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Abstract

In the mid 1980’s, Yao presented a constant-round protocol for securely computing any
two-party functionality in the presence of semi-honest adversaries (FOCS 1986). In this paper,
we provide a complete description of Yao’s protocol, along with a rigorous proof of security.
Despite the importance of Yao’s protocol to the field of secure computation, to the best of our
knowledge, this is the first time that a proof of security has been published.

1 Introduction

In the setting of two-party computation, two parties with respective private inputs x and y, wish
to jointly compute a functionality f(x, y) = (f1(x, y), f2(x, y)), such that the first party receives
f1(x, y) and the second party receives f2(x, y). This functionality may be probabilistic, in which
case f(x, y) is a random variable. Loosely speaking, the security requirements are that nothing
is learned from the protocol other than the output (privacy), and that the output is distributed
according to the prescribed functionality (correctness). The definition of security that has become
standard today [10, 11, 1, 4] blends these two conditions. In this paper, we consider the problem of
achieving security in the presence of semi-honest (or passive) adversaries who follow the protocol
specification, but attempt to learn additional information by analyzing the transcript of messages
received during the execution.

The first general solution for the problem of secure two-party computation in the presence of
semi-honest adversaries was presented by Yao [15]. Later, solutions were provided for the multi-
party and malicious adversarial cases by Goldreich et al. [9]. These ground-breaking results essen-
tially began the field of secure multiparty computation and served as the basis for countless papers.
In addition to its fundamental theoretic contribution, Yao’s protocol is remarkably efficient in that
it has only a constant number of rounds and uses one oblivious transfer per input bit only (with
no additional oblivious transfers in the rest of the computation). Unfortunately, to the best of our
knowledge, a full proof of security of Yao’s protocol has never been published. Our motivation for
publishing such a proof is twofold. First, Yao’s result is central to the field of secure computation.
This is true both because of its historic importance as the first general solution to the two-party
problem, and because many later results have relied on it in their constructions. As such, having a
rigorous proof of the result is paramount. Second, the current situation is very frustrating for those
who wish to study secure multiparty computation, but are unable to find a complete presentation
of one of the most basic results in the field. We hope to correct this situation in this paper.
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Yao’s protocol [15]. Let f be a polynomial-time functionality (assume for now that it is deter-
ministic), and let x and y be the parties’ respective inputs. The first step is to view the function
f as a boolean circuit C. In order to describe Yao’s protocol, it is helpful to first recall how such
a circuit is computed. Let x and y be the parties’ inputs. Then, the circuit C(x, y) is computed
gate-by-gate, from the input wires to the output wires. Once the incoming wires to a gate g have
obtained values α, β ∈ {0, 1}, it is possible to give the outgoing wires of the gate the value g(α, β).
The output of the circuit is given by the values obtained in the output wires of the circuit. Thus,
essentially, computing a circuit involves allocating appropriate zero-one values to the wires of the
circuit. In the description below, we refer to four different types of wires in a circuit: circuit-input
wires (that receive the input values x and y), circuit-output wires (that carry the value C(x, y)),
gate-input wires (that enter some gate g), and gate-output wires (that leave some gate g).

We now present a high-level description of Yao’s protocol. The construction is actually a
“compiler” that takes any polynomial-time functionality f , or actually a circuit C that computes
f , and constructs a protocol for securely computing f in the presence of semi-honest adversaries. In
a secure protocol, the only value learned by a party should be its output. Therefore, the values that
are allocated to all wires that are not circuit-output, should not be learned by either party (these
values may reveal information about the other party’s input that could not be otherwise learned
from the output). The basic idea behind Yao’s protocol is to provide a method of computing a
circuit so that values obtained on all wires other than circuit-output wires are never revealed. In
order to do this, two random values are specified for every wire such that one value represents 0
and the other represents 1. For example, let w be the label of some wire. Then, two value k0

w and
k1

w are chosen, where kσ
w represents the bit σ. An important observation here is that even if one of

the parties knows the value kσ
w obtained by the wire w, this does not help it to determine if σ = 0

or σ = 1 (because both k0
w and k1

w are identically distributed). Of course, the difficulty with such
an idea is that it seems to make computation of the circuit impossible. That is, let g be a gate
with incoming wires w1 and w2 and output wire w3. Then, given two random values kσ

1 and kτ
2 ,

it does not seem possible to compute the gate because σ and τ are unknown. We therefore need a
method of computing the value of the output wire of a gate (also a random value k0

3 or k1
3), given

the value of the two input wires to that gate. In short, this method involves providing “garbled
computation tables” that map the random input values to random output values. However, this
mapping should have the property that given two input values, it is only possible to learn the output
value that corresponds to the output of the gate (the other output value must be kept secret). This
is accomplished by viewing the four possible inputs to the gate k0

1, k
1
1 , k

0
2 , k

1
2 as encryption keys.

Then, the output values k0
3 and k1

3, which are also keys, are encrypted under the appropriate keys
from the incoming wires. For example, let g be an OR gate. Then, the key k1

3 is encrypted under
the pairs of keys associated with the values (1, 1), (1, 0) and (0, 1). In contrast, the key k0

3 is
encrypted under the pair of keys associated with (0, 0). See Table 1 below.

input wire w1 input wire w2 output wire w3 garbled computation table

k0
1 k0

2 k0
3 Ek0

1

(Ek0

2

(k0
3))

k0
1 k1

2 k1
3 Ek0

1

(Ek1

2

(k1
3))

k1
1 k0

2 k1
3 Ek1

1

(Ek0

2

(k1
3))

k1
1 k1

2 k1
3 Ek1

1

(Ek1

2

(k1
3))

Table 1: Garbled OR Gate
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Notice that given the input wire keys kα
1 and kβ

2 corresponding to α and β, and the four table
values (found in the fourth column of Table 1), it is possible to decrypt and obtain the output wire

key k
g(α,β)
3 . Furthermore, as required above, this is the only value that can be obtained (the other

keys on the input wires are not known and so only a single table value can be decrypted). In other

words, it is possible to compute the output key k
g(α,β)
3 of a gate, and only that key, without learning

anything about the real values α, β or g(α, β). (We note that the values of the table are randomly
ordered so that a key’s position does not reveal anything about the value that it is associated with.
Despite this random ordering, the specific construction is such that given a pair of input wire keys,
it is possible to locate the table entry that is encrypted by those keys.)

So far we have described how to construct a single garbled gate. A garbled circuit consists
of garbled gates along with “output decryption tables”. These tables map the random values on
circuit-output wires back to their corresponding real values. That is, for a circuit-output wire w,
the pairs (0, k0

w) and (1, k1
w) are provided. Then, after obtaining the key kγ

w on a circuit-output
wire, it is possible to determine the actual output bit by comparing the key to the values in the
output decryption table.1 Notice that given the keys associated with inputs x and y, it is possible
to (obliviously) compute the entire circuit gate-by-gate. Then, having obtained the keys on the
circuit-output wires, these can be “decrypted” providing the result C(x, y).

We now turn to informally describe Yao’s protocol. In this protocol, one of the parties, hence-
forth the sender, constructs a garbled circuit and sends it to the other party, henceforth the receiver.
The sender and receiver then interact so that the receiver obtains the input-wire keys that are asso-
ciated with the inputs x and y (this interaction is described below). Given these keys, the receiver
then computes the circuit as described, obtains the output and concludes the protocol.

It remains for us to describe how the receiver obtains the keys for the circuit-input wires. Here
we differentiate between the inputs of the sender and the inputs of the receiver. Regarding the
sender, it simply sends the receiver the values that correspond to its input. That is, if its ith input
bit is 0 and the wire wi receives this input, then the sender just hands the receiver the string k0

i .
Notice that since all of the keys are identically distributed, the receiver can learn nothing about the
sender’s input from these keys. Regarding the receiver, this is more problematic. The sender cannot
hand it all of the keys pertaining to its input, because this would enable the receiver to compute
more than just its output. (For a given input x of the sender, this would enable the receiver to
compute C(x, ỹ) for every ỹ. This is much more information than a single value C(x, y).) On
the other hand, the receiver cannot openly tell the sender which keys to send it, because then the
sender would learn the receiver’s input. The solution to this is to use a 1-out-of-2 oblivious transfer
protocol [13, 6]. In such a protocol, a sender inputs two values x0 and x1 (in this case, k0

w and
k1

w for some circuit-input wire w), and a receiver inputs a bit σ (in this case, corresponding to its
appropriate input bit). The outcome of the protocol is that the receiver obtains the value xσ (in
this case, the key kσ

w). Furthermore, the receiver learns nothing about the other value x1−σ, and
the sender learns nothing about the receiver’s input σ. By having the receiver obtain its keys in
this way, we obtain that (a) the sender learns nothing of the receiver’s input value, and (b) the
receiver obtains only a single set of keys and so can compute the circuit on only a single value, as
required. This completes our high-level description of Yao’s protocol.

Related work. Sketches of Yao’s protocol have appeared in a number of places; see, for example,
[2, 12, 7]. In addition, an extension of Yao’s protocol to the multiparty case was presented in [3],
with a full proof in [14]. This work also contains an implicit description (and proof) of Yao’s
protocol. We remark also that a full proof of [9] has recently appeared in [7].

1Alternatively, in the output gates it is possible to directly encrypt 0 or 1 instead of k0

w or k1

w, respectively.

3



2 Definitions

We denote the length of the inputs and the security parameter by n. We say that a function
µ(·) is negligible in n (or just negligible) if for every polynomial p(·) and all sufficiently large n’s
it holds that µ(n) < 1/p(n). Let S be an infinite set and let X = {Xs}s∈S and Y = {Ys}s∈S

be distribution ensembles. We say that X and Y are computationally indistinguishable, denoted

X
c
≡ Y , if for every non-uniform polynomial-time distinguisher D and all sufficiently large s ∈ S,

|Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| is negligible in |s|. Finally, for a probabilistic machine M , we
denote by a ← M(x) the event of obtaining a by invoking M on input x and a uniformly chosen
random tape.

2.1 Secure Two-Party Protocols for Semi-Honest Adversaries

The model that we consider here is that of two-party computation in the presence of static semi-
honest adversaries. Such an adversary controls one of the parties (statically, and so at the onset of
the computation) and follows the protocol specification exactly. However, it may try to learn more
information than allowed by looking at the transcript of messages that it received. Since we only
consider static semi-honest adversaries here, we will sometimes omit the qualification that security
is with respect to such adversaries only. The definitions presented here are according to Goldreich
in [7].

Two-party computation. A two-party protocol problem is cast by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as
a functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That
is, for every pair of inputs x, y ∈ {0, 1}n, the output-pair is a random variable (f1(x, y), f2(x, y))
ranging over pairs of strings. The first party (with input x) wishes to obtain f1(x, y) and the
second party (with input y) wishes to obtain f2(x, y). We often denote such a functionality by
(x, y) 7→ (f1(x, y), f2(x, y)). Thus, for example, the oblivious transfer functionality is specified by
((z0, z1), σ) 7→ (λ, zσ), where λ denotes the empty string. When the functionality f is probabilistic,
we sometimes use the notation f(x, y, r), where r is a uniformly chosen random tape used for
computing f .

Privacy by simulation. Intuitively, a protocol is secure if whatever can be computed by a
party participating in the protocol can be computed based on its input and output only. This is
formalized according to the simulation paradigm. Loosely speaking, we require that a party’s view
in a protocol execution be simulatable given only its input and output.2 This then implies that the
parties learn nothing from the protocol execution itself, as desired.

Definition of security. We begin with the following notation:

• Let f = (f1, f2) be a probabilistic polynomial-time functionality and let π be a two-party
protocol for computing f .

2A different definition of security for multiparty computation compares the output of a real protocol execution
to the output of an ideal computation involving an incorruptible trusted third party. This trusted party receives
the parties’ inputs, computes the functionality on these inputs and returns to each their respective output. Loosely
speaking, a protocol is secure if any real-model adversary can be converted into an ideal-model adversary such that the
output distributions are computationally indistinguishable. We remark that in the case of semi-honest adversaries,
this definition is equivalent to the (simpler) simulation-based definition presented here; see [7].
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• The view of the ith party (i ∈ {1, 2}) during an execution of π on (x, y) is denoted viewπ
i (x, y)

and equals (x, ri,mi
1, ...,m

i
t), where ri equals the contents of the ith party’s internal random

tape, and mi
j represents the jth message that it received.

• The output of the ith party during an execution of π on (x, y) is denoted outputπ
i (x, y) and can be

computed from its own view of the execution. Denote outputπ(x, y) = outputπ1 (x, y), outputπ
2 (x, y)).

Definition 1 (security w.r.t. semi-honest behavior): Let f = (f1, f2) be a functionality. We say
that π securely computes f in the presence of static semi-honest adversaries if there exist probabilistic
polynomial-time algorithms S1 and S2 such that

{(S1(x, f1(x, y)), f(x, y))}x,y∈{0,1}∗
c
≡ {(viewπ

1 (x, y), outputπ(x, y))}x,y∈{0,1}∗ (1)

{(S2(y, f2(x, y)), f(x, y))}x,y∈{0,1}∗
c
≡ {(viewπ

2 (x, y), outputπ(x, y))}x,y∈{0,1}∗ (2)

where |x| = |y|.

Equations (1) and (2) state that the view of a party can be simulated by a probabilistic polynomial-
time algorithm given access to the party’s input and output only. We emphasize that the adversary
here is semi-honest and therefore the view is exactly according to the protocol definition. We note
that it is not enough for the simulator Si to generate a string indistinguishable from viewπ

i (x, y).
Rather, the joint distribution of the simulator’s output and the functionality output f(x, y) must
be indistinguishable from (viewπ

i (x, y), outputπ(x, y)). This is necessary for probabilistic function-
alities; see [4, 7] for a full discussion.

A simpler formulation for deterministic functionalities. In the case that the functionality
f is deterministic, it suffices to require that simulator Si generates the view of party Pi, without
considering the joint distribution with the output. That is, we can require that there exist S1 and
S2 such that:

{S1(x, f1(x, y))}x,y∈{0,1}∗
c
≡ {viewπ

1 (x, y)}x,y∈{0,1}∗ (3)

{S2(y, f2(x, y))}x,y∈{0,1}∗
c
≡ {viewπ

2 (x, y)}x,y∈{0,1}∗ (4)

The reason that this suffices is that when f is deterministic, outputπ(x, y) must equal f(x, y).
Furthermore, the distinguisher for the ensembles can compute f(x, y) by itself (because it is given
x and y which are the indices of the ensemble). See [7, Section 7.2.2] for more discussion.

Deterministic same-output functionalities. We say that a functionality f = (f1, f2) is same-

output if f1 = f2. In our presentation, we will show how to securely compute deterministic same
output functionalities only. This suffices for obtaining secure protocols for arbitrary probabilistic
functionalities.

In order to see this, first note that given a protocol for securely computing any deterministic
functionality, it is possible to construct a secure protocol for computing any probabilistic func-
tionality as follows. Let f = (f1, f2) be a probabilistic functionality. Then, define a deterministic
functionality f ′((x, r), (y, s)) = f(x, y, r ⊕ s) and assume that we have a secure protocol π ′ for
computing f ′. Now, the following is a secure protocol π for computing f . Upon respective inputs
x, y ∈ {0, 1}n, parties P1 and P2 choose uniformly distributed strings r ∈R {0, 1}

n and s ∈R {0, 1}
n,

respectively. They then invoke the protocol π ′ for securely computing f ′ in order to both obtain
f ′((x, r), (y, s)) = f(x, y, r ⊕ s). The fact that this yields a secure protocol for computing f was
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formally proved in [7, Section 7.3]. Note that the size of the circuit computing f ′ is of the same
order as the size of the circuit computing f . The only difference is that the circuit for f ′ has |r|
additional exclusive-or gates, where |r| is the length of f ’s random tape.

So far we have shown that it suffices to consider deterministic functionalities. Next, we show that
the restriction to same-output functionalities is also not a limitation. That is, as above it is possible
to construct a secure protocol for computing arbitrary functionalities from a secure protocol for
computing same-output functionalities. In particular, let f = (f1, f2) be an arbitrary functionality.
Then, define the same-output functionality f ′ as follows: f ′((x, r), (y, s)) = (f1(x, y)⊕r ‖ f2(x, y)⊕
s) where a‖b denotes the concatenation of a with b. Now, given a secure protocol π ′ for computing
the same-output functionality f ′, it is possible to securely compute the functionality f = (f1, f2).
As above, upon respective inputs x, y ∈ {0, 1}n, parties P1 and P2 choose uniformly distributed
strings r ∈R {0, 1}

n and s ∈R {0, 1}
n, respectively. They then invoke the protocol π ′ for securely

computing f ′ in order to both obtain f ′((x, r), (y, s)); denote the first half of this output by v and
the second half by w. Then, upon receiving (v, w), party P1 computes v ⊕ r and obtains f1(x, y).
Likewise, upon receiving (v, w), party P2 computes w⊕s and obtains f2(x, y). It is easy to see that
the resulting protocol securely computes f ′. As above, the size of the circuit computing f ′ is of the
same order as the size of the circuit computing f . The only difference is that f ′ has one additional
exclusive-or gate for every circuit-output wire.

Since it suffices to consider deterministic same-output functions only, we will present Yao’s
protocol for this simpler case. The generalization to arbitrary probabilistic functionalities will then
be derived by corollary from the above arguments.

3 Tools

3.1 “Special” Private-Key Encryption

Our construction uses a private-key encryption scheme that has indistinguishable encryptions for
multiple messages. Informally speaking, this means that for every two (known) vectors of messages
x and y, no polynomial-time adversary can distinguish an encryption of the vector x from an
encryption of the vector y. We stress that according to our construction of Yao’s garbled circuit,
the encryption scheme must be secure for multiple messages. Therefore one-time pads cannot be
used. We refer the reader to [7, Definition 5.2.9] for a formal definition of secure encryption under
multiple messages.

We will require an additional property from the encryption scheme that we use. Loosely speak-
ing, we require that an encryption under one key will fall in the range of an encryption under
another key with negligible probability. We also require that given the key k, it is possible to
efficiently verify if a given ciphertext is in the range of k. (These two requirements are very easily
satisfied, as demonstrated below.) The reason that we require these additional properties is to
enable the receiver to correctly compute the garbled circuit. Recall that in every gate, the receiver
is given two random keys that enable it to decrypt and obtain the random key for the gate-output
wire; see Table 1. A problem that immediately arises here is how can the receiver know which value
is the intended decryption. (Notice that it may be the case that all strings can be decrypted.) By
imposing the requirement that encryptions under one key will almost never be valid encryptions
under another key, and requiring that this can also be efficiently verified, it will hold that only
one of the values will be valid (except with negligible probability). The receiver will then take the
(single) correctly-decrypted value as the key for the gate-output wire.
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We now formally define the requirements on the encryption scheme:

Definition 2 Let (G,E,D) be a private-key encryption scheme and denote the range of a key in

the scheme by Rangen(k)
def
= {Ek(x)}x∈{0,1}n . Then,

1. We say that (G,E,D) has an elusive range if for every probabilistic polynomial-time machine
A, every polynomial p(·) and all sufficiently large n’s

Prk←G(1n)[A(1n) ∈ Rangen(k)] <
1

p(n)

2. We say that (G,E,D) has an efficiently verifiable range if there exists a probabilistic polynomial-
time machine M such that M(1n, k, c) = 1 if and only if c ∈ Rangen(k).

By convention, for every c /∈ Rangen(k), we have that Dk(c) = ⊥.

Notice that the requirements for an “elusive range” are quite weak. In particular, the machine A is
oblivious in that it is given no information on k and no examples of ciphertexts within Rangen(k).
Thus, A must “hit” the range with no help whatsoever.

We now show that it is easy to construct encryption schemes with the above properties. Let
F = {fk} be a family of pseudorandom functions [8], where fk : {0, 1}n → {0, 1}2n for k ∈ {0, 1}n.
Then, define

Ek(x) = 〈r, fk(r)⊕ x0n〉

where x ∈ {0, 1}n, r ∈R {0, 1}
n and x0n denotes the concatenation of x and 0n.3 The fact that

this encryption scheme has indistinguishable encryptions under multiple messages is well-known.
Regarding our additional requirements:

1. Elusive range: Notice that if a truly random function frand was used instead of fk, then the
probability that a value c output by the machine A is in the range of 〈r, frand(r) ⊕ x0n〉 is
negligible. This follows from the fact that obtaining such a c involves finding a value r and
then predicting the last n bits of frand(r) (notice that these last n bits are fully revealed
in frand(r) ⊕ x0n). Since frand is random, this prediction can succeed with probability at
most 2−n. Now, by the assumption that fk is pseudorandom, it follows that a polynomial-
time machine A will also succeed in generating such a c with at most negligible probability.
Otherwise, such an A could be used to distinguish fk from a random function.

2. Efficiently verifiable range: Given k and c = 〈r, s〉, it is possible to compute fk(r) and verify
that the last n bits of fk(r) equal the last n bits of s. If yes, then it follows that c ∈ Rangen(k),
and if not then c /∈ Rangen(k).

We stress that there are many possible ways to ensure correctness in the decryption of a gate. For
example, as described in [12], explicit (and randomly permuted) indices may be used instead.4

3In fact, the string of 0’s can have any super-logarithmic length. We set it to be of length n for simplicity.
4We chose this method somewhat arbitrarily. We feel some preference due to the fact that the gate description and

circuit construction is the simplest this way. As we will see, however, some price is paid in the proof of correctness.
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3.2 Oblivious Transfer

As we have mentioned, the 1-out-of-2 oblivious transfer functionality is defined by ((x0, x1), σ) 7→
(λ, xσ) where λ denotes the empty string. For the sake of self-containment, we will briefly describe
the oblivious transfer protocol of [6], that is secure in the presence of semi-honest adversaries. Our
description will be for the case that x0, x1 ∈ {0, 1}; when considering semi-honest adversaries, the
general case can be obtained by running the single-bit protocol many times in parallel.

Protocol 1 (oblivious transfer [6]):

• Inputs: P1 has x0, x1 ∈ {0, 1} and P2 has σ ∈ {0, 1}.

• The protocol:

1. P1 randomly chooses a permutation-trapdoor pair (f, t) from a family of enhanced trapdoor
permutations.5 P1 sends f (but not the trapdoor t) to P2.

2. P2 chooses a random vσ in the domain of f and computes wσ = f(vσ). In addition, P2

chooses a random w1−σ in the domain of f , using the “enhanced” sampling algorithm (see
Footnote 5). P2 sends (w0, w1) to P1.

3. P1 uses the trapdoor t and computes v0 = f−1(w0) and v1 = f−1(w1). Then, it computes
b0 = B(v0) ⊕ x0 and b1 = B(v1) ⊕ x1, where B is a hard-core bit of f . Finally, P1 sends
(b0, b1) to P2.

4. P1 computes xσ = B(vσ)⊕ bσ and outputs xσ.

The proof to the following theorem can be found in [7, Section 7.3.2].

Theorem 3 Assuming that (f, t) are chosen from a family of enhanced trapdoor permutations,
Protocol 1 securely computes the 1-out-of-2 oblivious transfer functionality in the presence of static
semi-honest adversaries.

4 Yao’s Two-Party Protocol

We are now ready to describe the protocol. We begin by formally describing how the garbled circuit
is constructed. Then, we describe the protocol and prove its security.

4.1 The Garbled Circuit Construction

In this section, we describe the garbled circuit construction. Let C be a boolean circuit that receives
two inputs x, y ∈ {0, 1}n and outputs C(x, y) ∈ {0, 1}n (for simplicity, we assume that the input
length, output length and the security parameter are all of the same length n). We also assume
that C has the property that if a circuit-output wire comes from a gate g, then gate g has no wires
that are input to other gates.6 (Likewise, if a circuit-input wire is itself also a circuit-output, then
it is not input into any gate.)

We begin by describing the construction of a single garbled gate g in C. The circuit C is
boolean, and therefore any gate is represented by a function g : {0, 1} × {0, 1} → {0, 1}. Now,

5Informally speaking, an enhanced trapdoor permutation has the property that it is possible to sample from the
range, so that given the coins used for sampling it is still hard to invert the value. See [7, Appendix C.1] for more
details.

6This requirement is due to our labelling of gates described below; see Footnote 7. We note that this assumption
on C increases the number of gates by at most n.
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let the two input wires to g be labelled w1 and w2, and let the output wire from g be labelled
w3. Furthermore, let k0

1, k
1
1 , k

0
2 , k

1
2 , k

0
3 , k1

3 be six keys obtained by independently invoking the key-
generation algorithm G(1n); for simplicity, assume that these keys are also of length n. Intuitively,

we wish to be able to compute k
g(α,β)
3 from kα

1 and kβ
2 , without revealing any of the other three

values k
g(1−α,β)
3 , k

g(α,1−β)
3 , k

g(1−α,1−β)
3 . The gate g is defined by the following four values

c0,0 = Ek0

1

(Ek0

2

(k
g(0,0)
3 ))

c0,1 = Ek0

1

(Ek1

2

(k
g(0,1)
3 ))

c1,0 = Ek1

1

(Ek0

2

(k
g(1,0)
3 ))

c1,1 = Ek1

1

(Ek1

2

(k
g(1,1)
3 ))

where E is from a private key encryption scheme (G,E,D) that has indistinguishable encryptions
for multiple messages, and has an elusive efficiently verifiable range; see Section 3.1. The actual
gate is defined by a random permutation of the above values, denoted as c0, c1, c2, c3; from here on
we call them the garbled table of gate g. Notice that given kα

1 and kβ
2 , and the values c0, c1, c2, c3, it

is possible to compute the output of the gate k
g(α,β)
3 as follows. For every i, compute D

k
β
2

(Dkα
1
(ci)).

If more than one decryption returns a non-⊥ value, then output abort. Otherwise, define kγ
3 to be

the only non-⊥ value that is obtained. (Notice that if only a single non-⊥ value is obtained, then

this will be k
g(α,β)
3 because it is encrypted under the given keys kα

1 and kβ
2 . Later we will show that

except with negligible probability, only one non-⊥ value is indeed obtained.)
We are now ready to show how to construct the entire garbled circuit. Let m be the number

of wires in the circuit C, and let w1, . . . , wm be labels of these wires. These labels are all chosen
uniquely with the following exception: if wi and wj are both output wires from the same gate g,
then wi = wj (this occurs if the fan-out of g is greater than one). Likewise, if an input bit enters
more than one gate, then all circuit-input wires associated with this bit will have the same label.7

Next, for every label wi, choose two independent keys k0
i , k

1
i ← G(1n); we stress that all of these

keys are chosen independently of the others. Now, given these keys, the four garbled values of
each gate are computed as described above and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply consist of the
values (0, k0

i ) and (1, k1
i ) where wi is a circuit-output wire. (Alternatively, output gates can just

compute 0 or 1 directly. That is, in an output gate, one can define cα,β = Ekα
1
(E

k
β
2

(g(α, β))) for

every α, β ∈ {0, 1}.)
The entire garbled circuit of C, denoted G(C), consists of the garbled table for each gate and

the output tables. We note that the structure of C is given, and the garbled version of C is simply
defined by specifying the output tables and the garbled table that belongs to each gate. This
completes the description of the garbled circuit.

Correctness. We now claim that the above garbled circuit enables correct computation of the
function. That is, given the appropriate input strings and the garbled table for each gate, it is

7This choice of labelling is not essential and it is possible to provide unique labels for all wires. However, in such
a case, the table of a gate with fan-out greater than one will have to be redefined so that the keys of all of the wires
leaving the gate are encrypted. We chose this labelling because it seems to make for a simpler gate definition. We
note, however, that due to this choice, we must assume that if a gate g has an output wire exiting from it, then it
does not have another wire that exits it and enters another gate. As we have mentioned, this increases the number
of gates by at most n.
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possible to obtain the correct output. It is at this point that we use the “special” properties of the
encryption scheme described in Section 3.1.

Claim 4 (correctness): Let x = x1 · · · xn and y = y1 · · · yn be two n-bit inputs for C. Further-
more, let w1, . . . , wn be the input labels corresponding to x, and let wn+1, . . . , w2n be the input
labels corresponding to y. Finally, assume that the encryption scheme used to construct G(C) has
an elusive and efficiently verifiable range. Then, given the garbled circuit G(C) and the strings
kx1

1 , . . . , kxn
n , ky1

n+1, . . . , k
yn

2n, it is possible to compute C(x, y), except with negligible probability.

Proof: We begin by showing that every gate can be “decrypted” correctly. Specifically, let g be a
gate with incoming wires w1, w2 and outgoing wire w3. Then, we show that for every α, β ∈ {0, 1},

given kα
1 and kβ

2 and the garbled table of g, it is possible to determine k
g(α,β)
3 , except with negligible

probability. More formally, let c0, c1, c2, c3 be the garbled table of gate g. Then, except with
negligible probability, there exists a single i such that ci ∈ Rangen(kα

1 ) and Dkα
1
(ci) ∈ Rangen(kβ

2 ).
In other words, at most one of the values decrypts correctly (from here on we use this informal
term to mean what is formally described above).

This follows from the fact that the encryption scheme has an elusive range. Specifically, recall
that the gate was constructed by first choosing independent values for the gate-input and gate-
output wires k0

1 , k
1
1 , k

0
2 , k

1
2 , k

0
3 , k

1
3 . Next, the values c0, c1, c2 and c3 are computed. Now, assume

that there are (at least) two values c such that for both of them c ∈ Range(kα
1 ) and Dkα

1
(c) ∈

Rangen(kβ
2 ); denote these two values ci and cj . Without loss of generality, assume also that ci =

Ekα
1
(E

k
β
2

(k
g(α,β)
3 )); i.e., assume that ci should be correctly decrypted. There are two cases regarding

cj :

1. cj = Ekα
1
(E

k
1−β
2

(x)) for x ∈ {k0
3 , k

1
3}:

By our assumption regarding cj , it follows that cj ∈ Range(kα
1 ) and Dkα

1
(cj) ∈ Rangen(kβ

2 ).

This means that E
k
1−β
2

(x) ∈ Rangen(kβ
2 ). Next, as mentioned above, recall that k1−β

2 , k0
3 , and

k1
3 are all uniform and independent of kβ

2 . Therefore, we can define a machine A that chooses
two random keys k′, k′′ ← G(1n) and outputs c = Ek′(k′′). The probability that c ∈ Range(k)

for k ← G(1n) equals the probability that E
k
1−β
2

(x) ∈ Rangen(kβ
2 ) (recall that x ∈ {k0

3 , k
1
3}).

Since the encryption scheme (G,E,D) has an elusive range, we conclude that the probability

that c ∈ Rangen(k) is negligible. Therefore, the probability that E
k
1−β
2

(x) ∈ Rangen(kβ
2 ) is

also negligible. This concludes this case.

2. cj = E
k1−α
1

(x) for x = Ek′(k′′) where k′ ∈ {k0
2 , k

1
2} and k′′ ∈ {k0

3 , k
1
3}:

In this case, we have that Ek1−α
1

(x) ∈ Rangen(kα
1 ). Using the same arguments as above, and

noticing once again that k1−α
1 , k′ and k′′ are all independent of kα

1 , we have that this case
occurs also with at most negligible probability.

Now, given that in every gate at most one ci decrypts correctly, we prove the claim. In order to do
this, we define that the key k is correct for wire wi if k = kα

i , where α ∈ {0, 1} is the value obtained
on wire wi when computing the un-garbled circuit C on inputs (x, y). By induction on the circuit,
starting from the bottom and working up, we show that for every wire, the correct key for the wire is
obtained. This holds for the circuit-input wires by the fact that the keys kx1

1 , . . . , kxn
n , ky1

n+1, . . . , k
yn

2n

are given, and is the base case of the induction. Assume that it is true for a gate g with gate-input
wires wi and wj and let kα

i and kβ
j be the respective keys held for these wires. Then, by the

10



decryption procedure, it follows that the value k
g(α,β)
` = D

k
β
j

(Dkα
i
(cα,β)) is obtained, where w` is

the output wire of the gate.8 Furthermore, by the arguments shown above, this is the only value
that is decrypted correctly. Therefore, the correct key for the output wire of gate g is also obtained.
This concludes the inductive step.

It follows that the correct keys of the output wires of the circuit are obtained, except with
negligible probability. That is, the keys obtained for the circuit-output wires all correspond to the
output value C(x, y). Therefore, the value obtained after using the output tables is exactly C(x, y),
as required.

Removing the error probability. The above construction allows for a negligible probability of
error. This is due to two possible events: (a) in some gate more than one value decrypts correctly, or
(b) in some gate, the correct value does not decrypt correctly. As we have mentioned in Footnote 8,
this second event can occur if the encryption scheme has decryption errors. This problem can be
removed by using a scheme without decryption errors (this is not a limitation because decryption
errors can always be removed [5]).

Regarding the first event causing error, this can be overcome in one of two ways. First, when
constructing the circuit, it is possible to check that an error does not occur. Then, if an error has
occurred, it is possible to reconstruct the garbled circuit again, repeating until no errors occur. (For
this to work, we need to assume that the machine that verifies if a value is in the range of a key
runs in deterministic polynomial-time, as is the case in our construction.) Alternatively, assume
that it has only a one-sided error and never returns 1 when a value is not in the range.) The
problem with this approach is that the construction of the circuit now runs in expected, and not
strict, polynomial-time. Another approach is to use explicit randomly permuted indices; see [12]
for example.

4.2 Yao’s Two-Party Protocol

As we have seen above, given the keys that correspond to the correct input, it is possible to obtain
the correct output from the garbled circuit. Thus, the protocol proceeds by party P1 constructing
the garbled circuit and giving it to P2. Furthermore, P1 hands P2 the keys that correspond to
x = x1 · · · xn. In addition, P2 must obtain the keys that correspond to its input y = y1 · · · yn.
However, this must be done carefully, ensuring the following:

1. P1 should not learn anything about P2’s input string y.

2. P2 should obtain the keys corresponding to y and no others. (Otherwise, P2 could compute
C(x, y) and C(x, y′) for y′ 6= y, in contradiction to the requirement that C(x, y) and nothing
else is learned.)

The above two problems are solved by having P1 and P2 run 1-out-of-2 oblivious transfer proto-
cols [13, 6]. That is, for every bit of P2’s input, the parties run an oblivious transfer protocol where
P1’s input is (k0

n+i, k
1
n+i) and P2’s input is yi. In this way, P2 obtains the keys ky1

n+1, . . . , k
yn

2n and
only these keys. In addition, P1 learns nothing about y. We are now ready to formally describe
the protocol.

8This holds if there are no decryption errors (i.e., if for every k and every x, Dk(Ek(x)) = x). If there is a
negligible error in the decryption, then we will inherit a negligible error probability here.
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Protocol 2 (Yao’s two-party protocol):

• Inputs: P1 has x ∈ {0, 1}n and P2 has y ∈ {0, 1}n.

• Auxiliary input: A boolean circuit C such that for every x, y ∈ {0, 1}n it holds that C(x, y) =
f(x, y), where f :{0, 1}n × {0, 1}n → {0, 1}n. We require that C is such that if a circuit-output
wire leaves some gate g, then gate g has no other wires leading from it into other gates (i.e.,
no circuit-output wire is also a gate-input wire). Likewise, a circuit-input wire that is also a
circuit-output wire enters no gates.

• The protocol:

1. P1 constructs the garbled circuit G(C) as described in Section 4.1, and sends it to P2.

2. Let w1, . . . , wn be the circuit-input wires corresponding to x, and let wn+1, . . . , w2n be the
circuit-input wires corresponding to y. Then,

(a) P1 sends P2 the strings kx1

1 , . . . , kxn
n .

(b) For every i, P1 and P2 execute a 1-out-of-2 oblivious transfer protocol in which P1’s
input equals (k0

n+i, k
1
n+i) and P2’s input equals yi.

The above oblivious transfers can all be run in parallel.

3. Following the above, P2 has obtained the garbled circuit and 2n keys corresponding to the 2n
input wires to C. Party P2 then computes the circuit, as described in Section 4.1, obtaining
f(x, y). P2 then sends f(x, y) to P1 and they both output this value.

We now provide a formal proof that Protocol 2 securely computes the functionality f . Our proof
could be simplified by relying on a composition theorem, such as that found in [7, Section 7.3.1].
However, for the sake of self-containment, we provide a direct proof of the security of the protocol.

Theorem 5 Let f be a deterministic same-output functionality. Furthermore, assume that the
oblivious transfer protocol is secure in the presence of static semi-honest adversaries, and that the
encryption scheme has indistinguishable encryptions for multiple messages, and has an elusive and
efficiently verifiable range. Then, Protocol 2 securely computes f in the presence of static semi-
honest adversaries.

Proof: Intuitively, since the oblivious transfer protocol is secure, party P2 receives exactly one key
per circuit-input wire. Then, by the security of the encryption scheme, it is only able to decrypt one
value in each gate. Furthermore, it has no idea if the value obtained in this decryption corresponds
to a 0 or a 1. Therefore, it learns nothing from this computation, except for the output itself. We
now formally prove this. Recall that since we consider deterministic functionalities, we can use the
simpler formulation of security as stated in Equations (3) and (4). We prove the case separately
when P1 is corrupted and when P2 is corrupted.

Case 1 – P1 is corrupted

Notice that P1’s view in an execution of π consists only of its view in the oblivious transfer protocols,
and a single message that it receives from P2 at the end (that is supposedly the output). By the
security of the oblivious transfer protocol, P1’s view in the oblivious transfer executions can be
generated without knowing P2’s input. Furthermore, by the correctness of the construction of
the garbled circuit (Claim 4), party P2 obtains the correct output f(x, y), except with negligible
probability. Therefore, the message that P1 receives from P2 at the end of a real protocol execution
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equals f(x, y), except with negligible probability. A simulator that is given (x, f(x, y)) can therefore
simulate the complete view of P1 by first simulating its view in the oblivious transfers and then
writing f(x, y) at the end. The formal proof of this follows a rather standard hybrid argument.

We begin by describing the simulator S1: Upon input (x, f(x, y)), simulator S1 uniformly
chooses a random-tape rC for P1 and generates the garbled circuit that P1 would generate with
randomness rC . Then, let k0

n+1, k
1
n+1, . . . , k

1
2n, k1

2n be the keys that correspond to P2’s input in the
constructed garbled circuit, and let SOT

1 be the simulator that is guaranteed to exist for party P1

in the oblivious transfer protocol. For every i = 1, . . . , n, simulator S1 invokes the simulator SOT
1

upon input (k0
n+i, k

1
n+i) in order to obtain P1’s view in the ith oblivious transfer (since P1 has no

output from the oblivious transfer, the simulator is invoked with its input only). Recall that the
view generated by SOT

1 is made up of the input (in this case (k0
n+i, k

1
n+i)), a random tape, and a

transcript of messages received. We denote Sot
1 (k0

n+i, k
1
n+i) = ((k0

n+i, k
1
n+i), si, ST ot

1 (k0
n+i, k

1
n+i)),

where the si values are the random tapes generated by the simulator, and ST denotes the simulated
transcript. Given this notation, we define that S1 outputs

(

x, rC , s, ST ot
1 (k0

n+1, k
1
n+1), . . . , ST ot

1 (k0
2n, k1

2n), f(x, y)
)

(5)

where s = s1, . . . , sn. We note that in actuality, since the oblivious transfers are run in parallel,
S1 rearranges the messages inside ST ot

1 (k0
n+1, k

1
n+1), . . . , ST ot

1 (k0
2n, k1

2n) so that they appear in the
same order as when the protocols are run in parallel. This concludes the description of S1. We now
prove that

{S1(x, f(x, y))}x,y∈{0,1}∗
c
≡ {viewπ

1 (x, y)}x,y∈{0,1}∗

where {S1(x, f(x, y))} is as shown in Eq. (5) and π denotes Protocol 2. We first prove a hybrid
argument over the simulated views for the oblivious transfers. That is, we define a hybrid distribu-
tion Hi in which the first i oblivious transfers are simulated and the last n− i are real. Formally,
let Hi(x, y, rC) denote the distribution:

{

(x, rC , s1, . . . , si, ri+1, . . . , rn, ST ot
1 (k0

n+1, k
1
n+1), . . . , STOT

1 (k0
n+i, k

1
n+i),

RT ot
1 ((k0

n+i+1, k
1
n+i+1), yi), . . . , RT ot

1 ((k0
2n, k1

2n), yn), f(x, y))
}

where RTOT
1 ((k0

n+j , k
1
n+j), yj) denotes the real transcript from viewot

1 ((k0
n+j , k

1
n+j), yj) and rj is the

(truly) random tape from this view. Notice that the keys k0
n+j , k

1
n+j here are as defined by the

garbled circuit, when generated with the random tape rC . Notice also that when rC is uniformly
chosen, Hn(x, y, rC) equals the distribution that appears in Eq. (5); i.e., it equals S1(x, f(x, y)).
Furthermore, H0(x, y, rC) is almost the same as viewπ

1 (x, y); the only difference is that the last
component of H0 equals f(x, y) whereas the last component of viewπ

1 (x, y) is the message that P2

would send P1 in the last message of the protocol. For simplicity, from here on we will assume that
x, y, rC are all of the same length, and in particular, are of length n.

We now prove that {H0(x, y, rC)}
c
≡ {Hn(x, y, rC)}. By contradiction, assume that there exists

a non-uniform polynomial-time distinguisher D and a polynomial p(·) such that for infinitely many
n’s (and x, y, rC ∈ {0, 1}

n),

|Pr[D(H0(x, y, rC)) = 1]− Pr[D(Hn(x, y, rC)) = 1]| >
1

p(n)

It follows that there exists an i such that for infinitely many x, y, rC ,

|Pr[D(Hi(x, y, rC)) = 1]− Pr[D(Hi+1(x, y, rC)) = 1]| >
1

np(n)
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We now use D to contradict the security of the oblivious transfer protocol. First, notice that the
only difference between Hi(x, y, rC) and Hi+1(x, y, rC) is that the random-tape and transcript of
the (i + 1)th oblivious transfer are according to viewot

1 ((k0
n+i+1, k

1
n+i+1), yi+1) in Hi and accord-

ing to Sot
1 (k0

n+i+1, k
1
n+i+1) in Hi+1. Furthermore, given x, y, rC , i and a view v (which is either

viewot
1 ((k0

n+i+1, k
1
n+i+1), yi+1) or SOT

1 (k0
n+i+1, k

1
n+i+1)) it is possible to construct a distribution H

such that if v is from viewOT
1 then H = Hi(x, y, rC) and if v is from Sot

1 then H = Hi+1(x, y, rC ). It
therefore follows that for infinitely many inputs, it is possible to distinguish the view of P1 in a real
oblivious transfer execution from its simulated view with the same probability that it is possible to
distinguish Hi(x, y, rC) from Hi+1(x, y, rC). However, this contradicts the security of the oblivious

transfer protocol. We therefore conclude that {H0(x, y, rC)}
c
≡ {Hn(x, y, rC)}.

Until now, we have shown that

{S1(x, f(x, y))}
c
≡

{

(x, rC , r, RT ot
1 ((k0

n, k1
n), y1), . . . , RT ot

1 ((k0
2n, k1

2n), yn), f(x, y))
}

(6)

where r = r1, . . . , rn. We now show that
{

(x, r, rC , RT ot
1 ((k0

n, k1
n), y1), . . . , RT ot

1 ((k0
2n, k1

2n), yn), f(x, y))
}

c
≡

{

(x, rC , r, RT ot
1 ((k0

n, k1
n), y1), . . . , RT ot

1 ((k0
2n, k1

2n), yn),msg3(2→1))
}

(7)

where msg3(2→1) denotes the message that P2 sends to P1 in step 3 of the protocol. Notice that
the only difference between these distributions is whether the last component equals f(x, y) or the
message sent by P2 to P1 in step 3. Recall that this message sent by P2 is exactly the output that
it obtains from the garbled circuit. Now, by Claim 4, the output obtained by P2 from the garbled
circuit when P1 sends it the keys corresponding to x and it receives the keys corresponding to y
from the oblivious transfers, equals f(x, y) except with negligible probability. By the security of
the oblivious transfer protocol, we have that P2 receives the keys corresponding to y, except with
negligible probability. (This follows immediately from the correctness condition which is implied
by the definition of security.) Therefore, msg3(2→1) = f(x, y) except with negligible probability,
and Eq. (7) follows. Notice now that

{

(x, rC , r, RT ot
1 ((k0

n, k1
n), y1), . . . , RT ot

1 ((k0
2n, k1

2n), yn),msg3(2→1))
}

≡ {viewπ
1 (x, y)} (8)

and so by combining Equations (6) to (8), the proof of this case is concluded.

Case 2 – P2 is corrupted

In this case, we construct a simulator S2 that is given input (y, f(x, y)) and generates the view of
P2 in Protocol 2. Notice that P2 expects to receive a garbled circuit, and so S2 must generate such
a circuit. Furthermore, this circuit must be such that P2 would obtain f(x, y) when computing
the circuit according to the protocol instructions. Of course, S2 cannot just honestly generate the
circuit, because it does not know x. (Without knowing x, it would not know which of the keys
k0
1 , k

1
1 , . . . , k

0
n, k1

n to hand to P2.) It therefore generates a “fake” garbled circuit that always evaluates
to f(x, y), irrespective of which keys are used. This is achieved by using gate tables in which all four
entries encrypt the same key, and therefore the values of the input wires do not affect the value of the
output wire. The crux of the proof is in showing that this circuit is indistinguishable from the real
garbled circuit that P2 receives in a real execution. In order to show this we use a hybrid argument.
We first show that P2’s view in a real execution of the protocol is indistinguishable from a hybrid
distribution Hot(x, y) in which the real oblivious transfers are replaced with simulated ones. Next,
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we consider a series of hybrids Hi(x, y) in which one gate at a time is replaced in the real garbled
circuit. The hybrid distributions are such that H0(x, y) contains a real garbled circuit (and therefore
equals Hot(x, y)). In contrast, distribution H|C|(x, y) contains the same fake circuit constructed
by S2 (and, as we will see, therefore equals S2(y, f(x, y))). By a standard hybrid argument, it
follows that a distinguisher between H0(x, y) and H|C|(x, y) can be used to distinguish between two
successive hybrids. However, the security of the encryption scheme that is used for generating the
gate tables ensures that neighboring hybrids are computationally indistinguishable. We conclude

that H0(x, y) is indistinguishable from H|C|(x, y), and so {S2(y, f(x, y))}
c
≡ {viewπ

2 (x, y)}.
We now formally describe S2. Simulator S2 begins by constructing a fake garbled circuit, denote

G̃(C). This is accomplished as follows. For every wire wi in the circuit C, simulator S2 chooses
two random keys ki and k′i. Next, the gates are computed: let g be a gate with input wires wi, wj

and output wire w`. Then, g contains encryptions of the single key k` under all four combinations
of the keys ki, k

′
i, kj , k

′
j that are associated with the input wires to g (in contrast, the key k ′` is not

encrypted at all). That is, S2 computes the following values:

c0,0 = Eki
(Ekj

(k`))

c0,1 = Eki
(Ek′

j
(k`))

c1,0 = Ek′
i
(Ekj

(k`))

c1,1 = Ek′
i
(Ek′

j
(k`))

and writes them in random order. This is carried out for all of the gates of the circuit. It re-
mains to describe how the output decryption tables are constructed. Denote the n-bit output
f(x, y) by z1 · · · zn (recall that this is part of S2’s input), and denote the circuit-output wires by
wm−n+1, . . . , wm. In addition, for every i = 1, . . . , n, let km−n+i be the (single) key encrypted in
the gate from which wire wm−n+i left, and let k′m−n+i be the other key (as described above). Then,
the output decryption table for wire wm−n+i is given by: [(0, km−n+i), (1, k

′
m−n+i)] if zi = 0, and

[(0, k′m−n+i), (1, km−n+i)] if zi = 1. This completes the description of the construction of the fake

garbled circuit G̃(C). (Notice that the keys km−n+1, . . . , km decrypt to z1 · · · zn = f(x, y) exactly.)
Next, S2 generates the view of P2 in the phase where it obtains the keys. First, it prepares the

keys k1, . . . , kn to be those that P1 sends P2 in step 2a of Protocol 2. (It actually doesn’t matter
which keys are given here, as long as they are specified.) Next, let Sot

2 be the simulator that is
guaranteed to exist for the oblivious transfer protocol. Then, for every i = 1, . . . , n, simulator S2

invokes the simulator SOT
2 upon input (yi, kn+i) in order to obtain P2’s view in the ith oblivious

transfer (here yi and kn+i are P2’s respective input and output in the ith oblivious transfer). Recall
that the view generated by SOT

2 is made up of the input (in this case yi), a random tape, and a
transcript of messages received. We denote Sot

2 (yi, kn+i) = (yi, si, ST ot
2 (yi, kn+i)); ST denotes the

simulated transcript. Given this notation, we define that S2 outputs
(

y, s, G̃(C), k1, . . . , kn, ST ot
2 (y1, kn+1), . . . , ST ot

2 (yn, k2n)
)

where s = s1, . . . , sn. We note that in actuality, since the oblivious transfers are run in parallel, S2

rearranges the messages inside ST OT
2 (y1, kn+1), . . . , ST ot

2 (yn, k2n) so that they appear in the same
order as when the protocols are run in parallel. This concludes the description of S2. We now prove
that

{S2(y, f(x, y))}x,y∈{0,1}∗
c
≡ {viewπ

2 (x, y)}x,y∈{0,1}∗

First, observe that

{viewπ
2 (x, y)} ≡

{

(y, r,G(C), kx1

1 , . . . , kxn
n , RT ot

2 ((k0
n+1, k

1
n+1), y1), . . . , RT ot

2 ((k0
2n, k1

2n), yn))
}
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where RTOT
2 ((k0

n+i, k
1
n+i), yi) denotes the real transcript from viewot

2 ((k0
n+i, k

1
n+i), yi) and ri is the

(truly) random tape from this view. We also denote the hybrid distribution where the real oblivious
transfers are replaced by simulated ones by

Hot(x, y) = (y, s,G(C), kx1

1 , . . . , kxn
n , ST ot

2 (y1, k
y1

n+1), . . . , ST ot
2 (yn, kyn

2n))

We first show that
{Hot(x, y)}x,y∈{0,1}∗

c
≡ {viewπ

2 (x, y)}x,y∈{0,1}∗ (9)

The only difference between the distributions in Eq. (9) is due to the fact that simulated views of
the oblivious transfers are provided instead of real ones. Indistinguishability therefore follows from
the security of the oblivious transfer protocol. The formal proof of this is almost identical to the
case that P1 is corrupted, and is therefore omitted.

Next, we consider a series of hybrid experiments Hi(x, y) in which one gate at a time is replaced
in the real garbled circuit G(C) until the result is the fake garbled circuit G̃(C). Before we do
this, we consider an alternative way of constructing the fake garbled circuit G̃(C). This alternative
construction uses knowledge of both inputs x and y, but results in exactly the same fake garbled
circuit as that constructed by S2 that is given only y and f(x, y). (This is therefore just a mental
experiment, or a different description of S2. Nevertheless, it is helpful in describing the proof.)

The alternative construction works by first traversing the circuit from the circuit-input wires to
the circuit-output wires, and labelling all keys as active or inactive. Intuitively, a key is active if it
is used in order to compute the garbled circuit upon input (x, y); otherwise it is inactive. Formally,
a key kα

a that is associated with wire wa is active if when computing the non-garbled circuit C on
input (x, y), the bit that is obtained on wire wa equals α. As expected, an inactive key is just any
key that is not active. Now, the alternative construction of G̃(C) works by first constructing the real
garbled circuit G(C). Next, using knowledge of both x and y, all keys in G(C) are labelled active or
inactive (given x and y, it is possible to compute C(x, y) and obtain the real values on each wire).
Finally, G̃(C) is obtained by replacing each gate g as follows: Let wa be the wire that exits gate g.
Then, recompute g by encrypting the active key on wire wa with all four combinations of the (active
and inactive) keys that are on the wires that enter g. This completes the alternative construction.
We claim that the circuit obtained in this alternative construction is identically distributed to the
circuit constructed by S2(x, f(x, y)). First, in both constructions, all gates contain encryptions
of a single key only. Second, in both constructions, the order of the ciphertexts in each gate is
random. Finally, in both constructions, the output decryption tables yield the same result (i.e.,
exactly f(x, y)). This last observation is due to the fact that in the alternative construction, the
output decryption table decrypts active keys to f(x, y) and these active keys are the only ones
encrypted in the gates from which the circuit-output wires exit. Likewise, in the circuit G̃(C), the
only keys encrypted in the gates from which the circuit-output wires exit are the keys that decrypt
to f(x, y).

Before proceeding we order the gates g1, . . . , g|C| of the circuit C as follows: if the input wires
to a gate g` come from gates gi and gj , then i < ` and j < `. We are now ready to define the hybrid
experiment Hi(x, y).

Hybrid experiment H � (x, y). In this experiment the view of P2 in the oblivious
transfers is generated in exactly the same way as in HOT(x, y). However, the garbled
circuit is constructed differently. As in the alternative construction of G̃(C), the first
step is to construct the real garbled circuit G(C) and then use x and y in order to label
all keys in G(C) as active or inactive. Next, the first i gates g1, . . . , gi are modified as in
the alternative construction. That is, let wa be the wire that exits gate gj for 1 ≤ j ≤ i.
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Then, recompute gj by encrypting the active key on wire wa with all four combinations
of the (active and inactive) keys that are on the wires that enter gj . The remaining gates
gi+1, . . . , g|C| are left unmodified, and are therefore as in the real garbled circuit G(C).

We claim that the distribution {H0(x, y)} equals {Hot(x, y)}. This follows from the fact that the
only difference is that in H0(x, y) the keys are labelled. However, since nothing is done with this
labelling, there is no difference in the resulting distribution. Next, notice that in H |C|(x, y), the

circuit that appears in the distribution is exactly the fake garbled circuit G̃(C) as constructed by
S2. This follows immediately from the fact that in H|C| all gates are replaced, and so the circuit
obtained is exactly that of the full alternative construction described above.

We wish to show that {H0(x, y)}
c
≡ {H|C|(x, y)}. Intuitively, this follows from the indistin-

guishability of encryptions. Specifically, the only difference between H0 and H|C| is that the circuit
in H0 is made up of gates that contain encryptions of active and inactive keys, whereas the circuit
in H|C| is made up of gates that contain encryptions of active keys only. Since only active keys
are seen by P2 during the computation of the garbled circuit, the difference between H0 and H|C|
cannot be detected.

We prove that {H0(x, y)}
c
≡ {H|C|(x, y)} using a hybrid argument. That is, assume that there

exists a non-uniform polynomial-time distinguisher D and a polynomial p(·) such that for infinitely
many n’s (and values x, y ∈ {0, 1}n), |Pr[D(H0(x, y)) = 1]−Pr[D(Hn(x, y)) = 1]| > 1/p(n). Then,
it follows that there exists an i such that |Pr[D(Hi−1(x, y)) = 1]−Pr[D(Hi(x, y)) = 1]| > 1/np(n).
We use D and x, y, i in order to construct a non-uniform probabilistic polynomial-time distinguisher
DE for the encryption scheme E. The high-level idea here is for DE to receive some ciphertexts,
from which it will construct a partially real and partially fake garbled circuit G ′(C). However, the
construction will be such that if the ciphertexts received were of one “type”, then the resulting
circuit is according to Hi−1(x, y). However, if the ciphertexts received were of another “type”, then
the resulting circuit is according to Hi(x, y). In this way, the ability to successfully distinguish
Hi−1(x, y) from Hi(x, y) yields the ability to distinguish ciphertexts, in contradiction to the security
of the encryption scheme. We now formally prove the above intuition.

A concrete case. First, let us consider the concrete case that gi is an OR gate, and that wires
wa and wb enter gi, and wire wc exits gi. Furthermore, assume that the wires wa and wb enter
gate gi and no other gate. Finally, assume that when the inputs to the circuit are x and y, the
wire wa obtains the bit 0 and the wire wb obtains the bit 1. Then, it follows that the keys k0

a and
k1

b are active, and the keys k1� and k0� are inactive (we mark the inactive keys in bold in order to
distinguish them from the active ones). Likewise, the key k1

c is active (because gi(0, 1) = 0∨ 1 = 1)
and the key k0� is inactive. The difference between a real garbled gate gi and a fake garbled gate
gi is with respect to the encrypted values. Specifically, the real garbled OR gate gi contains the
following values:

Ek0
a
(E � 0� (k0

c)), Ek0
a
(Ek1

b
(k1

c )), E � 1� (E � 0� (k1
c)), E � 1� (Ek1

b
(k1

c )) (10)

In contrast, the fake garbled OR gate gi contains the following values which are all encryptions of
the active value k1

c (recall that the input to gi equals 0 and 1, and so the output is 1):

Ek0
a
(E � 0� (k1

c)), Ek0
a
(Ek1

b
(k1

c )), E � 1� (E � 0� (k1
c)), E � 1� (Ek1

b
(k1

c )) (11)

Thus, in this concrete case, the indistinguishability between the gates depends on the indistin-
guishability of a single encryption (of k0

c versus k1
c ) under the inactive key k0� . (In other cases,
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the indistinguishability may depend on both inactive keys k1� and k0� , and may depend on more
than one encryption under a key; see the general case below.) We now construct the following
“indistinguishability game”, denoted Expt(σ) where σ ∈ {0, 1}:

1. Choose three encryption keys k0� ← G(1n), and k0
c , k

1
c ← G(1n).

2. Compute c1 = E � 0� (kσ
c ) and c2 = E � 0� (k1

c), where σ is as in Expt(σ).

3. Output (k0
c , k

1
c , c1, c2).

By the indistinguishability of encryptions for the scheme (G,E,D), we have that for every non-
uniform probabilistic polynomial-time machine DE ,

|Pr[DE(Expt(0)) = 1]− Pr[DE(Expt(1)) = 1]| < µ(n)

for some negligible function µ(·). However, we now construct a machine DE that uses the distin-
guisher D for Hi(x, y) and Hi+1(x, y) and succeeds in distinguishing Expt(0) from Expt(1) with
probability 1/np(n). Machine DE receives the vector (k0

c , k
1
c , c1, c2) and constructs the gate gi as

follows. First, it chooses k0
a, k

1
a, k

1
b ← G(1n). Next, it computes

Ek0
a
(c1), Ek0

a
(Ek1

b
(k1

c )), Ek1
a
(c2), Ek1

a
(Ek1

b
(k1

c )) (12)

By comparing Eq. (12) to Equations (10) and (11) we have that if DE is participating in Expt(0),
then the gate that it constructs in Eq. (12) is exactly the real garbled gate of Eq. (10). On the
other hand, if DE is participating in Expt(1), then the gate that it constructs in Eq. (12) is exactly
the fake garbled gate of Eq. (11).

This does not yet suffice because we must still show how DE can generate the rest of the Hi−1 or
Hi distributions. Notice that DE knows the active keys that enter gi (because it chose them itself),
but does not know the inactive keys. (Actually, in this concrete case it even knows the inactive
key k0� , and just does not know the inactive key k1� .) We therefore show that the distributions
can be constructed without knowledge of the inactive keys k0� and k1� . In order to show this, we
distinguish between two cases:

1. Case 1 – wb is a circuit-input wire: In this case, the keys associated with wire wb do not
appear in any gates gj for j < i. However, keys that are associated with circuit-input wires
do appear in the distributions Hi−1 and Hi: the keys kxi

i appear directly and the keys kyi

n+1

are used to generate the view of P2 in the oblivious transfers. Nevertheless, notice that the
keys used here are all active. Therefore, DE can construct the distributions, as required. We
note that DE uses the keys k0

c and k1
c that it receives in its experiment in order to construct

the gates into which wire wc enters.

2. Case 2 – wb is not a circuit-input wire: In this case, the keys associated with wire wb can
appear only in the gate gj from which wb exits. However, by our ordering of the gates, j < `.
Therefore, in both Hi−1 and Hi, gate gj contains encryptions of the active key k0

b only. It
follows that DE can construct the rest of the distribution, as required. (Again, as above, DE

uses the keys k0
c and k1

c in this construction.)

Now, as we have shown above, if DE participates in Expt(0), then the gate gi is constructed as for
a real garbled circuit. In contrast, if DE participates in Expt(1), then the gate gi is constructed as
for a fake garbled circuit. The only dependence between the gate gi and the rest of the distribution
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Hi−1 or Hi is with respect to the keys k0
a, k

1
a, k

1
b , k

0
c and k1

c ; however, these are known to DE and
used appropriately. We therefore conclude that if DE participates in Expt(0), then it generates a
distribution H that equals Hi−1(x, y). In contrast, if it participates in Expt(1), then it generates
a distribution H that equals Hi(x, y). Distinguisher DE concludes by running machine D on
the distribution H and outputting whatever D does. By the contradicting assumption, machine
D distinguishes Hi−1(x, y) from Hi(x, y) with probability 1/np(n). We therefore have that for
infinitely many n’s

|Pr[DE(Expt(0)) = 1]− Pr[DE(Expt(1)) = 1]|

= |Pr[D(Hi−1(x, y)) = 1]− Pr[D(Hi(x, y)) = 1]| >
1

np(n)

in contradiction to the security of the encryption scheme. It follows that {H0(x, y)}
c
≡ {Hn(x, y)}.

Having proven the argument with respect to a concrete case, we now move to the general case.

The general case. Let gi be an arbitrary gate, let wa and wb be the wires entering gi and let
wc be the wire that exits gi. Furthermore, let α and β be the respective values obtained on wa and
wb in C(x, y). Note that this means that kα

a and kβ
b are active, and k1 � �� and k

1 �
�

� are inactive.
Then, the real garbled gate gi contains the following values (in a random order):

Ekα
a
(E

k
β

b

(kgi(α,β)
c )), Ekα

a
(E � 1 ���� (kgi(α,1−β)

c )), E � 1 ���� (E
k

β

b

(kgi(1−α,β)
c )),E � 1 ���� (E � 1 ���� (kgi(1−α,1−β)

c ))

(13)
In contrast, the fake garbled gate gi contains the following values which are all encryptions of the

active value k
gi(α,β)
c :

Ekα
a
(E

k
β

b

(kgi(α,β)
c )), Ekα

a
(E � 1 ���� (kgi(α,β)

c )), E � 1 ���� (E
k

β

b

(kgi(α,β)
c )),E � 1 ���� (E � 1 ���� (kgi(α,β)

c )) (14)

Thus, the indistinguishability between the gates depends on the indistinguishability of encryptions
under the inactive keys k1 � �� and k

1 �
�

� . As above, we construct an “indistinguishability game”,
denoted Expt(σ) where σ ∈ {0, 1}:

1. Choose six encryption keys k1 � �� , k
1 �

�
� ← G(1n), and kα

a , kβ
b , k0

c , k
1
c ← G(1n).

2. If σ = 0, then compute the four encryptions (c1, c2, c3, c4) as they appear in Eq. (13).

If σ = 1, then compute the four encryptions (c1, c2, c3, c4) as they appear in Eq. (14).

3. Output (kα
a , kβ

b , k0
c , k

1
c , c1, c2, c3, c4).

By the indistinguishability of encryptions for the scheme (G,E,D), we have that for every non-
uniform polynomial-time machine DE ,

|Pr[DE(Expt(0)) = 1]− Pr[DE(Expt(1)) = 1]| < µ(n)

for some negligible function µ(·).9 Now, in the restricted case that both wires wa and wb enter the
gate gi only, it is possible to proceed in exactly the same way as in the concrete case above. (The

only difference is that DE uses the four keys kα
a , kβ

b , k0
c , k

1
c that it receives in its experiment when

9Strictly speaking, this game does not fit the definition of security of encryption schemes for two reasons. First,
more than one key is kept secret; second, one of the messages is encrypted under two keys. Nevertheless, the
indistinguishability of Expt(0) from Expt(1) can be easily proven from the standard definition.
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constructing the distribution Hi−1 or Hi; in the concrete case, it chose kα
a and kβ

b itself. This makes
no difference because they are chosen independently in both cases.)

We now consider the more general case, where wires wa and wb may enter multiple gates
ga
i1

, . . . , ga
ij

and gb
i1

, . . . , gb
i`
, respectively. In this case, DE cannot construct the rest of the circuit

given only (kα
a , kβ

b , k0
c , k

1
c , c1, c2, c3, c4) because the inactive keys k1 � �� and k

1 �
�

� are used in more
than one gate. (We stress that in order to prove the indistinguishability of the neighboring hybrid
Hi−1 and Hi, it is crucial that DE is not given these inactive keys. Therefore, it cannot construct
these other gates itself.) This is solved by generalizing the indistinguishability game so that the
encryptions for all such gates are provided. That is, in the experiment, all the keys entering and
exiting the gates ga

i1
, . . . , ga

ij
and gb

i1
, . . . , gb

i`
are chosen. The gates are then constructed and the

output is defined to be all the keys, except for the inactive keys k1 � �� and k
1 �

�
� , and all the

ciphertexts (in a predetermined order so that it is clear what ciphertext belongs to what gate).
The gates are constructed in accordance with Hi−1 and Hi. That is, if a given gate is a fake
(respectively, real) gate in both Hi−1 and Hi, then a fake (respectively, real) gate is constructed
in the experiment. The gate gi is constructed in the same way as described above (i.e., according
to either Eq. (13) or Eq. (14) depending on whether σ = 0 or σ = 1). Once again, given the
ciphertexts that it receives in Expt(σ), machine DE can construct the entire distribution Hi−1 or
Hi by itself, apart from the gates ga

i1
, . . . , ga

ij
, gb

i1
, . . . , gb

i`
(notice that DE is given all of the keys

apart from the inactive keys k1 � �� and k
1 �

�
� ). These gates ga

i1
, . . . , ga

ij
, gb

i1
, . . . , gb

i`
are therefore

constructed using the ciphertexts that it received in the experiment. Now, if DE participates in
Expt(0) then the distribution that it generates equals Hi−1(x, y) exactly, and if DE participates in
Expt(1) then the distribution that it generates equals Hi(x, y) exactly. As above, we conclude that

Hi−1(x, y) is indistinguishable from Hi(x, y) and so {H0(x, y)}
c
≡ {Hn(x, y)}.

Concluding the proof. Having proven that {H0(x, y)}
c
≡ {Hn(x, y)}, we obtain that

{

(y, s, G̃(C), kx1

1 , . . . , kxn
n , ST ot

2 (y1, k
y1

n+1), . . . , STOT
2 (yn, kyn

2n))
}

c
≡

{

(y, s,G(C), kx1

1 , . . . , kxn
n , ST ot

2 (y1, k
y1

n+1), . . . , ST ot
2 (yn, kyn

2n))
}

(15)

Notice that the first distribution in Eq. (15) looks almost the same as the distribution {S2(y, f(x, y))}.
The only difference is that in S2(y, f(x, y)) the keys k1, k

′
1, . . . , k2n, k′2n are used instead of the keys

kx1

1 , . . . , kxn
n , ky1

n+1, . . . , k
yn

2n. However, when the fake garbled circuit G̃(C) is used, there is no differ-
ence between the two (indeed, there is no meaning to the order between the keys on the circuit-input
wires in G̃(C)). Therefore, we obtain that the first distribution in Eq. (15) is actually identical
to the distribution {S2(y, f(x, y))}. Recalling that the second distribution in Eq. (9) is exactly

viewπ
2 (x, y), and combining these equations, we conclude that {S2(y, f(x, y))}

c
≡ {viewπ

2 (x, y)}, as
required.

By Theorem 3 it is possible to securely compute the oblivious transfer functionality assuming
the existence of enhanced trapdoor permutations. Furthermore, secure encryption schemes as
required in Theorem 5 can be constructed from one-way functions, and so also from enhanced
trapdoor permutations. Finally, recall that given a secure protocol for deterministic same-output
functionalities, it is possible to obtain a secure protocol for arbitrary probabilistic functionalities.
Combining these facts with Theorem 5, we obtain the following corollary:

Corollary 6 Let f = (f1, f2) be a probabilistic functionality. Then, assuming the existence of
enhanced trapdoor permutations, there exists a constant-round protocol that securely computes f in
the presence of static semi-honest adversaries.
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