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Abstract

We study computational procedures that use both randomness and nondeterminism. Examples are Arthur-Merlin
games and approximate counting and sampling of NP-witnesses. The goal of this paper is to derandomize such
procedures under the weakest possible assumptions.

Our main technical contribution allows one to “boost” a given hardness assumption. One special case is a proof
that

EXP 6⊆ NP/poly ⇒ EXP 6⊆ PNP
|| /poly.

In words, if there is a problem in EXP that cannot be computed by poly-size nondeterministic circuits then there is one
which cannot be computed by poly-size circuits which make non-adaptive NP oracle queries. This in particular shows
that the various assumptions used over the last few years by several authors to derandomize Arthur-Merlin games (i.e.,
show AM = NP) are in fact all equivalent. In addition to simplifying the framework of AM derandomization, we
show that this “unified assumption” suffices to derandomize several other probabilistic procedures.

For these results we define two new primitives that we regard as the natural pseudorandom objects associated
with approximate counting and sampling of NP-witnesses. We use the “boosting” theorem (as well as some hashing
techniques) to construct these primitives using an assumption that is no stronger than that used to derandomize Arthur-
Merlin games. As a consequence, under this assumption, there are deterministic polynomial time algorithms that use
non-adaptive NP-queries and perform the following tasks:

• approximate counting of NP-witnesses: given a Boolean circuit A, output r such that (1− ε)|A−1(1)| ≤ r ≤
|A−1(1)|.

• pseudorandom sampling of NP-witnesses: given a Boolean circuit A, produce a polynomial-size sample space
that is computationally indistinguishable from the uniform distribution over A−1(1).

We also present applications. For example, we observe that Cai’s proof that Sp
2
⊆ ZPPNP and the learning

algorithm of Bshouty et al. can be seen as non-randomized reductions to sampling. As a consequence they can be
derandomized under the assumption stated above, which is weaker than the assumption that was previously known to
suffice.
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1 Introduction

One of the major areas in complexity is the study of the power of randomness in various computational settings. In
certain contexts randomness affords additional power. But for broad classes of problems it has been demonstrated over
the last decade that randomness can be simulated deterministically, under widely accepted complexity assumptions.

The central object used in these derandomization results is a pseudorandom generator (PRG), which is an efficient
deterministic procedure that generates a discrepancy set – a set of strings with the property that no test (from a pre-
specified class of tests) can distinguish a random string in the discrepancy set from a uniformly random string. We say
that a PRG fools this class of tests. A probabilistic procedure is derandomized by replacing its random bits with strings
from the discrepancy set; the procedure cannot behave noticeably differently than it would with truly random bits, as
then it would constitute a distinguishing test. As a consequence derandomizing stronger probabilistic algorithms
typically requires pseudorandom generators that produce discrepancy sets for stronger classes of tests.

An efficient pseudorandom generator for some class of tests immediately implies an efficiently computable func-
tion which is hard for these tests. More specifically, an efficient pseudorandom generator that fools small circuits
implies the existence of a language in a uniform complexity class (e.g., E = DTIME(2O(n))) that lies outside a
non-uniform complexity class (e.g. P/poly). Thus constructing such pseudorandom generators amounts to proving
circuit lower bounds for explicit functions, a task that is currently beyond our reach. Consequently, this line of research
focuses on constructing pseudorandom generators under a hardness assumption1. In this context the goal is to achieve
derandomization results under the weakest possible hardness assumptions.

One of the main efforts in derandomization over the last decade has focused on the class BPP which can be deran-
domized given access to pseudorandom generators that fool small circuits. Here the appropriate hardness assumption
is that there exists a language in E that requires exponential size circuits (i.e., the language cannot be computed by size
2εn circuits, for some ε > 0).2 A sequence of results [NW94, BFNW93, Imp95, IW97] showed that under this hard-
ness assumption BPP = P . A further sequence of papers achieved a quantitatively optimal hardness vs. randomness
tradeoff [ISW99, ISW00, SU01, Uma02].

An analogous line of work [AK01, KvM02, MV99, SU01] derandomized Arthur-Merlin games [Bab85, BM88,
GMR89]. (Recall that the class AM contains important and natural problems like graph non-isomorphism that are
not known to be in NP ). These works achieved AM = NP under progressively qualitatively weaker hardness
assumptions. The first results required average-case hardness for circuits that make non-adaptive queries to an NP
oracle, while the latest results require only hardness for SV-nondeterministic circuits3 In this paper we show that the
various different assumptions used to derandomize AM are in fact equivalent.

Another line of research [Sto83, JVV86, BGP00] addresses procedures which approximately count and sample
NP-witnesses. More precisely, given a Boolean circuit A the first task is to approximately count the number of
accepting inputs of A, and the second is to sample a random accepting input. Note that both problems are NP-hard
and thus any such procedure must use nondeterminism unless NP = P . The current procedures for these tasks also
use randomization: they are probabilistic algorithms which use an NP-oracle. We remark that procedures for counting
can use non-adaptive NP-queries whereas the known procedures for sampling use adaptive NP-queries. In this paper
we show how to derandomize these procedures and show that under a hardness assumption that is no stronger that
used to derandomize AM, both these tasks can be performed by polynomial time deterministic algorithms which make
non-adaptive NP-queries.

In order to achieve these results we make a technical contribution and a conceptual contribution. Our main techni-
cal result is a “downward collapse theorem” that implies (as a special case): 4

E ⊆ PNP
|| /poly ⇒ E ⊆ NP/poly.

1This “hardness vs. randomness paradigm” was initiated by [BM84, Yao82, Sha81]. It should be noted that the notion of pseudorandom
generators in these papers is different than the one we use here. In particular, in this paper we follow a paradigm initiated by [NW94] which allow
pseudorandom generators which given a size bound s, run in time polynomial in s and output a discrepancy set for size s circuit. The reader is
referred to [Gol98] for a survey on pseudorandomness and its applications and to [Kab02] for a recent survey which focuses on derandomization.

2One of the confusing aspects of all the results in this area is that the assumptions involve “exponential time” classes. In actual applications
these assumptions are “scaled down” to say that there exists a function on O(logn) bits which is computable in polynomial time and cannot be
computed by size nc circuits (for some constant c).

3SV-nondeterministic circuits are the nonuniform analog of the class NP ∩ coNP (see definition 2.2).
4The notation AB

||
says that A uses non-adaptive queries to the oracle B.



This downward collapse shows that all of the various flavors of nondeterministic hardness assumptions considered
in the literature are equivalent. This unifies and simplifies a number of past results. This result is also helpful when
derandomizing other probabilistic procedures which involve randomness and nondeterminism. It allows us to start
from a weak hardness assumption, boost it to a stronger hardness assumption, and then use pseudorandom generators
for stronger classes of tests, namely circuits which make non-adaptive NP-queries.

Our conceptual contribution lies in defining what we regard as the natural “derandomization objects” associated
with approximate counting and sampling. These are relative-error approximators (for approximate counting) and
conditional discrepancy sets (for sampling). The first is a strengthening of additive-error approximators (which deran-
domize BPP), and the second is a generalization of discrepancy sets (which “sample” from the uniform distribution).
We show how to obtain relative-error approximators and conditional discrepancy sets in polynomial time with non-
adaptive NP oracle access, under a hardness assumption no stronger than that used for derandomizing AM. Note that
in particular this suggests that the “true complexity” of these problems is FP NP

|| and in particular that adaptive NP
queries are not necessary for sampling. Loosely speaking, our technique uses the strong pseudorandom generators
obtained by boosting the initial hardness assumption to derandomize the probabilistic procedures for approximate
counting and sampling. We remark that this derandomization relies on the specific imp lementation of this procedures,
and that some additional tricks are needed to obtain procedures that make nonadaptive queries to an NP-oracle.

We also give several applications of relative error approximators and conditional discrepancy sets. We obtain
the following collapses under a hardness assumption similar to that used for derandomizing AM: SP

2 = PNP and
BPPpath = PNP

|| . The first collapse comes from viewing Cai’s result [Cai01] (that places SP2 in ZPPNP ) as a non-

randomized reduction of SP
2 to sampling, which in turn is derandomized via conditional discrepancy sets. Similarly,

we view a fundamental result by Bshouty et al. [BCG+96] (concerning the learning of circuits using equivalence
queries) as a reduction to sampling, and derandomize it in the same way.

Outline

In Section 2 we present definitions of the various types of nondeterministic circuits and hardness assumptions. In
Section 3 we describe our main results and relation to prior work. In Section 4 we describe the major ideas and
techniques used in the proofs; Sections 5 and 6 contain the full proofs. Finally in Section 7 we conclude with some
open problems.

2 Nondeterministic circuits and hardness

We assume that the reader is familiar with (deterministic) Boolean circuits. We use the convention that the size of
a circuit is the total number of wires and gates. Nondeterministic circuits come in several flavors, which we define
below. We remark that a main contribution of this paper lies in showing that the multitude of hardness assumptions
defined below are all equivalent – unfortunately, in order to show that, we need to be able to discuss all of the various
assumptions below.

Definition 2.1 (nondeterministic and co-nondeterministic circuits). A nondeterministic (co-nondeterministic) cir-
cuit is a Boolean circuit C with a set of n inputs x, and a second set of inputs y. The function computed by C, denoted
fC : {0, 1}n → {0, 1} is defined by fC(x) = 1 iff ∃y C(x, y) = 1 (∀y C(x, y) = 0).

The uniform analogue of nondeterministic circuit is the class NP . The uniform analogue of co-nondeterministic
circuits is coNP . Single-valued nondeterministic circuits have NP ∩ coNP as their uniform analogue.

Definition 2.2 (single-valued nondeterministic circuits). A single-valued nondeterministic (or SV-nondeterministic)
circuit is a Boolean circuit C with a set of n inputs x, a second set of inputs y, and two outputs value and flag. Circuit
C computes the function f : {0, 1}n → {0, 1} if the following hold:

• for every x, y, if C(x, y) has 1 at its flag gate then C(x, y) has f(x) at its value gate, and

• for every x, there exists some y for which C(x, y) has 1 at its flag gate.



Note that a circuit C may meet the syntactic demands of this definition, and yet not compute any function. When
we refer to a SV-nondeterministic circuit, we always mean a circuit C that in fact computes a function according to
this definition, and we refer to that unique function as the function computed by C.

Definition 2.3 (NP-circuits and NP||-circuits). An NP-circuit is a Boolean circuit C that is also permitted to use
SAT-oracle gates. SAT-oracle gates are gates with many inputs and a single output that is 1 iff the input is in SAT.

An NP||-circuit is a pair of Boolean circuits Cpre and Cpost. On input x, Cpre outputs a number of queries
q1, q2, . . . , qm. Circuit Cpost receives x together with m bits a1, a2, . . . , am, where ai = 1 iff qi is in SAT, and outputs
a single answer bit.

We could also have defined NP||-circuits to be NP-circuits in which no path from the output gate to an input gate
encounters more than one SAT-oracle gate; the above definition makes explicit the pre- and post- processing phase.
For NP||-circuits so defined, their size is the sum of the sizes of Cpre and Cpost.

We will frequently speak of a language L that is “hard for” a class of circuits. Of course this hardness can be
quantified by the size of the circuit. For clarity, we have chosen only to present the “high-end” results that follow
when this hardness is exponential, even though more general results are true using our methods. Consequently, we
only need the following definitions:

Definition 2.4 (worst-case hardness for exponential-size circuits). A language L is worst-case hard for exponential-
size (deterministic, nondeterministic, co-nondeterministic, SV-nondeterministic, NP-, or NP||-) circuits if there exists
a constant ε > 0 for which every circuit of the prescribed type and size at most 2εn, fails to compute L restricted to
inputs of length n, for all sufficiently large n.

Definition 2.5 (average-case hardness for exponential-size circuits). A language L is α-hard for exponential-size
(deterministic, nondeterministic, co-nondeterministic, SV-nondeterministic, NP-, or NP||-) circuits if there exists a
constant ε > 0 for which every circuit of the prescribed type and size at most 2εn, fails to compute L restricted to
inputs of length n on at least (1− α)2n such inputs, for all sufficiently large n.

Note that the definition of (1− 2−n)-hard coincides with the definition of worst-case hard.

Definition 2.6 (worst-case and average-case hardness of complexity classes). A complexity class C is worst-case
hard (resp. α-hard) for exponential-size circuits of a given type if there exists a language L ∈ C that is worst-case
hard (resp. α-hard) for exponential-size circuits of that type.

We also sometimes say “C requires exponential-size circuits” of a given type to mean C is worst-case hard for
exponential-size circuits of that type.

3 Main results

Several of our results apply to any complexity class for which one can compute the low-degree extension within that
class. To make these results easier to state we introduce the following definition:

Definition 3.1. We say that a complexity class C allows low-degree extension if EC
≤O(n) ⊆ C, where the notation

C≤O(n) means that the E oracle machine makes only linear-length queries.

Examples of complexity classes C that support low-degree extension are: E, NE ∩ coNE, ENP , ENP
|| .

3.1 Unifying hardness assumptions

Several authors [AK01, KvM02] have observed that the PRG constructions intended to derandomize BPP can be
adapted to construct discrepancy sets that fool efficient non-deterministic tests under stronger hardness assumptions.
Just as PRGs that fool efficient deterministic tests imply BPP = P , PRGs that fool efficient non-deterministic tests
imply AM = NP .

Several hardness assumptions sufficient to achieve AM = NP have been considered in the literature. All of these
hardness assumptions (and the others we will consider in this paper) have the following form: there exists a language



L in some “high” uniform class (examples are E, NE ∩ coNE, E NP
|| and ENP ) which requires exponential size

circuits from some non-uniform circuit class5. Three non-uniform circuit classes have been discussed in the literature
in relation to AM . These are

• SV-nondeterministic circuits, used by Milersen and Vinodchandran [MV99] and later Shaltiel and Umans
[SU01],

• non-deterministic (and co-nondeterministic) circuits, used by Arvind and Kobler [AK01], and

• NP ||-circuits, used by Klivans and van Melkebeek [KvM02]6,

listed in order from weaker to stronger. Perhaps the best way to understand these circuit classes is to think of them
as nonuniform analogs of NP ∩ coNP , NP (and coNP ), and PNP

|| , respectively. Figure 1 summarizes the various
hardness assumptions and pseudorandom generators implying AM = NP and known relationships between them.

worst case
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paper

derandomizationderand. objectaverage case
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Figure 1: Assumptions implying AM = NP . In all cases L is a language in NE ∩ coNE. The phrase “L worst-
case (resp., average-case) hard for” means “L cannot be computed exactly by (resp., approximated by) size 2 εn for
some ε > 0.” Arrows indicate implications; unlabelled arrows correspond to implications that follow from standard
arguments.

Notice that with the exception of the AM = NP box, there are two strongly connected components, consisting
of the top row and the bottom two rows. In this paper we show that all of the hardness assumptions considered in the
literature are equivalent. In addition to clarifying the situation, this result somewhat simplifies the task of building a
PRG sufficient to derandomize AM . One can replace previous constructions [MV99, SU01] that are specialized for
derandomizing AM under an SV-nondeterministic hardness assumption by any relativizing construction of ordinary
pseudorandom generators (designed to derandomize BPP). Furthermore, by “climbing up” using the result of this
paper, we get a construction of PRGs against NP||-circuits using only hardness for SV-nondeterministic circuits.

5We stress that it is the choice of the nonuniform circuit class that typically plays an important role in the argument. Loosely speaking, this
choice determines the class of tests to be fooled by the generator. The choice of the uniform class determines the efficiency of the generator.
For example, choosing this class to be E gives a generator which runs in P , whereas NE ∩ coNE (or ENP ) give a generator which runs in
NP ∩ coNP (or PNP ). We encourage the reader to ignore the precise choice of the uniform class at a first reading and focus on the choice of the
nonuniform class.

6Actually, the paper in question refers to SAT oracle circuits, but their argument works just as well for NP ||-circuits, giving a stronger result.



3.1.1 A downward collapse theorem

The equivalence of the various hardness assumptions is implied by the following downward collapse theorem, which
may be of independent interest:

Theorem 3.2 (downward collapse). Let C be any complexity class that allows low-degree extension. If every language
in C has NP || circuits of size s(n) then every language in C has SV-nondeterministic circuits of size s(n)O(1).

A special case of Theorem 3.2 is:

E ⊆ PNP
|| /poly ⇒ E ⊆ NP/poly ∩ coNP/poly.

We remark that it is widely believed that PNP
|| is stronger than NP ∩ coNP and that NP ||-circuits are stronger

than SV-nondeterministic circuits. Nevertheless, a collapse of E to the stronger class implies a further collapse to the
weaker class.

The following Corollary is the contrapositive version of Theorem 3.2 which states that a “weak” hardness assump-
tion implies a stronger one:

Corollary 3.3. For every class C that allows low-degree extension, if C is worst-case hard for exponential-size SV-
nondeterministic circuits then C is worst-case hard for exponential-size NP||-circuits.

Corollary 3.3 will allow us to derandomize many probabilistic algorithms and classes using hardness for SV-
nondeterministic circuits by first “boosting” this assumption to hardness for NP ||-circuits, then working with the
pseudorandom generators obtained by the latter assumption.

3.2 Derandomization objects for approximate counting and sampling

In this section we define two generic computational objects – relative-error approximators, and conditional discrepancy
sets. These objects are natural and make no reference to nondeterminism. They are intended to capture approximate
counting and sampling, and they generalize and strengthen two existing and widely used objects: additive-error ap-
proximators and (ordinary) discrepancy sets.

3.2.1 Relative-error approximators

Ordinary pseudo-random generators allow one to obtain an additive approximation of the acceptance probability of
circuits:

Definition 3.4. An (additive-error) approximator is a procedure that takes as input a Boolean circuit A, and ε > 0,
and outputs a real number ρ for which

∣

∣

∣
Pr
x

[A(x) = 1]− ρ
∣

∣

∣
≤ ε.

Indeed additive approximation is in some sense the raison d’etre of ordinary PRGs: additive approximation of the
acceptance probability of circuits allows one to derandomize BPP. Relative error approximation allows approximate
counting, and is much more difficult (it is NP -hard). We will be concerned with one-sided relative-error approxima-
tions of the acceptance probability of circuits:

Definition 3.5. A one-sided relative-error approximator is a procedure that takes as input a Boolean circuit A, and
ε > 0, and outputs a real number ρ for which

(1− ε) Pr
x

[A(x) = 1] ≤ ρ ≤ Pr
x

[A(x) = 1].

We give a construction of deterministic relative-error approximators under a hardness assumption for SV-nondeterministic
circuits.



Theorem 3.6 (construction of relative-error approximators). If ENP
|| requires exponential size SV-nondeterministic

circuits, then there is a deterministic one-sided relative-error approximator that runs in time polynomial in the length
of its input and 1/ε, with non-adaptive access to an NP oracle.

As an immediate corollary, we obtain

Corollary 3.7. If ENP
|| requires exponential size SV-nondeterministic circuits, then for every function f : {0, 1}n → N

in #P , and every ε > 0, there is a deterministic procedure P running in poly(n, ε−1) time with non-adaptive access
to an NP -oracle for which (on input x):

(1− ε)f(x) ≤ P (x) ≤ f(x);

in other words, every problem in #P can be approximated in FPNP
|| .

Note that it was shown in [Sto83, JVV86, BGP00] that using randomness and an NP-oracle, it is possible to uni-
formly sample NP-witnesses. This implies a fully polynomial-time randomized approximation scheme (FPRAS) with
access to an NP -oracle, for every problem in #P . However, no deterministic fully polynomial-time approximation
schemes (FPAS’s) with access to an NP -oracle are known for any #P -complete problem; the above corollary gives
FPAS’s that make non-adaptive NP oracle queries for all problems in #P , albeit under a complexity assumption.

3.2.2 Conditional discrepancy sets

Ordinary pseudo-random generators are sometimes called “discrepancy set generators,” since they produce the follow-
ing object:

Definition 3.8. An (n, s, ε)-discrepancy set is a subset T ⊆ {0, 1}n with the property that for all Boolean circuits C
of size at most s:

∣

∣

∣

∣

Pr
x

[C(x) = 1]− Pr
t∈T

[C(t) = 1]

∣

∣

∣

∣

≤ ε.

A discrepancy set is a “good sample” of strings x ∈ {0, 1} n, with respect to any property P that is decidable by
small Boolean circuits. Of course one particularly useful such property is the property that a BPP machine with a fixed
input accepts when given string x as its random coins.

Frequently one wishes to obtain a “good sample” of strings x ∈ S for some subset S ⊆ {0, 1} n. Again, the
sample should be good with respect to any property P that is recognizable by small Boolean circuits. For example S
may be the set of 3-colorings of a given graph; a property of interest might be the property of having two specified
nodes colored with the same color. A large body of literature is devoted to sampling various structures (e.g., colorings,
matchings, contingency tables, etc...), often employing Markov Chain Monte Carlo methods.

We define conditional discrepancy sets as the derandomization object associated with such sampling in its full
generality. We will allow the set S to be any set recognizable by a small Boolean circuit; that is, S = A−1(1) for some
small circuit A. Conditional discrepancy sets capture “pseudorandomly sampling an accepting input of A” and can be
seen to be a natural generalization of ordinary discrepancy sets.

Definition 3.9. Let S ⊆ {0, 1}n be some subset. An S-conditional (n, s, ε)-discrepancy set is a subset T ⊆ {0, 1}n
with the property that for all Boolean circuits C of size at most s:

∣

∣

∣

∣

Pr
x

[C(x) = 1|x ∈ S]− Pr
t∈T

[C(t) = 1|t ∈ S]

∣

∣

∣

∣

≤ ε.

Our main result here is a procedure to efficiently generate conditional discrepancy sets under a hardness assumption
(which is the same hardness assumption used to derandomize AM):

Theorem 3.10 (construction of conditional discrepancy sets). If ENP
|| (resp. ENP ) requires exponential size SV-

nondeterministic circuits, then there is a deterministic procedure that takes as input a Boolean circuit A that accepts a
subset S ⊆ {0, 1}n, an integer s, and ε > 0, and outputs an S-conditional (n, s, ε)-discrepancy set T . The procedure
runs in poly(|A|, n, s, 1/ε) time with non-adaptive (resp. adaptive) access to an NP oracle.



3.3 Applications

3.3.1 Applications of Theorem 3.2

We use Theorem 3.2 to prove our two other main theorems, regarding the deterministic construction of relative-error
approximators and conditional discrepancy sets. An additional application is given in the next theorem.

Theorem 3.11. If ENP
|| requires exponential size SV-nondeterministic circuits, then BPPNP

|| = PNP
|| .

Klivans and van Melkebeek [KvM02] formalized the notion of a relativizing PRG construction, and observed that
such constructions can be used to fool circuit classes that are stronger than deterministic circuits, if one is willing
to make a similarly stronger hardness assumption. For example, this observation allows the construction of PRGs
that fool NP||-circuits, assuming there exist languages that are hard for NP||-circuits. Our Corollary 3.3 states that
hardness for SV-nondeterministic circuits implies hardness for NP||-circuits. As a consequence, existing relativizing
PRG constructions (e.g. [IW97, STV01, SU01, Uma02]) may be used directly to fool NP|| circuits, assuming only
hardness for SV-nondeterministic circuits. As stated in the above theorem, this in turn derandomizes the class BPPNP

||

using a weaker assumption than previously known.
We next present an additional application of Corollary 3.3 that turns out to be critical in the proof of Theorem 3.10.

The following remarkable observation is found in [KvM02]: if ENP
|| requires exponential size NP||-circuits, then there

is a polynomial-time procedure to produce a satisfying assignment of a given circuit C that uses non-adaptive access to
an NP-oracle. Note that the standard (unconditional) method uses adaptive access. The non-adaptive procedure comes
from noting that there is a polynomial time algorithm that makes non-adaptive NP queries to test whether the outcome
of applying the Valiant-Vazirani reduction to a satisfiable circuit C (for a specific choice of random bits) succeeds
in producing a circuit that has a unique satisfying assignment. Using a PRG for NP||-circuits, it is then possible to
deterministically produce a list of candidate circuits from C, one of which is guaranteed to have a unique satisfying
assignment. For this circuit C ′, we can find the satisfying assignment by making the following queries in parallel:
“Does C ′ have a satisfying assignment that assigns xi true?” and “Does C ′ have a satisfying assignment that assigns
xi false?” for each i. The overall procedure requires only non-adaptive NP-oracle access. Corollary 3.3 gives us the
same consequence from a weaker hardness assumption:

Theorem 3.12. If ENP
|| requires exponential size SV-nondeterministic circuits, then there is a procedure that, given a

circuit C, outputs a satisfying assignment for C if one exists, and runs in polynomial time with non-adaptive NP-oracle
access.

Finally, using Corollary 3.3 together with the “hardness amplification” results of [STV01] gives a hardness ampli-
fication result for nondeterministic circuits: it states that worst-case hardness implies average-case hardness for nonde-
terministic circuits. This problem is extensively studied for deterministic circuits [BFNW93, Imp95, IW97, STV01];
a hardness amplification for nondeterministic circuits was first given in [SU01]. The present route (using Corollary
3.3 and [STV01]) gives a simpler and more modular proof of:

Theorem 3.13 ([SU01]). Let C be a complexity class that allows low-degree extension. For every ε > 0, if C is hard
for size s nondeterministic circuits then C is (1/2 + ε)-hard for size s′ = (sε/n)Ω(1) nondeterministic circuits.

3.3.2 Applications of relative error approximators

In addition to giving a (conditional) derandomization of approximate counting, we obtain the following further appli-
cation of Theorem 3.6:

Theorem 3.14. If ENP
|| requires exponential size SV-nondeterministic circuits, then BPPpath = PNP

|| .

The class BPPpath was defined by Han, Hemaspaandra and Theirauf [HHT97]. It is the class of languages L for
which there exists a non-deterministic polynomial-time Turing Machine M for which

x ∈ L ⇒ at least 2/3 of the computation paths of M accept (1)

x 6∈ L ⇒ at least 2/3 of the computation paths of M reject. (2)



Notice that the computation paths need not all make the same number of non-deterministic choices; if they are required
to, we just get BPP . In contrast to BPP , BPPpath is quite powerful: it is known to contain PNP

|| [HHT97]. The

above theorem suggests it is probably equal to PNP
|| .

Proof of Theorem 3.14. Let L be a language in BPPpath with associated non-deterministic Turing Machine M . Let
p(n) be an upper bound on the running time of M on an input of length n.

Fix an input x. Given a string y ∈ {0, 1}p(|x|) consider the following deterministic procedure: simulate M using
successive bits of y as M ’s non-deterministic choices. When M halts, if the remainder of y is all-zeros, then accept,
otherwise reject. Let Dx(y) be the circuit outputting 1 iff this procedure accepts, and let S be the set of strings accepted
by Dx.

We consider one other deterministic procedure: given y ∈ {0, 1}p(|x|), simulate M using successive bits of y as
M ’s non-deterministic choices and accept if and only if M accepts. Let Cx(y) be the circuit outputting 1 iff this
procedure accepts. Observe that the probability over computation paths of M that M accepts input x is exactly:

Pr
y

[Cx(y) = 1|Dx(y) = 1],

since each 1 of Dx corresponds to a unique computation path.
We use the one-sided relative-error approximator of Theorem 3.6 twice (in parallel), once with input Cx, and once

with input Dx ∧ Cx, and ε = 1/10. Let ρ1 and ρ2 be the two approximations. Notice that

(1− ε) Pr
y

[Cx(y) = 1|Dx(y) = 1] ≤ (ρ2/ρ1) ≤ (1− ε)−1 Pr
y

[Cx(y) = 1|Dx(y) = 1].

We accept iff ρ2/ρ1 > 1/2, which is guaranteed to happen iff Pry[Cx(y) = 1|Dx(y) = 1] ≥ 2/3. The entire
procedure runs in time poly(|x|) with non-adaptive NP oracle access.

3.3.3 Applications of conditional discrepancy sets

The class Sp
2 was defined by [Can96] and [RS98]. It is the class of languages L for which there is a polynomial-time

predicate R for which:

x ∈ L ⇒ ∃y ∀z R(x, y, z) = 1 (3)

x 6∈ L ⇒ ∃z ∀y R(x, y, z) = 0. (4)

Cai [Cai01] recently showed that the class Sp
2 (which contains PNP and MA) is contained in ZPPNP . One

consequence of this result is that under a hardness assumption sufficient to derandomize ZPPNP , the class Sp
2 col-

lapses to PNP . This is remarkable because Sp
2 is defined by alternating quantifiers and has more of the flavor of the

Polynomial-Time Hierarchy than any randomized complexity class; yet derandomization techniques yield a surprising
collapse.

We view Cai’s result as a reduction of Sp
2 to sampling, and thus obtain the following collapse as an application of

Theorem 3.10. Note that this result does not follow directly from SP
2 ⊆ ZPPNP using straightforward derandomiza-

tion techniques – that would require a stronger hardness assumption (given current technology) in order to cope with
the adaptive NP-queries used in Cai’s algorithm.

Theorem 3.15. If ENP requires exponential size SV-nondeterministic circuits, then Sp
2 = PNP .

Proof. Let L be a language in Sp
2 , and let R be the associated polynomial-time predicate for which Eqs. (3) and (4)

hold. By padding if necessary we may assume that |x| = |y| = |z| = n. Let s be the running time of R.
The procedure to decide if x ∈ L operates in rounds. Initially, we set i = 0, and S0 = {0, 1}n, and observe that

S0 is clearly recognized by a trivial circuit C0. We now begin round 0.
In round i we do the following:

1. In PNP , generate the Si-conditional (n, s3, 1/2)-discrepancy set Ti ⊆ {0, 1}n.

2. If ∀z ∨t∈Ti R(x, t, z) = 1 then accept.



3. Otherwise, find some zi for which ∨t∈TiR(x, t, zi) = 0.

4. Define Si+1 = {y : y ∈ Si ∧ R(x, y, zi) = 1}, and observe that Si+1 is recognized by a circuit Ci+1 of size
O(s2 + |Ci|).

5. If Si+1 = ∅, then reject; otherwise, begin round i + 1.

Notice that step 2 requires a single NP -oracle query, as does step 5, and that step 3 involves finding an NP -witness
in the usual way with multiple NP -oracle queries.

The main claim is that the number of rounds before this procedure either accepts or rejects is at most n+1. Notice
that at step 3, we must have that

Pr
y

[R(x, y, zi) = 1|y ∈ Si] ≤ 1/2,

since Prt∈Ti [R(x, t, zi) = 1|y ∈ Si] = 0 and the circuit computing R with x and zi hard-wired has size at most
O(s2) < s3, and Ti is an Si-conditional (n, s3, 1/2)-discrepancy set. Thus |Si+1| ≤ |Si|/2 for all i. Since we start
with |S0| = 2n, we have |Sn+1| ≤ 1/2 which implies |Sn+1| = 0, so we halt after at most n + 1 rounds.

For correctness, observe that if we accept, we have found that the complement of Eq. (4) holds; if we reject, then
∀y ∃zi R(x, y, zi) = 0, and thus the complement of Eq. (3) holds.

In a similar manner, the result by Bshouty et al. [BCG+96] on learning of circuits using equivalence queries may
be regarded as a reduction to sampling. We thus obtain, using Theorem 3.10:

Theorem 3.16. If ENP requires exponential size SV-nondeterministic circuits, then there is a deterministic procedure
with access to an NP -oracle that learns an unknown Boolean circuit C of size s on n inputs in time poly(s, n) using
equivalence queries.

Proof. We use the notation [y] to indicate function computed by the Boolean circuit described by string y. Define the
function R : {0, 1}s × {0, 1}n → {0, 1} by R(y, z) = [y](z).

The learning procedure is very similar to the algorithm in the proof of Theorem 3.15. The procedure operates in
rounds. Initially, we set i = 0, and S0 = {0, 1}n, and observe that S0 is clearly recognized by a trivial circuit C0. We
now begin round 0.

In round i we do the following:

1. In PNP , generate the Si-conditional (s, s3, 1/4)-discrepancy set Ti ⊆ {0, 1}s.

2. Make the equivalence query: “maj t∈TiR(t, z) ≡ C(z)?” If the answer is YES, then we are done.

3. If the answer is NO, then we are given a counterexample zi for which vi = majt∈TiR(t, zi) 6= C(zi).

4. Define Si+1 = {y : y ∈ Si ∧ R(y, zi) 6= vi}, and observe that Si+1 is recognized by a circuit Ci+1 of size
O(s2 + |Ci|).

5. Begin round i + 1.

Note that the procedure must terminate because |Si+1| < |Si| for all i, and there is some y ∈ Si such that [y] = C,
for all i. As in the proof of Theorem 3.15 then main claim is that the number of rounds before completion is at most
O(s). At step 3, we must have

Pr
y

[R(y, zi) = C(zi)|y ∈ Si] ≤ 3/4.

This is true because Prt∈Ti [R(t, zi) = vi|y ∈ Si] ≥ 1/2, which implies Prt∈Ti [R(t, zi) = C(zi)|y ∈ Si] ≤ 1/2.
Furthermore, the circuit computing R with zi hard-wired has size at most O(s2) < s3, and Ti is an Si-conditional
(s, s3, 1/4)-discrepancy set, which implies Pry[R(y, zi) = C(zi)|y ∈ Si] ≤ 1/2 + ε = 3/4, as claimed.

Thus |Si+1| ≤ (3/4)|Si| for all i, and we start with |S0| = 2s, so we must halt after at most O(s) rounds with a
positively answered equivalence query.

We remark that Theorem 3.15 and Theorem 3.16 are just two examples where a ZPPNP algorithm for sampling
is used as a critical subroutine (see, e.g., the discussion in [BGP00] regarding applications in interactive proofs). Often
this is the only randomness used in these procedures, and so conditional discrepancy sets suffice for derandomization
in a variety of settings.



4 Overview of the techniques

In this section we present the main technical ideas in this paper in an informal manner; the full proofs are in the
following two sections.

4.1 Proof of the downward collapse theorem

We show in Theorem 3.2 that for every sufficiently strong complexity class C, if C is computable by small NP||-
circuits then C is computable by small SV-nondeterministic circuits. This certainly does not mean that one can always
transform small NP||-circuits into small SV-nondeterministic circuits. In particular, there are small NP||-circuits for
Satisfiability and we do not expect Satisfiability to have small SV-nondeterministic circuits, as this would mean that
NP ⊆ coNP/poly and collapse the polynomial hierarchy. Indeed, this observation demonstrates the main problem
we need to overcome. Whenever an NP||-circuit calls its NP-oracle, it gets a result no matter whether the query asked is
answered positively or negatively. An SV-nondeterministic circuit can attempt to simulate an NP||-circuit by guessing
which queries are answered positively, together with witnesses for those queries – in this way it can “verify” some
queries that are answered positively. But it can not be sure that it has correctly guessed all of the positively answered
queries, precisely because it is incapable of verifying negative answers (assuming NP 6⊆ coNP/poly).

The main idea in the proof is that when the function to be computed is a low degree multivariate polynomial, a small
SV-nondeterministic circuit can in fact verify negative answers, in an indirect way. Every function in a sufficiently
strong class C has a multivariate polynomial “low-degree extension” [BF90] that lies in the same class. Thus the trick
that allows SV-nondeterministic circuits to simulate NP||-circuits on low-degree polynomials implies the existence of
small SV-nondeterministic circuits for all functions in class C if the class has small NP||-circuits.

We now describe the trick that exploits the low-degree extension7. We’re given a small NP||-circuit which com-
putes some low degree multivariate polynomial f : F d → F (for some field F of size q). For simplicity, let’s assume
that this circuit makes a single NP-query. We now describe how we construct a small SV-nondeterministic circuit for
f . For every input x in the domain of f , let A(x) denote the answer to the NP-query asked on x. Let p denote the
fraction of x’s for which the query is answered positively. We hardwire p to our SV-nondeterministic circuit. Now,
on input x the new circuit passes a random low degree curve through x (we denote the degree of this curve by r).
Except for x, the other q points on this curve are r-wise independent and therefore with high probability the fraction
of points y on the curve for which A(y) = 1 is in the range (p− δ, p + δ) for some small δ.8 The circuit now guesses
(p− δ)q points on the curve along with witnesses showing that the queries corresponding to these points are answered
positively. It assumes that these queries are answered positively and the queries for the remaining points on the curve
are answered negatively. The critical observation is that this assumption can be incorrect on at most a 2δ fraction of the
points on the curve. The circuit now simulates the NP||-circuit (which makes no further NP queries) on all q points
on the curve, and the final evaluations it receives differ from the correct evaluations on at most 2δq points. Finally,
because the function f restricted to the curve is a low-degree polynomial, the circuit can run a decoding algorithm for
Reed-Solomon codes [WB86] to correct the errors and obtain the correct answers for all points on the curve, and in
particular the circuit obtains f(x).

4.2 Building relative-error approximators

Our relative-error approximators build on a line of work which gives probabilistic algorithms that use an NP-oracle
to approximately count NP-witnesses [Sto83, JVV86, BGP00] (for more information see the discussion in [BGP00]).
Such algorithms are given a deterministic circuit A on n bits and wish to produce a relative approximation of the
size of the set S = {x|A(x) = 1}. The algorithms work by finding a hash function h : {0, 1}n → {0, 1}k with the
property that for every image y ∈ {0, 1}k the size of the preimage Sy = {x ∈ S|h(x) = y} is roughly n2, which
implies that |S| is approximately n22k.

7A similar idea was used in [SU01] to build PRGs for nondeterministic circuits. It may also be viewed as a non-trivial “scaling down” of
EXPNP

||
⊆ NEXP/poly ∩ coNEXP/poly – a containment credited to Harry Buhrman on Lance Fortnow’s weblog.

8By choosing the degree r large enough we can show that there exist fixed points v1, · · · , vr ∈ F d such that for every x the fraction of points
y such that A(y) = 1 on the degree r curve that passes through x; v1, · · · , vr is in the range (p − δ, p + δ). In the final construction we also
hardwire the points v1, · · · , vr to the circuit.



To find such a hash function, we choose a random hash function h : {0, 1}n → {0, 1}k from an n-wise independent
hash family, and use the NP oracle to check whether there exists a y ∈ {0, 1}k whose preimage has size greater than
n2. We do this for k = 1, 2, 3, . . ., stopping with the first h which is good in the sense that there does not exist such
a y whose preimage is “too large”. By the pigeonhole principle, a good h does not exist for k such that n 22k < |S|;
for slightly larger k a random h from the n-wise independent hash family is good with high probability. Thus, the
algorithm stops with the “correct” value of k, with high probability.

We would like to derandomize this procedure. Since it is not a decision problem we cannot use PRGs directly9.
Instead we derandomize this procedure by using the particular way it operates (a general method that has been sug-
gested by [KvM02] for such circumstances). Rather than choosing the hash functions randomly, we try all of the hash
functions that are described by outputs of a PRG for nondeterministic circuits. For the “correct” k, one of the hash
functions we try is good, because the generator fools the nondeterministic circuit which, given h, checks whether it
is good. In addition, some care must be taken to obtain less-coarse approximations, and to ensure that the overall
procedure runs in FPNP

|| , rather than FPNP .

4.3 Constructing conditional discrepancy sets

An S-conditional discrepancy set for small circuits is a set T ⊆ S such that no small (deterministic) circuit can
distinguish a random element from T from a random element in S. This generalizes “regular” discrepancy sets
for small circuits (for which the set S is simply {0, 1}n). Given a set S, encoded by a circuit A such that S =
{x|A(x) = 1}, our goal is to output an S-conditional discrepancy set T .

As with relative-error approximation, our approach is based on algorithms which uses an NP-oracle to sample (or
count) accepting inputs of A [Sto83, JVV86, BGP00]. Fix a hash function h : {0, 1}n → {0, 1}k which is good in
the sense defined above. To sample a random element from S, one can choose a random image y, use the NP oracle to
find all the preimages of y (there are approximately n2 of them), and choose a random one.

Our procedure for producing conditional discrepancy sets is a derandomization of this algorithm, that uses a PRG
for NP||-circuits. We first deterministically find a good hash function h as explained above. Then, we include in the
conditional discrepancy set T the preimages of only those y that are outputs of a PRG G for NP||-circuits; here we
make critical use of Theorem 3.12 to perform this step using only non-adaptive NP oracle access.

The proof that T is in fact an S-conditional discrepancy set is somewhat subtle. Given a (deterministic) circuit
that distinguishes a random element in T from a random element in S, we need to construct a NP||-circuit D that
is a distinguisher for the PRG G, thus leading to a contradiction. Care is needed to ensure that the distinguisher D
makes only non-adaptive NP oracle queries – and this is especially crucial here because a distinguisher that makes
adaptive queries is not guaranteed to be fooled by the PRG G that is based on only an SV-nondeterministic hardness
assumption.

5 Proof of Theorem 3.2 and its applications

We begin with some definitions and preliminaries.

5.1 Preliminaries

Given a function f : X → Y and S ⊆ X we use f(S) to denote the (multi-)set {f(x)|x ∈ S}.

5.1.1 Discrepancy sets and pseudorandom generators

In this paper we define pseudorandom generators in terms of discrepancy sets.

9For the case of decision problems every probabilistic algorithm can be derandomized if one has a sufficiently strong pseudorandom generator.
However, there are tasks (which are not decision problems) that can be easily solved by a probabilistic algorithm and cannot be solved by a deter-
ministic algorithm. For example, a probabilistic algorithm can easily produce a string with high Kolmogorov complexity whereas no deterministic
algorithm can output such a string.



Definition 5.1 (discrepancy set). Let D be a subset of all functions from {0, 1}n to {0, 1}. A set T ⊆ {0, 1}n is an
(n, ε)-discrepancy set for D if for every D ∈ D,

∣

∣

∣

∣

Pr
x∈{0,1}n

[D(x) = 1]− Pr
t∈T

[D(t) = 1]

∣

∣

∣

∣

≤ ε.

Commonly D is the set of functions with size s deterministic circuits; in this case we use the shorthand (n, s, ε)-
discrepancy set (as in Subsection 3.2.2). A pseudorandom generator is a function whose output is a discrepancy
set10.

Definition 5.2 (pseudorandom generator). Let C be a complexity class. A pseudorandom generator (PRG) for C
is a procedure which on input 1n outputs a (n, 1/n)-discrepancy set for the set D of all characteristic functions of
languages in C restricted to length n.

In this paper C will typically be the class of those languages with nondeterministic circuits of a given type, and
whose size is a fixed polynomial.

5.1.2 Low-degree polynomials

The low-degree extension of a function embeds the function in a low-degree polynomial.

Definition 5.3 (low-degree extension). Let f : {0, 1}n → {0, 1} be a function, Fq the field with q elements, and h
and d integers for which hd ≥ 2n. Let H be a subset of Fq of size h, and let I be an efficiently computable injective
mapping from {0, 1}n to Hd.

The low-degree extension of f with respect to q, h, d is the (unique) d-variate polynomial f̂ : F
d
q → F with degree

h− 1 in each variable, for which f̂(I(x)) = f(x) for all x ∈ {0, 1}n and f̂(v) = 0 for v ∈ (Hd \ Im(I)).

It is often helpful to think of field elements as binary strings of length log q. From this viewpoint, f̂ is a function
from d log q bits to log q bits. We will often consider a version of the low degree extension which outputs a single bit.
This boolean version of the low-degree extension is denoted f̂bool : {0, 1}d log q+log log q → {0, 1} and is defined by
f̂bool(x, i) = f̂(x)i.

The following properties of low-degree extensions are trivial and standard:

Proposition 5.4 (properties of the low-degree extension). For f̂ and f̂bool as defined above, the following hold:

• f̂ has total degree hd, and

• f̂bool is computable in time poly(2n, log q, d) given oracle access to f .

Complexity classes that allow low-degree extension (see Definition 3.1) contain the (boolean) low-degree exten-
sions of every function in that class; Theorem 3.2 applies to all such classes.

Definition 5.5 (parametric curves). Let Fq be the field with q elements, and let f1, f2, . . . fq be an enumeration of
the elements of Fq . Given v1, v2, . . . , vr ∈ F

d
q , for r ≤ q, we define the curve passing through v1, v2, · · · , vr to be the

unique degree r − 1 polynomial function c : Fq → F
d
q for which c(fi) = vi for all i. A curve c is one to one if i 6= j

implies c(fi) 6= c(fj).

The function f̂ ◦ c is the restriction of f̂ to the curve c. It is a low-degree univariate polynomial; in coding terms,
it is a Reed-Solomon codeword.

Theorem 5.6 (decoding of Reed-Solomon codes [WB86]). Let Fq be the field with q elements. Given t pairs (xi, yi)
of elements of Fq , there is a unique polynomial g : Fq → Fq of degree at most u for which p(xi) = yi for at least a
pairs, provided a > (t + u)/2. Furthermore, there is a polynomial time algorithm that finds g.

10A more standard formulation is that a pseudorandom generator “stretches” a short seed into a long pseudorandom string, with the property that
the set of all pseudorandom strings is a discrepancy set. Our definition asks the pseudorandom generator to output all pseudorandom strings at once.
This difference is immaterial in in this paper as we will be concentrating on discrepancy sets with polynomial size, and thus the entire set can be
output in polynomial time if each individual string can be generated in polynomial time.



5.2 Random curves that pass through a fixed point

In this subsection we prepare some technical machinery needed for the proof of Theorem 3.2. We will repeatedly use
the following tail-inequality for r-wise independent random variables:

Lemma 5.7 ([BR94]). Let r > 4 be an even integer. Suppose X1, X2, . . . , Xq are r-wise independent random
variables taking values in [0, 1]. Let X =

∑

Xi, and A > 0. Then:

Pr[|X − E[X]| ≥ A] ≤ 8 ·
(

r · E[X] + r2

A2

)r/2

.

We prove a technical lemma regarding the sampling properties of low-degree parametric curves. The points on a
random degree r parametric curve are r-wise independent; a well-known consequence of this fact (using, e.g., Lemma
5.7) is that the points on such a curve are a good “oblivious sampler” (see the survey [Gol97]). This means that for
any function h : F d → [0, 1] the average of h(x) over the points on a random curve is with high probability close to
the average over the whole space. We show below that this holds even if an adversary gets to choose the first point on
the curve. Because the remaining points on the curve are still r-wise independent it remains a good sampler.

We need the following notation:

Definition 5.8. Let W ⊆ Z be finite sets and let h : Z → [0, 1] be an arbitrary function. The average of h over W is
defined by:

µW (h) =
1

|W |
∑

i∈W

h(i)

We will use c(x,v1,v2,...,vr) to denote the curve passing through x, v1, v2, . . . vr (see Definition 5.5). We require
that c(x,v1,v2,...,vr)(0) = x; i.e., the enumeration of the field elements in Definition 5.5) starts with 0. Also, below Fq

is the field of size q, and F
∗
q = Fq \ {0}.

Lemma 5.9. Let r be an integer for which 2 ≤ r < q. For every point x ∈ F
d
q , function h : F

d
q → [0, 1], and δ > 0,

the following hold:

1. Prv1,...,vr∈Fdq

[∣

∣

∣
µc(x,v1,...,vr)(F∗q)

(h)− µFdq
(h)
∣

∣

∣
≥ δ
]

≤ 8 ·
(

2r
tδ2

)r/2
, and

2. Prv1,...,vr∈Fdq

[

c(x,v1,...,vr) isn’t one to one
]

≤ 1
qd−2 .

Proof. Fix x and h, and let v1, . . . , vr be chosen uniformly and independently from F
d
q . Define random variables Ya

by Ya = c(x,v1,...,vr)(a). It is standard that for every a ∈ F ∗q , Ya is uniformly distributed over F
d
q , and that the random

variables {Ya}a∈F∗q are r-wise independent. Now we define the random variables Ra = h(Ya). It follows that for
every a ∈ F ∗q , E[Ri] = µFdq

(h), and that {Ra}a∈F∗q are r-wise independent. Let R =
∑

a∈F∗q
Ra. We apply Lemma

5.7 with A = |F ∗q |δ = (q − 1)δ to conclude:

Pr
v1,··· ,vr∈Fdq

[∣

∣

∣
µc(x,v1,...,vr)(F∗q)

(h)− µFdq
(h)
∣

∣

∣
≥ δ
]

= Pr[|R−E[R]| ≥ A] ≤ 8 ·
(

A + r2

A2

)r/2

≤ 8 ·
(

2r

(q − 1)δ2

)r/2

.

This proves (1). For (2), we observe that for every a 6= a′ ∈ Fq ,

Pr
v1,...,vr∈Fdq

[c(x,v1,...,vr)(f) = c(x,v1,...,vr)(f
′)] =

1

qd
,

and taking a union bound over all (at most q2) such pairs yields the desired result.

We will be interested in curves that are good samplers for k functions simultaneously. The following is a corollary
of the above lemma; it is an easy application of a union bound:



Corollary 5.10. Let r be an integer for which 2 ≤ r < q. Let h1, h2, . . . , hk be functions from F
d
q to [0, 1]. For every

point x ∈ F
d
q and δ > 0, the probability over a random choice of points v1, . . . , vr ∈ F

d
q that c(x,v1,...,vr) is one-to-one

and
∣

∣

∣
µc(x,v1,...,vr)(F∗q)

(hi)− µFdq
(hi)

∣

∣

∣
< δ

for all 1 ≤ i ≤ k, is at least

1−
(

8k

(

2r

(q − 1)δ2

)r/2

+
1

qd−2

)

.

5.3 Proof of the downward collapse theorem

In this subsection we prove Theorem 3.2. We refer the reader to the informal description of the technique in the
introduction (Section 4.1).

Let L be an arbitrary language in C, and let f : {0, 1}n → {0, 1} be the restriction of (the characteristic function
of) L to inputs of length n. Throughout the proof we assume that n is sufficiently large, n ≤ s(n) ≤ 2n, and that
s(O(n)) ≤ s(n)O(1).

Let f̂ be the low-degree extension of f with respect to parameters q, h, d chosen as follows (they are expressed in
terms of a fourth parameter r):

• r = 2(n + log(32s(n)5))

• h = (4r)2(9s(n))4

• d = dn/ log he + 3

• q smallest prime power larger than 9hdr.

Note that C allows low-degree extension, and so by Proposition 5.4, the function family consisting of (boolean versions
of) the low-degree extensions of L for each input length, with parameters as defined above, lies in C.

Thus, by the hypothesis of the theorem, f̂bool has an NP||-circuit of size s(n′), where n′ = log(qd)+log(q) = O(n)

is the input length of f̂bool. We will construct a probabilistic SV-nondeterministic circuit C ′ computing f̂bool of
size s′ = s(n′)c, for a constant c (it will be clear in the exposition below what is meant by a “probabilistic SV-
nondeterministic circuit”). We will then transform C ′ into an SV-nondeterministic circuit C ′′ computing f by fixing
a “good” random string, and using the function I that accompanies the low-degree extension (recall Definition 5.3).
The resulting circuit C ′′ will have size s(n′)c + poly(n). Since s(n′)c = s(O(n))c = s(n)O(1), we will conclude that
L has circuits of size s(n)O(1). As L was arbitrary, this will prove the theorem.

Let Cpre, Cpost be the Boolean circuits that describe the NP||-circuit of size s(n′) that computes f̂bool (recall
Definition 2.3). With log q parallel copies of Cpre and Cpost, we can construct an NP||-circuit with log q outputs that
computes f̂ . Let Q1(x), . . . , Qk(x) and A1(x), . . . , Ak(x) be the queries and answers associated with this circuit,
respectively, on input x ∈ F

d
q . Without loss of generality we assume that exactly k queries are made on every input x.

We define pi = µFdq
(Ai).

We focus first on constructing C′, the probabilistic SV-nondeterministic circuit. Circuit C ′ makes use of Cpre

and Cpost, as well as p1, p2, . . . , pk as non-uniform advice. We set δ = 1/(9k). On input (x, b), circuit C ′ wants to
compute f̂bool(x, b); it performs the following steps:

• Pick v1, v2, . . . , vr ∈ F
d
q uniformly at random, and set xa = c(x,v1,v2,...,vr)(a), so the xa are the q points along

a random curve passing through x, v1, v2, . . . vr. Simulate Cpre to compute queries Qi(xa) for 1 ≤ i ≤ k and
a ∈ F

∗
q .

• Set ni = b(pi − δ)(q − 1)c. For 1 ≤ i ≤ k, guess zi ∈ {0, 1}F
∗
q with exactly ni ones, and strings {wi,a}a∈F∗q

.

• For 1 ≤ i ≤ k and a ∈ F
∗
q , check that (zi)a = 1 implies wi,a is a witness that query Qi(xa) is answered

positively; otherwise, set the flag output to 0 and halt.



• Compute ya = Cpost(xa, (z1)a, (z2)a, . . . , (zk)a) for a ∈ F ∗q .

• Run the algorithm of Theorem 5.6 on the q− 1 pairs (fa, ya) with u = hdr to obtain a polynomial g : Fq → Fq

of degree u. Set the value output to the b-th bit of g(0), and set the flag output to 1.

The following claim will allow us to fix the coin-flips of circuit C′, described above, to get an SV-nondeterministic
circuit computing f .

Claim 5.10.1. For every x ∈ F
d
q and b ∈ [log q], with probability at least 1− 2−n

2 log q over the choice of v1, . . . , vr, the
following two conditions hold:

1. For all guesses zi, wi,a for which the flag output is set to one, the value output is f̂bool(x, b).

2. There exist guesses zi, wi,a such that the flag output is set to one.

Proof. Fix an x ∈ F
d
q . We apply Corollary 5.10 to conclude that the probability over a random choice of points

v1, . . . , vr ∈ F
d
q that

c(x,v1,...,vr) is one-to-one and
∣

∣

∣
µc(x,v1,...,vr)(F∗q)

(Ai)− µFdq
(Ai)

∣

∣

∣
< δ for all 1 ≤ i ≤ k (5)

is at least

1−
(

8k

(

2r

(q − 1)δ2

)r/2

+
1

qd−2

)

.

By our choice of parameters:
(

8k

(

2r

(q − 1)δ2

)r/2

+
1

qd−2

)

≤ 8s(n) log q

(

1

2

)r/2

+
1

qd−2
≤ 2−n

4 log q
+

2−n

4 log q
≤ 2−n

2 log q
.

The first inequality it true because k ≤ s(n) log q, δ−2 = (9k)2 ≤ (9s(n) log q)2 and

(q − 1)/ log2 q ≥ √q ≥
√
h ≥ (4r)(9s(n))2

(for sufficiently large q). The second inequality follows from our choice of r and d, and the fact that log q = O(n) ≤
s(n)2 (for sufficiently large q).

We will show that whenever (5) holds, the two items in the claim hold. We begin with the second item. Since (5)
holds, for each i we know that there are at least ni distinct indices for which Ai(xa) = 1; we choose zi to be a string
with ones in exactly ni of these indices. For each index a for which (zi)a = 1, there is a witness wi,a showing that
query Qi(xa) is answered positively (since Ai(xa) = 1). Thus there exists a choice of of the zi, wi,a for which the
flag output is set to one.

Now, we turn to the first item. Once the verification in the third bullet above is complete, we know that for all i,
and all a ∈ F ∗q , (zi)a = 1 implies Ai(xa) = 1, and that there are at least ni such a for which (zi)a = 1. We also
know, by (5), that the number of a for which Ai(xa) = 1 is at most d(pi + δ)(q− 1)e. Thus we can bound the number
of “errors attributable to query i” as follows:

|
{

a : a ∈ F
∗
q , Ai(xa) 6= (zi)a

}

| ≤ d(pi + δ)(q − 1)e − b(pi − δ)(q − 1)c ≤ 2δq,

and the number of “errors” overall as follows:

|
{

a : a ∈ F
∗
q for which ∃i Ai(xa) 6= (zi)a

}

| ≤ 2δqk.

For every a that is not an “error,” y a = f̂(xa). We conclude that for at least (q−1)−2δqk = (1−2δk)q−1 of the pairs
(a, ya), we have ya = p(a), where p(w) is the degree hdr “restriction to the curve” p(w) = f̂ ◦ c(x1,v1,v2,...,vr)(w).

If the number of pairs that agree with p(w) is greater than (q − 1 + hdr)/2, then the algorithm of Theorem 5.6
returns p(w), and our circuit outputs the b-th bit of p(0) = f̂(x) as desired. Thus to conclude the proof we verify that

(1− 2δk)q − 1 =
7/9

q
− 1 >

q − 1 + hdr

2
,

which holds by our choice of q.



Now, recall that the low-degree extension is accompanied by a polynomial-time computable function I from
{0, 1}n into F

d
q . Consider the set of inputs to C ′ given by

S = {(x, b) : x ∈ I({0, 1}n), b ∈ [log q]}

and note that |S| = (log q)2n. Thus there must be a fixing of the coin-flips of C′ so that the two statements in the
above claim hold for all inputs in S.

Our SV-nondeterministic circuit C ′′ computing f is built as follows:

• on input y ∈ {0, 1}n, compute x = I(y)

• use circuit C ′ with the “good” random coin-flips hardwired to compute f̂bool(x, b) for every b ∈ [log q].

• these log q bits give us f̂(x) = f̂(I(y)) = f(y). Output f(y).

Because non-adaptive queries to an SV-nondeterministic circuit may be simulated by an SV-nondeterministic circuit,
the resulting circuit C ′′ is an SV-nondeterministic circuit. Finally, we can verify that its size is poly(n) + s(n′)c for
some constant c. This concludes the proof of Theorem 3.2.

5.4 Application of Theorem 3.2: Derandomizing BPP
NP
||

The following is a slight refinement of a theorem in [KvM02] (we use the additional fact that the NP oracle access in
their argument is always non-adaptive):

Theorem 5.11. [KvM02] If ENP
|| (resp. E) requires exponential size NP||-circuits then there is a PRG for linear-size

NP||-circuits that runs in polynomial time with non-adaptive access to an NP oracle (resp. polynomial time).

We obtain the following improvement:

Theorem 5.12. If ENP
|| (resp. E) requires exponential size SV-nondeterministic circuits then there is a PRG for

linear-size NP||-circuits that runs in polynomial time with non-adaptive access to an NP oracle (resp. polynomial
time).

Proof. Combine Theorem 5.11 with Corollary 3.3.

We use this to prove Theorem 3.11.

Proof of Theorem 3.11. Given a BPPNP
|| algorithm A(x, y) for language L and an input x let Cx(Y ) = A(x, y). By

padding if necessary, Cx can be computed by a linear-size NP||-circuit. We run the PRG of Theorem 5.12 on input
1|x| to produce a discrepancy set T that fools circuit Cx. We compute A(x, t) for each t ∈ T , and output the majority.
This constitutes a deterministic algorithm that decides language L in polynomial time with non-adaptive access to an
NP oracle.

Also, as explained in the introduction, Theorem 3.11 gives an alternative way of constructing PRGs for nondeter-
ministic circuits from an SV-nondeterministic hardness assumption. This permits the use of “standard constructions”
in this setting, whereas previous constructions [MV99, SU01] were specialized to the nondeterministic case.

5.5 Application of Theorem 3.2: hardness amplification

Hardness amplification results transform functions which are hard on the worst case into functions which are hard on
the average. In a sequence of works [BFNW93, Imp95, IW97, STV01] it was shown that for every class which allows
low degree extension if the class is hard on the worst case for small deterministic circuits then the class is hard on
average for small deterministic circuits. We restate the best such results (which is by [STV01]) in the following way:11

11We remark that [STV01] is concerned with list-decoding the Reed-Solomon code. The statement given here is less general.



Theorem 5.13. [STV01] Let C be a class which allows low degree extension. There exists a constant c such that for
every function f : {0, 1}n → {0, 1} such that f ∈ C and ε > 2−n there is a function f̂ : {0, 1}n′=O(n) → {0, 1} such
that f̂ ∈ C and for every function D : {0, 1}n′ → {0, 1} such that

Pr
x∈R{0,1}n

′
[D(x) = f̂(x)] ≥ 1/2 + ε

there is an oracle circuit C such that CD computes f , and the size of C is (n/ε)c.

Indeed, this is a complicated way to say that if f is hard for size s deterministic circuits then f̂ is hard on average
for slightly smaller deterministic circuits. We chose to state Theorem 5.13 this way, because in this form it also gives
a hardness amplification result for other classes of circuits. The following corollary is an example.

Corollary 5.14. Let C be a class which allows low degree extension. If C is hard for size s NP||-circuits then C is
1/2 + ε-hard for size s′ = (sε/n)Ω(1) NP||-circuits.

Proof. One only has to notice that if D is a size s′ NP||-circuits then CD (from Theorem 5.13) is a size s′ ·poly(n, 1/ε)
NP||-circuit.

It is important to note that this argument does not work directly for nondeterministic circuits. The reason is that it
does not follow that if D is a nondeterministic circuit and C is a deterministic circuit then CD is a nondeterministic
circuit. (Consider for example the case where D computes SAT and C flips the result. The circuit CD computes
coSAT which is not believed to be computable by a nondeterministic circuit.) A hardness amplification result for
nondeterministic circuits was proven in [SU01]. Corollary 3.3 gives an alternative proof of this result (Theorem 3.13).

Proof of Theorem 3.13. By Corollary 3.3 we have that there exists a function f̂ : {0, 1}O(n) → {0, 1} in C that is
hard for size s′ = sΩ(1), and the Theorem follows from Corollary 5.14 which gives that C is hard on average even for
NP||-circuits.

The proof above makes two consecutive steps of the low degree extension (one in Corollary 3.3 and the other in
Theorem 5.13). This is not necessary. We mention that the arguments of the two steps above can be combined to give
a more direct proof. We defer this to a later version of the paper.

6 Proofs of Theorem 3.6 and Theorem 3.10

We will need the following lemma:

Lemma 6.1. Let Hn,k be an n-wise independent family of hash functions mapping n bits to k bits, and let S ⊆ {0, 1}n.
Then for every 1 ≥ δ > 0, and sufficiently large n:

Pr
h∈Hn,k

[

∃y for which |{x : h(x) = y ∧ x ∈ S}| > (1 + δ)
|S|
2k

]

≤ 1/2,

provided 2k ≤ δ2n−3|S|.
Proof. Fix y ∈ {0, 1}k, and let Ix be the indicator random variable for the event h(x) = y. Notice that E[Ix] = 2−k

and that the Ix are n-wise independent. Define I =
∑

x∈S Ix; we have E[I] = |S|2−k by linearity of expectation.
Applying Lemma 5.7, we get:

Pr

[

|{x : h(x) = y ∧ x ∈ S}| > (1 + δ)
|S|
2k

]

≤ Pr [I − E[I] ≥ δE[I]] ≤ 8 ·
(

nE[I] + n2

(δE[I])2

)n/2

≤ 8 ·
(

2n

δ2E[I]

)n/2

≤ 8 ·
(

2

n2

)n/2

< 2−(n+1).

Applying a union bound over all 2k < 2n different y, we obtain the stated result.



The main procedure that is used in the proofs of Theorem 3.10 and Theorem 3.6 makes use of a PRG that fools
non-deterministic circuits. It takes a circuit C that accepts a subset S of {0, 1}n, and outputs a hash function from n
bits to k bits whose preimages partition S nearly evenly. Additionally, it outputs an S-conditional discrepancy set.

Lemma 6.2. There is a function family that takes as input:

• a circuit C on n bits, and

• δ > 0, and

• an integer s, and

• the truth table T of a function on t = O(log |C|, log n, 1/δ, log s) bits that cannot be computed by NP||-circuits
of size 2γt for some constant γ > 0,

and outputs:

• an integer k, and

• a hash function h : {0, 1}n → {0, 1}k, and

• an integer B with B = poly(n, 1/δ), and

• a multiset R

for which the following hold:

• ∀y |{x : h(x) = y ∧ C(x) = 1}| ≤ (1 + δ)B, and

• 2kB ≤ |C−1(1)|, and

• the multiset S = {x : h(x) ∈ R ∧ C(x) = 1} is a C−1(1)-conditional (n, s, 2δ)-discrepancy set.

This function family is in FTIME(2O(t))NP
|| .

Proof. Set N = δ−2n3. We observe that for all 1 ≤ k ≤ n and all 0 ≤ e < N , given a description of some h ∈ Hn,k

we can test if
∃y for which |{x : h(x) = y ∧ C(x) = 1}| > (1 + δ)(N + e) (6)

in nondeterministic time m = poly(N, |C|). Using known constructions (e.g., [SU01]) we can produce from T a
(m, 1/4)-discrepancy set U ⊆ {0, 1}m for the set of nondeterministic circuits of size m. With known constructions,
an enumeration of U can be computed efficiently and deterministically from T . Let Mk be an efficiently computable
mapping from strings of length m to Hn,k such that Mk is uniform on Hn,k when its input is chosen uniformly.

For all triples (k, e, u) with k = 1, 2, . . . n, e = 0, 1, . . . N − 1, and u ∈ U , we test whether Eq. (6) holds for hash
function h = Mk(u). This entails poly(N, |C|) parallel NP queries altogether. We label each of these queries with a
triple (k, e, u). Order the queries lexicographically (with k changing the slowest), and let (k∗, e∗, u∗) be the first triple
for which Eq. (6) does not hold for h = Mk∗(u

∗). We claim that

(N + e∗) ≤ |C−1(1)|
2k∗

≤ (1 + δ)(N + e∗). (7)

This is true because: by the pigeonhole principle, if |C−1(1)|/2k∗ > (1 + δ)(N + e∗), then Eq. (6) holds; and
if (N + e∗) > |C−1(1)|/2k∗ then k∗ > blog2(|C−1(1)|/N)c and so it must be the case that Eq. (6) holds for
k = blog2(|C−1(1)|/N)c and all e, for all h = Mk(u), u ∈ U (by our choice of the lexicographically first triple).
However, Lemma 6.1 implies that for this k, and e for which (N + e) = d|C−1(1)|/2ke, Eq. (6) holds for at most 1/2
of the h ∈ Hn,k, which contradicts the fact that U is a discrepancy set.

At this point we have k∗ and e∗ satisfying Eq. 7 and a hash function h∗ : {0, 1}n → {0, 1}k∗ (namely h∗ =
Mk∗(u

∗)) for which
∀y |{x : h∗(x) = y ∧ C(x) = 1}| ≤ (1 + δ)(N + e∗). (8)



At this point we observe that the integer k∗, the hash function h∗, and the integer B = (N + e∗) satisfy the properties
stated in the lemma.

Now, let s′ be some fixed polynomial in B, |C|, s to be determined later. Using known constructions (e.g.,
[KvM02]) we can produce from T a (k∗, δ)-discrepancy set R ⊆ {0, 1}k∗ for the set of NP||-circuits of size m. With
known constructions, an enumeration of R can be computed efficiently and deterministically from T . The remainder
of the proof is devoted to proving that

S = {x : h∗(x) ∈ R ∧ C(x) = 1},

is a C−1(1)-conditional (n, s, 2δ)-discrepancy set as required.
Suppose for the purpose of contradiction that there is a distinguisher f : {0, 1}n → {0, 1} computable by a size s

circuit for which
|Pr

x
[f(x) = 1|C(x) = 1]− Pr

t∈S
[f(t) = 1|C(t) = 1]| > 2δ. (9)

We use f to describe a distinguisher g : {0, 1}k∗ → {0, 1} computable by a size s′ NP||-circuit that “catches” the
discrepancy set R. On input y ∈ {0, 1}k∗ , g uses (1+δ)B non-adaptive NP queries to determine `y = |{x : h∗(x) =
y ∧ C(x) = 1 ∧ f(x) = 1}|, and g then outputs 1 with probability `y/((1 + δ)B).

We know that 2k∗B ≤ |C−1(1)| = 2k∗(1 + δ)B. Thus

Pr
x

[f(x) = 1|C(x) = 1] =

∑

y `y

|C−1(1)| ≤
∑

y `y

2k∗B
=

1

2k∗
∑

y

`y
B

= (1 + δ) Pr
y

[g(y) = 1]

Similarly, we known that |S| ≤ |R|(1 + δ)B and so:

Pr
r∈R

[g(r) = 1] =
1

|R|
∑

r∈R

`r
(1 + δ)B

≤
∑

r∈R `r

|S| = Pr
t∈S

[f(t) = 1|C(t) = 1].

We may assume that Eq. 9 holds without the absolute value, by inverting f if necessary. Then we get:

Pr
r∈R

[g(r) = 1] ≤ Pr
t∈S

[f(t) = 1|C(x) = 1] < Pr
x

[f(x) = 1|C(x) = 1]− 2δ ≤ (1 + δ) Pr
y

[g(y) = 1]− 2δ

and so g distinguishes a random element from R from a truly random element with advantage greater than δ. We
may fix g’s random coins to preserve this advantage, and notice that g is computable by a size s′ = poly(B, |C|, s)
circuit that makes non-adaptive NP oracle queries. This contradicts the fact that R is a discrepancy set against size s′

NP||-circuits and so S must indeed be an C−1(1)-conditional (n, s, 2δ)-discrepancy set, as desired.
We output k∗, the hash function h∗, the integer B = (N + e∗), and the multiset R, which satisfy the properties

stated in the lemma.

We are now in a position to prove Theorems 3.6 and 3.10. We will need the following fact about composing
functions computable with non-adaptive NP oracle access:

Lemma 6.3. Let f = {fn} and g = {gn} be length-preserving function families inFTIME(t(n))NP
|| andFTIME(s(n))NP

||

respectively. Then the function family (f ◦ g) defined by (f ◦ g)(x) = f(g(x)) is in FTIME(poly(t(n)s(n)n))NP
|| .

Proof. We are given an input x of length n, and we wish to compute f(g(x)). Let Mf and Mg be the deterministic
oracle Turing Machines associated with f and g.

For i = 0, 1, 2, . . . , s(n); j = 0, 1, 2, . . . t(n); k = 1, 2, . . . n; b ∈ {0, 1}; z = 0, 1, 2 we guess:

• a transcript Tg for a computation of Mg on input x in which exactly j queries are answered positively. The

transcript includes witnesses w(g)` for each positively answered query q
(g)
` , and an output yg .

• a transcript Tf for a computation of Mf on input yg in which exactly i queries are answered positively. The

transcript includes witnesses w(f)` for each positively answered query q
(f)
` , and an output yf .



and check if all of the following hold:

• Each w
(g)
` is a valid witness for query q

(g)
` , and Tg is a valid transcript for the operation of Mg on input x with

the queries q(g)` answered positively and all other queries answered negatively, with output yg.

• Each w
(f)
` is a valid witness for query q

(f)
` , and Tf is a valid transcript for the operation of Mf on input yg with

the queries q(f)` answered positively and all other queries answered negatively, with output yf ; OR z < 1.

• The k-th bit of yf is b; OR z < 2.

This describes the 3n(s(n) + 1)(t(n) + 1) non-adaptive NP oracle queries. We label each of these queries with a
tuple (i, j, k, b, z). Equipped with the answers to these oracle queries, we will (deterministically) compute f(g(x)).

Let i∗ be the largest value of i for which query (i, 0, 1, 0, 0) is answered positively. We claim that every valid
witness for query (i∗, j, k, b, z) for z ≥ 0 must have yg = g(x). First, observe that if Mg has exactly i oracle
queries answered positively on input x, then query (i, 0, 1, 0, 0) will be answered positively: a witness is obtained
by taking Tg to be the correct transcript for the operation of Mg on input x together with valid witnesses w

(g)
` for

every positively answered query q
(g)
` . Moreover, no query (i, 0, 1, 0, 0) with i larger than the true number of queries

answered positively on input x will be answered positively, because it is impossible to have valid witnesses for that
many queries. Therefore the only witnesses for a query of the form (i∗, j, k, b, z) must have a correct transcript Tg for
the operation of Mg on input x, and therefore they must end with the correct output yg = g(x).

Similarly, let j∗ be the largest value of j for which query (i∗, j, 1, 0, 1) is answered positively. An identical
argument as above shows that every valid witness for query (i∗, j∗, k, b, z) for z ≥ 1 must have yf = f(g(x)).

Finally, we see that (i∗, j∗, k, b, 2) can be answered positively if and only if b is the value of the k-th bit of yf .
Thus we can determine the string yf by examining the answers to these 2n queries. We output yf .

Proof of Theorem 3.6. We are given a circuit A on n bits, and ε > 0. Set δ = ε/(1 − ε) and set t as in the statement
of Lemma 6.2. We describe our procedure in several steps, and then apply Lemma 6.3 to assemble them into a single
procedure that uses non-adaptive NP-oracle access.

• We are assuming that ENP
|| requires exponential size SV-nondeterministic circuits. By Corollary 3.3, ENP

|| also

contains languages that require exponential size NP||-circuits. Let L be such a language in ENP
|| . We first pro-

duce the truth table T of L restricted to length t inputs. Since L ∈ ENP
|| this procedure is in FTIME(2O(t))NP

|| .

• Apply the function family of Lemma 6.2, with inputs A, δ, n, T . This produces output k, h,B and R, and runs
in time FTIME(2O(t))NP

|| .

• The resulting output has integers k and B for which

2kB ≤ |A−1(1)| ≤ (1 + δ)2kB.

We can then output ρ = (2kB)/(2n), and the above equation implies:

(1− ε) Pr
x

[A(x) = 1] ≤ ρ ≤ Pr
x

[A(x) = 1]

as required.

After applying Lemma 6.3, the overall running time of the procedure is polynomial in |A|, n and 1/ε and it uses only
non-adaptive NP oracle access.

Proof of Theorem 3.10. We are given a circuit A on n bits, an integer s, and ε > 0, and we want to produce a A−1(1)-
conditional (n, s, ε)-discrepancy set. Set δ = ε/2 and set t as in the statement of Lemma 6.2. We describe our
procedure in several steps, and then apply Lemma 6.3 to assemble them into a single procedure that uses non-adaptive
NP-oracle access.



• We are assuming that ENP
|| requires exponential size SV-nondeterministic circuits. By Theorem 3.2, ENP

|| also

contains languages that require exponential size NP||-circuits. Let L be such a language in ENP
|| . We first pro-

duce the truth table T of L restricted to length t inputs. Since L ∈ ENP
|| this procedure is in FTIME(2O(t))NP

|| .

• Apply the function family of Lemma 6.2, with inputs A, δ, s, T . This produces output k, h,B and R, and runs
in time FTIME(2O(t))NP

|| .

• Finally, we produce from R an enumeration of the multiset S = {x : h(x) ∈ R ∧ A(x) = 1}. This can be
accomplished by making queries of the form “Is S i a multiset of size i for which Si ⊆ {x : h(x) ∈ R∧A(x) =
1}?” for each i up to 2O(t) (which is an upper bound on |R|). By Theorem 3.12, we can actually produce such
multisets Si using non-adaptive NP oracle queries, and we find all of the Si in parallel. Finally we output the
largest Si that is found, which must equal S, which is the desired A−1(1)-conditional (n, s, ε)-discrepancy set.

After applying Lemma 6.3, the overall running time of the procedure is polynomial in |A|, n, s and 1/ε and it uses
only non-adaptive NP oracle access.

If we assume instead thatENP requires exponential-size SV-nondeterministic circuits then step 1 runs inFTIME(2O(t))NP

and the last step can use an NP oracle adaptively to find S in the usual way. In this case the procedure has the same
overall running time but uses adaptive NP oracle access.

7 Conclusions and open problems

Our “downward collapse theorem” states that for every sufficiently strong class C if C has small NP||-circuits then C
has small SV-nondeterministic circuits. A very natural open problem is try to extend the “downward collapse” theorem
to handle adaptive NP queries. That is, show that if E is computable by small NP-circuits then E is computable by
small NP||-circuits. We remark that all the proofs in this paper relativize. Thus, we find it interesting to check whether
the statement above relativizes.

The proof of the “downward collapse” theorem gives a nonuniform reduction from an NP||-circuit that computes
f̂ to an SV-nondeterministic circuit that computes f . We observe that achieving uniform versions of this theorem
would give new unconditional results. For example, replacing the nonuniform reduction with a uniform probabilistic
reduction (which succeeds with probability say 2/3) would show that EXP ⊆ PNP

|| /poly ⇒ EXP = AM . This in

turn gives the following unconditional results: AMEXP 6⊆ PNP
|| /poly (by an argument similar to that of [BFT98])

and AM ⊆ ∩δ>0[io]NTIME(2nδ

)NP (see the discussion section in [GSTS03]). A somewhat easier task may be
to try and show that EXP ⊆ PNP

|| ⇒ EXP = AM . Obtaining this would give the unconditional result that

AMEXP 6⊆ PNP
|| . We note that our results already give EXP ⊆ PNP

|| ⇒ EXP ⊆ AM/ log. To see this, observe
that with some minor modifications to the parameters used in the proof of Theorem 3.2, it is sufficient to supply

∑

i pi
as nonuniform advice, rather than p1, p2, . . . , pk.

We have shown how to construct relative error approximators and conditional discrepancy sets using hardness for
nondeterministic circuits. However, we do not know whether the existence of any of these objects entails such a hard
function. In particular, the “standard arguments” which show that “pseudorandomness entails hardness” only give
hardness for deterministic circuits. Is it possible to construct the objects above using a weaker hardness assumption?
Is it possible to derandomize AM using these objects?
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