
Privacy in Non-Private Environments

Markus Bläser∗ Andreas Jakoby†

Maciej Liśkiewicz‡ Bodo Manthey§

Universität zu Lübeck
Institut für Theoretische Informatik

Wallstraße 40, 23560 Lübeck, Germany
blaeser/jakoby/liskiewi/manthey@tcs.uni-luebeck.de

Abstract

We study private computations in information-theoretical settings on net-
works that are not 2-connected. Non-2-connected networks are “non-private”
in the sense that most functions cannot privately be computed on such networks.
We relax the notion of privacy by introducing lossy private protocols, which gen-
eralize private protocols. We measure the information each player gains during
the computation. Good protocols should minimize the amount of information it
loses to the players.

The loss of a protocol to a player is the logarithm of the number of different
probability distributions on the communication strings a player can observe. For
optimal protocols, this is justified by the following result: For a particular content
of any player’s random tape, the distributions the player observes have pairwise
fidelity zero. Thus the player can easily distinguish the distributions.

The simplest non-2-connected networks consists of two blocks that share one
bridge node. We prove that on such networks, communication complexity and
the loss of a private protocol are closely related: Up to constant factors, they are
the same.

Then we study 1-phase protocols, an analogue of 1-round communication
protocols. In such a protocol each bridge node may communicate with each block
only once. We investigate in which order a bridge node should communicate
with the blocks to minimize the loss of information. In particular, for symmetric
functions it is optimal to sort the components by increasing size. Then we design
a 1-phase protocol that for symmetric functions simultaneously minimizes the
loss at all nodes, where the minimum is taken over all 1-phase protocols.

∗Supported by DFG research grant BL 511/5-1.
†Part of the work was done while visiting the International University of Bremen.
‡On leave from Instytut Informatyki, Uniwersytet Wrocławski, Poland.
§Supported by DFG research grants RE 672/3 and BL 511/5-1.

1

Electronic Colloquium on Computational Complexity, Report No. 71 (2003)

ISSN 1433-8092

Finally, we prove a phase hierarchy. For any k there is a function such that
every (k − 1)-phase protocol for this function has an information loss that is
exponentially greater than that of the best k-phase protocol.

1 Introduction

Consider a set of players, each knowing an individual secret. They want to com-
pute some function depending on their secrets. But after the computation, no player
should know anything about the secrets of the other players except for what he is able
to conclude from his own secret and the function value. This is the aim of private
computation (sometimes also called secure multiparty computation). To compute the
function, the players can send messages to each other using secure links.

An example for such a computation is the “secret ballot problem”: The members
of a committee wish to decide whether the majority votes for yes or no. But after the
vote nobody should know anything about the opinions of the other members, not even
about the exact number of yes and no votes, except for whether the majority voted for
yes or no.

If any group of at most t players cannot infer any knowledge about the input bits
that cannot be inferred from the function value and their own input bits, we speak of
t-privacy.

Any Boolean function can privately (in the following we identify privately with
1-privately) be computed on any 2-connected network. Unfortunately, there are many
Boolean functions, even simple ones like parity, disjunction, and conjunction, that
cannot privately be computed if the underlying network is not 2-connected [5].

However, many real-world networks are not 2-connected and private computation
is not possible. If the players in the network have to compute something but do not
trust each other, there is a natural interest of the players in privacy. What can we do?
We relax the notion of privacy: One cannot require that any player learns only what
he is able to deduce from his own secret and the function value. Instead we require
that any player learns as little as possible about the secrets of the other players (in an
information-theoretical sense) while it is still possible to compute the function.

Bridge nodes play an important role when considering networks that are not 2-con-
nected. Indeed, the bridge players are the only players that are able to learn something
more. For all other players we can guarantee that they do not learn anything except for
what they can deduce from their own secret and the function value.

The remaining question is, how much the bridge players need to learn such that the
function can correctly be computed. The simplest setting is a network of two blocks
that have one bridge node in common. (A block in a connected network is a maximum
subnetwork that is 2-connected.) This special case reminds one of communication
complexity with a man in the middle: Alice (one block) and Bob (another block) want
to compute a function depending on their input while preventing Eve (the bridge node)
from learning anything about their actual input. Unfortunately, Eve listens to the only

2

communication channel between Alice and Bob. In terms of communication complex-
ity, this problem had been examined by Modiano and Ephremedis [13, 14] and Orlitsky
and El Gamal [16]. While they have examined the problem under cryptographic secu-
rity, we are interested in information-theoretical security, i.e. the computational power
of the players is unrestricted. Furthermore, we are not interested in minimizing com-
munication but in minimizing the information learned by any player. However, it turns
out that there is a close relation between communication and privacy, at least in this
special case.

1.1 Previous Results

Private computation was introduced by Yao [19]. He considered the problem under
cryptographic assumptions. Private Computation with unconditional, i.e. information-
theoretical, security has been introduced by Ben-Or et al. [3] and Chaum et al. [6].
Kushilevitz et al. [12] proved that the class of Boolean functions that have a circuit of
linear size is exactly the class of functions that can privately be computed using only a
constant number of random bits. Some of the simulation techniques used in this paper
are based on their work.

Kushilevitz [10] and Chor et al. [7] considered private computations of integer-
valued functions. They examined which functions can privately be computed by two
players.

Franklin and Yung [9] investigated the role of the connectivity of the underlying
network in private computations. They used directed hypergraphs for communication
and described those networks on which every Boolean function can privately be com-
puted.

While any Boolean function can privately be computed on any undirected 2-con-
nected network, Bl äser et al. [5] completely characterized the class of Boolean func-
tions that can still privately be computed, if the underlying network is connected but
not 2-connected. In particular, no non-degenerate function can privately be computed
if the network consists of three or more blocks. On networks with two blocks, only a
small class of functions can privately be computed.

Chaum et al. [6] proved that any Boolean function can privately be computed,
if at most one third of the participating players are dishonest, i.e. they are cheating.
We consider the setting that all players are honest, i.e. they do not cheat actively but
try to acquire knowledge about the input bits of the other players only by observing
their communication. For this model, Ben-Or et al. [3] proved that any n-ary Boolean
function can be computed

⌊
n−1

2

⌋
-private, i.e. at most

⌊
n−1

2

⌋
players collude. Chor and

Kushilevitz [8] showed that if a function can be computed at least n
2
-private, then it

can be computed n-private as well.
The idea of relaxing the privacy constraints has been studied to some extend in

a cryptographic setting. Yao [19] examined the problem where it is allowed that the
probability distributions of the messages seen by the players may differ slightly for
different inputs, such that in practice the player should not be able to learn anything.

3

Leakage of information in the information-theoretical sense has been considered
only for two parties yet. Bar-Yehuda et al. [2] studied the minimum amount of infor-
mation about the input that must be revealed for computing a given function in this
setting.

1.2 Our Results

We study the leakage of information for multi-party protocols, where each player
knows only a single bit of the input.

Our first contribution is the definition of lossy private protocols, which is a general-
ization of private protocols in an information-theoretical sense (Section 2.3). Through-
out this work, we restrict ourselves to 2-edge-connected networks. Every block in such
a network has size at least three (i.e. the network is isthmus-free) and private computa-
tion within such a block is possible. We measure the information any particular player
gains during the execution of the protocol in an information-theoretical sense. This
is the loss of the protocol to the player. Lossy protocols can be divided into phases.
Within any phase, a bridge player P may exchange messages only once with each
block P belongs to. Phases correspond to rounds in communication complexity but
they are defined locally for each bridge player. Of particular interest are 1-phase pro-
tocols, because they fit the distributed nature of our problem.

In the definition of lossy protocols, the loss of a protocol to a player is basically the
logarithm of the number of different probability distributions on the communication
strings a player can observe. We justify this definition in Section 3.3: for a protocol
with minimum loss to a player P and any particular content of P ’s random tape, the
different distributions P observes have pairwise fidelity zero. Thus in order to actually
gain the information, P can distinguish the distributions from the actual communica-
tion he observes and does not need to sample.

The simplest non-2-connected network consists of two blocks that share one bridge
node. In Section 4 we show that the communication complexity of a function f and
the loss of a private protocol for f are intimately connected: Up to constant factors,
both quantities are equal.

Then we study 1-phase protocols. We start with networks that consist of d blocks
that all share the same bridge player P . In a 1-phase protocol, P can communicate
with each block only once. However, the loss of the protocol may depend on the order
in which P communicates with the blocks. In Section 5, we show that the order in
which P should communicate with the blocks to minimize the loss equals the order in
which d parties should be ordered on a directed line, when they want to compute the
function with minimal number of communication strings. In particular, for symmetric
functions it is optimal to sort the components by increasing size.

Then we design a 1-phase protocol for computing functions f (Theorem 6). If f
is symmetric, then this protocol has a remarkable feature: At any node, it has minimal
loss of information. Hence, it simultaneously minimizes the loss for all nodes where
the minimum is taken over all 1-phase protocols.

4

In Section 6, we prove a phase hierarchy. For any k there is a function such that
every (k− 1)-phase protocol for this function has an information loss that is exponen-
tially greater than that of the best k-phase protocol.

We conclude with two examples. The first example shows that even for symmetric
functions, the order of the communication may have an exponentially large influence
on the loss of the protocol. The second example is a non-symmetric function computed
on a network with two bridge nodes. We show that it is impossible to minimize the
information loss simultaneously by one protocol for both bridge players. This observa-
tion shows that, in contrast to symmetric functions, there are non-symmetric functions
that do not have optimal 1-phase protocols.

1.3 Comparison of Our Results with Previous Work

One of the important features of the two-party case is that at the beginning each party
has knowledge about one half of the input. In the multi-party case the input is dis-
tributed among the players; each player knows only a single bit of the input.

Kushilevitz [10] examined which integer-valued functions can privately be com-
puted by two players. He showed that requiring privacy can result in exponentially
larger communication costs. Furthermore, he showed that randomization does not
help in this model, not even to improve on the number of rounds. Chor et al. [7]
considered multi-party computations of functions over the integers. They showed that
the possibility of privately computing a function is closely related to its communica-
tion complexity. Furthermore, they characterized the class of privately computable
Boolean functions on countable domains. Neither Kushilevitz [10] nor Chor et al. [7]
examine the problem how function that cannot privately be computed can still be com-
puted while maintaining as much privacy as possible.

Leakage of information in the information-theoretical sense has been considered
only for two parties, each holding one n-bit input of a two-variable function. Bar-
Yehuda et al. [2] investigated this subject for functions that are not privately com-
putable. They defined measures for the minimum amount of information about the in-
dividual inputs that must be learned during the computation and proved tight bounds on
these cost for several functions. Moreover, they showed that sacrificing some privacy
can reduce the number of messages required during the computation. More specif-
ically: Every function can be computed by exchanging just two messages and there
exist functions that require up to 2n+1 messages to be computed privately [10]. Bar-
Yehuda et al. showed that, at the costs of revealing k extra bits of information, any
function can be computed using O(k · 2(2n+1)/(k+1)) messages. However, while they
examined how revealing information in the two-player scenario can help reducing the
necessary amount of communication, we examine how much information has to be
learned when one wants to compute a given function.

The counterpart of the two-party scenario in the distributed setting we consider is a
network that consists of two complete networks that share one node connecting them.
Simulating any two-party protocol on such a network allows the common player to

5

gain information depending on the deterministic communication complexity of the
function that should be evaluated. Hence and in contrast to the two-party case, in-
creasing the number of bits exchanged does not help to reduce the knowledge learned
by the player that is part of either block. An important difference between the two-
party scenario, where two parties share the complete input, and a network consisting
of two 2-connected components connected via a common player is that in the latter
we somewhat like a “man in the middle” that can learn more than any other player in
either component.

2 Preliminaries

2.1 Notations

For i, j ∈ IN, let [i] := {1, . . . , i} and [i..j] := {i, . . . , j}. Let x = x[1]x[2] . . . x[n] ∈
{0, 1}n be a string of length n. Throughout the paper, we often use the string operation
xdI←α defined as follows: For x ∈ {0, 1}n, I ⊆ [n], and α ∈ {0, 1}|I|, xdI←α is
defined by

(xdI←α)[i] =

{
x[i] if i 6∈ I ,

α[j] if i ∈ I and i is the jth smallest element in I ,

for all i ∈ [n]. For a function f : {0, 1}n → {0, 1}, a set of indices I ⊆ [n], and a
string α ∈ {0, 1}|I|, fdI←α : {0, 1}n−|I| → {0, 1} denotes the function obtained from
f by specialising the positions in I to the values given by α, i.e. for all x ∈ {0, 1}n−|I|,

fdI←α(x) = f((0ndI←α)dJ←x) ,

where J = [n]\I . For a string x ∈ {0, 1}n and a set I ⊆ [n], we define x[I] ∈ {0, 1}|I|

as follows: For all j ≤ |I|, (x[I])[j] = x[i] if i is the jth smallest element in I .
An undirected graph G = (V,E) is called 2-connected, if the graph obtained from

G by deleting an arbitrary node is still connected. For a set U ⊆ V , let G|U :=
(U,E|U) denote the graph induced by U , where E|U = {{x, y} ∈ E | x, y ∈ U}.
A subgraph G|U is called a block of G, if G|U is 2-connected and there is no proper
superset U ′ of U such that G|U ′ is 2-connected. We here consider a graph with two
nodes and one edge connecting these two nodes as 2-connected. A block of size two
is called an isthmus. The blocks of an undirected loopless graph G partition the edges
of G, i.e. each edge belongs to exactly one block. A graph is called 2-edge-connected
if after removal of one edge, the graph is still connected. A graph is 2-edge-connected
if it is connected and has no isthmi. A node belonging to more than one block is called
a cut node or bridge node. The other nodes are called internal nodes. The blocks of a
graph are arranged in a tree structure. For more details on graphs, see e.g. Berge [4].

A Boolean function is called symmetric, if the function value depends only on the
number of 1s in the input. See for instance Wegener [18] for a survey on Boolean
functions.

6

2.2 Private Computations

We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on a network
of n players. In the beginning, each player knows a single bit of the input x. Each
player i is equipped with a random tape. The players can send messages to other
players via point-to-point communication using secure links where the link topology
is given by an undirected graph G = (V,E). When the computation stops, all players
should know the value f(x). The goal is to compute f(x) such that no player learns
anything about the other input bits in an information-theoretical sense except for the
information he can deduce from his own bit and the result. Such a protocol is called
private.

Definition 1 Let Ci be a random variable of the communication string seen by player
Pi, and let c be a particular string seen by Pi. A protocol A for computing a function
f is private with respect to player Pi if for any pair of input vectors x and y with
f(x) = f(y) and x[i] = y[i], for every c, and for every random string Ri provided to
Pi,

Pr[Ci = c|Ri, x] = Pr[Ci = c|Ri, y] ,

where the probability is taken over the random strings of all other players. A protocol
A is private if it is private with respect to every player Pi.

We call a protocol A synchronous if it works in rounds and in each round each
player may either send one bit to one of its neighbours or receive one bit from one of
its neighbours in the underlying communication network. The fact that each player
either receives or sends at most one bit per round is only made to simplify some of
the following definitions. (If a player sends or receives more than one bit in a single
round in a given protocol, then we can design a new protocol that fulfils this restriction
by simulating this one round by several rounds and sending bits consecutively.) We
encode each bit sent as a triple {0, 1}×V 2 where (b, Pk1

, Pk2
) indicates that Pk1

sends
the bit b to Pk2

. The communication string c seen by player Pi is an element from
({0, 1} × V 2 ∪ {⊥})∗. c[j] = ⊥ means that Pi does neither send nor receive a bit in
round j. If c[j] = (b, Pk1

, Pk2
), then either k1 = i or k2 = i.

In the following, we use a strengthened definition of privacy of protocols: We allow
only one player, say Pi, to know the result computed. The protocol has to be private
with respect to Pi according to Definition 1. Furthermore, for all players Pj 6= Pi,
for all inputs x, y with x[j] = y[j], and for all random strings Rj we require Pr[Cj =
c|Rj, x] = Pr[Cj = c|Rj, y]. In such a protocol, Pi is the only player that learns the
function value. The other players do not learn anything.

This definition does not restrict the class of functions computable by private pro-
tocols according to Definition 1. Every function f in this class can be computed by
a protocol A fulfilling the conditions above. To achieve these additional restrictions,
player Pi generates a random bit r. Then we use a private protocol for computing
r ⊕ f(x). Since the protocol used is private, no player except for Pi learns anything
about the function value that cannot be derived from its own input bit.

7

2.3 Information Source

The definition of privacy basically states the following: The probability that a player
Pi sees a specific communication string during the computation does not depend on
the input of the other players. Thus, Pi cannot infer anything about the other inputs
from the communication he observes.

If private computation is not possible, since the graph is not 2-connected, then it
is natural to weaken the concept of privacy in the following way: We measure the
information player Pi can infer from seeing a particular communication string. This
leads to the concept of lossy private protocols. The fewer information any player can
infer, the better the protocol is.

In the following, c1, c2, c3, . . . denotes a fixed enumeration of all communication
strings seen by any player during the execution of A. (We could also use a fixed
standard enumeration of all strings. In the latter case, we would get probability dis-
tributions with a finite support on infinite probability spaces instead of probability
distributions on finite spaces. The concepts arising would be completely the same.)

Definition 2 Let Ci be a random variable of the communication string seen by player
Pi while executing A. Then for a, b ∈ {0, 1} and for every random string Ri provided
to Pi, define the information source of Pi on a, b, and Ri as

SA(i, a, b, Ri) := {(µx(c1), µx(c2), . . .) | x ∈ {0, 1}n ∧ x[i] = a ∧ f(x) = b}

where µx(ck) := Pr[Ci = ck|Ri, x] and the probability is taken over the random vari-
ables R1, . . . , Ri−1, Ri+1, . . . , Rn of all other players.

Basically SA(i, a, b, Ri) is the set of all different probability distributions on the
communication strings observed by Pi when the input x of the players varies over all
possible bit strings with x[i] = a and f(x) = b.

The (worst-case) loss of a protocol A on a, b with respect to player Pi is

` = max
Ri

log |SA(i, a, b, Ri)| .

Thus the protocol looses ` bits of information to Pi. We call such a protocol `-lossy on
a, b with respect to Pi.

If a uniform distribution of the input bits is assumed, then the self-information of
an assignment to the players P1, . . . , Pi−1, Pi+1, . . . , Pn is equal to n− 1 [17]. In this
case the maximum number of bits of information that can be extracted by Pi is n− 1.
If A is 0-lossy for all a, b ∈ {0, 1} with respect to Pi, then we say that A is lossless
with respect to Pi. A is lossless to Pi iff A is private to Pi. Thus the notion of lossy
private protocols generalizes the notion of private protocols.

Next we treat the loss to each player.

8

Definition 3 A protocol A computing a function f in a network G is `A-lossy, with
`A : [n] × {0, 1}2 → IR+

0 , if

`A(i, a, b) = max
Ri

log |SA(i, a, b, Ri)| .

Let f be an n-ary Boolean function. Then for every network G = (V,E) with |V | = n,
define `G : [n] × {0, 1}2 → IR+

0 by

`G(i, a, b) := min
A

{ `A(i, a, b) | A is an `A-lossy protocol for f in G} .

The loss of a protocol A is called bounded by λ ∈ N, if `A(i, a, b) ≤ λ for all i, a,
and b. `G(i, a, b) is obtained by locally minimizing the loss to each player Pi over
all protocols. It is a priori not clear whether there is one protocol with `G(i, a, b) =
`A(i, a, b) for all i, a, b. We will show that this is the case for symmetric functions and
1-phase protocols (as defined in Section 2.4).

Sometimes we will use the size of the information source instead of `A. Therefore,
we also define

sA(i, a, b, Ri) = |SA(i, a, b, Ri)| and

sA(i, a, b) = max
Ri

sA(i, a, b, Ri)

for a given protocol A. By definition, À(i, a, b) = log sA(i, a, b). If the underlying
protocol is clear from the context, we will occasionally omit the subscript A and write
`(i, a, b) and s(i, a, b).

Definition 4 Let f be an n-ary Boolean function. We define for a network G = (V,E)
with |V | = n

sG(i, a, b) := min
A

sA(i, a, b) .

If a player Pi is an internal node of the network, then it is possible to design pro-
tocols that are lossless with respect to Pi (see Section 3.1). Players Pi that are bridge
nodes are in general able to infer some information about the input.

2.4 Phases in a Protocol

We say that a player Pq who corresponds to a bridge node makes an alternation if
he finishes the communication with one block and starts to communicate with an-
other block. (This is well-defined, since each player receives or sends at most one bit
per round.) That means, if c[i1 − h1] = (b, Pk1

, Pk2
), c[i1 + 1] = (b′, Pj1, Pj2), and

c[i1 − λ] = ⊥ for all 0 ≤ λ < h1, then Pks
and Pjt

belong to different blocks. Here
c is the communication string of Pq and s, t ∈ {1, 2} are chosen such that ks 6= q and
jt 6= q. During such an alternation, information can flow from one block to another.

9

We partition a communication sequence c of Pq into a minimal number of disjoint sub-
sequences c[1..i1], c[(i1 +1)..i2], . . . such that each subsequence is alternation-free (i.e.
Pq makes no alternation during the corresponding interval). To make such a partition
unique assume that each subsequence (maybe except for the first one) starts with a
non-empty message. We call these subsequences block sequences of ci and define

blockj(c) := c[(ij−1 + 1)..ij]

with i0 = 0. Next we partition the work of Pq into phases as follows. Pq starts at
the beginning of the first phase and it initiates a new phase when, after an alternation,
it starts to communicate again with a block it has communicated with in the current
phase.

Definition 5 A protocol A is a k-phase protocol for a bridge node Pq if for every input
string and contents of the random tapes of all players, Pq works in at most k phases.
A is called a k-phase protocol if it is a k-phase protocol for every bridge node.

The start and end round of each phase does not need to be the same for each player.
Of particular interest are 1-phase protocols. In such a protocol, each bridge player
may only communicate once with each block he belongs to. Such protocols seem to
be natural, since they have a local structure. Once the computation is finished in one
block, the protocol will never communicate with this block again.

For k-phase protocols we define `kG(i, a, b) and sk
G(i, a, b) in a similar way as `A

and sG in the general case, but we minimize over all k-phase protocols.
During each phase a player communicates with at least two blocks. The order in

which the player communicates within a phase can matter. The communication order
σq of a bridge node Pq specifies the order in which Pq communicates with the blocks
during the whole computation. Formally, σq is a finite sequence of (the indices of)
blocks Pq belongs to and the length of σq is the total number of alternations made
by Pq plus one. We say that a protocol is σq-ordered for Pq if for all inputs and all
contents of the random tapes, the communication order of Pq is consistent with σq. Let
Pq1

, . . . , Pqk
with q1 < q2 < . . . < qk be an enumeration of all bridge players of a

network G and σ = (σq1
, . . . , σqk

) be a sequence of communication orders. We call a
protocol σ-ordered if it is σqj

-ordered for every Pqj
. Finally, define

sG(i, a, b, σ) := min{sA(i, a, b) | A is a σ-ordered protocol for f on G } .

2.5 Communication Protocols

For comparing the communication complexity of a certain function with the loss of
private protocols while computing this function, we need the following definitions.

Definition 6 Let f : {0, 1}m1 × {0, 1}m2 → {0, 1} be a Boolean function and B be
a two-party communication protocol for computing f . Let y1 ∈ {0, 1}m1 and y2 ∈

10

{0, 1}m2 be two strings as input for the two parties. Then CCB(y1, y2) is the total
number of bits exchanged by the two parties when executing B.

Furthermore, CC(B) is the maximum number of bits exchanged by executing B on
any input.

Analogously, CS(B) is the number of different communication strings that occur.
(We simply concatenate the messages sent.) Finally, CC(f) = minB for f CC(B) and
CS(f) = minB for f CS(B).

CC(f) and CS(f) are the communication complexity and communication size,
respectively, of the function f . CC(B) and CS(B) are the communication complexity
and communication size for a certain protocol B. The communication size is closely
related to the number of leaves in a protocol tree, usually denoted by CP (B). In the
definition of CS, we do not care about who has sent any bit, since we concatenate
all messages. In a protocol tree however, each edge is labeled by the bit sent and by
its sender. The bits on a path from the root to a leaf form a communication string.
Usually, the messages sent in a communication protocol are assumed to be prefix-free.
In this case, we can reconstruct the sender of any bit from the communication string. If
this is not the case, then we can make a particular communication protocol prefix-free
by replacing the messages sent in each round by prefix-free code words. There are
prefix-free codes such that the length of each code-word is at most twice the length
of the original message sent, for instance, w 7→ 1|w|−10w. Thus, the communication
complexity is at most doubled.

We also consider multi-party communication with a referee.

Definition 7 Let f : {0, 1}m1 × . . .×{0, 1}mk → {0, 1} be a function. Let A1, . . . , Ak

be k parties andR be a referee, all with unlimited computational power. For computing
f on input x1, . . . , xk, the referee cooperates with A1, . . . , Ak as follows:

• Initially, x1, . . . , xk are distributed among A1, . . . , Ak, i.e. Ai knows xi. The
referee R does not have any knowledge about the inputs.

• R, in successive rounds, exchanges messages with A1, . . . , Ak according to a
communication protocol. In each round R can communicate (i.e. receive or
send a message) only with a single party.

• After finishing the communications, R eventually computes the result of f .

Let B be a communication protocol for computing f . We denote by cR
B(x1, . . . , xk) the

whole communication string of R after protocol B has been finished. More precisely,
cR
B (x1, . . . , xk) is a concatenation of messages sent (to or from R) on input x1, . . . , xk

with additional stamps describing the sender and the receiver of each message. For

11

b ∈ {0, 1} let

CSR
B (b) = { cR

B (x1, . . . , xk) | ∀i ∈ [1..k] : xi ∈ {0, 1}mi

and f(x1, . . . , xk) = b } ,
CSR(B) = CSR

B (0) ∪ CSR
B (1) ,

CSR
B(b) = | CSR

B(b) | , and
CSR(B) = | CSR(B) | .

Finally, CSR(f, b) = minB for f CSR
B (b) and CSR(f) = minB for f CSR(B).

Since the referee has to compute the result we obviously have

CSR
B (0) ∩ CSR

B (1) = ∅ .

3 The Suitability of the Model

The aim of this section is to justify the definitions given in Section 2. First, we argue
that it is sufficient to consider bridge players when talking about the loss of a protocol.
Second, we present a protocol for computing arbitrary Boolean functions using three
players. Thus, it is possible to compute functions privately within any block, since the
networks we consider are isthmus-free. Finally, we prove that in optimal protocols,
the probability distributions observed by any player have pairwise fidelity zero. Thus,
any player can easily distinguish the different probability distributions he observes.

3.1 Internal Players do not Learn Anything

Throughout this paper, we restrict ourselves to considering the loss of protocols to
bridge players. The aim of this section is to justify this restriction. We prove that any
protocol can be modified without increasing the loss to each bridge player such that no
internal player (i.e. player who is not a bridge player) learns anything.

Theorem 1 For any protocol A on an 2-edge-connected G there exists a protocol A′

on G computing the same function as A such that

1. the loss of A′ to each internal player is zero and

2. the loss of A′ to each bridge player is at most the loss of A to this bridge player.

Proof: We assume that A is synchronous. Thus, the communication string a player
receives in any round depends on the input bits, the random tapes, and the communi-
cation prior to this round of all players. Let Ci,t denote the communication received
by Pi up to round t. We have

Ci,t+1 = fi,t(C1,t, . . . , Cn,t, x1, . . . , xn, R1, . . . , Rn)

12

for some suitable function fi,t. Since we only consider graphs where each block has
size at least three, we can compute fi,t privately according to the protocol of Kushile-
vitz et al. [12] (see also Section 3.2) such that for any i ∈ [n] and any round r we have
the following properties:

• If Pi is an internal player, then he knows Ci,t masked by sufficiently many ran-
dom bits while some other player knows these random bits.

• If Pi is a bridge player, he knows Ci,t.

The protocol A′ presented is clearly lossless with respect to any internal player. Fur-
thermore, the loss to any bridge player is the same as in the protocol A.

3.2 Three Players are Sufficient for Private Computations

Nearly no function can be computed by a private protocol, if only two players are
involved [3]. In this section, we show that three players are sufficient for any Boolean
function: Any circuit can privately be evaluated on a component that consists only of
three players P1, P2, and P3. This will be shown by modifying the protocol presented
by Kushilevitz et al. [12].

Let xi,1, . . . , xi,ki
be the input bits of Pi (i = 1, 2, 3). We simulate the circuit gate

by gate. Before starting the simulation, we proceed as follows:

1. Player P1 generates k1 + k2 + k3 random bits r1,1, . . . , r1,k1
, r2,1, . . . , r2,k2

, and
r3,1, . . . , r3,k3

and sends r2,1, . . . , r2,k2
to P2 and r3,1, . . . , r3,k3

to P3.

2. Pi (i = 1, 2, 3) computes xi,j ⊕ ri,j for all j ∈ [ki].

3. P1 sends x1,j ⊕ r1,j (j ∈ [k1]) to both P2 and P3, P2 sends x2,j ⊕ r2,j (j ∈ [k2])
to P3, and P3 sends x3,j ⊕ r3,j (j ∈ [k3]) to P2.

Now P1, P2, and P3 start to evaluate the circuit gate by gate.
For simulating a gate g, P1 generates 5 new random bits: one random rc to mask

the output c of g and a random 2 × 2 matrix

Z :=

(
z0,0 z0,1

z1,0 z1,1

)
.

Let G be the matrix describing gate g, a and b be the input bits of g, and c be its output
bit. Furthermore, let ra and rb be the random bits that mask a and b, respectively. The
random bit rc will mask the output c of g after the computation. At any stage of the

13

computation, both P2 and P3 know ra ⊕ a and rb ⊕ b while P1 knows ra and rb. P1

computes the bitwise XOR of these matrices:

F =

(
rc rc

rc rc

)
⊕ Zc ⊕G

=

(
rc ⊕ z0,0 ⊕ g(0, 0) rc ⊕ z0,1 ⊕ g(0, 1)

rc ⊕ z1,0 ⊕ g(1, 0) rc ⊕ z1,1 ⊕ g(1, 1)

)
=

(
f0,0 f0,1

f1,0 f1,1

)
.

P1 exchanges the rows of F , if ra = 1 and exchanges the columns of F , if rb = 1. He
proceeds with Z analogously. Let F ′ and Z ′ be the resulting matrices, i.e.

F ′ =

(
f ′0,0 f ′0,1

f ′1,0 f ′1,1

)
=

(
fra,rb

fra,1−rb

f1−ra,rb
f1−ra,1−rb

)

and

Z ′ =

(
z′0,0 z′0,1

z′1,0 z′1,1

)
=

(
zra,rb

zra,1−rb

z1−ra,rb
z1−ra,1−rb

)
.

Then P1 sends Z ′ to P2 and F ′ to P3.
Now P2 sends z′ra⊕a,rb⊕b to P3 while P3 sends f ′ra⊕a,rb⊕b to P2. Finally, P2 and P3

compute
c⊕ rc = z′ra⊕a,rb⊕b ⊕ f ′ra⊕a,rb⊕b .

After this computation, both P2 and P3 know c ⊕ rc, which is the output of the gate
masked with rc. The matrix sent by P1 has been masked with Z. Furthermore, P2

knows Z ′ but does not know F ′, while P3 knows F ′ but does not know Z ′. Thus,
neither P2 nor P3 is able to compute rc; the computation is private with respect to both
players. Although P1 knows rc, he does not know c ⊕ rc. Since he does not receive
anything during the whole simulation the computation is private with respect to P1.
The privacy of the complete simulation follows by induction on the number of gates.

To compute the result of the function, we proceed as follows:

• If P1 has to compute the output of the circuit, then P2 sends the masked output
bit to P1. Thus, P1 can compute the result.

• If Pi (i ∈ {2, 3}) has to compute the output, then P1 sends the random bit that
masks the output bit to Pi. Therefore, Pi can compute the result.

3.3 Extracting Information from Probability Distributions

We consider arbitrary 1-connected networks. Let f be a Boolean function and A be a
protocol for computing f on a 1-connected network G. Let Pq be a bridge player of
G, a, b ∈ {0, 1}, and Rq be the random string provided to Pq. We define

X = {x ∈ {0, 1}n | x[i] = a ∧ f(x) = b}

14

and for any communication string ci

ψ(ci) = {x ∈ X | µx(ci) > 0}.

For every communication string ci that can be observed by Pq on some input x ∈ X ,
Pq can deduce that x ∈ ψ(ci). If sA(q, a, b) = sG(q, a, b) = 1, then we have either
ψ(ci) = X or ψ(ci) = ∅. Thus Pq does not learn anything in this case.

Theorem 2 If sG(q, a, b) > 1, then for any protocol A and every communication
string ci that can be observed by Pq on input x ∈ X , ψ(ci) is a non-trivial subset of
X , i.e. ∅ 6= ψ(ci) (X , and there exist at least sG(q, a, b) different such sets. Hence,
from seeing ci on x ∈ X , Pq always gains some information and there are at least
sG(q, a, b) different peaces of information that can be extracted by Pq on inputs from
X .

The next result says that sG(q, a, b) is a tight lower bound on the number of pieces
of information: the lower bound is achieved when performing an optimal protocol on
G. Let µ and µ′ be two probability distributions over the same set of elementary events.
The fidelity measures the similarity of µ and µ′ and is defined by

F (µ, µ′) =
∑

c

√
µ(c) · µ′(c) .

Theorem 3 If A is an optimal protocol for player Pq on a and b, i.e. sA(q, a, b) =
sG(q, a, b), then for every random string Rq and all probability distributions µ 6= µ′ in
SA(q, a, b, Rq) we have F (µ, µ′) = 0.

Theorem 2 follows directly from the Lemmas 1 and 2 below. Theorem 3 follows
from Lemma 3.

Lemma 1 Assume A is a protocol for computing f . Then we have the following im-
plications for every communication string ĉ:

(i) if ψ(ĉ) = ∅, then for all x ∈ X we have µx(ĉ) = 0 and

(ii) if ψ(ĉ) = X , then sG(q, a, b) = 1.

Proof: Item (i) follows from the definition of ψ in a straight forward way.
To prove Item (ii) assume that there exists a communication string ĉ with ψ(ĉ) =

X . Then using Lemma 9 for w = ĉ, we can construct a communication protocol B
for computing fd{q}←a such that CSR

B(b) = 1. By Lemma 8 we have sG(q, a, b) ≤

CSR(fd{q}←a, b) ≤ 1.

Lemma 2 Let SA(q, a, b, Rq) = {µ1, µ2, . . . , µm}. Let M = {ĉ1, ĉ2, . . . , ĉm} be a set
of communication strings such that for every i ∈ [m], ĉi is the lexicographically first
string in {c | µi(c) > 0}. Then |M| ≥ sG(q, a, b) and for every pair of different ĉi, ĉj
we have ψ(ĉi) 6= ψ(ĉj).

15

Proof: Let Γ denote the alphabet for the communication strings and let γ ∈ Γ be
the lexicographically first symbol in Γ. Denote by τ the maximum length of com-
munication strings c1, c2, c3, By applying Lemma 9 for w = γτ , we obtain the
communication protocol B for computing fd{q}←a such that |CSR

B (b)| = |M|. By
Lemma 8 we have sG(q, a, b) ≤ CSR(fd{q}←a, b) ≤ |M|.

To prove the second part of the lemma, note that for any ĉi we have ψ(ĉ) 6= ∅.
Now assume that ĉi, ĉj are two different communication strings with ψ(ĉi) = ψ(ĉj). It
follows that for all x, x′ ∈ X we have µx(ĉi) > 0 iff µx′(ĉi) > 0. Hence

ĉi, ĉj ∈ {c | µi(c) > 0} ∩ {c | µj(c) > 0} .

Because we have chosen ĉi as the lexicographically first element in {c | µi(c) > 0} and
ĉj as the lexicographically first element in {c | µj(c) > 0}, by the property above we
have both ĉi≤lexĉj and ĉj≤lexĉi, where ≤lex means lexicographically smaller. Hence
ĉi = ĉj — a contradiction.

Lemma 3 Let SA(q, a, b, Rq) = {µ1, µ2, . . . , µm} and assume that for some i 6= j ∈
[m] we have F (µi, µj) > 0. Then sG(q, a, b) < m.

Proof: Assume that for some i 6= j ∈ [m] we have F (µi, µj) > 0 and let ĉ be such a
communication string with µi(ĉ), µj(ĉ) > 0. Using Lemma 9 for w = ĉ we construct
a communication protocol B for fd{q}←a such that CSR

B (b) ≤ m− 1. By Lemma 8 we
have sG(q, a, b) ≤ CSR(fd{q}←a, b) ≤ CSR

B(b) ≤ m− 1.

4 Communication Complexity and Private Computa-
tion

4.1 Two-Party Model

In this section we investigate the relations between deterministic communication com-
plexity and the minimum size of an information source in a connected network with
one bridge node. To distinguish between protocols in terms of communication com-
plexity and protocols in terms of private computation, we will call the former commu-
nication protocols.

The communication complexity and the communication size are closely related.

Lemma 4
1
2
log(CS(f)) ≤ CC(f) ≤ 3 · log(CS(f)) +O(1) .

The proof follows from the relation between CP and CC (see e.g. Kushilevitz and
Nisan [11, Sec. 2.2]). Making a communication protocol prefix-free yields the extra
factor 1

2
.

16

Now we investigate the relations between communication size and the size of an
information source on graphs that consist of two blocks sharing one bridge node Pq.

In the model of private computation the input bits are distributed among n players
whereas the input bits in a communication protocol are distributed among the two
parties. We identify the input y1 of Alice with the input bits known by players of the
first block of the network and the input y2 of Bob with the input bits known by the
players of the second block. The input bit known by the bridge player Pq is known
by both Alice and Bob. Let x be the input string for the players in the network. We
consider the problem for x[q] = 0 and x[q] = 1 separately.

Lemma 5 For a ∈ {0, 1} we have

max{sG(q, a, 0), sG(q, a, 1)} ≤ CS(fd{q}←a) .

Proof: Let B be a deterministic communication protocol for fdq←a. We construct a
protocol that is private with respect to all players except for Pq. Furthermore, we show
that the size of the information source of Pq is bounded by CS(B).

The protocol B is deterministic. Thus, for any input y1, y2 there exist two functions
A : {0, 1}m1 × {0, 1}? → {0, 1}? and B : {0, 1}m2 × {0, 1}? → {0, 1}? such that the
sequence of bits exchanged by Alice and Bob in B can be computed by evaluating A
and B:

wi :=

λ if i = 0 ,
wi−1A(y1, wi−1) if i > 0 is odd, and
wi−1B(y2, wi−1) if i > 0 is even.

By introducing a third symbol, we can modify the protocol such that the results of all
evaluations of A and B for every input y1 ∈ {0, 1}m1 and y2 ∈ {0, 1}m2 have equal
length and the number of rounds is the same for all inputs. This can be done without
increasing the size of the communication protocol. In the private protocol constructed,
this third symbol can be simulated by sending no bit and waiting for one round.

A can privately be computed on the first block such that only Pq knows the result of
the computation. Analogously, B can be computed on the second block. By iterating
these computations, Pq can generate the complete communication sequence and finally
compute the result.

The distribution of the communication seen by Pq is uniquely determined by the
communication sequence of the communication protocol, since it does not depend on
the random strings of the players. From this observation, the lemma follows.

Lemma 6 For a ∈ {0, 1} we have

CS(fd{q}←a) ≤ sG(q, a, 0) + sG(q, a, 1) .

Proof: Let P1, . . . , Pq and Pq, . . . , Pn be the players of the first and second block,
respectively. Let A be a protocol for computing f that is private with respect to all
players except for Pq and such that the size of the information source of Pq is minimal.

17

We construct a communication protocol by simulating A and searching the lexico-
graphical minimal communication sequence for Pq that has positive probability.

Let c be the communication string observed by Pq for a fixed content of the random
tapes R1, . . . , Rn and input x. For odd j, blockj(c) can deterministically be computed
from R1, . . . , Rq, x[1..q], and blocki(c) with i < j. Analogously for even j, blockj(c)
can be computed from Rq, . . . , Rn, x[q..n], and blocki(c) with i < j.

Let R0
A and R0

B be the sets of possible contents ofR1, . . . , Rq−1 andRq+1, . . . , Rn,
respectively. We say that a string c′ ∈ ({0, 1}×V 2∪{⊥})∗ is a valid prefix, if it can be
extended to a communication string c (i.e. c = c′u for some u ∈ ({0, 1}×V 2∪{⊥})∗)
such that µx(c) > 0 and Pq makes an alternation in c between c′ and u. (Here µx are
probabilities as defined in Definition 2.) We simulate the private protocol iteratively as
follows:

1. ai is the lexicographically minimal block sequence (in which Pq communicates
with the first block) such that a1b1 . . . ai−1bi−1ai is a valid prefix, if the con-
tent of the random tapes R1, . . . , Rq−1 is in Ri−1

A , the inputs of P1, . . . , Pq are
given by x[1..q] and the substrings of the previous block sequences are given by
a1, b1, . . . , ai−1, bi−1. (The symbol ⊥ is considered smaller than any tuple when
considering lexicographical orderings.)

2. Ri
A ⊆ Ri−1

A is the set of all possible contents of the random tapes of P1, . . . , Pq−1

with the property that the prefix of the communication string observed by player
Pq is a1b1 . . . ai−1bi−1ai.

3. bi is the lexicographically minimal block sequence (in which Pq communicates
with the second block) such that a1b1 . . . aibi is valid, if the content of the random
tapes Rq+1, . . . , Rn is in Ri−1

B , the inputs of Pq, . . . , Pn are given by x[q..n], and
the substrings of the previous block sequences are given by a1, b1, . . . , ai.

4. Ri
B ⊆ Ri−1

B is the set of possible contents of the random tapes of Pq+1, . . . , Pn

such that the prefix of the communication string observed by Pq is a1b1 . . . aibi.

To get a communication protocol, Alice and Bob iteratively compute ai, bi, Ri
A,

and Ri
B and exchange ai and bi. The correctness of this protocol follows from the

correctness of the private protocol.
It remains to show that whenever Alice and Bob generate two different communica-

tion sequences for two different input pairs y1, y2 and y′1, y
′
2, then the two correspond-

ing inputs x and x′ for the private protocol A instantiate two different distributions µ
and µ′ (where µ := µx and µ′ = µx′).

We have to consider the following cases:

1. ai = a′i and bi = b′i for all i ≤ min{k, k′}. Then k 6= k′. W.l.o.g. we assume
that k < k′.

18

On input x′, the private protocol cannot stop after Pq has seen a1, b1, . . . , ak, bk.
Hence, µ′(a1b1 . . . akbk) = 0 but µ(a1b1 . . . akbk) > 0. Therefore, the distribu-
tions µ and µ′ are different.

The case that the shorter sequence ends with ak (instead of bk) is treated in the
same manner.

2. There exists some i0 ≤ min{k, k′} such that ai0 6= a′i0 or bi0 6= b′i0 . Let i0
be minimal such that ai0 6= a′i0 or bi0 6= b′i0 . In the following we assume that
ai0<lexa

′
i0

. The case that ai0 = a′i0 and bi0 6= b′i0 follows analogously.

From the construction of the substrings ai0 and a′i0 , we have the following:
If µ′(a1b1 . . . ai0u) 6= 0 for some u such that there is an alternation between
a1b1 . . . ai0 and u, then our algorithm would prefer to use ai0 on input x′, too.
Hence, µ′(a1b1 . . . ai0u) = 0 for all such u. On the other hand, there exists some
u such that µ(a1b1 . . . ai0u) 6= 0 and there is an alternation between a1b1 . . . ai0

and u. Thus, the distributions µ and µ′ are different.

Due to the construction, we obtain from a communication protocol acting in k
rounds a private protocols that needs at most d k+1

2
e phases. Analogously, we obtain

from a k-phase private protocol a communication protocol that needs at most 2k − 1
rounds.

The proofs above give us even more.

Lemma 7 For any function f and any protocol A for computing f there exists a com-
munication protocol B for computing fd{q}←a (a ∈ {0, 1}) such that

CS(B) = |SA(q, a, 0) ∪ SA(q, a, 1)| .

Vice versa, for any communication protocol B for computing fd{q}←a there exists a
protocol A for computing f such that the same equality holds.

Theorem 4 If a function f has communication complexity c then there exists a proto-
col for computing f with loss bounded by 2c. On the other hand, if f can be computed
by a protocol with loss bounded by λ, then the communication complexity of f is
bounded by 6λ+O(1).

Proof: If f has communication complexity c, then CS(f) ≤ 2 · 2c by Lemma 4.
Particularly CS(fd{q}←a) ≤ 2 · 2c. Therefore, `G(q, a, b) ≤ 2c for all b ∈ {0, 1} by
Lemma 5. On the other hand, if there is a protocol for computing f whose loss is
bounded by λ, then CS(fd{q}←a) ≤ 22λ by Lemma 6. Thus CC(fd{q}←a) ≤ 6λ +
O(1) by Lemma 4. Now the result follows from CC(f) ≤ max{CC(fd{q}←a) | a ∈
{0, 1}}+O(1). The latter inequality holds, since Alice and Bob only have to agree on
the value of x[q].

19

4.2 Multi-Party with Referee

In this section we generalize our previous results to multi-party communication. We
generalize Lemmas 5 and 6 in two directions. First, we show that similar bounds hold
if we compare the information source of a bridge player that is connected to more than
two blocks with the size of a communication protocol with a referee. Second, we show
that these bounds still hold if we restrict the set of communication strings allowed.

Lemma 8 For a, b ∈ {0, 1} we have

sG(q, a, b) ≤ CSR(fd{q}←a, b) .

Proof: Let B be a deterministic communication protocol for fdq←a. We construct a
protocol that is private with respect to all players except for bridge players. Further-
more, we show that the size of the information source of Pq is bounded by CSR

B (b) for
every b ∈ {0, 1}.

Since B is deterministic, there exist k functions Ti : {0, 1}mi × {0, 1}? → {0, 1}?

for i ∈ [1..k] and a function B : {0, 1}? → [1..k] such that the messages exchanged
in successive rounds between R and A1, . . . , Ak according to B can be computed by
evaluating Ti and B as follows:

wj :=

{
λ if j = 0 ,
wj−1TB(wj−1)(xB(wj−1), wj−1) if j > 0.

B(wj−1) determines the party Ai the referee wants to talk to in round j after receiving
the communication string wj−1. Ti(xi, wj−1) determines the corresponding communi-
cation string exchanged in round j between R and AB(wj−1) .

The functionB can always be evaluated by the bridge player Pq and TB(wj−1) can be
computed on the B(wj−1)-th block and the players that are reachable from the players
in the B(wj−1)-th block without passing Pq such that only Pq knows the result of the
computation and no internal player learns anything. By iterating these computations,
Pq can generate the complete communication sequence and finally compute the result.

The distribution of the communication seen by Pq is uniquely determined by the
communication sequence of the communication protocol, since it does not depend on
the random strings of the players. From this observation, the lemma follows.

Next we show how we can simulate the computation of a protocol A by a com-
munication protocol B with a referee. The simulation works analogously to the sim-
ulation in Lemma 6. In addition to the simulation in Lemma 9 it allows us to ad-
dress one distinguished communication sequence to be used, if this sequence has pos-
itive probability for the input of A. For a communication sequence c we define the
weighted lexicographic order ≤c

lex: For every pair of communication sequences c1, c2

20

let ` = min{|c1|, |c2|, |c|}. Define

c1≤
c
lexc2 :⇐⇒

c1 = c or

∃i ≤ ` : c1[1..i] = c[1..i] 6= c2[1..i] or

∃i ≤ ` : c1[1..i] = c[1..i] = c2[1..i]

∧ c1[i + 1] 6= c[i+ 1] 6= c2[i+ 1]

∧ c1[i + 1..|c1|]≤lexc2[i+ 1..|c2|] ,

where ≤lex is the lexicographical ordering of two strings as follows: Let b1, b2 ∈
({0, 1} × V 2)∗ be two communication sequences such that each of the sequences de-
scribes the communication of the bridge player Pq with players of one block. Then

b1<lexb2 :⇐⇒

b1 is the empty string and |b2| ≥ 1,
the block index of b1 is smaller than the block index of b2, or
b1 is lexicographically smaller than b2.

For a pair of communication sequences c1, c2 ∈ ({0, 1} × V 2)∗ let block1(ci), . . . ,
blockdi

(ci) with i ∈ {1, 2} be the sequence of block sequences of ci. Then define

c1≤lexc2 :⇐⇒ ∃i ≤ min{d1, d2} ∀k ≤ i : blockk(c1) = blockk(c2)
∧ blockk(c1) ≤lexblockk(c2) .

Using the weighted lexicographic order ≤c
lex, the communication sequence c is always

the minimum string.

Lemma 9 For every a, b ∈ {0, 1}, every protocol A computing a function f , every
content of Pq’s random tape Rq, and every sequence w ∈ ({0, 1}× V 2)∗ there exists a
communication protocol B computing fd{q}←a with

CSR
B (b) ≤ sA(q, a, b, Rq) .

Moreover,

| CSR
B (b) | = | { c | ∃µ ∈ SA(q, a, b, Rq) : µ(c) > 0 and

∀c′ ∈ ({0, 1} × V 2)∗ : µ(c′) > 0 ⇒ c≤w
lexc
′ } | .

Proof: Let V1, . . . , V` be a partition of all players except for Pq into subsets of max-
imum cardinality, such that for each set Vk and every pair Pi, Pj ∈ Vk the player Pi

is reachable from Pj without passing Pq. We construct a communication protocol by
simulating A and searching the lexicographically minimal communication sequence
according to ≤w

lex for Pq that has positive probability.
Let c be the communication string observed by Pq for a fixed content of the random

tapes R1, . . . , Rn and input x. Every block sequence blockj(c) of c is associated with
a subset Vk and can deterministically be computed from the contents of the random

21

tapes of the players in Vk ∪ {Pq}, the input of these players, and blocki(c) with i < j.
Analogously, the index d of the subset Vd that is associated to the block sequence
blockj+1(c) can be determined from Rq, x[q], and the subsequences blocki(c) with
i ≤ j. Let h(Rq, x[q], block1(c) . . .blockj(c)) be the function that determines this
index.

We say that a string c′ ∈ ({0, 1} × V 2)∗ is a valid prefix, if it can be extended to a
communication string c, i.e. c = c′u for some u ∈ ({0, 1} × V 2)∗ such that µx(c) > 0
and Pq makes an alternation in c between c′ and u.

Let R0
i be the sets of all possible contents of the random tapes of the players in Vi

and let a0 = λ be the empty string. Furthermore, let xi be the input of the players in
Vi. We simulate the private protocol A as follows: Initially, referee R sends Rq and
x[q] to all parties A1, . . . , Ak. Then iteratively for j = 1, 2, . . .

1. R computes the index ij = h(Rq, x[q], a0 . . . aj−1) and a0 . . . aj−1 to the party
Aij .

2. The party Aij determines the set Hj of all strings a such that a0 . . . aj−1a is a
valid prefix of a communication sequence where the content of the random tapes
of the players in Vij is in Rj−1

ij
, the inputs of these players are given by xij , the

content of Pq’s random tape is Rq, and Pq’s input is x[q]. Aij chooses aj ∈ Hj

such that for any a ∈ Hj

a0 . . . aj−1aj ≤
w
lex a0 . . . aj−1a

and Rj
ij

⊆ Rj−1
ij

as the set of all possible contents of the random tapes of the
players in Vij such that the prefix of the communication string observed by Pq is
a1 . . . aj−1aj . Finally, Aij sends aj to the referee R.

3. Each party Ak 6= Aij chooses Rj
k = Rj−1

k .

To get a communication protocol, the parties A1, . . . , A`, and R iteratively compute
ij , aj, and Rj

i until R determines the end of the simulation. The correctness of this
protocol follows from the correctness of the private protocol.

It remains to show that whenever A1, . . . , A`, and R generate two different com-
munication sequences for two different inputs x1, . . . , x` and x′1, . . . , x

′
`, then the two

corresponding inputs x and x′ for the protocol A instantiate two different distribu-
tions µx and µx′ where the lexicographically minimal string according to the ordering
≤w

lex with positive probability in µx differs from the corresponding string with positive
probability in µx′ .

We distinguish the following cases:

1. ai = a′i for all i ≤ min{`, `′}. Then ` 6= `′. W.l.o.g. we assume that ` < `′.
Then either

22

(a) w is a prefix of a1 . . . a` or w = a1 . . . a`: Then on input x′, the bridge
player Pq continues to exchange messages with some other players after
seeing a1 . . . ak. The protocol cannot stop on x′ at this point in time. Hence,
µx′(a1 . . . ak) = µx′(w) = 0 but µx(a1 . . . ak) = µx(w) > 0. Therefore,
the minimal communication sequence with positive probability in µx dif-
fers from the corresponding string with positive probability in µx′ .

(b) a1 . . . a` is a prefix of w of length m with m < |w|. Then a1 . . . a`w[m +
1] is not a valid prefix of a communication sequence on input x. Hence,
a1 . . . a` is the minimal communication sequence with positive probability
in µx.

According to a′1 . . . a
′
`′ we consider two cases:

i. a′1 . . . a`′w[m + 1] is a valid prefix of some communication sequence
on input x′. Therefore a′1 . . . a

′
`w[m + 1] is a prefix of a′1 . . . a

′
`′ and

a1 . . . a`<
w
lexa

′
1 . . . a

′
`′ .

ii. a′1 . . . a`′w[m+1] is not a valid prefix of a communication sequence on
input x′ and the protocol cannot stop on x′ after Pq has seen a′1 . . . a`′ .
Hence, for every communication sequence c with µx′(c) (and in par-
ticular for c = a′1 . . . a

′
`′) we have c<w

lexa1 . . . a`.

2. There exists some i0 ≤ min{`, `′} such that ai0 6= a′i0 . Let i0 be minimal
such that ai0 6= a′i0 . In the following we assume that a1 . . . a`<

w
lexa

′
1 . . . a

′
`′ . We

distinguish the case that ai0 is not a prefix of a′i0 and the case that ai0 is a prefix
of a′i0 :

• Let us first assume that ai0 is not a prefix of a′i0 . Then by our construction of
the substrings ai0 and a′i0 , it follows that if µx′(a1 . . . ai0u) 6= 0 for some u
such that there is an alternation between a1 . . . ai0 and u, then our algorithm
would prefer to use ai0 on input x′, too. Hence, µ′x(a1 . . . ai0u) = 0 for all
such u. On the other hand, for u = ai0+1 . . . a` we have µx(a1 . . . ai0u) 6= 0
and there is an alternation between a1 . . . ai0 and u. Thus, the lexicograph-
ically minimal string according to the ordering ≤w

lex with positive probabil-
ity in µx differs from the corresponding string with positive probability in
µx′ .

• Let us now assume that ai0 is a prefix of a′i0 . If i0 = `, that means a1 . . . ai0

gives a complete communication string on input x then the claim follows
analogously to the first case.

If i0 < `, then we have a1 . . . ai0ai0+1<
w
lexa

′
1 . . . a

′
i0 . By our construction of

the substrings ai0ai0+1 and a′i0 , it follows that if µx′(a1 . . . ai0ai0+1u) 6= 0
for some u such that there is an alternation between a1 . . . ai0 and u, then
our algorithm prefers to use ai0ai0+1 on input x′, too. Hence, we have
µ′x(a1 . . . ai0ai0+1u) = 0 for all such u. On the other hand, for u =
ai0+2 . . . a` we have µx(a1 . . . ai0ai0+1u) 6= 0 and there is an alternation

23

between a1 . . . ai0 and u. Thus, the lexicographically minimal string ac-
cording to the ordering ≤w

lex with positive probability in µx differs from the
corresponding string with positive probability in µx′ .

Summarizing Lemma 8 and 9 we get:

Theorem 5 For a, b ∈ {0, 1} we have

sG(q, a, b) = CSR(fd{q}←a, b) .

5 1-Phase Protocols

5.1 Orderings

We start our study of 1-phase protocols with considering networks that consist of one
bridge player who is incident with d blocks. If the order in which the bridge player
communicates with the blocks is fixed for all inputs, we show a relationship between
the size of the information source of 1-phase protocols and communication size of
multiparty 1-way protocols. We prove that for some Boolean functions there exists
no fixed order that minimizes the loss of information of 1-phase protocols. On the
other hand we prove that for every symmetric Boolean function 1-phase protocols can
minimize the loss of information when the bridge player sorts the blocks by increasing
size. Then we present a simple 1-phase protocol on arbitrarily connected network that
is optimal for every symmetric function.

Lemma 10 Let B be a 1-way communication protocol. Then the party that sends
messages to the second party is independent of the actual input.

Proof: Assume that there are strings y1, y
′
1 ∈ {0, 1}m1 and y2, y

′
2 ∈ {0, 1}m2 such that

• on input y1, y2 Alice sends messages to Bob and

• on input y′1, y
′
2 Bob sends messages to Alice.

Then on input y1, y
′
2 both Alice and Bob send messages to each other. Hence, the

protocol violates the restrictions of a 1-way communication protocol.

Analogously, we can show the following lemma.

Lemma 11 Let G be a connected network with one bridge player Pq and let A be a
1-phase protocol on G. Then the block Pq starts to exchange messages with is inde-
pendent of the actual input x[i] of all other players Pi 6= Pq.

24

Note that the communication order of Pq may depend on the input of Pq.
A natural extension of the two-party scenario for 1-way communication is a sce-

nario in which the parties use a directed chain for communication. Hence, we consider
parties A1, . . . , Ad that are connected by a directed chain, i.e. Ai can only send mes-
sages to Ai+1 for i ∈ [d − 1]. For a communication protocol B on G and i ∈ [d]
let S 7→i (B) be the number of possible communication sequences on the subnetwork
of A1, . . . , Ai. Each communication protocol B can be modified without increasing
S 7→i (B) (i ∈ [1..d]) in the following way: Every party Ai first sends the messages it has
received from Ai−1 to Ai+1 followed by the messages it has to send according to B. In
the following we will restrict ourselves to communication protocols of this form.

If the network G consists of d blocks Bi with i ∈ [d] and one bridge player Pq we
will consider a chain of d parties A1, . . . , Ad. For a σ-ordered 1-phase protocol A we
will assume that the enumeration of the blocks reflects the ordering σ. Analogously
to our simulation in Section 4, we have to determine the input bits of the parties in
the chain according to the input bits of the players in the protocol. In the following
we will assume that Ai knows the input bits of the players in Bi. Thus, each party
Ai has to know the input bit x[q] of the bridge player Pq. Therefore, we will investi-
gate the restricted function fd{q}←a whenever we analyse the communication size of a
communication protocol.

For a σ-ordered protocol A define

S
[i]
A (q, a, b, Rq) := {(p̂1(x), p̂2(x), p̂3(x), . . .) | x[q] = a and f(x) = b },

where
p̂k(x) :=

∑

cj with bci = block1(cj)...blockk(cj)

Pr[Cq = cj | Rq, x]

and ĉ1, ĉ2, ĉ3, . . . is a fixed enumeration of all strings describing the communication of
Pq in the first i block sequences.

Let Ii be the set of input positions known by the players in Bi except for Pq. Then
for a fixed input a ∈ {0, 1} of player Pq define

Y i
0 := { x ∈ {0, 1}n−1 \

⋃i−1
j=1(Y

j
0 ∪ Yj

1) | (fd{q}←a)dIi←x[Ii] ≡ 0 } ,

Y i
1 := { x ∈ {0, 1}n−1 \

⋃i−1
j=1(Y

j
0 ∪ Yj

1) | (fd{q}←a)dIi←x[Ii] ≡ 1 } , and

Y i
u := {0, 1}n−1 \

⋃i
j=1(Y

j
0 ∪ Yj

1) .

Lemma 12 For a ∈ {0, 1} let B be a d-party 1-way communication protocol comput-
ing fd{q}←a on a chain network. Then there exists a σ-ordered 1-phase protocol A
computing f such that for all i ∈ [1..d − 1] and for every content Rq of Pq’s random
tape

S 7→i (B) =
∣∣∣S [i]
A (q, a, 0, Rq) ∪ S [i]

A (q, a, 1, Rq)
∣∣∣ .

Proof: We use a simulation analogously to the simulation in Lemma 5. According to
our observations above we can conclude for any input x ∈ {0, 1}n with x[q] = a:

25

• If x ∈
⋃i

j=1 Y
j
0 , then the resulting distribution is in S

[i]
A (q, a, 0, Rq) but not in

S
[i]
A (q, a, 1, Rq).

• If x ∈
⋃i

j=1 Y
j
1 , then the resulting distribution is in S

[i]
A (q, a, 1, Rq) but not in

S
[i]
A (q, a, 0, Rq).

• If x ∈ Y i
u, then the resulting distribution is in S

[i]
A (q, a, 1, Rq) ∩ S

[i]
A (q, a, 0, Rq).

Each possible communication sequence on the subnetwork of A1, . . . , Ai+1 results in
exactly one distribution in S

[i]
A (q, a, 0, Rq) ∪ S

[i]
A (q, a, 1, Rq). Thus, the lemma is

proved.

Lemma 13 Let A be a σ-ordered 1-phase protocol for computing f on a network as
described above. Then for every a ∈ {0, 1} and every content Rq of Pq’s random tape
there exists a 1-way communication protocol B for computing fd{q}←a such that for
all i ∈ [1..d− 1]

S 7→i (B) ≤
∣∣∣S [i]
A (q, a, 0, Rq) ∪ S

[i]
A (q, a, 1, Rq)

∣∣∣ .

Proof: Analogously to our simulation in Lemma 6 the parties Ai compute the lexi-
cographically minimal block sequences describing the communication of Pq with the
players inBi on input x[Ii] and x[q] where the block sequences for the communication
of Pq with the players of the blocks B1, . . . , Bi−1 are determined by the communi-
cation string on the subnetwork of A1, . . . , Ai. Each distribution gives at most one
communication sequence on the subnetwork on A1, . . . , Ai+1. The lemma follows di-
rectly.

The simulations above give us even more.

Proposition 1 Let a ∈ {0, 1} and B be a communication protocol as described above
for computing fd{q}←a on a chain network. Then there exists a σ-ordered 1-phase
protocol A for computing f such that for all b ∈ {0, 1}, every j ∈ [1..d−1], and every
content Rq of Pq’s random tape the following holds:

If we restrict the inputs to x ∈ {0, 1}n−1 with fd{q}←a(x) = b, the number
of possible communication sequences on the subnetwork A1, . . . , Ai+1 is
given by |S

[i]
A (q, a, b, Rq)|.

Furthermore, let A be a σ-ordered 1-phase protocol for computing f on a network as
described above. Then for every a ∈ {0, 1}, every content Rq of Pq’s random tape,
and every b ∈ {0, 1} there exists a 1-way communication protocol B for computing
fd{q}←a such that the following properties hold for all i ∈ [1..d− 1]:

26

If we restrict the inputs to x ∈ {0, 1}n−1 with fd{q}←a(x) = b, the number
of possible communication sequences on the subnetwork of A1, . . . , Ai+1

is bounded by |S
[i]
A (q, a, b, Rq)|.

Let us now focus on the structure of the possible communication sequences of
an optimal communication protocol on a chain. Such a protocol has to specify the
subfunction

fi,x := (fd{q}←a)dSi
j=1
Ij←x[

Si
j=1
Ij]

for any input x for any i < d by the corresponding communication string on the link
(Ai, Ai+1). As we have seen above, we do not increase the number of communication
strings on the subnetwork A1, . . . , Ai+1, if the message sent by Ai specifies all sub-
functions f1,x, . . . , fi,x. Hence, the number of possible communication sequences on
the network A1, . . . , Ad is at least the number of different sequences f1,x, . . . , fd−1,x

where we vary over the different inputs x.
The knowledge about these sequences has also be provided to the bridge player by

the probability distribution of a σ-ordered 1-phase protocol. Hence, for every fixed Rq

and b ∈ {0, 1} the number of distributions in S
[d−1]
A (q, a, b, Rq) is at least the number

of different sequences f1,x, . . . , fd−1,x for inputs x with x[q] = a and f(x) = b. This
implies the following lemma.

Lemma 14 For a ∈ {0, 1} let B be a communication protocol for computing fd{q}←a

on a chain network. Then there exists a σ-ordered 1-phase protocol A for computing
f such that for all i ∈ [1..d− 1] and every content Rq for Pq’s random tape

S 7→i (B) =
∣∣∣S [i]
A (q, a, 0, Rq) ∪ S

[i]
A (q, a, 1, Rq)

∣∣∣ .

Furthermore, for any b ∈ {0, 1} it holds: If we restrict the inputs to x ∈ {0, 1}n−1 with
fd{q}←a(x) = b, the number of possible communication sequences on the subnetwork

A1, . . . , Ai+1 is given by |S [i]
A (q, a, b, Rq)|.

5.2 Quasi-Ordered Protocols

Although we can show that there exist functions, for which no ordered 1-phase proto-
col minimizes the size of the bridge player’s information source, we can prove such a
property for quasi-ordered 1-phase protocols.

We call a protocol A quasi-ordered if for every a, b ∈ {0, 1}, for every content
Rq for Pq’s random tape, and for every distribution µ ∈ SA(q, a, b, Rq) there exists a
1-phase ordering σ such that every communication string c with µ(c) > 0 the string c
is σ-ordered.

Lemma 15 Let G be a connected network with one bridge player Pq and d blocks.
Then for every 1-phase protocol A there exists a quasi-ordered 1-phase protocol A′

such that for all a, b ∈ {0, 1} and every content Rq of Pq’s random tape

sA(q, a, b, Rq) ≥ sA′(q, a, b, Rq) .

27

Proof: We prove this lemma by induction in the number of blocks of the graph. The
lemma follows from Lemma 11 for every function and every connected network G
with one bridge player Pq and 2 blocks.

Let us now assume that the claim holds for every function and every connected
network with one bridge player Pq and d − 1 blocks. Let G be a connected network
with one bridge player Pq and d blocks, let f be the function we want to compute on
G, and A be a 1-phase protocol for computing f on G.

According to Lemma 11 the block where Pq starts to exchange messages is inde-
pendent of the actual input x[i] of all other players Pi 6= Pq. Thus the index i1 of the
block can be determined by a, b ∈ {0, 1} and the content Rq of Pq’s random tape. For
every input x ∈ {0, 1}n with x[q] = a and f(x) = b the first block sequence has to de-
termine the type of the subfunction f1,x. If two input strings x, y with x[q] = y[q] = a
and f(x) = f(y) = b have different subfunction f1,x 6= f1,y, then these inputs result
in different distributions over the possible communication strings in the first block se-
quence as well. If for two inputs x 6= y with x[q] = y[q] = a and f(x) = f(y) = b
we have f1,x = f1,y then there exists a protocol that uses the same distribution over the
possible communication strings in the first block sequence for x and y.

Let {f1, . . . , ft} be the set of all different subfunctions f1,x (x ∈ {0, 1} with x[q] =
a and f(x) = b). For every subfunction fi let xi be an input with fi = f1,xi

and ĉi be a
string that describes the communication between Pq and Bi1 on input x with positive
probability. Let Ai be the part of the protocol in which A continues its computation
after seeing ci. Then the following inequality holds:

sA(q, a, b, Rq) ≥
t∑

j=1

sAj
(q, a, b, Rq) .

By the induction hypothesis for every j ∈ [t] there exists a quasi-ordered protocol A′j
that computes the same function fj on the same network as Aj and

sAj
(q, a, b, Rq) ≥ sA′

j
(q, a, b, Rq) .

On the other hand, for every input x the bridge player Pq can compute the subfunctions
fi,x on the block Bi1 privately by a protocol A′0. Let A′ be the quasi-ordered 1-phase
protocol that we get by combining the protocols A′0,A

′
1, . . . ,A

′
t. Then

sA(q, a, b, Rq) ≥
t∑

j=1

sAj
(q, a, b, Rq) ≥

t∑

j=1

sA′
j
(q, a, b, Rq) = sA′(q, a, b, Rq) .

The claim follows, since both A and A′ are 1-phase protocols for computing the same
function.

5.3 Orderings for Symmetric Functions

If we restrict ourselves to symmetric Boolean functions f , we can show even more.
Arpe et al. [1] have proved the following for symmetric Boolean functions with a fixed

28

partition of the input bits: for all i, S 7→i (B) can be minimized, if the number of bits
known by the parties in the chain corresponds to the position of the party, i.e. the first
party knows the smallest number of input bits, the second party knows the second
smallest number, and so on.

This observation is also valid, if we count the number of communication sequences
in a chain network for inputs x with f(x) = 1 and if we count the number of commu-
nication sequences in a chain network for inputs x with f(x) = 0. By combining these
observations with Lemma 14, we obtain the following lemma.

Lemma 16 Let G be a connected network with one bridge player Pq and d blocks.
Let σ be a one phase ordering that enumerates the blocks of G according to their size.
Then for every ordered 1-phase protocol A′ there exists a σ-ordered 1-phase protocol
A such that for all a, b ∈ {0, 1}, for all i ≤ d− 1, and every content Rq of P ′q random
tape

|S
[i]
A (q, a, b, Rq)| ≤ |S

[i]
A′(q, a, b, Rq)| .

On the other hand, after finishing the computation steps with the players of the
first d − 1 blocks, Pq can start a protocol for computing the final function value by
exchanging messages with the players of the last block. According to the definition of
protocols in 2-connected graphs, no player can learn anything about the inputs of the
other players that cannot be derived from its own input and the result of the function.
This observation implies that for all a, b ∈ {0, 1} and every content Rq of P ′q random
tape

|S
[d−1]
A (q, a, b, Rq)| = |SA(q, a, b, Rq)| .

To prove that a 1-phase protocol A that uses an order like in Lemma 16 is optimal
with respect to the size of the information source of the bridge player Pq, it remains to
show that the information source of such a protocol is also smaller than the information
source of every non-ordered 1-phase protocols A′.

Lemma 17 Let G be a connected network with one bridge player Pq and d blocks. Let
σ be a 1-phase ordering that enumerates the blocks of G according to their size. Then
for every 1-phase protocol A′ there exists a σ-ordered 1-phase protocol A such that
for all a, b ∈ {0, 1}

sA(q, a, b) ≤ sA′(q, a, b) .

Proof: If A′ is an ordered protocol then the claim follows directly from Lemma 16.
In the following we will assume, that π is a 1-phase ordering that enumerates the

blocks of G according to their size and fulfils the following additional property:

If G has a two blocks of the same size, then the block are ordered in π
according to there indices.

29

Note that given a ordering of the blocks, this ordering is well-defined.
By contradiction let us assume, that there exists a non-ordered 1-phase protocols

A′ such that for every ordered 1-phase protocols A we have

sA(q, a, b) > sA′(q, a, b) .

By Lemma 15 we can assume that A′ is quasi-ordered.
For a 1-phase communication string c of the bridge player Pq let ∆(c) denote the

number block sequences blocki(c) in c such that the suffix

blocki(c) . . .blockd(c)

violates the ordering of π, i.e. there are two blocks Bj, Bk such that

• according to the ordering π, Bj is ranged before Bk,

• each block has its corresponding block sequences in the suffix blocki(c) . . .
blockd(c) of c, and

• according to the ordering of this suffix, Bk is ranged before Bj.

We call ∆(c) the degree of disorder of c. For a distribution µ all communication strings
of Pq, we define

∆(µ) := max
c with µ(c)>0

∆(c) .

For a quasi-ordered protocol the orderings for all communication strings c with µ(c) >
0 are identical.

Finally for a 1-phase protocol A, a, b ∈ {0, 1}, and a content Rq of Pq’s random
tape define

∆A(a, b, Rq) :=
∑

µ∈SA(q,a,b,Rq)

∆(µ) and

∆A(a, b) :=
∑

Rq

∆A(a, b, Rq) .

We call ∆A(a, b) the degree of disorder of the protocol A.
Let A′ be a quasi-ordered 1-phase protocols A′ such that

• A′ has a minimum degree of disorder ∆A(a, b) over all quasi-ordered 1-phase
protocols fulfilling Equation 1 and

• for every ordered 1-phase protocols A we have

sA(q, a, b) > sA′(q, a, b) . (1)

30

We will now show, that such an optimal quasi-ordered 1-phase protocols A′ does not
exist.

Let Rq be a possible content of Pq’s random tape such that ∆A′(a, b, Rq) > 0 and
µx ∈ SA′(q, a, b, Rq) be a distribution such that ∆(µx) is maximal. Furthermore, let
σx = Bi1 , . . . , Bid be the ordering of µx and choose k maximal, such that there exists
a block Bij with j > k and Bij is ranged before Bik in π.

Note that for each quasi-ordered 1-phase protocol the first block of each communi-
cation string is always fixed. The index of the second block depends only on the type
of the subfunction of f when we fix the input bits of the players in the first block. This
subfunction is called f1,x. In general the index of the `th block depends only on the
type of the sequence f1,x, . . . , f`−1,x, where fj,x is the subfunctions of f where we fix
the input bits of the players in the first j blocks.

Let A′′ be the part of the protocol of A′ that determines the behaviour of Pq after
receiving the information f1,x, . . . , fik−1,x from the first ik − 1 blocks. Note that A′′

computes fik−1,x on the subgraph of G that consists of the blocks Bik , . . . , Bid only.
Since µx has a maximum value of the degree of disorder the protocol A′′ is ordered.

Then we have

sA′(q, a, b, Rq) = |{ µy | f1,x, . . . , fik−1,x differs from f1,y, . . . , fik−1,y }|

+sA′′(q, a, b, Rq) ,

where µy describes the probability distribution over the communication strings on in-
put y. Since A′′ is ordered and fik−1,x is a symmetric function, we can apply Lemma 16
and modify A′ by replacing A′′ with an ordered 1-phase protocol A′′o for fik−1,x that
communicates with the blocks Bik , . . . , Bid according to their size. Note that the re-
sulting protocol A′o for f is still quasi-ordered and by Lemma 16 we can chose A′′

such that
sA′′(q, a, b, Rq) ≥ sA′′

o
(q, a, b, Rq)

and
∆A′(a, b, Rq) ≥ ∆A′

o
(a, b, Rq) .

This contradicts our assumption that A′ has a minimum degree of disorder over all
quasi-ordered 1-phase protocols fulfilling Equation 1.

5.4 An Optimal 1-Phase Protocol for Symmetric Functions

The result of the previous section can also be generalized to networks with more than
one bridge player. Let G1, . . . , Gk be the connected subgraphs obtained by deleting
the bridge player Pq with |Gi| ≤ |Gi+1|. We say that Pq works in increasing order, if it
starts communicating with G1, then with G2 and so on. We call a 1-phase protocol A
increasing-ordered, if every bridge player works in increasing order. This generalizes
the ordering of A chosen in Lemma 17.

31

Theorem 6 LetG be a 2-edge-connected network and f be a symmetric Boolean func-
tion. Then for every 1-phase protocol A′ computing f on G there exists an increasing-
ordered 1-phase protocol A for f on G such that for every player Pi and for all
a, b ∈ {0, 1}

sA(i, a, b) ≤ sA′(i, a, b) .

Proof: To prove this claim we will present a protocol for computing f on G that
simultaneously minimizes the size of the information source of each player ofG. Thus,
the protocol is optimal with respect to the size of the information source of each player,
if the function is symmetric and the network is 2-edge-connected.

Let G be a network and Pq be any bridge node in G. B1, . . ., Bdq
are the blocks

incident with Pq and Gi = (Vi, Ei) is the connected subgraph of G that contains Bi

after deleting Pq. Finally, let Ii be the set indices of the players in Vi ∪ {q} and
#q =

∣∣⋃dq−1
i=1 Ii

∣∣. We assume that Gi covers the players of Bi (except for Pq) and
|Ii| ≤ |Ii+1| for 1 ≤ i < dq. Recall, that x[I1], . . ., x[Idq

] are the actual inputs for I1,
. . ., Idq

, respectively.
For easier notion let I0 = ∅, and x[I0] be the empty string. The protocol for Pq

proceeds in dq stages as follows:

1. In the first dq − 1 stages Pq privately computes fi,x = fdSi
j=1
Ij←x[

Si
j=1
Ij]

it-
eratively for 1 ≤ i < dq on Bi. Therefore, Pq chooses an arbitrary string

αi ∈ {0, 1}|
Si−1

j=1
Ij | such that fdSi−1

j=1
Ij←αi

= fi−1,x and cooperates with the
players in Bi as a player with input αi.

2. In the last stage Pq chooses an arbitrary string αdq
∈ {0, 1}|

Sdq−1

j=1
Ij | such that

fdSdq−1

j=1
Ij←αdq

= fdq−1,x

and cooperates with the players inBdq
as a player with input αdq

. We distinguish
three cases:

(a) If |Idq
| ≤ #q, then Pq privately computes fdq ,x = fdq−1,xdIdq←x[Idq] on

Bdq
.

(b) If |Idq
| > #q, #q = max{#q′ | Pq′ is a bridge player}, and q < q′ for

all bridge player Pq′ with #q′ = #q, then Pq privately computes fdq ,x =
fdq−1,xdIdq←x[Idq] on Bdq

.

(c) Otherwise, Pq proceeds in Bdq
as a non-bridge player with input αdq

.

Now we prove that the size of the information source of every player is minimal. Every
non-bridge player does not learn anything — not even the function value. Hence, the
protocol is lossless with respect to any non-bridge player and it remains considering the
bridge players. The only information a bridge player Pq can derive from the messages
exchanged with the players of its incident blocks Bi with 1 ≤ i ≤ dq − 1 are the

32

subfunctions fi,x. This sequence gives the minimum communication size S 7→i in a
communication protocol on a chain where the parties are ordered according to the
ordering chosen by our protocol. If the function computed is symmetric, we can apply
Lemmas 14 and 17 to show that the ordering of the blocks for computing the sequence
is optimal with respect to the size of the information source.

Corollary 1 The protocol presented in this section is optimal for 1-phase computa-
tions of symmetric functions with respect to the size of the information source.

6 A Phase Hierarchy

In this section we show that there are functions for which the size of the information
source of some player for a (k − 1)-phase protocol is exponentially larger than for a
k-phase protocol. The natural candidate for proving such results is the pointer jumping
function pj: Our network G has two blocks A and B, one of size n logn and the other
of size n logn + 1, sharing one bridge player Pi. For simplicity we assume that A
and B are complete subgraphs. The input bits represent two lists of n pointers, each
of length logn bits. The input bit of Pi belongs to the list of the smaller component.
Starting with some predetermined pointer ofA, the task is to follow these pointers, find
the jth pointer and output the parity of the bits of the jth pointer. We get the following
upper bound for k-phase protocols. (Recall that k-phase protocols can simulate 2k− 1
rounds, since each phase except for the first one can simulate two communication
rounds.)

Theorem 7 For p2k−1, sk
G(i, a, b) = 2O(k log n) for all a, b.

Proof: We get a lower bound via the relation between communication size and infor-
mation source shown in Lemmas 5 and 6.

The players holding the bits of a particular pointer send their bits to Pi. (If A or
B is not a complete graph, then the protocol can be modified such that it is private for
the players other than Pi as follows: Each player sends his bit masked with a random
bit on one path to Pi and the random bit on another path. This is possible since A and
B are blocks. Furthermore, all other players of the block do the same, but with two
random bits. This is done to prevent players from learning something by not getting
a message.) Then Pi informs the players to which the received pointer points. The
informed players send their bits to Pi and so on. After 2k − 1 iterations, Pi simply
computes the parity of the last pointer received. In this way, Pi learns O(k logn) bits.
In the worst-case, all pointers involved point from A to B and vice versa. In this case,
the number of phases is k.

Define CSj and CCj in the same manner as CS and CC, but by minimizing over
j-round communication protocols instead of arbitrary communication protocols.

33

Theorem 8 For any protocol A for p2k−1, sk−1
A (i, a, b) = 2Ω(n/(k log k)) for all a, b.

Proof: By Lemmas 5 and 6 we have sk−1
A (i, a, b) = Θ(CS2k−3(p2k−1)). By the

following Lemma 18, CS2k−3(p2k−1) ≥ 2Ω(CC2k−3(p2k−1)/k). Now the result follows
by the lower bound CC2k−2(p2k−1) = Ω(n/ log k) for p2k−1 proved by Nisan and
Wigderson [15].

Using more elaborate techniques, one should be able to get rid of this extra k. It
remains to show the following lemma.

Lemma 18 For any binary function f , log CSj(f) ≥ Ω(CCj(f)/j).

Proof: Consider a protocol tree T for f with j rounds that has a minimal number of
leaves. We modify T as follows: Consider the subtree S induced by nodes belonging
to the first round. We can replace S by a balanced tree without changing the outcome
of the protocol. Then we change all subtrees corresponding to the second round in
the same manner and so forth. Call the resulting tree T ′. By construction, T ′ has
still j rounds and the number of leaves of T and T ′ are the same. But each subtree
corresponding to a particular round is balanced.

Consider a longest path P in T ′ and let h1, . . . , hj be the length of the subpaths
of P corresponding to the rounds 1, . . . , j, respectively. The number of leaves of T ′

is at least
∑j

i=1 2hi−1, since we balanced all subtrees belonging to a particular round.
In particular, CSj(f) ≥

∑j
i=1 2hi−1. On the other hand, the height of T ′ is h =

h1 + . . . + hj . Therefore h ≥ CCj(f). The value
∑j

i=1 2hi−1 attains its minimum
if h1 = . . . = hj . In this case

∑j
i=1 2hi−1 = j · 2h/j−1. Therefore, log CSj(f) ≥

h/j − 1 + log j—the claim is proved.

7 Conclusions and Open Problems

We have considered distributed protocols in “non-private” environments: networks
that are connected but not 2-connected. Since private computation of arbitrary Boolean
functions is impossible on such networks, we have introduced a new measure for the
information that can be inferred from seeing particular communication strings and
discussed some general properties of protocols with respect to this measure. A natural
question that arises is finding optimal protocols for some concrete functions.

For common Boolean functions like e.g. threshold (fn0
(x1, . . . , xn) = 1 if and

only if
∑n

i=1 xi ≥ n0, particularly disjunction (n0 = 1), conjunction (n0 = n), and
majority (n0 = dn+1

2
e)) and counting modulo p (i.e. gp(x1, . . . , xn) = 1 iff

∑n
i=1 xi ≡

0 (mod p)), we can prove that the information loss to any player does not depend
on the ordering in which a 1-phase protocol computes any of these functions, if each
block has size at least n0 and p, respectively.

34

Proposition 2 Let a network be given on which we want to compute fn0
or gp. Each

block of the network has size at least n0 or p − 1, respectively. Then the loss to each
bridge player in an optimal 1-phase protocol does not depend on the ordering in which
the bridge players communicate with their incident blocks.

Proof: It suffices to prove the proposition for networks consisting of a single bridge
player Pq incident with k blocks (k ≥ 2).

We start with considering gp. Since any block has size at least p− 1, there have to
be p different strings Pq can receive from k− 1 of its incident block (all but the one he
communicates with last). This is independent of the ordering, in which he communi-
cates with his incident blocks — the claim of the proposition follows immediately.

Now let us consider fn0
. For the first block Pq communicates with, there are exactly

n0 + 1 possibilities that have to be distinguished: 0 ones, 1 one, . . . , n0 − 1 ones, and
n0 ones (which means that the result is one independently of the input bits hold in the
other blocks). If Pq receives m ∈ [n0] ∪ {0}, there remain n0 + 1 − m possibilities
to distinguish and so on. None of the considerations depends on the ordering in which
Pq communicates with his incident blocks, since any of these blocks has size at least
n0 — the proposition follows.

If we have blocks consisting of less than p−1 nodes, there can be a difference in the
size of Pq’s information source depending on the order. Consider a network consisting
of one block of size, say, k < p−1 and another block of size n−k ≥ p−1. Our aim is
to find out, whether the number of ones is 0 (mod p). If Pq starts his communication
with the smaller block, the size of his information source is clearly k+1. On the other
hand, if he starts his communication with the larger block, the size of his information
source is k + 2: For any 0 ≤ i ≤ k we have a string saying “the result is 1 if there are
exactly k ones in the smaller block” plus one string saying “result 1 cannot be achieved
anymore”. This observation can easily be modified for threshold functions.

In general, the size of the information source while communicating in one order
can be exponentially larger than the size obtained by communication in another order.
This is true, even if we restrict ourselves to symmetric functions.

Proposition 3 There exists a symmetric function f and a communication graphGwith
one bridge player Pq, such that there are two ordering σ and σ ′ with sG(i, 1, 1, σ) ∈
Ω(log sG(i, 1, 1, σ′)).

Proof: For ` ∈ IN, let n = 2` − 1. For x1, . . . , xn ∈ {0, 1}, let

y =
∑n

i=1 xi =
∑`−1

i=0 yi2
i .

For simplicity, we call the binary string of length that represents y again y. We split
y into two parts: zaddr = yd−1 . . . y0 and z = y`−1 . . . yd. We choose d maximal with
2d ≤ `− d. Note that (by abusing notation) we also have zaddr =

∑d−1
i=0 yi2

i. Then

f(x1, . . . , xn) = yzaddr+d+1 .

35

Thus, we use the lower part of the sum y of the inputs bits to address a bit in the higher
part of y.

The network we use will be quite simple. We have two blocks consisting of 2d and
n− 2d − 1 nodes, respectively. (Note that n ∈ Θ

(
22d)

) Furthermore, we have a bridge
player Pq which is part of both blocks. If Pq starts communication with the smaller
block, we can easily achieve that the size of his information source is at most 2d + 1.

It remains to show that the size of Pq’s information source is at least 2`−d−1, thus
exponentially larger. If the size of his information source is smaller, there are at least
two different indistinguishable input strings w and w′ for the larger block with #w and
#w′ ones such that #w ≡ 0 (mod 2)d+1 and #w ≡ 0 (mod 2)d+1. Let v be an input
string with #v ones for the smaller block such that the d+1+#v’s bit of #w and #w ′

is different. The function value on w and w′ together with v is different. But since w
and w′ are indistinguishable and v is fixed, the protocol computes the same result for
either input — a contradiction.

For 1-phase protocols for symmetric Boolean functions, we have been able to min-
imize the number of bits a player learns for all players simultaneously. An obvious
question concerns minimizing the loss of more than one bridge player simultaneously
for general functions. For 1-phase protocols, the answer is negative: Consider the
function f given by

f(x0, x1, y0, y1, z1, z2, z3) =

1 if z1 ⊕ z2 ⊕ z3 = 0 and x0 = y0 or
z1 ⊕ z2 ⊕ z3 = 1 and x1 = y1 and

0 otherwise.

Here x0, x1, y0, and y1 are bit vectors of length n and z1, z2, and z3 are single bits. We
compute f on the following network: x0 and x1 are distributed within one block (BX),
y0 and y1 are distributed within another block (BY). z1, z2, and z3 build a third block
(BZ), while z1 is shared with the BX and z3 is shared with the BY .

In any 1-phase protocol for f , either Pz1
or Pz3

learns at least 2n bits, the other one
learns at least n + 1 bits.

Now we want to prove that this is optimal: The sum of bits learned by Pz1
and Pz3

is
always at least 3n+1. There are three different possibilities of one-way communication
for this graph: all communication goes from left to right or from right to left or both
blocks BX and BY send to BZ . Due to symmetry, we restrict ourselves to considering
the first and third case.

We first consider the case that all communication goes from left to right. Assume
that Pz1

learns less than 2n bits while z1 = 0. Then there are at least two different
inputs x0, x1 and x0′, x1′ that are indistinguishable for the middle and the right com-
ponent. Assume w.l.o.g. that x0 6= x0′. Choose z2 and z3 such that ` = 0. Then either
for y0 = x0 or for y0 = x0′ we get a wrong function value. We can argue similarly to
prove that Pz3

has to learn n + 1 bits. Otherwise, either ` is unknown in BY or there
are at least two different possible strings to compare with. In either case we obtain a
contradiction.

36

Now we consider the case that both blocks BX and BY send to the BZ . We can
argue similarly as in the previous case: If Pz1

learns less than 2n bits, there are at least
two different inputs for BX that cannot be distinguished. The same holds for the right
component. Thus, both Pz1

and Pz3
must learn at least 2n bits each.

On the other hand, using two phases we can achieve the minimum loss of n + 1
bits to each bridge player. Compute ` and send it to both blocks BX and BY . Then
these blocks send x` and y`, respectively, to BZ , which finally computes f .

An open problem is whether there exist functions and networks that do not allow
to minimize the loss to each bridge player simultaneously. If such functions exist, it
would be interesting trying to minimize some function depending on the information
loss to each player instead of minimizing the loss to each player separately. One simple
example one might want to examine is the sum of loss to each player.

Another future research direction might be to generalize the model to t-privacy:
How much information does any group of at most t players learn while computing the
function.

References

[1] Jan Arpe, Andreas Jakoby, and Maciej Liśkiewicz. One-way communication
complexity of symmetric boolean functions. In Proc. of the 14th Int. Symp. on
Fundamentals of Computation Theory (FCT), volume 2751 of Lecture Notes in
Comput. Sci., pages 158–170. Springer, 2003.

[2] Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. Pri-
vacy, additional information, and communication. IEEE Trans. Inform. Theory,
39(6):1930–1943, 1993.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proc. of the 20th
Ann. ACM Symp. on Theory of Computing (STOC), pages 1–10, 1988.

[4] Claude Berge. Graphs. North-Holland, 1991.

[5] Markus Bl äser, Andreas Jakoby, Maciej Liśkiewicz, and Bodo Siebert. Private
computation — k-connected versus 1-connected networks. In Proc. of the 22nd
Ann. Int. Cryptology Conf. (CRYPTO), volume 2442 of Lecture Notes in Comput.
Sci., pages 194–209. Springer, 2002. A full version can be found as Technical
Report 03-009, Electron. Colloq. on Comput. Complex. (ECCC).

[6] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols. In Proc. of the 20th Ann. ACM Symp. on Theory of Computing
(STOC), pages 11–19, 1988.

37

[7] Benny Chor, Mihály Geréb-Graus, and Eyal Kushilevitz. Private computations
over the integers. SIAM J. Comput., 24(2):376–386, 1995.

[8] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM J.
Discrete Math., 4(1):36–47, 1991.

[9] Matthew Franklin and Moti Yung. Secure hypergraphs: Privacy from partial
broadcast. In Proc. of the 27th Ann. ACM Symp. on Theory of Computing (STOC),
pages 36–44, 1995.

[10] Eyal Kushilevitz. Privacy and communication complexity. SIAM J. Discrete
Math., 5(2):273–284, 1992.

[11] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge
University Press, 1997.

[12] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear size
circuits in terms of privacy. J. Comput. System Sci., 58(1):129–136, 1999.

[13] Eytan Modiano and Anthony Ephremides. Communication protocols for secure
distributed computation of binary functions. Inform. and Comput., 158(2):71–97,
2000.

[14] Eytan H. Modiano and Anthony Ephremides. Communication complexity of
secure distributed computation in the presence of noise. IEEE Trans. Inform.
Theory, 38(4):1193–1202, 1992.

[15] Noam Nisan and Avi Wigderson. Rounds in communication complexity revis-
ited. SIAM J. Comput., 22(1):211–219, 1993.

[16] Alon Orlitsky and Abbas El Gamal. Communication with secrecy constraints.
In Proc. of the 16th Ann. ACM Symp. on Theory of Computing (STOC), pages
217–224, 1984.

[17] Claude Elwood Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3, 4):379–423, 623–656, 1948.

[18] Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

[19] Andrew Chi-Chih Yao. Protocols for secure computations. In Proc. of the 23rd
Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pages 160–164,
1982.

38

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

