
Increasing Kolmogorov Complexity

Harry Buhrman∗ Lance Fortnow† Ilan Newman‡ Nikolai Vereshchagin§

September 8, 2004

classification: Kolmogorov complexity, computational complexity

1 Introduction

How much do we have to change a string to increase its Kolmogorov complexity. We show that we can
increase the complexity of any non-random string of length n by flipping O(

√
n) bits and some strings

require Ω(
√

n) bit flips. For a given m, we also give bounds for increasing the complexity of a string by
flipping m bits.

By using constructible expanding graphs we give an efficient algorithm that given any non-random string
of length n will give a small list of strings of the same length, at least one of which will have higher Kolmogorov
complexity. As an application, we show that BPP is contained in P relative to the set of Kolmogorov random
strings. Allender, Buhrman, Koucký, van Melkbeek and Ronneberger [2] building on our techniques later
improved this result to show that all of PSPACE reduces to P with an oracle for the random strings.

2 Increasing Complexity by Flipping Bits

Using the notation of Li and Vitányi, we use CU (x) to represent the size of the smallest program p such that
U(p) = x. We fix a universal reference computer U and let C(x) = CU (x).

Assume we are given a binary string x. By how much we can increase its complexity by flipping at most
m bits of x? Let Nm(x) denote the set of all strings with Hamming distance at most m from x. Let Nm(A)
stand for the union of Nm(x) over x ∈ A.

We use the notation O(1), c, c1, . . . for constants depending on the reference machine U and d, d1, . . .
for absolute constants. The following, rather general theorem, asserting that the complexity of any ‘typical’
string in a set can be increased by flipping m bits to the expected log |Nm(A)| is an immediate implication
of the ‘cardinality’ lower bound for Kolmogorov complexity.

Theorem 1. Let k, m, a ≤ n be such that the following condition hold
(*) for every set A ⊆ {0, 1}n with |A| > 2a, Nm(A) ≥ 2k for k < n, or Nm(A) ≥ 2n(1− 1/c2) for k = n.
Then, there are constants c1, c2 depending on the reference computer such that for every string x of

complexity at least C(x|n) ≥ a + 2C(k, m|n, a) + c1 there is a string y obtained from x by flipping at most m
bits such that C(y|n) ≥ k.

Proof. Consider the following set

B = {x ∈ {0, 1}n | C(y|n) < k for all y ∈ Nm(x)}.

As the Kolmogorov complexity of all strings in Nm(B) is less than k we have |Nm(B)| < 2k. In the case
n = k we may upper bound |Nm(B)| better. Recall the following lower bound for the number of random

∗CWI, Amsterdam
†University of Chicago.
‡Haifa University
§Moscow State University, Email: ver@mccme.ru. The work was done while visiting CWI; also supported in part by the

RFBR grant 02-01-22001.

1

Electronic Colloquium on Computational Complexity, Report No. 81 (2004)

ISSN 1433-8092

strings (for the proof see [5]): for appropriate choice of c2 for every n the number of strings y of length n
with C(y|n) ≥ n is more than 2n/c2. Therefore in the case k = n we have |Nm(B)| < 2n(1 − 1/c2).

In both cases we thus obtain |B| ≤ 2a. The set B may be enumerated given k, m, n. Therefore every string
x ∈ B can be described by m, n, k and its index in B of bit length a. Thus C(x|n) < a + 2C(k, m|n, a) + c1

for all x ∈ B, where c1 is a constant depending on the reference computer. In other words, for every x such
that the last inequality is false there is y ∈ Nm(x) with C(y|n) ≥ k.

Theorem 1 is rather general and applies to any graph rather just the Boolean cube, when we replace
‘flipping bits’ with going to neighbors. This will be discussed in Section 3.

We now want to apply Theorem 1. For this we need to analyze the expanding properties of the Boolean
cube. The complete analysis is given by the following theorem. We first introduce a notation. Let b(n, l)
denote the binomial sum: b(n, l) =

(

n
0

)

+
(

n
1

)

+ · · · +
(

n
l

)

.

Theorem 2 (Harper). Let J ≤ 2n. Take all the strings with less than l ones and take J − l first strings
with l ones in the lexicographical order, where l is chosen so that b(n, l− 1) < J ≤ b(n, l). Then the resulting
set has the least |N1(A)| among all sets A with |A| = J .

We will use the following corollary of Harper’s theorem.

Corollary 3. If |Nm(A)| ≤ b(n, l) and l < n then |A| ≤ b(n, l − m) and |Nm(A)|
|A| > (n−l

l)m.

We note that the second bound is very weak and becomes trivial for l > n/2. It will be sufficient though
for our applications.

Proof. It is enough to prove the theorem in the case m = 1. For m > 1 we can use induction where inductive
step is due to the case m = 1.

The first statement immediately follows from Harper’s theorem. Let us prove the second one assuming
that l ≤ n/2. Let J = |A|. It suffices to establish the inequality assuming that A is the worst case set defined
in the Harper’s theorem. We have

(

n

0

)

+

(

n

1

)

+ · · · +
(

n

l′ − 1

)

< |A| = J ≤
(

n

0

)

+

(

n

1

)

+ · · · +
(

n

l′

)

for some l′. We claim that l′ < l. Indeed, otherwise |A| > b(n, l − 1) and therefore A has a string with l
ones, thus N(A) has a string with l + 1 ones hence |N(A)| > b(n, l), a contradiction. For the worst case set
A we will prove that |∆(A)|/|A| ≥ (n − l′)/(l′ + 1) ≥ (n − l + 1)/l where ∆(A) stands for the set of strings
obtained from strings in A by changing a 0 to 1 (but not vice verse). (Actually ∆(A) and N(A) differ by
only one string, 00 . . . 0.)

Let B consist of all strings with less than l′ ones thus B ⊂ A. Obviously, ∆(A) and ∆(B − A) do not
intersect, as every string in the first set has at most l′ ones and every string in the second set has l′ +1 ones.
Therefore it suffices to prove that |∆(B)|/|B| ≥ (n− l′)/(l′ + 1) and |∆(B −A)|/|B −A| ≥ (n− l′)/(l′ + 1).

The first inequality is proved as follows: ∆(B) is the set of all strings with at most l′ ones except 00 . . .0,
so |∆(B)| =

(

n
1

)

+
(

n
2

)

+ · · · +
(

n
l′

)

. And |B| =
(

n
0

)

+
(

n
1

)

+ · · · +
(

n
l′−1

)

. The ratio of ith term the first sum

and ith term in the second sum is
(

n
i

)

/
(

n
i−1

)

= (n − i + 1)/i ≥ (n − l′ + 1)/l′ ≥ (n − l′)/(l′ + 1).
Let us prove the second inequality. Let x be a string with l′ ones and let Cx denote the set of all strings

with l′ ones that are less than or equal to x. We claim |∆(Cx)|/|Cx| is a non-increasing function in x. To
prove this claim it suffices to show that |∆(Cx ∪ {x′}) − ∆(Cx)| is a non-increasing function in x where
x′ denotes the successor of x. The set ∆(Cx ∪ {x′}) − ∆(Cx) consists of all strings obtained by flipping
all zeros in x′ preceding the leading 1 (all other flips result in strings that are already in ∆(Cx)). Hence
∆(Cx ∪ {x′})−∆(Cx) is equal to the number of zeros preceding the leading 1 in x′. And the latter number
does not increases as x′ increases.

For x equal to the last string with l′ ones we have |∆(Cx)|/|Cx| =
(

n
l′+1

)

/
(

n
l′

)

= (n− l′)/(l′ + 1) so we are
done.

As a result we obtain the following triplets of k, m, a for which condition (*) and hence Theorem 1 hold.

2

Theorem 4. There is a constant c3, such that for every k ≤ n, m and a string x of complexity at least
C(x|n) ≥ a + 2C(m|n, a) + c3, there is a string y obtained from x by flipping at most m bits such that
C(y|n) ≥ k. Here a = k − bm log((n − l)/l)c where l is the least number such that 2k ≤ b(n, l).

Proof. Let l be as above and let c1 be the constant from Theorem 1. We first note that the conditions of
Theorem 1 hold for a, k, m. Indeed, assume that |Nm(A)| < 2k, then by the definition of l, |Nm(A)| <
(

n
0

)

+
(

n
1

)

+ · · ·+
(

n
l

)

and by Corollary 3 we have |A| < |Nm(A)|((n− l)/l)−m < 2k((n− l)/l)−m ≤ 2a. Hence,
Theorem 1 asserts that for every string x with C(x|n) ≥ a + 2C(k, m|n, a) + c1 there is a string y obtained
from x by flipping at most m bits such that C(y|n) ≥ k.

It suffices to prove that C(k, m|n, a) ≤ C(m|n, a)+O(1) ≤ log m+O(1). To this end we will prove that k
can be retrieved from m, n, a. By definition l is a function of n, k and a is a function of n, k, m. The function
l(n, k) is non-decreasing in k hence the function a(n, k, m) = k−b(m+1) log((n−l)/l)c is also non-decreasing
in k, as the sum of two non-decreasing functions. Moreover, the first term increases by 1 as k increments by
1. This implies that k can be retrieved from m, n, a hence C(k, m|n, a) ≤ C(m|n, a) + O(1).

For p ∈ (0, 1) let H(p) = −p log p − (1 − p) log(1 − p) be the Shannon Entropy function. Note that for
every α ∈ [0; 1) there are two different β1, β2 such that h(β1) = h(β2) = α; they are related by the equality
β1 + β2 = 1. Let H−1(α) stand for the least of them. The function H−1(α) increases in the range (0, 0.5) as
so does H .

Theorem 5. For all α < 1 and i > 0 there is m(α, i) (depending also on the reference computer) such that
for all large enough n the following holds: For all x of length n with C(x|n) ≤ αn there is y obtained from
x by flipping at most m(α, i) bits such that C(y|n) ≥ C(x|n) + i. For any fixed i there is a positive α such
that m(α, i) = 1.

Proof. Fix α and i and let x be such that C(x|n) ≤ αn and let k = C(x|n) + i. Let l be the least number
such that b(n, l) ≥ 2k. We first prove that l ≤ βn for some constant β < 1/2, for large enough n. This
means that b(n, βn) ≥ 2k for some constant β < 1, for large enough n. Let β be any number in the
interval (H−1(α); 1/2) As α < 1, the interval is not empty. Then, b(n, βn) ≥

(

n
βn

)

≥ 2nH(β)(1+o(1)) (where

the last inequality is standard, see e.g. [7]). Plugging in the definition of β can continue the inequality:
b(n, βn) ≥ 2nH(β)(1+o(1)) ≥ 2nα+i ≥ 2k for large enough n.

Define now a = k − bm log((n − l)/l)c. Applying Theorem 4, with a, k, l as above, we get that for every
x there is y obtained from x by flipping at most m bits such that C(y|n) ≥ k, as needed, provided that

C(x|n) ≥ a + 2C(m|n, a) + c3. (1)

To show that (1) holds, note that C(m|n, a) ≤ log m. Plugging this, along with the definition of a, k, in
(1) we get that it is enough to show that C(x|n) ≥ C(x|n) + i − bm log((n − l)/l)c+ 2 log m + c3.

Using that l ≤ βn and the appropriate bound on β we get that it is enough to have bm log((1−β)/β)c >
i + 2 logm + c3. Note that the definition of β implies that β < 1/2 hence 1−β

β > 1. Therefore for large

enough m we will have bm log((1 − β)/β)c > i + 2 logm + c3.
Finally, let m = 1. Note that log((1 − β)/β) tends to infinity as β tends to 0. Therefore for any fixed

i there is a positive β such that bm log((1 − β)/β)c > i + 2 logm + c3. Let α be equal to any positive real
such that H(α) < β.

Remark 1. We note that Theorem 5 works for fixed i, with respect to n, while m depends on i and α for
fixed α or could be fixed when α gets small enough. One could ask whether it might be true that i could be
a function of n, e.g, could the following strengthening of Theorem 5 be true: For any α (or even for some α)
the complexity of a string x that is bounded by αn could be increased to αn + i(n) by changing only one
bit. It obvious that we cannot expect such a strengthening for i(n) > log n, as given x the complexity of any
y that differs form it in one place is at most C(x|n) + log n. Other lower bounds on m vs. the amount of
increase in complexity, and the relation to α are developed in Theorem 7 and Theorem 9.

Let us estimate how many bits we need to flip to increase complexity from k − 1 to k when k is close to
n, say for k = n.

3

Theorem 6. For every x with C(x|n) < n by flipping at most c3
√

n bits of x we can increase its complexity
(by at least 1).

Proof. Assume first that C(x|n) ≤ n − 3. Let k = C(x|n) + 1 ≤ n − 2 and m = c4
√

n for a constant
c4 to be defined later. Apply Theorem 4. As 2k ≤ 2n/4 we have l ≤ n/2 − d2

√
n and (n − l)/l ≥

(n/2+ d2
√

n)/(n/2− d2
√

n) ≥ 1 +2d3/
√

n ≥ 2d4/
√

n for large enough n. This implies that a ≤ k− c4d4. By
Theorem 4 for every x with C(x|n) ≥ k − c4d4 + 2C(m|a, n) + c3 there is y obtained from x by flipping at
most m bits with C(y|n) ≥ k. Obviously C(m|a, n) ≤ log c4 + c5. Therefore if c4 is large enough we have
k − c4d4 + 2C(m|a, n) + c1 ≤ k − 1 and we are done.

Assume now that C(x|n) ≥ n−2. Let us prove that by flipping O(
√

n) bits we can increase the complexity
of x up to n. This time we will apply Theorem 1 and Corollary 3 directly. For some c3 for l = n/2 + c3

√
n

we have b(n, l) ≥ 2n(1 − 1/c2), where c2 is the constant from Theorem 1. Let m = c3
√

n + c4
√

n, where c4

is chosen so that b(n, l −m) ≤ 2n−c5 , and c5 will be chosen later. Let a = n− c5 and k = n. By Corollary 3
the conditions of Theorem 1 are fulfilled. As a + 2C(k, m|n) + c1 ≤ n − c5 + 2 log c5 + c6 ≤ n − 2 if c5 was
chosen appropriately, we are done.

Now we proceed to the lower bounds of the number of flipped bits. We will show that for every m there
is α such that the complexity of some strings of complexity αn cannot be increased by flipping at most m
bits. And there are strings for which we need to flip Ω(

√
n) bits.

Theorem 7. For every m, k ≥ 1 there is a θ(k, m) < 1 such that for every α > θ(k, m), for almost all n
there is a string x of length n such that C(x|n) ≤ αn and C(y|n) < C(x|n) + k for every string y obtained
from x by flipping at most m bits.

Proof. Let θ(k, m) = H(1/(1 + 2k/m)), and let θ(k, m) < α. As k > 0 we note that 1/(1 + 2k/m) < 1/2.
Hence θ(k, m) < 1. Without loss of generality assume that α < 1.

Pick any β in the interval (1/(1 + 2k/m); H−1(α)). Again by the bound above, and using the fact that
H is monotone in the interval (0; 0.5), the interval for β is non empty. Let l = βn + c2m for a constant c2

to be defined later.
We first prove that every string x having at most l ones satisfies the inequality C(x|n) < αn, for large

enough n. Indeed, the number of such strings is equal to b(n, l) and hence is at most 2nH(l/n)(1+o(1)) [7] (as
l < n/2). Therefore C(x|n) < nH(β)(1 + o(1)) + O(1) < nα for large enough n, where the constant O(1)
depends on β, c2, m and the reference computer.

So we need to show that there is a string x having at most l ones and satisfying the second statement
of the theorem. Assume that this is not the case. Let then x0 be a random string having at most βn
ones, that is, C(x0|n) ≥ log(b(n, βn)). If x0 satisfies the statement then we are done. Otherwise there
is x1 having at most βn + m ones such that C(x1|n) ≥ C(x0|n) + k. Repeating this argument c2 times
we either find a string satisfying the statement or obtain a string xc2

with C(xc2
|n) ≥ C(x0|n) + c2k

having at most βn + c2m = l ones. Hence C(xc2
|n) ≥ log(b(n, βn)) + c2k. On the other hand, C(xc2

|n) ≤
log(b(n, l))+2C(l|n)+c1 ≤ log(b(n, l))+2 log c2+c3, where c3 depends on k, m, α and the reference computer.
To obtain the contradiction we have to show that the upper bound of C(xc2

|n) is less than the lower bound.
The ratio of

(

n
0

)

+
(

n
1

)

+ · · · +
(

n
l

)

and
(

n
0

)

+
(

n
1

)

+ · · · +
(

n
βn

)

can be is bounded using the following

Lemma 8. If j ≥ s ≥ 0 and j + s ≤ n/2 then

b(n, j + s)

b(n, j)
≤ 1 +

(n − j + s

j − s + 1

)s

.

Proof.

b(n, j + s)

b(n, j)
≤ 1 +

s
max
i=1

(

n

j + i

)

/

(

n

j + i − s

)

≤ 1 +
s

max
i=1

(n − j − i + s

j + i − s + 1

)s

≤ 1 +
(n − j + s

j − s + 1

)s

.

4

By Lemma 8 we have b(n,l)
b(n,βn) ≤ 2

(

1−β
β

)c2m

. Thus, to achieve contradiction it is enough to choose c2 so

that
1 + c2m log((1 − β)/β) + 2 log c2 + c3 < c2k. (2)

Indeed, by the choice of β we have m log((1− β)/β) < k. Hence the left hand side of (2) as a function of c2

grows slowly than the right hand side and for large enough c2 the inequality holds.

We will show now that sometimes we need to flip Ω(
√

n) bits of x to increase its complexity even by 1.

Theorem 9. There is a constant c such that for almost all n there is a string x of length n and complexity
at most n−1, and such that the following holds: For every string y obtained from x by flipping at most

√
n/c

bits, C(y|n) ≤ C(x|n).

Proof. For every c1 there is c2 such the set of strings with at most n/2− c2
√

n ones has cardinality less than
2n−c1 and therefore the complexity of every such string is less than n − c1 + 2 log c1 + c3. Pick c1 so that
n − c1 + 2 log c1 + c3 ≤ n − 1.

Let x0 be a random string with at most l = n/2 − (c2 + 1)
√

n ones. Assume that for some x1 we have
C(y|n) ≥ C(x|n) + 1 and x1 differs from x0 in at most

√
n/c bits. In this case apply the same argument

to x1 and so on, c times. Either we will obtain xi differing from x0 in at most i
√

n/c bits satisfying
the statement of the theorem, or xc such that C(xc|n) ≥ C(x|n) + c. In the first case xi has at most
n/2− (c2 + 1)

√
n +

√
n = n/2 − c2

√
n ones hence C(xi|n) ≤ n − 1 and we are done.

Let us show that the second case is impossible. We have C(xc|n) ≥ log
∑l

i

(

n
i

)

+ c and C(xc|n) ≤
log

∑l+
√

n
i

(

n
i

)

+ 2 log c + c4. By Lemma 8 we can upper bound the ratio
∑l+

√
n

i

(

n
i

)

/
∑l

i

(

n
i

)

by

1 +
(n − l +

√
n

l −√
n

)

√
n

= 1 +
(n/2 + (c2 + 2)

√
n

n/2− (c2 + 2)
√

n

)

√
n

≤ c5

for some constant c5 for large enough n. Therefore we will have a contradiction if log c5 +2 log c+c4 < c.

3 Increasing Kolmogorov Complexity via Expanders

In this section we will use, in place of Boolean cubes, graphs that have stronger expansion properties. Recall
the theorem of Margulis [6] on explicit expanders.

Theorem 10 (Margulis). Let k be an integer and G = (V, E) be the graph with vertices V = {0, . . . , k−1}2

where a vertex (x, y) is adjacent to vertexes (x, y), (x+1, y), (x, y+1), (x, x+y), and (−y, x) (all operations
are mod k). There is a positive ε such that for every A ⊂ V the set N(A) of all neighbors of vertexes in A
has at least (1 + ε(1 − |A|/|V |))|A| elements.

Let k = 2l. We will identify strings of length n = 2l and nodes of the Margulis’ expander G. Let N d(u)
denote the set of all nodes at the distance at most d from u in the graph G. Let N d(A) stand for the union
of Nd(u) over u ∈ A.

Theorem 11. There is a constant c2 such that for every node u in G with C(u|n) < n there is a node
v ∈ N c2(u) with C(u|n) > C(v|n).

Proof. Let c be a constant to be specified later. Let c1 be the constant such that for every n the number of
strings y of length n with C(y|n) ≥ n is more than 2n/c1. Let c2 be a constant such that (1 + εc1)

c2 ≥ 2c.
Assume that the statement of the theorem is false for some node u. Let us exhibit a small set containing

u. Let
Ai = {u′ ∈ V | ∀v ∈ N i(u′) C(v|n) ≤ C(u|n)}

where i = 0, . . . , c2. Obviously, Ai−1 = N(Ai) and therefore we have A0 ⊃ A1 ⊃ · · · ⊃ Ac2
. By definition,

all strings in Ac2
have Kolmogorov complexity at most C(u|n) < n. Therefore we can upper bound |A0| in

two ways: |A0| ≤ 2C(u|n)+1 and |A0| ≤ 2n − 2n/c1. By expansion property we have

|A0| ≥ (1 + εc1)|A1| ≥ · · · ≥ (1 + εc1)
c2 |Ac2

| ≥ 2c|Ac2
|.

5

Hence Ac2
is small, |Ac2

| ≤ 2−c|A0| ≤ 2C(u|n)+1−c. Since u is in Ac2
and Ac2

can be enumerated given l and
C(u|n), we can describe u by its index in the enumeration of Ac2

of length C(u|n) + 1 − c and by c (and
C(u|n) can be computed from the length of the index and c). Hence C(u|n) ≤ (C(u|n)+1−c)+2 logc+O(1).
If c is large then this is a contradiction.

Using Theorem 11 we may design a polynomial time algorithm that having access to the oracle R̃ = {x |
C(x | |x|) ≥ |x|} for every even length 2l finds a string in R̃ of length 2l.

Theorem 12. There is an algorithm that having access to the oracle R̃ = {x | C(x | |x|) ≥ |x|} for every
even length 2l in time poly(l) finds a string in R̃ of length 2l.

Proof. We will find strings u0, . . . , ul such that |ui| = 2i and ui ∈ R̃. Let u0 be the empty string. Certainly
u0 ∈ R̃.

To find ui given ui−1 append first 00 to ui−1 and let u be the resulting string. As C(ui−1|2(i−1)) ≥ 2(i−1)
we have C(ui|2i) ≥ 2i− c3 for some constant c3. By Theorem 11 there is a string v at in N c3c2(u) such that
v ∈ R̃. Making at most 5c3c2 queries to the oracle R̃ we find the first such v and let ui = v.

Remark 2. The same argument applies as well to every set of the form {x | C(x | |x|) ≥ f(|x|)} where
f(n) ≤ n and f(n+1) ≤ f(n)+O(log n) for all n. In this case we search for v in N (c3+O(log n))c2(u) in place
of N c3c2(u). As N (c3+O(log n))c2(u) still has polynomial size the algorithm runs in polynomial time. Note
that the algorithm need no other information about f than the constant hidden in O(log n).

Remark 3. The argument applies also to find random strings of odd lengths, but that requires more technical
details. Given a string u of even length n = 2l with C(u|n) ≥ n we need to find a string v of odd length
n = 2l + 1 with C(v|n) ≥ n. To this and we can use Margulis’ expander for the largest k such that
k2 ≤ 22l+1. Obviously k2 ≥ 22l and we may identify strings of length 2l + 1 ending with 0 with the first
22l nodes of the graph, and the other nodes with the first remaining strings of length 2l + 1. Again we have
C(u0|2l + 1) ≥ 2l + 1 − c3 for a constant c3. For large enough l the difference between 22l+1 and k2 is less
than 22l+1/(2c1) where c1 is a constant such that the number of random strings of length 2l + 1 is at least
22l+1/c1. Therefore at least k2/(2c1) nodes in the graph are random and we can apply the arguments from
the proof of Theorem 11 with 2c1 in place of c1.

Corollary 13. BPP ⊂ P R̃

Proof. Let M be a probabilistic machine recognizing a language A. Let n be the length of input to M . We
can assume that the probability that M errs on at least one string of length n is at most 2−n. Let nd be the
length of random strings used by M on inputs of length n.

Here is the deterministic algorithm with oracle R̃ to recognize A: Find a string r ∈ R̃ of length nd and
run M on the input x using r as the sequence of random bits for M (we use the same string r for all inputs
x). Then output the result of M .

If for some string of length n the answer is incorrect then the string r falls into a set of cardinality

2nd−n that is identified by n and M and hence C(r|nd) ≤ nd −n + O(1) < nd for n large enough, which is a
contradiction. Thus our polynomial time algorithm with oracle R̃ is correct for almost all inputs. Hardwiring
the table of answers for small inputs we obtain a polynomial time algorithm with oracle R̃ that recognizes
A (on all inputs).

Let us turn to the unconditional Kolmogorov complexity C(x). Let R = {x | C(x) ≥ |x|}. We will show
that Theorem 12, the next two remarks and Corollary 13 generalize to R. As to Theorem 11, we can prove
only a weaker its version:

Theorem 14. There is a constant c2 such that for every node u in G with C(u) < n there is a node
v ∈ N c2 log n+c2(u) with C(u) > C(v).

Proof. Essentially the same proof, as for Theorem 11 but this time we need to choose c2 so that (1 +
εc1)

c2 log n+c2 ≥ 2c+2 log n. In place of inequality C(u|n) ≤ C(u|n) + 1 − c + 2 log c + O(1) we have the
inequality C(u) ≤ C(u) + 1− c− 2 logn + 2 log c + 2 log l + O(1). The term 2 logn is needed as this time we
have to identify the length of u.

6

However, to prove the analog of Theorem 12 we need only to increase Kolmogorov complexity of strings
u with C(u) ≥ |u| − O(1). For that special case we have

Theorem 15. For every constant c3 there is a constant c4 such that for every node u in G with n > C(u) ≥
n − c3 there is a node v ∈ N c4(u) with C(u) > C(v).

Proof. Again the same proof but in place of inequality C(u|n) ≤ C(u|n) + 1 − c + 2 log c + O(1) we have
the inequality C(u) ≤ C(u) + 1 − c + 2 log c + O(1). This time we can find the length of u from the length
C(u) + 1 − c of the index of u in Ac4

and from c, as C(u) and |u| are close to each other.

Therefore Theorem 12, the next two remarks and Corollary 13 generalize to the unconditional Kolmogorov
complexity.

References

[1] Ahlswede, Gács, Körner. Bounds on conditional probabilities with applications in multi-user communi-
cation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34 (1976) 157–177.

[2] Allender, Buhrman, Koucký, van Melkbeek and Ronneberger. Power from Random Strings. 43rd IEEE
Symposium on the Foundations of Computer Science (2002) 669–678.

[3] L.H. Harper. Optimal numberings and isoperimetric problems on graphs. J. Combinatorial Theory 1
(1966) 385–393.

[4] G.O.H. Katona. The Hamming-sphere has minimum boundary. Studia Scientarium Mathematicarum
Hungarica 10 (1975) 131–140.

[5] M. Li, P.M.B. Vitányi. An introduction to Kolmogorov complexity and its applications. New York,
Springer-Verlag, 1997.

[6] G.A. Margulis. Explicit constructions of concentrators. Explicit construction of concentrators. Probab.
Info. Trans., 9 (1975), 325–332. (Translated into English from “Problemy peredachi informatsii” 9(2)
(1973) 71–80.)

[7] Rosen (ed.), Handbook of Discrete Combinatorial Mathematics, CRC Press, 2000.

7

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

