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Abstract

We show that if an NP-complete problem has a non-adaptive self-corrector with respect
to a samplable distribution then coNP is contained in NP/poly and the polynomial hierarchy
collapses to the third level. Feigenbaum and Fortnow (SICOMP 22:994-1005, 1993) show the
same conclusion under the stronger assumption that an NP-complete problem has a non-adaptive
random self-reduction.

Our result shows that the average-case hardness of a problem in NP or the security of a one-
way function cannot be based (using non-adaptive reductions) on the worst-case complexity of
an NP-complete problem (unless the polynomial hierarchy collapses).

1 Introduction

A problem in distributional NP [Lev86] is a pair (L,D) where L is an NP decision problem and D
is a samplable distribution of instances. (See Section 2.1.)

The fundamental question in the study of average-case complexity is whether there are intractable
problems in distributional NP. In this paper, we will consider a problem (L,D) to be average-
case intractable if there is a polynomial p(n) such that every polynomial time algorithm fails with
probability at least 1/p(n) when given a random instance of length n. This notion of intractability
is essentially equivalent to not having polynomial time heuristic algorithms, and it is somewhat
stronger than the property of not having polynomial-on-average algorithms as defined by Levin
[Lev86]. (Impagliazzo’s paper [Imp95] includes a discussion of the relation between polynomial-
on-average algorithms and heuristic algorithms.) If one-way functions exist, then there are distri-
butional NP problems that are intractable according to our definition, which is then a necessary
condition for the possibility of cryptography.

The question we consider in this paper is whether the existence of intractable problems in distri-
butional NP (and of one-way functions) can be “reduced” to the NP 6⊆ BPP question, that is,
whether the existence of worst-case hard problems in NP is “sufficient” to prove the existence of
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average-case hard ones. The question of whether there are cryptosystems that are NP-hard to
break, that is, whose security can be based on the assumption that NP 6⊆ BPP, is as old as modern
cryptography itself, and it was asked in [DH76, Section 6].

As we review below, there is contrasting evidence about what the answer to this question is.

Lattice Problems

Ajtai [Ajt96] shows that an algorithm that solves well on average the shortest vector problem (an
NP problem) under a certain samplable distribution of instances implies an algorithm that solves,
in the worst case, an approximate version of the shortest vector problem. The latter can be seen as
an NP promise problem. If the latter problem were NP-complete, then we would have a reduction
relating the average-case hardness of an NP distributional problem to the worst-case hardness of
an NP-complete problem. Unfortunately, the latter problem is known to be in NP ∩ coNP, and
therefore it is unlikely to be NP-hard. However, it is conceivable that improved versions of Ajtai’s
argument could show the equivalence between the average-case complexity of a distributional NP
problem and the worst-case complexity of an NP problem. Micciancio [Mic04] and Micciancio
and Regev [MR04] improve Ajtai’s reduction by showing that a good on average problem for the
shortest vector problem implies better worst-case approximation algorithms. Such approximations,
however, still correspond to a promise problem known to be in NP ∩ coNP.

Ajtai’s approach has been extended by Ajtai and Dwork [AD97] and Regev [Reg03], who present
public-key cryptosystems whose security (which is a stronger condition than the existence of in-
tractable problems in distributional NP) is equivalent to the worst-case complexity of certain NP
promise problems.1

Previous Work on Worst-case versus Average-case Complexity in NP

As discussed in [Imp95], we know oracles relative to which NP 6⊆ P/poly but there is no intractable
problem in distributional NP, and, consequently, one-way functions do not exist. Therefore, any
proof that “NP 6⊆ BPP implies the existence of an intractable problem in distributional NP” must
use a non-relativizing argument.

This, however, does not say much about the potential of Ajtai’s techniques. Ajtai’s argument, as
well as later generalizations, exploits properties of specific problems, and it does not relativize.

Feigenbaum and Fortnow [FF93] consider the notion of a locally random reduction, which is a
natural, and possibly non-relativizing, way to prove that the average-case complexity of a given
problem relates to the worst-case complexity of another one. A locally random reduction from a
language L to a distributional problem (L′,D) is a polynomial-time oracle procedure R such that
RL′

solves L and, furthermore, each oracle query of RL′
(x) is distributed according to D.2 Clearly,

1Once more, these promise problems are known to be in NP∩coNP, but it is conceivable that improved reductions
could base the security of a cryptosystem on the worst-case complexity of an NP-hard promise problem.

2More precisely, according to the restriction of D to inputs of length polynomially related to x. See Section 2 for
a more precise definition.
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such a reduction converts a heuristic polynomial time algorithm for (L′,D) (with sufficiently small
error probability) into a BPP algorithm for L. If we could have a locally random reduction from, say,
3SAT to some problem (L′,D) in distributional NP, then we would have proved that if NP 6⊆ BPP
then distributional NP contains intractable problems.

Feigenbaum and Fortnow show that if there is a non-adaptive locally random reduction from a
problem L to a problem (L′,D) in distributional NP, then L is in coNP/poly. In particular, if L is
NP-complete, then NP ⊆ coNP/poly and the polynomial hierarchy collapses.

Locally random reductions are a natural notion, and they have been used to establish the worst-case
to average-case equivalence of certain PSPACE-complete and EXP-complete problems. Therefore,
the result of Feigenbaum and Fortnow rules out a natural and general approach to prove a statement
of the form “if NP 6⊆ BPP then distributional NP contains intractable problems.”

Previous Results on Cryptography versus NP-hardness

An earlier paper of Brassard [Bra79] considers the question of whether there can be a public key
cryptosystem whose security can be reduced to solving an NP-complete problem. Brassard argues
that, under some assumptions on the key-generation algorithm and the encryption procedure, the
problem of inverting the encryption is in NP ∩ coNP, and therefore unlikely to be equivalent to
an NP-complete problem. Goldreich and Goldwasser [GG98] revisited the issue more recently, and
tried to remove some of the assumptions in Brassard’s result. They showed that the existence of
a reduction from an NP-complete problem to the problem of breaking a public-key cryptosystem
would imply the collapse of the polynomial hierarchy (under some assumptions on the way the
reduction works and/or on the key generation algorithm).

The results of Brassard [Bra79] and of Goldreich and Goldwasser [GG98] refer to the complexity of
breaking a cryptosystem for every message and for every key. Clearly, if even such a strong form of
attack cannot be NP-hard (under certain assumptions) then neither can the weaker form of attack
considered in standard definitions of security (in which the attacker only needs to distinguish the
encryptions of two possible messages with noticeable probability). In the setting of private key
encryption, however, this approach does not seem to work, and it seems necessary to specifically
address the issue of the average-case complexity of attacking a construction. In particular, the
possibility of private-key encryption is equivalent to the existence of one-way functions, and it is
well known that there are “one-way functions” that are NP-hard to invert on all inputs.3

A natural definition of “reduction from an NP-complete problem to the problem of inverting well on
average a one-way function f” is as follows: a reduction is an oracle probabilistic polynomial time
procedure R such that for some polynomial p and for every oracle A that inverts f on a 1− 1/p(n)
inputs of length n, we have that RA is a BPP algorithm for 3SAT. The techniques of Feigenbaum
and Fortnow imply that if R is non-adaptive, and if all of its oracle queries are done according to
the same distribution (that depends only on the length of the input), then the existence of such a
reduction implies that the polynomial hierarchy collapses.

3For example, take the function that on input a 3SAT formula φ and an assignment a, outputs 0.φ if the formula
is not satisfied by a, and outputs 1.φ otherwise.
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As we explain below, our results show the same conclusion without the assumption on the dis-
tribution of the queries made by RA. (But we still need the assumption that the queries are
non-adaptive.)

Our Result

We say that a language L has a worst-case to average-case reduction with parameter δ to a dis-
tributional problem (L′,D) if there is a reduction R (realized by a probabilistic polynomial time
algorithm) such that, for every oracle A that agrees with L′ on inputs of probability mass 1 − δ
according to D on each input length, RA solves L on every input.

If L and L′ are the same language, then the reduction is called a self-corrector, a notion indepen-
dently introduced by Blum and others [BLR93] and by Lipton [Lip89] in the context of program
checking [Blu88, BK95].

As argued below, a locally random reduction is also a worst-case to average-case reduction and a
random self-reduction is also a self-corrector, but the reverse need not be true.

In this paper we show that if there is a worst-case to average-case reduction with parameter
1/poly(n) from an NP-complete problem L to a distributional NP problem (L,D), then NP ⊆
coNP/poly and the polynomial hierarchy collapses. In particular, if an NP-complete problem has
a self-corrector with respect to a samplable distribution, then the polynomial hierarchy collapses.

We first prove the result for the special case in which the distribution D is uniform. Then, using
reductions by Impagliazzo and Levin [IL90] and by Ben-David and others [BCGL89], we show that
the same is true even if the reduction assumes a good-on-average algorithm for the search version
of L′, and even if we measure average-case complexity for L′ with respect to an arbitrary samplable
distribution D.

The generalization to arbitrary samplable distributions and to search problems also implies that
there cannot be any non-adaptive reduction from an NP-complete problem to the problem of
inverting a one way function.

Our result also rules out non-adaptive reductions from an NP-complete problem to the problem of
breaking a public-key cryptosystem. The constraint of non-adaptivity of the reduction is incompa-
rable to the constraints in the results of Goldreich and Goldwasser [GG98].

It should be noted that the reductions of Ajtai, Dwork, Micciancio, and Regev [Ajt96, AD97, Mic04,
Reg03, MR04] are adaptive.

Comparison with Feigenbaum-Fortnow [FF93]

It is easy to see that a locally random reduction R from L to L′ that makes q queries, each distributed
according to a distribution D, is also a worst-case to average-case reduction with parameter Ω(1/q)
from L to (L′,D). Indeed, if A is an oracle that has agreement, say, 1− 1/4q with L′ (as measured
by D), and we access the oracle via q queries, each distributed according to D, there is a probability
at least 3/4 that queries made to A are answered in the same way as queries made to L ′.
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On the other hand, the restriction that all queries must have the same distribution is quite strong,
and one could imagine reductions where the distribution of the queries is somewhat dependent on
the input, as long as, for every small subset of possible queries, a majority of the queries land
outside of the subset with high probability.

For example, in the setting of Levin’s theory of average-case complexity, one uses “average-case
to average-case” reductions between two distributional problems (L,D) and (L ′,D′), where the
reduction uses an oracle that solves well an average problem (L′,D′) in order to solve well on average
problem (L,D). The reduction, however, does not make oracle queries according D ′, but rather
with respect to a different distribution that is dominated by D ′ (that is, no instance is produced with
a probability more than polynomially larger than in the uniform distribution.) Some important
reductions, most notably those in [BCGL89, IL90], do not even satisfy this “domination” properties,
and make most of their queries into the oracle according to distributions that are possibly very
different from D′.

Motivated by the notion of domination in Levin’s theory, we could first generalize the notion of
locally random reduction as follows: we could define a smooth random reduction from L to (L ′,D)
to be a probabilistic polynomial time oracle procedure R such that RL′

solves L correctly, and such
that each oracle query is made with a probability at most polynomially larger than in the uniform
distribution.

It seems, however, more interesting to just drop all restrictions on the distribution of the queries
of R, and just impose the condition that we are interested in: that R works when given any oracle
that solves L′ well on average.

Readers who are familiar with the following notions will note that the relation between locally
random reductions and our notion of worst-case to average-case reduction is similar to the relation
between one-round private information retrieval and locally checkable codes. In one-round private
information retrieval, a user is given oracle access to the encoding of a certain string, and wants to
retrieve one bit of the string by making a bounded number of queries; the restriction is that the
i-th query must have a distribution independent of the bit that one is interested in. In a locally
checkable code, a decoder is given oracle access to the encoding of a certain string, and the encoding
has been corrupted in a δ fraction of places; the decoder wants to retrieve a bit of the original string
by making a bounded number of queries. The notion of a smooth code, which is the analogue of a
smooth random reduction, has also been studied. In a smooth code, a decoder is given oracle access
to the encoding of a certain string, and wants to retrieve one bit of the string by making a bounded
number of queries; the restriction is that the distribution of each query should be dominated by
the uniform distribution.

For unbounded users/decoder the three notions have been shown equivalent [KT00, GKST02], but
the same methods do not work in the computationally bounded setting studied in this paper. One
step in our proof is, however, inspired by the techniques used to show this equivalence.

Our Proof

As in the work of Feigenbaum and Fortnow, we use the fact that problems in coAMpoly (the non-
uniform version of coAM) cannot be NP-complete unless the polynomial hierarchy collapses. So
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our goal is to show that if L is in NP and it has a 1/poly(n) worst-case to average-case reduction
to a language L′ in NP, then L is also in coAMpoly.

We start by discussing the case in which D is the uniform distribution.

The Feigenbaum-Fortnow protocol. Let us first briefly review the proof of Feigenbaum and
Fortnow. Given x, a prover wants to prove that RL′

(x) rejects with high probability (implying
x 6∈ L), where R makes q non-adaptive queries, each uniformly distributed. The (non-uniform)
verifier generates k independent computations of RL′

(x) and sends to the prover all the kq queries
generated in all the k runs. The prover has to provide all the answers, and certificates for all the
YES answers. The verifier, non-uniformly, knows the overall fraction p of queries of RL′

(x) whose
answer is YES and, if k is large enough, the verifier expects the number of YES answers from the
prover to be concentrated around kqp, and it rejects if the prover gives fewer than kqp − O(q

√
k)

YES answers. A cheating prover can only cheat by sayng NO on a YES instance, and cannot do so
on more than O(q

√
k) instances. If k is sufficiently larger than q, then with high probability either

the verifier rejects or at least one of the k computations of RL′
(x) yields correct answers.

Handling Smooth Reductions. The Feigenbaum-Fortnow protocol can be used with every
oracle procedure R(), provided that given x we can get a good estimate of the average number of
oracle queries of RL′

(x) that are answered YES. Suppose that R is a smooth random reduction,
that is, each possible query is generated with probability at most polynomially larger than in the
uniform distribution. We devise a hiding protocol in which the verifier either rejects or gets a good
estimate of the fraction of queries of RL′

(x) that are answered YES. We pick at random a query
y of R()(x), that is, we select randomness for R()(x), we get q queries, and pick at random one of
them. Then we “immerse” y in a random position in a sequence of k random instances of the same
length, and we give the sequence to the prover. The prover has to say which of the elements in the
sequence is a YES instance, and give a certificate for each of them; it is also required to give at
least pk − O(

√
k) certificates, where p is the fraction of elements of L of that length that are YES

instances (the verifier is given p non-uniformly). A cheating prover can give at most O(
√

k) wrong
answers and, roughly speaking, if k is large enough, much more than

√
k elements of the sequence

look like queries of R()(x). With high probability, either the verifier rejects or it gets the right
answer for y. Repeating the process in parallel many times gives a good estimate of the fraction of
queries that are answered YES. This argument is already powerful enough to generalize the result
of Feigenbaum and Fortnow to smooth reductions.

Handling General Reductions. Let R be an arbitrary δ worst-case to average-case reduction
from L to L′ such that R()(x) makes q queries of length m. Intuitively, we would like to convert
R to a smooth reduction as follows: fix a threshold t = q/δ, then for every query made by R()(x)
compute the probability that that query be generated by R()(x). Call a possible query “heavy” if
it is generated with probability more than t/2m be the reduction, and “light” otherwise. Ask light
queries to the oracle, and do not ask the heavy ones, but proceed as if the heavy ones had been
answered NO. Let R′ be this modified procedure. Then R′L′

(x) behaves like RA(x) where A differs
from L′ only on the queries that have a probability more than t/2m of being generated, so that
A agrees with L′ on at least a 1 − δ fraction of inputs, and R′L′

(x) works with high probability.

6



Furthermore, R′ is smooth by construction.4 The problem is that it is hard to compute, or even
to prove in an AM protocol, the exact value of the probability that a given query be asked by R.
We will settle for approximations, and, roughly speaking, R′ will ask a query y to the oracle if
the probability of y is less than t(1 − ε)/2m and will simulate a NO answer to y if the probability
of y is more than t(1 + ε)/2m. In the analysis, we clearly get in trouble if a lot of queries have
probability between t(1−ε)/2m and t(1+ε)/2m. By picking t at random in a certain range, instead
of fixing it to δ/q, we can make sure that with high probability there are few queries for which we
get in trouble. Given a query y and a threshold t, the Goldwasser-Sipser [GS86] protocol can be
used to prove that the query y is “approximately heavy.”5 Unfortunately there is no good protocol
to prove that y is an approximately light query. Instead, we show how to use the Aiello-H̊astad
[AH91] protocol to convince the verifier that the fraction of light queries is approximately some
value `. Then the verifier runs a modified immersion protocol to estimate the fraction of heavy
queries that are answered YES. In the modified immersion protocol, the prover receives a random
query of R()(x) immersed in a sequence or uniformly random strings. The prover has to provide a
certificate for each YES instance, and also, for each string that is a heavy query of the protocol, a
proof that it is a heavy query. Then the verifier can check that the fraction of queries identified as
heavy is about 1−`, and get a good estimate r of the fraction of heavy queries whose answer is YES.
Finally, we run a modified Feigenbaum-Fortnow protocol in which we give to the prover the queries
of k instantiations of R()(x). The prover has to provide certificates for all the YES instances, and
proofs of heaviness for all the heavy queries. The verifier checks that about (1 − `)kq queries are
claimed to be heavy, a fraction r of them has certificates, and proceed as if the non-heavy queries
had been answered NO.

General Distributions, Search Problems, One-Way Functions. So far we have described
our results for the case in which the distribution on inputs D is the uniform distribution. Next
we show that a reduction of Impagliazzo and Levin [IL90] implies that for every distributional NP
problem (L,D) and bound δ = 1/nO(1) there is a non-adaptive probabilistic polynomial time oracle
algorithm R, an NP language L′, and a bound δ′ = 1/nO(1) such that for every oracle A that has
agrees with L′ on a 1 − δ′ fraction of inputs, RL′

solves L on a subset of inputs of density 1 − δ
under the distribution D.

This means that if there were a non-adaptive worst-case to average-case reduction with parameter
1/poly(n) from a problem L to a distributional problem (L′,D), there would also be such a reduction
from L to (L′′,U), where U is the uniform distribution and L′′ is in NP. By the previously described
results, this would imply the collapse of the polynomial hierarchy.

A reduction by Ben-David and others [BCGL89] implies that for every distributional NP problem
(L,U) there is a problem L′ in NP such that an algorithm that solves the decision version of (L′,U)
on a 1− δ fraction of inputs can be modified (via a non-adaptive reduction) into an algorithm that
solves the search version of (L,U) on a 1 − δ · poly(n) fraction of input. This implies that even if
modify the definition of worst-case to average-case reduction so that the oracle A is supposed to
solve the search version of the problem, our results still apply. In particular, for every polynomial

4This is the way locally decodable codes are shown equivalent to smooth codes in [KT00].
5Formally, an honest prover succeeds with high probability if the probability of y is more than t(1 + ε)/2m, and a

cheating prover fails with high probability if the probability of y is less than t/2m.
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time computable function f , the problem of inverting f well on average is precisely the problem of
solving well on average a distributional NP search problem. Therefore our results also rule out the
possibility of basing one-way functions on NP-hardness using non-adaptive reductions.

2 Preliminaries

We use functional and set notation for boolean functions interchangeably. For example, if L :
{0, 1}n → {0, 1}, then “x ∈ L” is the same as “L(x) = 1”.

We denote by A M B the symmetric difference between sets A and B. Given a language L ⊆ {0, 1}∗,
we use Ln to denote the set L∩{0, 1}n. When the input length is clear from context, we may omit
the subscript n.

2.1 Distributional Problems and Heuristic Algorithms

Definition 1 (Samplable Distribution). An (efficiently samplable) ensemble of distributions
is a collection D = {D1,D2, . . . }, where Dn is a distribution on {0, 1}n, for which there exists a
probabilistic polynomial-time sampling algorithm S that, on input 1n, outputs a sample from Dn.

The uniform ensemble is the ensemble U = {U1,U2, . . . }, where Un is the uniform distribution on
{0, 1}n.

A distributional problem is a pair (L,D) where L is a language and D is an ensemble of distributions.
A distributional problem (L,D) is in the class distributional NP, denoted DistNP, if L is in NP
and D is samplable.

In this paper we study hypothetical reductions that would establish average-case intractability of
distributional NP problems. The notion of average-case intractability that we have in mind is the
absence of good-on-average algorithms of the following type. (The definition is in the spirit of the
treatment by Impagliazzo [Imp95].)

Definition 2 (Heuristic Polynomial Time). We say that a probabilistic polynomial time algo-
rithm A is a heuristic algorithm with success probability s(n) for a distributional problem (L,D)
if, for every n, Prx∼Dn

[A(x) = L(x)] ≥ s(n), where the probability is taken over the sampling of
x from Dn and over the internal coin tosses of A. The class of distributional problems for which
such algorithms exists is denoted by Heurs(n)BPP.

We consider a distributional problem (L,D) to be “hard on average” if there is a polynomial p(n)
such that (L,D) 6∈ Heur1−1/p(n)BPP. This is a fairly robust notion: Trevisan [Tre05] proves that
there is a constant c > 0 such that, for every polynomial p,

DistNP 6⊆ Heur1− 1
p(n)

BPP if and only if DistNP 6⊆ Heur 1
2
+ 1

(log n)c
BPP (1)

Stronger collapses are known for non-uniform heuristic classes [O’D02, HVV04].
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For two languages L and L′, and an ensemble of distributions D on inputs, we say that L and L′

are δ(n)-close with respect to D if for sufficiently large n, the measure of the set Ln M L′
n according

to Dn is at most δ(n).

We use ω to denote a function of n that grows faster than any constant, and we will abuse notation
by writing expressions like ω + ω = ω, ω2 = ω, etc. “With high probability,” or whp, means with
probability 1 − o(1).

2.2 Worst-case to average-case reductions.

Definition 3. A nonadaptive worst-case to average-case randomized reduction from L to (L ′,D)
with average hardness δ (in short, a δ worst-to-average reduction) is a family of polynomial size
circuits R = {Rn} such that: (1) On input x ∈ {0, 1}n, randomness r, Rn(x; r) outputs strings
y1, . . . , yk and a circuit C, called the decoder. (2) For any L∗ that is δ-close to L′ with respect to
D,

Pr
r

[C(y1, . . . , yk;L
∗(y1), . . . , L

∗(yk)) = L(x)] > 2/3.

Note that if there is a δ worst-to-average reduction from L to (L′,D), and L 6∈ BPP, then (L′,D) 6∈
Heur1−δBPP.

The choice of constant 2/3 for the success probability of the reduction in the above definition is
irrelevant. If there exists a δ worst-to-average reduction R from L to (L′,D) that succeeds with
probability 2/3, there also exists one that succeeds with probability 1 − 1/nc for an arbitrary
constant c. The new reduction can be obtained by running R on independent seeds O(c log n)
times and having the decoder compute the majority of the outputs of the decoders of R. We will
assume this improved bound when convenient.

Without loss of generality, we may assume the number of strings k = poly(n) depends only on
n = |x|, but not on the specific input x.

For notational convenience, we assume that all queries y1, . . . , yk ∈ {0, 1}m have the same length
m = poly(n) that depends only on n but not on x. This assumption cannot be made without loss
of generality, however all the proofs that we give can be generalized to the case of queries with
different length, mostly by just replacing every mention of {0, 1}m with the set of strings of length
at most m, and every use of 2−m (i.e., the probability of a string of length m) with 2−m−1 − 1 (i.e.,
the probability of a string of length at most m).

Sometimes we denote the distributional problem (L′,U) just by L′.

2.3 Search Problems and One-Way Functions

Let V be an NP-relation. We denote by LV the NP-language corresponding to V , i.e., LV (x) = 1
iff there exists a w such that V (x;w) = 1. A family of random functions Fn : {0, 1}n → {0, 1}m is
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a δ-approximate witness oracle for V with respect to the ensemble of distributions D if for all n,6

Pr
x∼D,F

[V (x;F|x|(x)) = LV (x)] > 1 − δ.

We will omit the subscript of F when it is implicitly determined by the input length. Note that
the definition implies the existence of a set S of measure D(S) = 1 − 3δ and for all x ∈ S,

Pr
F

[V (x;F|x|(x)) = LV (x)] > 2/3.

Intuitively, S is the set of inputs where the oracle has a good chance of producing a witness for
the input. As usual, the constant 2/3 is arbitrary, since if one has access to F , it can be queried k
times independently in parallel to obtain a good witness with probability 1 − 1/3k.

Just as languages in NP represent decision problems, witness oracles represent search problems.
For example, inverting a one-way function f : {0, 1}n → {0, 1}n on a 1 − δ fraction of inputs
amounts to finding an algorithm A : {0, 1}n → {0, 1}n that is δ-approximate for the relation
V (y;x) ⇐⇒ y = f(x) with respect to the distribution f(Un).

Using witness oracles, we can formalize the notion of nonadaptive reductions between search prob-
lems, as well as reductions from search to decision problems, and vice-versa. Let V, V ′ be NP
relations and D,D′ be arbitrary polynomial-time samplable ensembles of distributions. A δ-to-δ ′

average-to-average reduction for search problems from (V,D) to (V ′,D′) is a family of polynomial-
size circuits R = {Rn} such that: (1) On input x ∈ {0, 1}n, randomness r, Rn(x; r) outputs strings
y1, . . . , yk and a “decoder” circuit A. (2) For any witness oracle F ∗ that is δ′-approximate for V ′

with respect to D′, V (x,A(y1, . . . , yk;F
∗(y1), . . . , F

∗(yk))) = LV (x) with probability 1− δ over the
choice of x ∼ D and F ∗. The other two types of reductions are defined in similar fashion. A δ ′

worst-to-average reduction is a 0-to-δ ′ average-to-average reduction.

2.4 Constant-round interactive protocols.

All the protocols in this paper are constant-round interactive protocols with polynomially long
advice. Formally, by the Karp-Lipton notion of classes with advice, a language L is in AM/poly if
there exists a polynomial p and a polynomial time constant-round interactive verifier V with advice
such that

1. For every advice string a, |a| = p(|x|), and every prover P , Pr[(V, P ) accepts x with advice a]
is either ≥ 2/3 or ≤ 1/3.

2. There exists an advice string a, |a| = p(|x|) such that: (a) If x ∈ L, then there exists a prover
P such that Pr[(V, P ) accepts x with advice a] ≥ 2/3 (b) If x 6∈ L, then for every prover P ,
Pr[(V, P ) accepts x with advice a] ≤ 1/3.

The first condition requires that even when the advice to the verifier is bad, the protocol should
be a valid AM protocol (possibly for some language other than L).

6Technically, a witness oracle is a distribution over function families {Fn}, but to simplify notation we will identify
samples from this distribution with the distribution itself.
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Feigenbaum and Fortnow define the class AMpoly as the class of languages recognized by constant-
round interactive protocols with advice that satisfy only the second condition in the above definition.
Even though AMpoly seems to be larger than AM/poly, they are in fact both equal to NP/poly
(cf. [FF93]). Owing to this, in our description of protocols we will not be concerned with the
behavior of the protocol when the advice is bad.

We will make use of the following result, which is also used in [FF93].

Lemma 4. If coNP ⊆ AMpoly, then Σ3 = Π3.

Proof. As mentioned before, AMpoly = NP/poly, so that under the assumption of the Lemma we
have NP ⊆ coNP/poly. Yap [Yap83] proves that if NP ⊆ coNP/poly, then Σ3 = Π3.

2.5 Parallel composition of two-round protocols.

Suppose π1, . . . , πk, πi = (Pi, Vi) are arbitrary two-round protocols in which the verifier sends a
challenge, the prover responds with an answer, and the verifier accepts or rejects. The parallel
composition π = (P, V ) of these protocols is the two-round protocol in which V simulates the first
round of each Vi by sending independent challenges, P answers each challenge according to Pi, and
V accepts iff all Vi accept. We observe that if πi has completeness 1 − ε and soundness δ for every
i, then π has completeness 1 − kε and soundness at least δ.

3 Lower and Upper Bound Protocols

In this Section we outline two protocols that will be used in our coAMprotocol: The Lower Bound
Protocol of Goldwasser and Sipser [GS86], which proves a lower bound on the size of an NP set,
and the Upper Bound protocol of Aiello and H̊astad, which given access to some extra information,
proves an upper bound on the size of an NP set. Since these protocols play an important role in
our analysis, for completeness we provide proofs of their correctness.

The Lower Bound Protocol

Given an NP set S ⊆ {0, 1}n and a bound s, we are interested in an AM protocol for the statement
|S| ≥ s. Consider the following protocol, due to Goldwasser and Sipser [GS86]:

1 Verifier: Choose a pairwise independent hash function h : {0, 1}m → Γ at random, where
|Γ| = s/k, and send h to the prover.

2 Prover: Send a list r1, . . . , rl ∈ {0, 1}m.

3 Verifier: If ri 6∈ S for any i, reject. If l < (1 − ε/3)k, reject. If h(ri) 6= 0 for any i, reject.
Otherwise, accept.

11



Lemma 5. If |S| ≥ s, there exists a prover that makes the verifier accept with probability 1−9/ε2k.
If |S| ≤ (1 − ε)s, no prover makes the verifier accept with probability more than 9/ε2k.

Proof. For r ∈ S, let Ir be an indicator for the event h(r) = 0, and let R = h−1(0), so that
R =

∑

r∈S Ir. By the pairwise independence of h, we have E[|R|] = |S|k/s, Var[|R|] ≤ |S|k/s, so
by Chebyshev’s inequality

Pr[|R| 6∈ (1 ± ε/3)|S|k/s] ≤ 9

ε2
· s

|S|k
The bounds now follow by direct computation.

The Upper Bound Protocol

Suppose that the verifier of an AM protocol has access to a “secret” r, chosen uniformly at random
from an NP set S ⊆ {0, 1}m. Can the verifier take advantage of her secret to verify a statement of
the form |S| ≤ s? Consider the following protocol, due to Aiello and H̊astad [AH91]:

1 Verifier: Choose a 3-wise independent hash function h : {0, 1}m → Γ at random, where
|Γ| = (s − 1)/k and send the pair (h, h(r)) to the prover.

2 Prover: Send a list r1, . . . , rl ∈ {0, 1}m.

3 Verifier: If ri 6∈ S for any i, reject. If l > (1 + ε/3)k or r 6∈ {r1, . . . , rl}, reject. Otherwise,
accept.

Lemma 6. If |S| ≤ s, there exists a prover that makes the verifier accept with probability 1−9/ε2k.
If |S| ≥ (1 + ε)s, no prover makes the verifier accept with probability 1 + 9/ε2k − ε/6.

At a first glance, this protocol may not seem very useful, as the completeness-soundness gap is
very narrow. However, suppose we fix ε and want to apply the protocol t times. Then choosing
k = ω(t/ε2) will ensure that, with high probability, a good prover will never make the verifier reject.
On the other hand, a crooked prover may cheat by more than an ε fraction only on about O(1/ε)
of the t iterations. For t large enough, this becomes a negligible fraction of the total number of
iterations. In our application of the protocol, we will be able to tolerate such a small fraction of
errors.

Proof of Lemma 6. Fix r and let S ′ = S − {r}, k̂ = |S′|/|Γ|, R = h−1(h(r)), R′ = R − {r}. For
every r′ ∈ S′, let Ir′ be an indicator for the event r′ ∈ R′, so that |R′| =

∑

r′∈S′ Ir′ . By the 3-wise

independence of h, the Ir′ are pairwise independent, so that E[|R′|] = k̂, Var[|R′|] = k̂(1−1/|Γ|) < k̂
and by Chebyshev’s inequality, for every ξ > 0:

Pr[|R′| 6∈ (1 ± ξ)k̂] < 1/ξ2k̂.

Suppose |S| ≤ s. Without loss of generality we may assume |S| = s, since for larger values of s the
acceptance probability may only increase. In this case k̂ = k, so that

Pr[|R| > (1 + ε/3)k] = Pr[|R′| ≥ (1 + ε/3)k] < 9/ε2k.
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Given that |R| ≤ (1 + ε/3)k, the prover can list all elements of R, so that R = {r1, . . . , rl} and
l ≤ (1 + ε/3)k. In particular, this ensures that r ∈ R and the verifier accepts.

Now suppose |S| ≥ (1 + ε)s, so that k̂ > (1 + ε)k. Then

Pr[|R′| < (1 + ε/2)k] < Pr

[

|R′| <
1 + ε/2

1 + ε
k̂

]

< Pr[|R′| < (1 − ε/3)k̂] < 9/ε2k̂ < 9/ε2k.

Given that |R| > (1 + ε/2)k, what is the best strategy for a prover to make the verifier accept?
Conditioned on (h, h(r)), r is uniformly distributed in R, so the best the prover can do is set
l = (1 + ε/3)k and pick {r1, . . . , rl} to be an arbitrary subset of R. In this case,

Pr[r ∈ {r1, . . . , rl}] = l/|R| <
(1 + ε/3)k

(1 + ε/2)k
< 1 − ε/6.

4 Main Theorem and Proof Outline

Theorem 7. Let L be an arbitrary language, L′ ∈ NP, and δ = n−O(1). If there is a δ worst-to-
average reduction from L to L′, then L ∈ AMpoly.

This, in particular, implies that if L in the above Theorem were NP-complete, then coNP ⊆
AMpoly = NP/poly and, by Lemma 4, Σ3 = Π3.

We now outline the proof of Theorem 7.

Let R denote the reduction from the Theorem. Fix the input x, and let Ri : {0, 1}m → [0, 1] denote
the distribution on the ith query produced by R on input x. We will use |r| to denote the number
of random bits used by the reduction. We use R(x; ·) to denote the randomized computation which,
on input x, outputs y1, . . . , yk and A. We call R(x; ·) the instantiation of R on x.

Without loss of generality, we may assume that the distributions Ri are all equal. This is because
the reduction R can apply a uniform random permutation to the queries y1, . . . , yk , and have
the decoder invert the permutation before it runs. Then the marginal distribution of every query
becomes (R1 + . . . + Rk)/k , R.

The coAM protocol for L will consist of three phases. In the first phase, we will look for a
“threshold” t∗ = O(δ−1) such that the probability Pry∼R[R(y) < t∗2−m] can be estimated within
an inverse polynomial additive factor. In the second phase, we will use a “hiding protocol” to figure
out a good estimate for the fraction of the queries y in L such that R(y) < t∗2−m. In the last
phase, we will apply a variant of the Feigenbaum-Fortnow protocol for these queries.

For a fixed x ∈ {0, 1}n, let G : {0, 1}|r| → {0, 1}m denote the circuit that, on input r, computes
R(x; r) and outputs the query y1. When r is chosen uniformly at random, this circuit generates a
query y sampled from R.
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5 The First Phase

Let Λ(t) = {y : R(y) < t2−m} and p(t) = R(Λ(t)). We think of Λ(t) as a “ball” that captures
all the samples y that have probability at most t2−m of being produced by the reduction. In this
phase of the protocol, we look for a value of t such that a good estimate of p(t) can be obtained.
We will estimate p(t) by random sampling: Generate a sample y ∼ R and test if y ∈ Λ(t). Since
there is no direct way to establish if y ∈ Λ(t), we will take advantage of the prover for this purpose.
The upper and lower bound protocols will ensure that the prover cannot cheat by much without
getting caught.

Let ε = 1/ωk; we fix this choice of ε throughout the proof.

Lemma 8. Fix an arbitrary sequence 0 < t0 < t1 < . . . < tl < 2m, where l = ω/ε. For i∗ chosen
uniformly at random from [l], with high probability, p(ti∗) ≤ p(ti∗−1) + ε.

Proof. Let I ′ = {i ∈ [l] : p(ti) > p(ti−1) + ε}. If |I ′| > 1/ε, then

p(tl) > p(t0) + 1/ε · ε ≥ 1.

Contradiction. It follows that |I ′| ≤ 1/ε, so that with high probability, i∗ 6∈ I ′.

We will apply the lemma to the sequence ti , δ−1(1 + ε/ω)i, so that ti = O(δ−1) for 1 ≤ i ≤ ω/ε.

We now present the first phase protocol:

1 Verifier: Let l = ω/ε3. Choose r1, . . . , rl uniformly and independently from {0, 1}|r|. Send
yj , G(rj) for 1 ≤ j ≤ l to the prover.

2 Prover: For each 1 ≤ j ≤ s, send a claim ρj for the value |G−1(yj)|.

3 Verifier: For each 1 ≤ j ≤ s, initiate (in parallel) the upper bound protocol for the claim
|G−1(yj)| ≤ ρj with parameter k = ω2/ε5. If any of the instances rejects, reject.

4 Verifier: For each 1 ≤ j ≤ s, initiate (in parallel) the lower bound protocol for the claim
|G−1(yj)| ≥ ρj. If any of the instances reject, reject. Otherwise, choose i∗ uniformly at
random from {1, . . . , ω/ε}, let t∗ = ti∗ = δ−1(1 + ε/ω)i∗ and set

p∗ =
|{j : ρj2

−|r| < t∗2−m}|
l

.

Lemma 9. For every x ∈ {0, 1}n there exists a “good” prover for which, with high probability, at
the end of the Step 4, the verifier has not rejected.

Proof. This prover sends claims ρj = 2|r|R(yj) = |G−1(yj)|. By Lemma 6, each upper bound
protocol instantiation succeeds (does not reject) with probability 1− 9ω/ε2k = 1− 1/ωl. There are
l such instantiations, so with high probability all of them pass without causing a rejection. Similarly
by Lemma 5, all of the lower bound protocol instantiations pass without causing a rejection.
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Lemma 10. For every x ∈ {0, 1}n, and for any prover, with high probability, at the end of Step 3
either the verifier rejects or p∗ > p(t∗) − ε.

Proof. Suppose that the verifier does not reject. Intuitively, there are two ways the prover can
cheat on any given query. It can either cheat “a little” by reporting some value ρj such that
ρj > 2|r|R(yi), but ρj < (1 + ε)2|r|R(yj), or it can cheat by “a lot” by reporting a ρj which is “way
off”, i.e., ρj ≥ (1 + ε)2|r|R(yj). In the end, the samples yj are used to obtain an estimate of p(t∗).
Our goal will be to show that, with high probability, neither way of cheating has a significant effect
on our estimate for p(t∗). In addition to the errors caused by the cheating behavior of the prover,
we will also have to account for errors “coming from nature”, namely those caused by deviations
in random sampling.

Let C = {j : ρj ≥ (1 + ε)2|r|R(yj)}. The set C represents the queries on which the prover “cheats
a lot.” We show that this set is rather small: By Lemma 6, if j ∈ C, then the jth protocol
instantiation causes a rejection with probability > ε/6ω − 9ω/ε2k = ε/ω. By Markov’s inequality,
with high probability |C| < 1/ε < εl provided the verifier doesn’t reject.

We now consider the queries on which the prover can “cheat a little”. These are the queries that
fall into the “buffer zone” Λ(ti∗) − Λ(ti∗−1). Let Ji = {j : yj ∈ Λ(ti)} and B = Ji∗ − Ji∗−1. We
show that, with high probability, the number of queries in B is a negligible fraction of l:

|B| = |Ji∗ | − |Ji∗−1|
< (p(ti∗) + ε)l − (p(ti∗−1) − ε)l whp, by Lemma 23

= (p(ti∗) − p(ti∗−1))l + 2εl

< 3εl whp, by Lemma 8.

so that

p∗ =
|{j : ρj2

−|r| < t∗2−m}|
l

≥ |Ji∗ | − |B| − |C|
l

> p(t∗) − 5ε.

Lemma 11. For every x ∈ {0, 1}n, and for any prover, with high probability, at the end of Step 4
either the verifier rejects or p∗ < p(t∗) + ε.

Proof. The analysis here is a bit simpler, since the prover in the lower bound protocol cannot cheat
by “a lot”: By Lemma 5, with probability 1 − 1/ωl, for any j,

ρj2
−|r| > (1 − ε/ω)R(yj) > (1 − ε/ω)(1 + ε/ω)t∗2−m > t∗2−m,

provided the verifier does not reject. With high probability, this is true for all j. The number
of queries on which the prover cheats “a little” is bounded by 3ε with high probability, as in the
previous proof. By Lemma 23, |Ji∗ | < p(t∗) + ε whp. Putting this together:

p∗ =
|{j : ρj2

−|r| < t∗2−m}|
l

≤ |Ji∗ |
l

+
|Ji∗+1| − |Ji∗ |

l
< (p(t∗) + ε) + 3ε.

15



6 The Second Phase

In the second phase of the protocol, we try to obtain an estimate for R(L′′), where L′′ is the
language L′ ∩ Λ(t∗), i.e.,

L′′(y) =

{

L′(y) if R(y) ≤ t∗2−m

0 otherwise.

The language L′′ is δ-close to L′: The number of y ∈ {0, 1}m such that R(y) > t∗2−m can be at most
t∗−12m ≤ δ2m, since R is a probability distribution. Therefore |L′′ M L′| ≤ |{0, 1}m −Λ(t∗)| ≤ δ2m.

Abusing notation, let U denote the uniform distribution on {0, 1}m. We assume that the verifier
obtains, as advice, the probability padv = Pry∼U [y ∈ L′].

Remark. In fact, the verifier does not need to know the exact value of padv, but only an additive
approximation within a term inverse polynomial in n. Therefore, the advice can be described by
a string whose length is logarithmic rather than polynomial in n. If we assume that the worst-
to-average reduction R is uniform (i.e., an algorithm rather than a family of circuits), then the
approximation of padv is the only advice needed by the verifier. Therefore, if R is uniform, our
protocol needs to use only logarithmically many bits of advice.

Let α = δ/ω.

5 Verifier: Let l = ω/αε3. Generate strings y1, . . . , yl ∈ {0, 1}m as follows: For every 1 ≤ j ≤ l,

5.1 Toss a coin tj, which is 1 with probability α, 0 with probability 1 − α.

5.2 If tj = 1, choose yj ∼ R. If tj = 0, choose yj ∼ U .

Let T = {j : tj = 1}. Send the sequence y1, . . . , yl to the prover.

6 Prover: For each 1 ≤ j ≤ l, send a claim aj ∈ {0, 1} for the statement yj ∈ L′. If aj = 1,
send an NP certificate for the claim. For each j, send a claim bj ∈ {0, 1} for the statement
|G−1(yj)| ≥ 2|r|−mt∗. Let A∗ = {j : aj = 1}, B∗ = {j : bj = 1}.

7 Verifier: Perform the following tests:

7.1 If |A∗ ∩ T |/|T | < padv − αε, reject.

7.2 If |B∗ ∩ T |/|T | 6∈ p∗ ± 2ε, reject.

7.3 For each j ∈ B∗ ∩ T , initiate (in parallel) the lower bound protocol for the claim
|G−1(yj)| ≥ 2|r|−mt∗. If any of the protocol instantiations fail, reject.

If all tests pass, define

q∗ ,
|A∗ ∩ B

∗ ∩ T |
|T | .

Let A = {j : yj ∈ L′} and Bi = {j : yj ∈ Λ(ti)}. By Lemma 23, with high probability |T | >
(1 − α − ε)l and |T | > (α − ε)l ≥ αl/2.

16



Lemma 12. For every x ∈ {0, 1}n there exists a “good” prover for which with high probability, the
verifier has not rejected by the end of Step 7 and q∗ < R(L′′) + ε.

Proof. The good prover sends correct claims for all the queries; it gives answers aj = L′(yj) and
bj = 1 iff |G−1(yj)| ≥ 2|r|−mt∗. We show this prover is likely to pass all tests.

Test 7.1: Follows directly from Lemma 23.

Test 7.2: With high probability (by Lemma 23), |B∗ ∩ T | ∈ (p(t∗) ± ε)|T |. By Lemmas 10 and 11,
p(t∗) ∈ p∗ ± ε with high probability, so that |B∗ ∩ T |/|T | ∈ p∗ ± 2ε.

Test 7.3: Follows from Lemma 5 (with high probability.)

It remains to show that q∗ < R(L′′)+ε. First, A∗∩B
∗

= A∩Bi∗ , so that q∗ is an unbiased estimator
for the probability of a query in T falling into L′ ∩ Λ(t∗) = L′′, when the queries are drawn from
R. Since the number of samples in T is at least αl/2 > ω/ε3, it follows that q∗ < R(L′) + ε.

Lemma 13. For every x ∈ {0, 1}n, and for any prover, with high probability, the verifier either
rejects by the end of Step 7 or q∗ > R(L′′) − 9ε.

First, note that the verifier cannot make any false “yes” claims; if aj = 1, it must be that yj ∈ L′,
otherwise the prover will detect a faulty NP certificate for yj. So the verifier can only cheat by
making false “no” claims. Let C = A−A∗ denote the set of indices corresponding to these claims.

The central part of the proof is to show that if |C ∩ B
∗ ∩ T | is a significant fraction of |T |, the

verifier is likely to reject. Suppose the opposite is true, i.e., the prover cheats on many queries in
T . We will show that the prover cannot distinguish, with significant confidence, whether a query in
B

∗
came from T or from T ; so if he cheats on many queries in C ∩B

∗ ∩ T , (hence also in B
∗ ∩ T ),

he will also end up cheating on a lot of queries in B
∗ ∩ T ⊆ T . But in this case the prover will get

caught by Test 7.1.

Lemma 14. For any choice of C made by the prover in Step 6, if |C ∩B i∗ | > 6αεl, then with high
probability, |C ∩ T | > 2αεl.

Proof. First we show that whenever j ∈ Bi∗ , the prover cannot tell if tj = 1 based on its evidence
with confidence better than 1/2:

Pr[j ∈ T |y1, . . . , yl] = Pr[j ∈ T |yj]

=
Pr[yj|j ∈ T ] Pr[j ∈ T ]

Pr[yj ]

≤ Pr[yj|j ∈ T ] Pr[j ∈ T ]

Pr[yj|j 6∈ T ] Pr[j 6∈ T ]

<
(ωδ−12−m) · α
2−m · (1 − α)

=
1

2
.

Even when conditioned on seeing y1, . . . , yl, the events “j ∈ T”, where j ∈ C∩Bi∗ , are independent.
By Lemma 23, with high probability, |C ∩ Bi∗ ∩ T | = |{j ∈ T : j ∈ C ∩ Bi∗}| < 4αεl, so that
|C ∩ T | ≥ |C ∩ Bi∗ ∩ T | > 2αεl.
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Lemma 15. For every x ∈ L, and any prover, if the verifier survives Step 7, then |(B ∗
M Bi∗)∩T | <

7ε|T | with high probability.

Proof. Suppose the verifier survives Step 7. By Lemma 23, with high probability |B i∗ ∩ T | ∈
(p(t∗) ± ε)|T | and |Bi∗−1 ∩ T | ∈ (p(ti∗−1) ± ε)|T |. By Lemma 8, p(t∗) < p(ti∗−1) + ε. Putting this
together, |Bi∗ ∩ T | < |Bi∗−1 ∩ T | + 3ε|T |.

First we show that |(Bi∗−B
∗
)∩T | < 3ε|T |. By Lemma 5, with high probability, B i∗−1∩T ⊆ B

∗∩T ,
for otherwise the verifier wouldn’t survive Test 7.3. It follows that

|(Bi∗ − B
∗
) ∩ T )| ≤ |(Bi∗−1 − B

∗
) ∩ T )| + |(Bi∗ − Bi∗−1) ∩ T | = |Bi∗ ∩ T | − |Bi∗−1 ∩ T | < 3ε|T |.

Now we show that |(B∗ − Bi∗) ∩ T | < ε|T |. Since the verifier survives Test 7.2, by Lemma 10:

|B∗ ∩ T | ≤ (p∗ + 2ε)|T | ≤ (p(t∗) + 3ε)|T |.

On the other hand,

|Bi∗ ∩ B
∗ ∩ T | = |Bi∗ ∩ T | − |(Bi∗ − B

∗
) ∩ T | > (p(t∗) − ε)|T | − 3ε|T | = (p(t∗) − 4ε)|T |,

so that

|(B∗ − Bi∗) ∩ T | = |B∗ ∩ T | − |Bi∗ ∩ B
∗ ∩ T | < (p(t∗) + 3ε)|T | − (p(t∗) − 4ε)|T | ≤ 7ε|T |.

Proof of Lemma 13. If |C ∩ Bi∗ | > 6αεl, then by Lemma 14 |C ∩ T | > 2αε|T |. By Lemma 23,
|A∩T | < (padv + αε)|T | with high probability. Next, |A∗ ∩T | = |A∩ T | − |C ∩ T | < (padv −αε)|T |,
and Test 7.1 rejects.

If |C ∩ Bi∗ | ≤ 6αεl, then

|A∗ ∩ B
∗ ∩ T | ≥ |A∗ ∩ Bi∗ ∩ T | − |(B∗

M Bi∗) ∩ T |
≥ (|A ∩ Bi∗ ∩ T | − |C ∩ Bi∗ |) − |(B∗

M Bi∗) ∩ T |
≥ (R(L′ ∩ Λ(t∗)) − ε)|T | − 6αεl − ε|T |
≥ (R(L′′) − 9ε)|T |.

7 The Third Phase

The third phase is a variation of the Feigenbaum-Fortnow protocol for reductions with uniform
marginal distributions.

8 Verifier: Let l = ω log k/ε3. Run l independent instances of the reduction Rn(x; ·). Say the
ith instance produces the circuit Ci and queries yi1, . . . , yik ∈ {0, 1}m. Send the queries yij,
1 ≤ i ≤ l, 1 ≤ j ≤ k to the prover.

18



9 Prover: For each pair i, j, send a claim aij for the statement yij ∈ L′ (accompanied by
an NP certificate, if aij = 1) and a claim bij for the statement |G−1(yij)| ≥ 2|r|−mt∗. Let
A∗

j = {i : aij = 1}, B∗
j = {i : bij = 1}.

10 Verifier: For each pair i, j, if bij = 1, initiate (in parallel) the lower bound protocol for the
claim |G−1(yij)| ≥ 2|r|−mt∗. Let cij = aij(1 − bij). Perform the following tests:

10.1 If for any j, |B∗
j |/l 6∈ p∗ ± 2ε, reject.

10.2 If for any j, |A∗
j ∩ B

∗
j |/l < q∗ − 2ε, reject.

10.3 If for any i, Ci(yi1, . . . , yik; ci1, . . . , cik) accepts, reject.

If all tests pass, accept.

Let Aj = {i : yij ∈ L′} and Bj = {i : |G−1(yij)| ≥ 2|r|−mt∗}.

Lemma 16. For every x 6∈ L, there exists a “good” prover that accepts with high probability by the
end of Step 10.

Proof. The good prover claims aij = L′(yij) and bij = 1 iff |G−1(yij)| ≥ 2|r|−mt∗, for all pairs i, j.
By Lemmas 10, 11 and 12, we may assume p∗ ∈ p(t∗)± ε and q∗ < R(L′)+ ε with high probability.
Consider the tests in Step 10:

Test 10.1: |B∗
j |/l = |Bj |/l ∈ p(t∗)± ε ∈ p∗± 2ε, with probability 1/ωk (Lemma 23). Therefore Test

10.1 passes for all j with high probability.

Test 10.2: With probability 1/ωk, |A∗
j ∩ B

∗
j |/l = |Aj ∩ Bj|/l > R(L′) − ε > q∗ − 2ε, so Test 10.2

passes for all j with high probability.

Test 10.3: Note that cij = 1 iff yij ∈ L′′, so that Ci(yi1, . . . , yik; ci1, . . . , cik) = L(x) = 0 with
probability 1/ωl. So Test 10.3 passes for all i with high probability.

Lemma 17. For every x ∈ L, and for any prover, with high probability, the verifier rejects by the
end of Step 10.

Proof. Assume the verifier passes all instances of Test 10.1 and Test 10.2. We show that, with
high probability, Test 10.3 must reject for some i. First, we note that with high probability for all
1 ≤ i ≤ l,

Ci(yi1, . . . , yik;L
′′(yi1), . . . , L

′′(yik)) = L(x) = 1.

Our goal us to show that there exists at least one i for which cij = L′′(yij) for all 1 ≤ j ≤ k. It will
then follow that Test 10.3 rejects.

There are two types of queries for which the prover can fool the verifier about membership in L ′′:
First, there are the queries that fall into B

∗
j M Bj , for which bij may be a lie. Then there are the

queries in |(Aj −A∗
j )∩B

∗
j |, for which bij = 0 but aij may be a lie. Let Kj be the set of all possible

lies:
Kj = (B

∗
j M Bj) ∪ ((Aj − A∗

j ) ∩ B
∗
j).
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We bound |B∗
j M Bj| in the same fashion as in Lemma 15; by that argument, we have |B∗

j M Bj | <
7εl with probability 1 − 1/ωk. For the other term, assuming the high probability statement of
Lemma 13 and using Lemma 23, we have

|(Aj − A∗
j ) ∩ B

∗
j | = |Aj ∩ B

∗
j | − |A∗

j ∩ B
∗
j |

< (|Aj ∩ Bj | + |Bj M B
∗
j |) − |A∗

j ∩ B
∗
j |

< ((R(L′′) + ε)l + 7εl) − (q∗ − 2ε)l

= (R(L′) − q∗)l + 10εl

< 19εl.

By our choice of k, the inequality holds with probability 1−1/ωk. It follows that |Kj | ≤ 26εl < 1/k
with probability 1−1/ωk, so by a union bound we have that |Kj| < l/k for all 1 ≤ j ≤ k with high
probability. Now

|K1 ∪ · · · ∪ Kk| ≤ |K1| + · · · + |Kk| < l,

so there must exist at least one index i, 1 ≤ i0 ≤ l such that i 6∈ K1 ∪ · · · ∪ Kk. In other words, for
at least one index i, the prover must provide correct claims cij = L′′(yij) for all j, and Test 10.3
rejects.

8 Average-case Complexity for Arbitrary Samplable Distributions

In this section we generalize our results to seach problems and to arbitrary samplable distributions
and we prove the following result.

Theorem 18. Let L be a language that is NP-hard under polynomial-time reductions, V ′ be an NP-
relation, D′ be an arbitrary polynomial-time samplable ensemble of distributions, and δ = n−O(1).
If there is a non-adaptive δ worst-to-average reduction from L to (V ′,D′), then L ∈ NP/poly.

To understand the meaning of Theorem 18, consider a polynomial time computable function f()
and a samplable distribution of inputs D ′, and suppose that we want to prove that f() is a one-way
function with respect to the distribution D ′. We may set our aim low, and only try to prove that
f() is just infinitely often a weak one-way function. This means that there is a polynomial p such
that, for every polynomial time inverter A, the computation A(f(x)) fails with probability at least
1/p(n) to output a preimage of f(x), where the probability is over the coin tosses of A and the
sampling of x from Dn, and the statement is true for infinitely many n. We could try to provide
evidence for the hardness of f() by giving a reduction showing that an adversary that inverts A
with probability better than 1 − 1/p(n) on all input lengths would imply a BPP algorithm for a
presumably hard language L. Theorem 18 implies that if such a reduction is non-adaptive, then
L ∈ coNP/poly, and if L were NP-hard we would have a collapse of the polynomial hierarchy.

In order to apply Theorem 18 to our setting, consider the NP relation V ′ made of pairs (f(x), x),
and define the distribution D′ as the distribution of f(x) when x is sampled from D. Then solving
the search problem of V ′ on a random instance of D′ is the same as inverting f(x) on a random x
taken from D. A non-adaptive reduction of a decision problem L to such a problem implies that
L ∈ coNP/poly.
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Theorem 18 is an immediate consequence of Theorem 7 and the following two lemmas:

Lemma 19. For every NP-relation V ⊆ {0, 1}n × {0, 1}m (where m = nO(1)) there exists an NP-
language L′ and a constant c such that there is a O(δm2)-to-δ average-to-average reduction from
(V,U) to (L′,U).

Lemma 20. For every NP-relation V and polynomial-time samplable ensemble of distributions D
there exists an NP-relation V ′ such that there is a O(δpoly(n))-to-δ average-to-average reduction
from (V,D) to (V ′,U).

Analogues of these lemmas are known in the context of the distributional hardness of NP-problems.
A variant of Lemma 19 appears Ben-David et al. [BCGL89], while a variant of Lemma 20 was proved
by Impagliazzo and Levin [IL90]. Our proofs are in essence a recasting of these arguments in the
formalism of nonadaptive average-to-average reductions.

Proof of Lemma 19. As in [BCGL89], we first reduce the search problem V to a search problem
with a unique witness, then encode the bits of the witness in the language L′. The first step is
based on the hashing argument of Valiant and Vazirani [VV86]. The reduction, as described below,
only succeeds with probability 1/16, but this can be amplified to 2/3 by applying the reduction
say 100 times in parallel.

Let a[i] denote the ith bit of a binary string a. Given a, b ∈ {0, 1}n, define a · b =
∑n

i=1 a[i]b[i]
mod 2. We specify the language L as follows: Given x ∈ {0, 1}n, a1, . . . , am ∈ {0, 1}m, k, j ∈ [m],
let (x, c1, . . . , cm, k, j) ∈ L′ if there exists a w ∈ {0, 1}m such that V (x,w) = 1 and w · ci = 0 for
1 ≤ i ≤ k and w[j] = 1. It is immediate that L ∈ NP.

The reduction works as follows: On input x ∈ {0, 1}n, independently choose c1, . . . , cm ∼ U({0, 1}m)
and generate the queries qkj = (x, c1, . . . , cm, k, j) for all 1 ≤ k ≤ m and 1 ≤ j ≤ m. Let akj ∈ {0, 1}
denote the claimed answer to query qkj and wk be the concatenation ak1 . . . akm. The decoder looks
for an index k such that wk is a witness for (x, a1, . . . , am, k, j) for all 1 ≤ j ≤ m and outputs wk;
if no such k is found the decoder returns the string 0m.

Let L∗ be an arbitrary decision oracle that is δ-close to L′. Say an input x is good in L∗ if for all
1 ≤ k ≤ m, 1 ≤ j ≤ m,

Pr
c1,...,cm,r

[L∗(x, c1, . . . , cm, k, j; r) = L(x, c1, . . . , cm, k, j)] > 15/16.

By a pigeonhole argument, x ∼ Un is good with probability at least 1 − O(δm2). We show that
the reduction succeeds on a good input with probability 1/16. By the Valiant-Vazirani argument,
for k = log2 |{w : V (x;w)}|, with probability 1/8 there exists a unique w such that w · ci = 0
for 1 ≤ i ≤ k. It follows that whenever x is good and x ∈ LV , with probability at least 1/16,
L∗(x, c1, . . . , cm, k, j; r) = w[j] for all 1 ≤ j ≤ m, so the decoder encounters the witness w.

Remark. The argument can be strengthened to obtain a O(δm)-to-δ average-to-average reduction
from (V,U) to (L′, U) by applying a Hadamard code to the witness w in L′ instead of revealing its
bits.
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Proof of Lemma 20. Let S denote the sampler that yields the distribution ensemble D: We think of
S as a polynomial-time computable function from {0, 1}n ×{0, 1}|r| → {0, 1}n, where |r| = poly(n)
such that S(1n,Ur(n)) = Dn.

Let V ′ be an NP-relation for language L′, whose inputs are

1. A string l such that |l| = n,

2. An integer k ∈ [|r|], which will encode the entropy of a string from D,

3. A pairwise independent hash function h1 : {0, 1}n → {0, 1}k+6; for example, h1(x) = Ax + b,
where A ∈ {0, 1}n×(k+6), b ∈ {0, 1}k+6,

4. A pairwise independent hash function h2 : {0, 1}|r| → {0, 1}|r|−k−3, for example h2(r) =
Ar + b, A ∈ {0, 1}|r|×(|r|−k−3), b ∈ {0, 1}|r|−k−3,

5. A string z ∈ {0, 1}k+6,

6. A padding string p ∈ {0, 1}n|r|+(|r|−n−1)k, so that the length of the input depends only on n
(and |r|) but not on k.

A pair (w, r) is an NP-witness for input (l, k, h1, h2, z, p) in V ′ if V (S(1n, r);w) = 1 and h1(D(1n, r)) =
z1 and h2(r) = 0.

On input x, where |x| = n, the reduction produces queries (l, k, h1, h2, h1(x), p), for all possible
values of k by choosing l as a random string of length n, and h1, h2 and p uniformly at random
from their range. The decoder looks at all answers (wk, rk), and returns wk if V (S(1n, rk);wk) = 1
for some k. If no such k is found, the decoder returns the string 0m.

Suppose F ∗ is a δ-approximate oracle for V ′ with respect to the uniform ensemble. Given x ∈
{0, 1}n, we call an instance (l, k, h1, h2, z, p) good for x if |l| = |x| = n and the following three
conditions are satisfied:

1. k = b− log2 D(x)c and z = h1(x)

2. There exists an r such that h1(S(1n, r)) = z and h2(r) = 0

3. If, for some r, h1(S(1n, r)) = z and h2(r) = 0, then D(r) = x.

Let G(x) denote the set of all queries in L′ that are good for x. It is immediate that the sets
G(x) are pairwise disjoint over all x ∈ {0, 1}n. On the one hand, we will show that, on input
x, the reduction has a constant probability of producing a query that lands in G(x). Moreover,
conditioned on k, this query is uniformly distributed in G(x). If x ∈ L and F ∗ and V ′ agree on the
query that falls within G(x), then F ∗(x) = (w, r) with S(1n, r) = x, so V (x;w) = 1. On the other
hand, we will show that when x ∼ D, with probability at least 1 − δ|r|, F ∗ and V ′ do agree on a
constant fraction of G(x) for every k, so that the reduction has a constant probability of producing
a query on which F ∗ and V ′ agree.

Claim 21. Let x ∈ {0, 1}n, k = b− log2 D(x)c. With probability 3/4 over the choice of l, h1, h2 and
p, the instance (l, k, h1, h2, h1(x), p) is in G(x).
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Proof of Claim. We first show that, with probability 7/8, the instance satisfies the second condition
for goodness, i.e., there exists an r such that S(1n, r) = x and h2(r) = 0. If S(1n, r) = x, let Ir be
an indicator for the event h2(r) = 0. By our choice of k, |{r : S(1n, r) = x}| ≥ 2|r|−k, so that

E[
∑

r:S(1n,r)=x

Ir] ≥ 2|r|−kE[Ir] = 8.

As the Ir are pairwise independent, the variance of this sum is at most the expectation, so by
Chebyshev’s inequality at least one Ir = 1 with probability 7/8.

Now we look at the probability of satisfying the third condition for goodness. Fix r such that
S(1n, r) 6= x. By pairwise independence, Prh1 [h1(S(1n, r)) = h1(x)] = 2−k−6, and independently,
Prh2 [h2(r) = 0] = 2−|r|+k+3. It follows that

Pr[∃r : S(1n, r) 6= x ∧ h1(S(1n, r)) = h1(x) ∧ h2(r) = 0]

≤
∑

r:S(1n,r)6=x

Pr[h1(S(1n, r)) = h1(x)] Pr[h2(r) = 0]

≤
∑

r∈{0,1}|r|

2−k−62−|r|+k+3 = 1/8.

It follows that both conditions for goodness are satisfied with probability at least 3/4.

Claim 22. For every x ∈ {0, 1}n, U(G(x)) ≥ 3
64 · D(x)

|r| .

Proof of Claim. Consider a random string (k, h1, h2, z, p). With probability 1/|r|, k = b− log2 D(x)c.
Conditioned on this, z = h1(x) with probability 2−k−3. By the last Claim, with probability 3/4
over l, h1, h2, p, (l, k, h1, h2, h1(x), p) is in G(x). Putting this together,

Pr[(l, k, h1, h2, z, p) ∈ G(x)] ≥ 1

|r| ·
3

4
· 2−k−3 ≥ 3

64
· D(x)

|r| .

Let Z denote the set of all x ∈ LV for which

Pr
y∼U ,F ∗

[V ′(y, F ∗(y)) = 1|y ∈ G(x)] > 8/9,

so that if the k-th query qk lands into G(x), the answer (wk, rk) has a 8/9 probability of being a
good witness for the query. It follows that, unconditionally, V (qk, F

∗(qk)) = 1 with probability at
least 8/9 · 3/4 = 2/3, and the decoder is successful on the queries that come from S.
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On the other hand, by the disjointness of the sets G(x),

δ ≥
∑

x∈LV

U(G(x)) Pr
y∼U

[V ′(y, F ∗(y)) = 0|y ∈ G(x)]

>
∑

x∈Z

U(G(x)) · 1

9

≥
∑

x∈Z

1

9
· 3

64
· D(x)

|r| by Claim 22

= Ω(D(Z)/|r|),

so that D(Z) = O(δ|r|).
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A Additive bounds for random sampling

Lemma 23. Let ε < 1, T ⊆ Ω, R a distribution on Ω, R(T ) = p and S an N > 3 log(η/2)/ε3

element random sample from Ω, drawn from R. With probability 1 − η, |S ∩ T |/N ∈ p ± ε.

Proof. We use the following form of the Chernoff bound:

Pr[|S ∩ T | < (1 − ξ)Np] < exp(−ξ2Np/3), for ξ < 1

and

Pr[|S ∩ T | > (1 + ξ)Np] <

{

2−(1+ξ)Np, for ξ ≥ 1,

exp(−ξ2Np/3), for ξ < 1.

If p < ε, the lower bound holds trivially, and for the upper bound we set ξ = ε/p > 1 to obtain

Pr[|S ∩ T | > (p + ε)N ] < 2−(p+ε)N < η.

If p ≥ ε, we set ξ = ε to obtain:

Pr[|S ∩ T | 6∈ (1 ± ε)Np] < 2 exp(−ε2Np/3) ≤ 2 exp(−ε3N/3) < η.

In most applications here we set η = o(1), so that the estimate holds with high probability.
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