Muller code R(r, l) of length n = 2l is the set
of graphs of all polynomials in l variables over � 2 of degree at most r.

Corollary 2. Let n = 2l and r = bl/2c.

Then every sum of graph–driven ⊕BP1s guided by a sequence of graph–orderings G = (G1, . . . , Gk)

representing the characteristic function of R(r, l) has size bounded below by 2Ω(n
1/2/2k)/(|G1|·...·|Gk|).

Proof. We apply that the code R(r, l) is linear and has minimal distance 2l−r. It is known that the dual
of R(r, l) is R(l − r − 1, l), see [19]. 2

An easy calculation shows that this bound is superpolynomial for

k = o

(

log n

log log n · log log |G|

)

,

for |G| = |G1|+|G2|+. . .+|Gk|. So we can conclude that for k = o(log n/(log log n)2), the considered linear
code is not contained in P(k∗–⊕BP1). We get the same result even if we allow G to have quasipolynomial

size, |G| = 2logO(1) n.

In [16] Jukna observed the interesting fact that linear codes give some information about the hardness
of integer multiplication. For an integer X we denote the i-th bit of its binary representation by Xi. For
a subset of bits S ⊆ {1, . . . , n}, we denote by MultSn the following Boolean function on 2n variables. For
n–bit integers X and Y , MultSn(X,Y) = 1 if and only if, (X · Y)i = 1 for all i ∈ S. Jukna proved the
following.

Theorem 2. For every linear code C ⊆ {0, 1}n there is an integer A ∈ {1, . . . , 2ν}, ν = (n+1) ·n · log n+
n + 1, an injection φ : {0, 1}n → {0, 1}ν and a subset of bits S, |S| ≤ n − dimC, such that for every
x ∈ {0, 1}n, x ∈ C if and only if MultSν (A, φ(x)) = 1. Furthermore, x can be got from φ(x) by setting
some variables to constants.

In [17], Jukna applied this Theorem to get a lower bound for ⊕OBDDs and MultSn . Combining our
lower bound on linear codes with Proposition 7 and Theorem 2 we get the following corollary.

Corollary 3. Each k–⊕BP1 guided by some polynomial size k a sequence of graph-orderings representing
MultSn has size exponential in n1/4−ε/2k is not polynomial for k = o(log n/(log log n)2).

4 Summary

The following figure summarizes the relationship of the mentioned function classes. Additionally,
P(wsGraph–⊕BP1)= P(1∗–⊕BP1) and P(graph–⊕BP1)= P(1–⊕BP1). k must not exceed the borders
stated in Proposition 6 and subsequent to Theorem 1.

Acknowledgements

I would like to thank Henrik Brosenne, Carsten Damm and Stephan Waack for many helpful suggestions
and comments.

14

P((⊕, k)–BP1)

P(OBDD)

P(3∗–⊕BP1)

P(BP1)=P((⊕, 1)–BP1)

P((⊕, 2)–BP1)

?

P(⊕BP) = ⊕L/Poly

P(k∗–⊕BP1)

P(⊕BP1)

P((⊕, 3)–BP1)

P(2–⊕BP1)

?

?

?

P(1∗–⊕BP1)

?

...

P(2∗–⊕BP1)P(1–⊕BP1)

?

?

?

P(⊕OBDD)

...

Fig. 3. The landscape of the mentioned function classes.

References

1. M. Ajtai. A non-linear time lower bound for Boolean branching programs. In Proceedings, 40th FOCS, pages
60–70, 1999.

2. P. Beame, M. Saks, X. Sun, and E. Vee. Super–linear time-space tradeoff lower bounds for randomized
computations. In Proceedings, 41st FOCS, pages 169–179, 2000.

3. P. Beame and E. Vee. Time-space trade-offs, multiparty communication complexity, and nearest neighbour
problems. In Proceedings, 34th STOC, pages 688–697, 2002.

4. B. Bollig, St. Waack, and P. Woelfel. Parity graph-driven read-once branching programs and an exponential
lower bound for integer multiplication. In Proceedings 2nd IFIP International Conference on Theoretical
ComputerScience, 2002.

5. B. Bollig and P. Woelfel. A lower bound technique for nondeterministic graph-driven read-once branching
programs and its applications. In Proceedings, 27th MFCS, Lecture Notes in Computer Science. Springer,
2002.

6. A. Borodin, A. Razborov, and R. Smolensky. On lower bounds for read-k-times branching programs. Com-
putational Complexity, 3:1–18, 1993.

7. Y. Breitbart, H. B. Hunt, and D. Rosenkrantz. The size of binary decision diagrams representing Boolean
functions. Theoretical Computer Science, 145:45–69, 1995.

8. H. Brosenne, M. Homeister, and St. Waack. Graph–driven free parity BDDs: Algorithms and lower bounds.
In Proceedings of the 26th symposion on Mathematical Foundations of Computer Science (MFCS), volume
2136 of Lecture Notes in Computer Science, pages 212–223. Springer Verlag, 2001.

4 Summary 15

9. H. Brosenne, M. Homeister, and St. Waack. Lower bounds for general graph-driven read-once parity branching
programs. In Proceedings of the 28th symposion on Mathematical Foundations of Computer Science (MFCS),
Lecture Notes in Computer Science. Springer Verlag, 2003.

10. R. E. Bryant. Symbolic manipulation of Boolean functions using a graphical representation. In Proceedings,
22nd DAC, pages 688–694, Piscataway, NJ, 1985. IEEE.

11. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers,
35:677–691, 1986.

12. R. E. Bryant. On the complexity of VLSI implementations of Boolean functions with applications to integer
multiplication. IEEE Transactions on Computers, 40:205–213, 1991.

13. J. Gergov and Ch. Meinel. Frontiers of feasible and probabilistic feasible Boolean manipulation with branching
programs. In Proceedings, 10th STACS, volume 665 of Lecture Notes in Computer Science, pages 576–585.
Springer Verlag, 1993.

14. J. Gergov and Ch. Meinel. Mod-2-OBDDs – a data structure that generalizes exor-sum-of-products and
ordered binary decision diagrams. Formal Methods in System Design, 8:273–282, 1996.

15. M. Homeister. On well–structured parity–FBDDs. In Proceedings of the 6th International Symposium on
Representations and Methodology of Future Computing Technology, 2003.

16. S. Jukna. The graph of integer multiplication is hard for read–k–times networks. Tech. Rep. 95-10, University
of Trier, 1995.

17. S. Jukna. Combinatorics of Finite Computations - The Lower Bounds Problem. Habilitationsschrift, Univer-
sity of Trier, 1999.

18. S. Jukna. Linear codes are hard for oblivious read-once parity branching programs. Information Processing
Letters, 69:267–269, 1999.

19. E. J. MacWilliams and N. J. A. Sloane. The Theory of Error–Correcting Codes. Elsevier, 1977.
20. Ch. Meinel and H. Sack. Heuristics for ⊕-OBDDs. In Proceedings, IEEE/ACM International Workshop of

Logic and Synthesis, pages 304–309, 2001.
21. Ch. Meinel and H. Sack. Improving XOR-node placements for ⊕-OBDDs. In Proceedings, 5th International

Workshop of Reed-Muller Expansion in Circuit Design, pages 51–55, 2001.
22. È. I. Nechiporuk. A Boolean function. Sov. Math. Doklady, 7:999–1000, 1966.
23. H. Sack. Improving the Power of OBDDs by Integrating Parity Nodes. PhD thesis, Univ. Trier, 2001.
24. P. Savický and D. Sieling. A hierarchy result for read–once branching programs with restricted parity nonde-

terminism. In Proceedings, 25th MFCS, volume 1893 of Lecture Notes in Computer Science, pages 650–659.
Springer Verlag, 2000.

25. D. Sieling. Lower bounds for linear transformed OBDDs and FBDDs. In Proceedings, FSTTCS, number 1738
in Lecture Notes in Computer Science, pages 356–368. Springer Verlag, 1999.

26. D. Sieling and I. Wegener. Graph driven BDDs – a new data structure for Boolean functions. Theoretical
Computer Science, 141:238–310, 1995.

27. J. Thathachar. On separating the read-k-times hierarchy. In Proceedings, 30th STOC, pages 653–662, 1998.
28. St. Waack. On the descriptive and algorithmic power of parity ordered binary decision diagrams. Information

and Computation, 166:61–70, 2001.
29. I. Wegener. Branching Programs and Binary Decision Diagrams – Theory and Applications. SIAM Mono-

graphs on Discrete Mathematics and Applications. SIAM, Philadelphia, 2000.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

