
On the Complexity of Numerical Analysis

Eric Allender∗ Peter Bürgisser† Johan Kjeldgaard-Pedersen‡ Peter Bro Miltersen§

Abstract

We study two quite different approaches to under-
standing the complexity of fundamental problems in
numerical analysis. We show that both hinge on the
question of understanding the complexity of the follow-
ing problem, which we call PosSLP: Given a division-
free straight-line program producing an integer N , de-
cide whether N > 0. We show that PosSLP lies
in the counting hierarchy, and combining our results
with work of Tiwari, we show that the Euclidean Trav-
eling Salesman Problem lies in the counting hierar-
chy – the previous best upper bound for this important
problem (in terms of classical complexity classes) be-
ing PSPACE.

1 Introduction

The original motivation for this paper comes from
a desire to understand the complexity of computation
over the reals in the Blum-Shub-Smale model. In Sec-
tion 1.1 we give a brief introduction to this model
and we introduce the problem PosSLP and explain
its importance in understanding the Blum-Shub-Smale
model.

In Section 1.2 we present yet another reason to be
interested in PosSLP. We isolate a computational
problem that lies at the root of the task of designing nu-
merically stable algorithms. We show that this task is

∗Department of Computer Science, Rutgers, the State Univer-
sity of NJ. email: allender@cs.rutgers.edu.

†Department of Mathematics, Paderborn University. e-mail:
pbuerg@upb.de. Partially supported by DFG grant BU 1371
and Paderborn Institute for Scientific Computation.

‡PA Consulting Group, Copenhagen. email:
johan.kjeldgaard-pedersen@ paconsulting.com.

§Department of Computer Science, University of Aarhus.
email: bromille@daimi.au.dk.

computationally equivalent to PosSLP. The material
in Sections 1.1 and 1.2 provide motivation for study-
ing PosSLP and for attempting to place it within the
framework of traditional complexity classes.

In Section 1.3 we discuss our main technical contri-
butions: proving upper and lower bounds on the com-
plexity of PosSLP. In Section 1.4 we present applica-
tions of our main result with respect to the Euclidean
Traveling Salesman Problem and the Sum-of-Square-
Roots problem.

1.1 Polynomial Time Over the Reals

The Blum-Shub-Smale model of computation over
the reals provides a very well-studied complexity-
theoretic setting in which to study the computational
problems of numerical analysis. We refer the reader to
Blum, Cucker, Shub and Smale [9] for detailed defi-
nitions and background material related to this model;
here, we will recall only a few salient facts. In the
Blum-Shub-Smale model, each machine computing
over the reals has associated with it a finite set of real
machine constants. The inputs to a machine are ele-
ments of

⋃

n R
n = R

∞, and thus each polynomial-
time machine over R accepts a “decision problem”
L ⊆ R

∞. The set of decision problems accepted by
polynomial-time machines over R is denoted PR.

There has been considerable interest in relating
computation over R to the classical Boolean complex-
ity classes such as P, NP, PSPACE, etc. This is ac-
complished by considering the Boolean part of deci-
sion problems over the reals. That is, given a prob-
lem L ⊆ R

∞, the Boolean part of L is defined as
BP(L) := L ∩ {0, 1}∞. (Here, we follow the nota-
tion of [9]; {0, 1}∞ =

⋃

n{0, 1}n , which is identical
to {0, 1}∗ .) The Boolean part of PR, denoted BP(PR),
is defined as {BP(L) | L ∈ PR}.

By encoding the advice function in a single real

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 37 (2005)

ISSN 1433-8092

constant as in Koiran [27], one can show that
P/poly ⊆ BP(PR). The best upper bound on the com-
plexity of problems in BP(PR) that is currently known
was obtained by Cucker and Grigoriev [16]:

BP(PR) ⊆ PSPACE/poly. (1)

There has been no work pointing to lower bounds
on the complexity of BP(PR); nobody has presented
any compelling evidence that BP(PR) is not equal to
P/poly.

There has also been some suggestion that perhaps
BP(PR) is equal to PSPACE/poly. For instance, cer-
tain variants of the RAM model that provide for unit-
cost arithmetic can simulate all of PSPACE in polyno-
mial time [6, 23]. Since the Blum-Shub-Smale model
also provides for unit-time multiplication on “large”
numbers, Cucker and Grigoriev [16] mention that re-
searchers have raised the possibility that similar argu-
ments might show that polynomial-time computation
over R might be able to simulate PSPACE. Cucker and
Grigoriev also observe that certain naı̈ve approaches to
provide such a simulation must fail.

One of our goals is to provide evidence that BP(PR)
lies properly between P/poly and PSPACE/poly. To-
wards this goal, it is crucial to understand a certain de-
cision problem PosSLP: The problem of deciding, for
a given straight-line program, whether it represents a
positive integer. (For precise definitions, see the next
section.)

The immediate relationship between the Blum-
Shub-Smale model and the problem PosSLP is given
by the proposition below. Following Bürgisser and
Cucker [13], define P0

R
to be the class of decision prob-

lems over the reals decided by polynomial time Blum-
Shub-Smale machines using only the constants 0, 1.

Proposition 1.1 PPosSLP = BP(P0
R
).

Proof. (Sketch) It is clear that PosSLP is in BP(P0
R
).

To show the other direction, assume we have a poly-
nomial time machine over R using only the constants
0, 1. Given a bit string as input, we simulate the com-
putation by storing the straight-line program represen-
tation of the intermediate results instead of their val-
ues. Branch instructions can be simulated by using the
oracle to determine if the contents of a given register
(represented by a straight-line program) is greater than
zero. �

It was shown by Chapuis and Koiran [14] that alge-
braic constants do not help. More specifically, BP(P0

R
)

equals the Boolean part of the class of decision prob-
lems over the reals decided by polynomial time Blum-
Shub-Smale machines using real algebraic numbers as
constants.

As already mentioned, by encoding the advice func-
tion in a single real constant, one can show that
P/poly ⊆ BP(PR). The proof in fact shows even
PPosSLP/poly ⊆ BP(PR). The real constant encod-
ing the advice function, will, of course, in general be
transcendental. Thus, there is a strong relationship be-
tween non-uniformity in the classical model of com-
putation and the use of transcendental constants in the
Blum-Shub-Smale model. We conjecture that this re-
lationship can be further strengthened:

Conjecture 1.2 PPosSLP/poly = BP(PR)

1.2 The Task of a Numerical Analyst

The Blum-Shub-Smale model is a very elegant one,
but it does not take into account the fact that actual
numerical computations have to deal with finitely rep-
resented values. We next observe that even if we take
this into account, the PosSLP problem still captures
the complexity of numerical computation.

Let u 6= 0 be a dyadic rational number. The float-
ing point representation of u is obtained by writing
u = v2m where m is an integer and 1

2 ≤ |v| < 1.
The floating point representation is then given by the
sign of v, and the usual binary representations of the
numbers |v| and m. The floating point representation
of 0 is the string 0 itself. We shall abuse notation and
identify the floating point representation of a number
with the number itself, using the term “floating point
number” for the number as well as its representation.

Let u 6= 0 be a real number. We may write u as
u = u′2m where 1

2 ≤ |u′| < 1 and m is an integer.
Then, we define a floating point approximation of u
with k significant bits to be a floating point number
v2m so that |v − u′| ≤ 2−(k+1).

We will focus on one part of the job that is done by
numerical analysts: the design of numerically-stable
algorithms. In our scenario, the numerical analyst
starts out with a known function f , and the task is to
design a “good” algorithm for it. When we say that

2

the function f is “known”, we mean that the analyst
starts out with some method of computing (or at least
approximating) f ; we restrict attention to the “easy”
case where the method for computing f uses only the
arithmetic operations +,−, ∗,÷, and thus the descrip-
tion of f that the analyst is given can be presented as
an arithmetic circuit with operations +,−, ∗,÷. Usu-
ally, the analyst also has to worry about the problems
that are caused by the fact that the inputs to f are not
known precisely, but are only given as floating point
numbers that are approximations to the “true” inputs
– but again we will focus on the “easy” case where
the analyst will merely try to compute a good approx-
imation for f(x1, . . . , xn) on the exact floating point
numbers x1, . . . , xn that are presented as input:

The generic task of numerical analysis: Given an
integer k in unary and a straight-line program (with
÷) taking as inputs floating point numbers, with a
promise that it neither evaluates to zero nor does di-
vision by zero, compute a floating point approximation
of the value of the output with k significant bits.

The traditional approach that numerical analysts
have followed in trying to solve problems of this sort
is to study the numerical stability of the algorithm rep-
resented by the circuit, and in case of instability, to
attempt to devise an equivalent computation that is
numerically stable. Although stable algorithms have
been found for a great many important functions, the
task of devising such algorithms frequently involves
some highly nontrivial mathematics and algorithmic
ingenuity. There seems to be no expectation that there
will ever by a purely automatic way to solve this prob-
lem, and indeed there seems to be no expectation that
a numerically stable algorithm will exist in general. To
summarize, there is substantial empirical evidence that
the generic task of numerical analysis is intractable. It
would be of significant practical interest if, contrary to
expectation, it should turn out to be very easy to solve
(say, solvable in linear time).

We show that the generic task of numerical analysis
is equivalent in power to PosSLP.

Proposition 1.3 The generic task of numerical analy-
sis is polynomial time Turing equivalent to PosSLP.

Proof. We first reduce PosSLP to the generic task
of numerical analysis. Given a straight-line program

representing the number N , we construct a straight-
line program computing the value v = 2N − 1. The
only inputs 0, 1 of this program can be considered to be
floating point numbers and this circuit clearly satisfies
the promise of the generic task of numerical analysis.
Then N > 0 if v ≥ 1 and N ≤ 0 if v ≤ −1. Deter-
mining an approximation of v to one significant bit is
enough to distinguish between these cases.

Conversely, suppose we have an oracle solving
PosSLP. Given a straight-line program with inputs
being floating point numbers, we first convert it to a
straight-line program having only input 1; it is easy to
see that this can be done in polynomial time. By stan-
dard techniques we move all ÷ gates to the top, so that
the program computes a value v = v1/v2, where v1, v2

are given by division-free straight-line programs. We
can use the oracle to determine the signs of v1 and v2.
Without loss of generality assume that v is positive.
Next we use the oracle to determine if v1 ≥ v2. Sup-
pose this is indeed the case (the opposite case is han-
dled similarly).

We then find the least r, so that 2r−1 ≤ v < 2r ,
by first comparing v1 with v22

2i
for i = 0, 1, 2, 3, ...,

using the oracle, thus finding the minimum i so that
v < 22i

and afterwards doing a binary search, again
using the oracle to compare v1 to v22

r for various val-
ues of r. This takes polynomial time.

The desired output is a floating point number u =
u′2r , where |v − u′| ≤ 2−(k+1). To obtain u′ we first
want to find the integer w between 2k and 2k+1 − 1
so that w/2k+1 ≤ v/2r < (w + 1)/2k+1. Since
w/2k+1 ≤ v/2r < (w + 1)/2k+1 iff w2rv2 ≤
v12

k+1 < (w + 1)2rv2, we can determine this by
another binary search, using O(k) calls to the oracle.
We then output the sign of v, the binary representation
of the rational w/2k+1, and the binary representation
of r, together forming the desired floating point ap-
proximation of v. �

1.3 The Complexity of PosSLP

We consider Proposition 1.3 to be evidence for the
computational intractability of PosSLP. If PosSLP
is in P/poly then there is a polynomial-sized “cook-
book” that can be used in place of the creative task of
devising numerically stable computations. This seems
unlikely.

3

Remarks

• We wish to emphasize that the generic task of
numerical analysis models the discrete computa-
tional problem that underlies an important class
of computational problems. Thus it differs quite
fundamentally from the approach taken in the
Blum-Shub-Smale model.

• We also wish to emphasize that, in defining the
generic task of numerical analysis, we are not en-
gaging in the debate over which real functions are
“efficiently computable”. There is by now a large
literature comparing and contrasting the relative
merits of the Blum-Shub-Smale model with the
so-called “bit model” of computing, and there are
various competing approaches to defining what it
means for a real-valued function to be feasible to
compute; see [44, 7, 43, 11, 10] among others.
Our concerns here are orthogonal to that debate.
We are not trying to determine which real-valued
functions are feasible; we are studying a discrete
computational problem that is relevant to numer-
ical analysis, with the goal of proving upper and
lower bounds on its complexity.

The generic task of numerical analysis is one way
of formulating the notion of what is feasible to com-
pute in a world where arbitrary precision arithmetic is
available for free. In contrast, the Blum-Shub-Smale
model can be interpreted as formulating the notion of
feasibility in a world where infinite precision arith-
metic is available for free. According to Proposi-
tion 1.3, both of these approaches are equivalent (and
captured by PPosSLP) when only algebraic constants
are allowed in the Blum-Shub-Smale model. Conjec-
ture 1.2 claims that this is also true when allowing ar-
bitrary real constants.

As another demonstration of the computational
power of PosSLP, we show in §2 that the problem of
determining the total degree of a multivariate polyno-
mial over the integers given as a straight-line program
reduces to PosSLP.

The above discussion suggests that PosSLP is not
an easy problem. Can more formal evidence of this
be given? Although it would be preferable to show
that PosSLP is hard for some well-studied complexity
class, the best that we can do is observe that a some-

what stronger problem (BitSLP) is hard for #P. This
will be done in §2.

The above discussion also suggests that non-trivial
upper bounds for PosSLP are of great interest. Prior
to this paper, the best upper bound was PSPACE. Our
main technical result is an improved upper bound: We
show, based on results on the uniform circuit complex-
ity of integer division and the relationship between
constant depth circuits and subclasses of PSPACE

[3, 24], that PosSLP lies in the counting hierarchy CH,
a well-studied subclass of PSPACE that bears more or
less the same relationship to #P as the polynomial hi-
erarchy bears to NP [40, 42].

Theorem 1.4 PosSLP is in PPP
PP

PP

.

We suspect that PosSLP lies at an even lower level
of CH. We leave as major open problems the ques-
tion of providing better upper bounds for PosSLP and
the question of providing any sort of hardness the-
orem, reducing a supposedly intractable problem to
PosSLP. We also believe that it would be very in-
teresting to verify Conjecture 1.2, as this would give a
characterization of BP(PR) in terms of classical com-
plexity classes. But in fact, it would be equally in-
teresting to refute it under some plausible complex-
ity theoretic assumption, as this would give evidence
that the power of using transcendental constants in the
Blum-Shub-Smale model goes beyond the power of
non-uniformity in classical computation.

1.4 Applications

The Sum-of-square-roots problem is a well-known
problem with many applications to computational ge-
ometry and elsewhere. The input to the problem is a
list of integers (d1, . . . , dn) and an integer k, and the
problem is to decide if

∑

i

√
di ≥ k. The complex-

ity of this problem is posed as an open question by
Garey, Graham and Johnson [22] in connection with
the Euclidean traveling salesman problem, which is
not known to be in NP, but which is easily seen to
be solvable in NP relative to the Sum-of-square-roots
problem. See also O’Rourke [34, 35] and Etessami
and Yannakakis [21] for additional information. Al-
though it has been conjectured [33] that the problem
lies in P, it seems that no classical complexity class
smaller than PSPACE has been known to contain this

4

problem. On the other hand, Tiwari [38] showed that
the problem can be decided in polynomial time on an
“algebraic random-access machine”. In fact, it is easy
to see that the set of decision problems decided by such
machines in polynomial time is exactly BP(P0

R
). Thus

by Proposition 1.1 we see that the Sum-of-square-roots
problem reduces to PosSLP. Theorem 1.4 thus yields
the following corollary.

Corollary 1.5 The Sum-of-square-roots problem and
the Euclidean Traveling Salesman Problem are in CH.

2 Preliminaries

Our definitions of arithmetic circuits and straight-
line programs are standard. An arithmetic circuit is a
directed acyclic graph with input nodes labeled with
the constants 0, 1 or with indeterminants X1, . . . , Xk

for some k. Internal nodes are labeled with one of the
operations +,−, ∗,÷. A straight-line program is a se-
quence of instructions corresponding to a sequential
evaluation of an arithmetic circuit. If it contains no ÷
operation it is said to be division free. Unless other-
wise stated, all the straight-line programs considered
will be division-free. Thus straight-line programs can
be seen as a very compact representation of a poly-
nomial over the integers. In many cases, we will be
interested in division-free straight-line programs using
no indeterminants, which thus represent an integer.

By the n-bit binary representation of an integer N
such that |N | < 2n we understand a bit string of
length n+1 consisting of a sign bit followed by n bits
encoding |N | (padded with leading zeroes, if needed).

We consider the following problems:

EquSLP Given a straight-line program represent-
ing an integer N , decide whether N = 0.

ACIT Given a straight-line program representing a
polynomial f ∈ Z[X1, . . . , Xk], decide whether
f = 0.

DegSLP: Given a straight-line program represent-
ing a polynomial f ∈ Z[X1, . . . , Xk], and given
a natural number d in binary, decide whether
deg f ≤ d.

PosSLP Given a straight-line program represent-
ing N ∈ Z, decide whether N > 0.

BitSLP Given a straight-line program representing
N , and given n, i ∈ N in binary, decide whether
the ith bit of the n-bit binary representation of N
is 1.

It is not clear that any of these problems is in P,
since straight-line program representations of integers
can be exponentially smaller than ordinary binary rep-
resentation.

There is an immediate relationship between the
Blum-Shub-Smale model over the complex numbers
C and the problem EquSLP. Let P0

C
denote the class

of decision problems over C decided by polynomial
time Blum-Shub-Smale machines using only the con-
stants 0, 1. Similarly as for Proposition 1.1 one can
show that PEquSLP = BP(P0

C
). On the other hand, it

is known that constants can be eliminated in this set-
ting [8, 28], hence BP(PC) = BP(P0

C
). We therefore

have

Proposition 2.1 PEquSLP = BP(PC).

Clearly, EquSLP is a special case of ACIT.
Schönhage [36] showed that EquSLP is in coRP, us-
ing computation modulo a randomly chosen prime.
Ibarra and Moran [25], building on DeMillo and Lip-
ton [18], Schwartz [37] and Zippel [45], extended this
to show that ACIT lies in coRP. The problem ACIT
has recently attracted much attention due to the work
of Kabanets and Impagliazzo [26] who showed that
a deterministic algorithm for ACIT would yield cir-
cuit lower bounds. (See [29] for some progress on
finding deterministic algorithms for certain versions
of the problem.) As far as we know, it has not been
pointed out before that ACIT is actually polynomial
time equivalent to EquSLP. In other words, disallow-
ing indeterminates in the straight-line program given
as input does not make ACIT easier. Or more opti-
mistically: It is enough to find a deterministic algo-
rithm for this special case in order to have circuit lower
bounds.

Proposition 2.2 ACIT is polynomial-time equivalent
to EquSLP.

Proof. We are given a straight-line program of size
n with m indeterminates X1, . . . , Xm, computing the

polynomial p(X1, . . . , Xm). Define Bn,i = 22in2

.

5

Straight-line-programs computing these numbers us-
ing iterated squaring can easily be constructed in poly-
nomial time, so given a straight-line-program for p,
we can easily construct a straight-line program for
p(Bn,1, . . . , Bn,m). We shall show that for n ≥ 3,
p is identically zero iff p(Bn,1, . . . , Bn,m) evaluates
to zero.

To see this, first note that the “only if” part is triv-
ial, so we only have to show the “if” part. Thus, as-
sume that p(X1, . . . , Xm) is not the zero-polynomial.
Let m(X1, . . . , Xm) be the largest monomial occur-
ring in p with respect to inverse lexicographic order1

and let k be the number of monomials. We can write
p = αm +

∑k−1
i=1 αimi, where (mi)i=1,... ,k−1 are the

remaining monomials. An easy induction in the size
of the straight line program shows that |αi| ≤ 222n

,
k ≤ 22n

and that the degree of any variable in any mi

is at most 2n.
Now, our claim is that the absolute value

|αm(Bn,1, . . . , Bn,m)| is strictly bigger than the ab-
solute value |∑k−1

i=1 αimi(Bn,1, . . . , Bn,m)|, and thus
we cannot have that p(Bn,1, . . . , Bn,m) = 0.

Indeed, since the monomial m was the biggest in the
inverse lexicographic ordering, we have that for any
other monomial mi there is an index j so that

m(Bn,1, . . . , Bn,m)

mi(Bn,1, . . . , Bn,m)
≥ 22jn2

∏j−1
l=1 22ln2

·2n
> 22n2−1

,

so we can bound

|
k−1
∑

i=1

αimi(Bn,1, . . . , Bn,m)|

≤ 22n

222n | k−1
max
i=1

mi(Bn,1, . . . , Bn,m)|

≤ 22n

222n

2−2n2−1 |m(Bn,1, . . . , Bn,m)|
< m(Bn,1, . . . , Bn,m) ≤ |αm(Bn,1, . . . , Bn,m)|,

which proves the claim. �

The problem DegSLP is not known to lie in BPP,
even for the special case of univariate polynomials.
Here, we show that it reduces to PosSLP.

1X
α1

1 · · ·Xαm

m is greater than X
β1

1 · · ·Xβm

m in this order iff
the right-most nonzero component of α − β is positive, cf. Cox,
Little and O’Shea [15, p. 59].

Proposition 2.3 DegSLP polynomial time many-one
reduces to PosSLP.

Proof. We first show the reduction for the case of uni-
variate polynomials (i.e., straight-line-programs with
a single indeterminate) and afterwards we reduce the
multivariate case to the univariate case.

Let f ∈ Z[X] be given by a straight-line pro-
gram of length n. To avoid having to deal with the
zero polynomial of degree −∞ and to ensure that
the image of the polynomial is a subset of the non-
negative integers, we first change the straight-line pro-
gram computing f into a straight-line program com-
puting f1(X) = (Xf(X) + 1)2 by adding a few extra
lines. We can check if the degree of f is at most d by
checking if the degree of f1 is at most D = 2(d + 1)
(except for d = −∞ in which case we check if the
degree of f1 is at most D = 0).

Let Bn be the integer 22n2

. As in the proof of
Proposition 2.2, we can easily construct a straight-line
program computing Bn and from this a straight-line
program computing f1(Bn).

Now, suppose that deg f1 ≤ D. Using the same
bounds on sizes of the coefficients as in the proof of
Proposition 2.2 and assuming without loss of general-
ity that n ≥ 3, we then have

f1(Bn) ≤
D

∑

i=0

222n

Bi
n < (2n + 1)222n

BD
n

≤ (22n

+ 1)222n−2n2

BD+1
n < BD+1

n /2.

On the other hand suppose that deg f1 ≥ D + 1.
Then we have

f1(Bn) ≥ (Bn)D+1 −
D

∑

i=0

222n

Bi
n ≥

BD+1
n − 22n

222n

2−2n2

BD+1
n > BD+1

n /2.

Thus, to check whether deg f1 ≤ D, we just need to
construct a straight-line-program for 2f1(Bn)−BD+1

n

and check whether it computes a positive integer. This
completes the reduction for the univariate case.

We next reduce the multivariate case to the uni-
variate case. Thus, let f ∈ Z[X1, . . . , Xm]
be given by a straight-line program of length n.
Let f∗ ∈ Z[X1, . . . , Xm, Y] be defined by

6

f∗(X1, . . . , Xm, Y) = f(X1Y, . . . ,XmY). We

claim that if we let Bn,i = 22in2

as in the proof of
Proposition 2.2, then, for n ≥ 3, the degree of the uni-
variate polynomial f ∗(Bn,1, . . . , Bn,m, Y) is equal to
the total degree of f . Indeed, we can write f ∗ as a
polynomial in Y with coefficients in Z[X1, . . . , Xm]:

f∗(X1, . . . , Xm, Y) =
d∗
∑

j=0

gj(X1, . . . , Xm)Y j

where d∗ is the degree of variable Y in the polyno-
mial f∗. Note that this is also the total degree of the
polynomial f . Now, the same argument as used in the
proof of Proportion 2.2 shows that since gd∗ is not the
zero-polynomial, gd∗(Bn,1, Bn,2, . . . , Bn,m) is differ-
ent from 0. �

As PosSLP easily reduces to BitSLP, we obtain
the chain of reductions

ACIT ≤p
m DegSLP ≤p

m PosSLP ≤p
m BitSLP.

In §3 we will show that all the above problems in fact
lie in the counting hierarchy CH.

The complexity of BitSLP contrasts sharply with
that of EquSLP.

Proposition 2.4 BitSLP is hard for #P.

Proof. The proof is quite similar to that of
Bürgisser [12, Prop. 5.3], which in turn is based on
ideas of Valiant [41]. We show that computing the
permanent of matrices with entries from {0,1} is re-
ducible to BitSLP.

Given a matrix X with entries xi,j ∈ {0, 1}, con-
sider the univariate polynomial

fn =
∑

i

fn,iY
i =

n
∏

i=1

(

n
∑

j=1

xi,jY
2j−1)

which can be represented by a straight-line program
of size O(n2). Then fn,2n−1 equals the permanent of
X . Let N be the number that is represented by the
straight-line program that results by replacing the in-
determinate Y with 2n3

. It is easy to see that the bi-
nary representation of fn,2n−1 appears as a sequence
of consecutive bits in the binary representation of N .

�

3 PosSLP lies in CH

The counting hierarchy CH was defined by Wagner
[42] and was studied further by Toran [40]; see also
[5, 3]. A problem lies in CH if it lies in one of the
classes in the sequence PP,PP

PP, etc.

Theorem 3.1 BitSLP is in CH.

Proof. It was shown by Hesse et al. [24] that there
are Dlogtime-uniform threshold circuits of polynomial
size and constant depth that compute the following
function:

Input A number X in Chinese Remainder Represen-
tation. That is, a sequence of values indexed
(p, j) giving the j-th bit of X mod p, for each
prime p < n2, where 0 ≤ X ≤ 2n (thus we
view n as an appropriate “size” measure of the
input).

Output The binary representation of the unique natu-
ral number X <

∏

p prime,p<n2 p whose value mod-
ulo each small prime is encoded in the input.

Let this circuit family be denoted {Dn}.
Now, as in the proof of [3, Lemma 5], we consider

the following exponentially-big circuit family {En},
that computes BitSLP.

Given as input an encoding of a straight-line pro-
gram representing integer W , we first build a new pro-
gram computing the positive integer X = W + 22n

.
Note that the bits of the binary representation of W
(including the sign bit) can easily be obtained from the
bits of X .

Level 1 of the circuit En consists of gates labeled
(p, j) for each prime p such that p < 22n and for each
j : 1 ≤ j ≤ dlog pe. The output of this gate records
the jth bit of X mod p. (Observe that there are ex-
ponentially many gates on level 1, and also note that
the output of each gate (p, j) can be computed in time
polynomial in the size of the binary encoding of p and
the size of the given straight-line program represent-
ing X . Note also that the gates on Level 1 correspond
to the gates on the input level of the circuit D22n .

The higher levels of the circuit are simply the gates
of D22n .

Now, similar to the proof of [3, Lemma 5], we claim
that for each constant d, the following language is in

7

the counting hierarchy: Ld = {(F, P, b) : F is the name
of a gate on level d of En and F evaluates to b when
given straight-line program P as input}.

We have already observed that this is true when
d = 1. For the inductive step, assume that Ld ∈ CH.
Here is an algorithm to solve Ld+1 using oracle ac-
cess to Ld. On input (F, P, b), we need to determine
if the gate F is a gate of En, and if so, we need to
determine if it evaluates to b on input P . F is a gate
of En iff it is connected to some gate G such that, for
some b′, (G,P, b′) ∈ Ld. This can be determined in
NP

Ld ⊆ PP
Ld , since Dn is Dlogtime-uniform. That

is, we can guess a gate G, check that G is connected
to F (this takes only linear time because of the unifor-
mity condition) and then use our oracle for Ld. If F
is a gate of En, we need to determine if the majority
of the gates that feed into it evaluate to 1. (Note that
all of the gates in Dn are MAJORITY gates.) That
is, we need to determine if it is the case that for most
bit strings G such that G is the name of a gate that
is connected to F , (G,P, 1) is in Ld. This is clearly
computable in PP

Ld .
Thus in order to compute BitSLP, given program

P and index i, compute the name F of the output bit
of En that produces the ith bit of N (which is easy
because of the uniformity of the circuits D22n) and de-
termine if (F, P, 1) ∈ Ld, where d is determined by
the depth of the constant-depth family of circuits pre-
sented in [24]. �

Theorem 3.1 shows that BP(P0
R
) lies in CH. A sim-

ilar argument can be applied to an analogous restric-
tion of “digital” NPR (i.e., where nondeterministic ma-
chines over the reals can guess “bits” but cannot guess
arbitrary real numbers). Bürgisser and Cucker [13]
present some problems in PSPACE that are related to
counting problems over R. It would be interesting to
know if these problems lie in CH.

Although Theorem 3.1 shows that BitSLP and
PosSLP both lie in CH, some additional effort is re-
quired in order to determine the level of CH where
these problems reside. We present a more detailed
analysis for PosSLP, since it is our main concern in
this paper. (A similar analysis can be carried out for

BitSLP, showing that it lies in PH
PP

PP
PP

PP

[4].)
The following result implies Theorem 1.4, since

Toda’s Theorem [39] shows that PP
PH

A ⊆ PPP
A

for

every oracle A.

Theorem 3.2 PosSLP ∈ PH
PP

PP

.

Proof. We will use the Chinese remaindering algo-
rithm of [24] to obtain our upper bound on PosSLP.
(Related algorithms, which do not lead directly to the
bound reported here, have been used on several occa-
sions [1, 17, 20, 30, 31].) Let us introduce some nota-
tion relating to Chinese remaindering.

For n ∈ N let Mn be the product of all odd
primes p less than 2n2

. By the prime number theorem,

22n
< Mn < 22n2

+1

for n sufficiently large. For such
primes p let hp,n denote the inverse of Mn/p mod p.

Any integer 0 ≤ X < Mn can be represented
uniquely as a list (xp), where p runs over the odd
primes p < 2n2

and xp = X mod p. Moreover, X
is congruent to

∑

p xphp,nMn/p modulo Mn. Hence
X/Mn is the fractional part of

∑

p xphp,n/p.
Define the family of approximation functions

appn(X) to be
∑

p Bp, where Bp = xphp,nσp,n and
σp,n is the result of truncating the binary expansion of
1/p after 2n4

bits. Note that for n sufficiently large

and X < Mn, appn(X) is within 2−2n3

of X/Mn.
Let the input to PosSLP be a program P of size n

representing the integer W and put Yn = 22n
. Since

|W | ≤ Yn, the number X := W + Yn is nonnegative
and we can easily transform P into a program of size
2n + 2 representing X . Clearly, W > 0 iff X > Yn.
Note that if X > Yn, then X/Mn and Yn/Mn differ

by at least 1/Mn > 2−2n2
+1

, which implies that it is
enough to compare the binary expansions of appn(X)
and appn(Yn). (Interestingly, this seems to be some-
what easier than computing the bits of X directly.)

We can determine if X > Yn in PH relative to the
following oracle: A = {(P, j, b, 1n) : the j-th bit of
the binary expansion of appn(X) is b, where X is the
number represented by straight-line program P and j
is given in binary}. Lemma 3.3 completes the proof

by showing that A ∈ PH
PP

PP

. �

Lemma 3.3 A ∈ PH
PP

PP

.

Proof. Assume for the moment that we can show that
B ∈ PH

PP, where B := {(P, j, b, p, 1n) : the j-th
bit of the binary expansion of Bp (= xphp,nσp,n) is

8

b, where p < 2n2

is an odd prime, xp = X mod p,
X is the number represented by the straight-line pro-
gram P , and j is given in binary}. In order to recog-
nize the set A, it clearly suffices to compute 2n4

bits
of the binary representation of the sum of the num-
bers Bp. A uniform circuit family for iterated sum
is presented by Maciel and Thérien in [32, Corollary
3.4.2] consisting of MAJORITY gates on the bottom
(input) level, with three levels of AND and OR gates
above. As in the proof of Theorem 3.1, the con-
struction of Maciel and Thérien immediately yields a
PH

PP
B

algorithm for A, by simulating the MAJOR-
ITY gates by PP

B computation, simulating the OR
gates above the MAJORITY gates by NP

PP
B

compu-
tation, etc. The claim follows, since by Toda’s Theo-

rem [39] PH
PP

B ⊆ PH
PP

PH
PP

= PH
PP

PP

. It remains
only to show that B ∈ PH

PP. �

Lemma 3.4 B ∈ PH
PP.

Proof. Observe that given (P, j, b, p) we can deter-
mine in polynomial time if p is prime [2], and we can
compute xp.

In PH ⊆ PPP we can find the least generator gp of
the multiplicative group of the integers mod p. The
set C = {(q, gp, i, p) : p 6= q are primes and i is the
least number for which gi

p ≡ q mod p} is easily seen
to lie in PH. We can compute the discrete log base
gp of the number Mn/p mod p in #P

C ⊆ PPP, by
the algorithm that nondeterministically guesses q and
i, verifies that (q, gp, i, p) ∈ C , and if so generates
i accepting paths. Thus we can compute the number
Mn/p mod p itself in PPP by first computing its dis-
crete log, and then computing gp to that power, mod
p. The inverse hp,n is now easy to compute in PPP, by
finding the inverse of Mn/p mod p.

Our goal is to compute the j-th bit of the binary ex-
pansion of xphp,nσp,n. We have already computed xp

and hp,n in PPP, so it is easy to compute xphp,n. The
jth bit of 1/p is simply the low-order bit of 2j mod p,
so bits of σp,n are easy to compute in polynomial time.
(Note that j is exponentially large.)

Thus our task is to obtain the j-th bit of the product
of xphp,n and σp,n, or (equivalently) adding σp,n to it-
self xphp,n times. The problem of adding logO(1) n
many n-bit numbers lies in uniform AC

0 [19]. Sim-

ulating these AC
0 circuits leads to the desired PH

PP

algorithm for B. �

Acknowledgments

We acknowledge helpful conversations with
Kousha Etessami, Sambuddha Roy, Felipe Cucker,
Lenore Blum, Richard Lipton, Parikshit Gopalan,
Mark Braverman, Madhu Sudan, Klaus Meer, Pascal
Koiran, and Kristoffer Arnsfelt Hansen. The first
author acknowledges the support of NSF Grant
CCF-0514155. The second author acknowledges the
support of DFG Grant BU 1371.

References

[1] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and
arithmetic circuits. J. Comp. Syst. Sci., 60:395–421, 2000.

[2] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.
Annals of Mathematics, 160:781–793, 2004.

[3] E. Allender, M. Kouck ý, D. Ronneburger, S. Roy, and
V. Vinay. Time-space tradeoffs in the counting hierarchy. In
Proc. 16th Ann. IEEE Conf. on Computational Complexity
(CCC ’01), pages 295–302, 2001. Revised version to appear
in Theory of Computing Systems.

[4] E. Allender and H. Schnorr. The complexity of the BitSLP
problem. manuscript, 2005.

[5] E. Allender and K. W. Wagner. Counting hierarchies: poly-
nomial time and constant depth circuits. In G. Rozenberg
and A. Salomaa, editors, Current Trends in Theoretical Com-
puter Science, pages 469–483. World Scientific, 1993.

[6] A. Bertoni, G. Mauri, and N. Sabadini. Simulations among
classes of random access machines and equivalence among
numbers succinctly represented. Ann. Discrete Math.,
25:65–90, 1985.

[7] L. Blum. Computing over the reals: Where Turing meets
Newton. Notices of the American Mathematical Society,
51:1024–1034, 2004.

[8] L. Blum, F. Cucker, M. Shub, and S. Smale. Algebraic Set-
tings for the Problem “P 6= NP ?”. In The mathematics of
numerical analysis, number 32 in Lectures in Applied Math-
ematics, pages 125–144. Amer. Math. Soc., 1996.

[9] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and
Real Computation. Springer, 1998.

[10] M. Braverman. On the complexity of real functions. In
FOCS, pages 155–164, 2005.

[11] M. Braverman and S. Cook. Computing over the reals:
Foundations for scientific computing. arXiv manuscript
cs.CC/0509042, 2005.

9

[12] P. B ürgisser. The complexity of factors of multivariate
polynomials. Foundations of Computational Mathematics,
4:369–396, 2004.

[13] P. B ürgisser and F. Cucker. Counting complexity classes for
numeric computations II: Algebraic and semialgebraic sets.
J. Compl. To appear. Extended abstract in Proc. 36th Ann.
ACM STOC, pages 475–485, 2004.

[14] O. Chapuis and P. Koiran. Saturation and stability in the
theory of computation over the reals. Annals of Pure and
Applied Logic, 99:1–49, 1999.

[15] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Al-
gorithms. Springer, 1991.

[16] F. Cucker and D.Yu. Grigoriev. On the power of real Turing
machines over binary inputs. SIAM J. Comp., 26:243–254,
1997.

[17] G.I. Davida and B. Litow. Fast parallel arithmetic via mod-
ular representation. SIAM J. Comp., 20(4):756–765, August
1991.

[18] R. DeMillo and R. Lipton. A probabilistic remark on al-
gebraic program testing. Information Processing Letters,
7:193–195, 1978.

[19] L. Denenberg, Y. Gurevich, and S. Shelah. Definability by
constant-depth polynomial-size circuits. Information and
Control, 70:216–240, 1986.

[20] P.F. Dietz, I.I. Macarie, and J.I. Seiferas. Bits and relative
order from residues, space efficiently. Inf. Proc. Letters,
50(3):123–127, 9 May 1994.

[21] K. Etessami and M. Yannakakis. Recursive Markov chains,
stochastic grammars, and monotone systems of nonlinear
equations. In V. Diekert and B. Durand, editors, 22nd
Ann. Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’05), number 3404 in LNCS, pages 340–352,
2005.

[22] M. Garey, R.L. Graham, and D.S. Johnson. Some NP-
complete geometric problems. In Proc. ACM Symp. Theory
Comp., pages 10–22, 1976.

[23] J. Hartmanis and J. Simon. On the power of multiplication in
random-access machines. In Proc. 15th Ann.. IEEE Sympos.
Switching Automata Theory, pages 13–23, 1974.

[24] W. Hesse, E. Allender, and D. A. Mix Barrington. Uni-
form constant-depth threshold circuits for division and iter-
ated multiplication. J. Comp. Syst. Sci., 65:695–716, 2002.

[25] O.H. Ibarra and S. Moran. Equivalence of straight-line pro-
grams. J. ACM, 30:217–228, 1983.

[26] V. Kabanets and R. Impagliazzo. Derandomizing polyno-
mial identity tests means proving circuit lower bounds. In
Proc. ACM Symp. Theory Comp., pages 355–364, 2003.

[27] P. Koiran. Computing over the reals with addition and order.
Theoret. Comp. Sci., 133:35–47, 1994.

[28] P. Koiran. Elimination of constants from machines over al-
gebraically closed fields. J. Compl., 13:65–82, 1997.

[29] R. Lipton and N. Vishnoi. Deterministic identity testing for
multivariate polynomials. In Proc. 14th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 756–760, 2003.

[30] B. Litow. On iterated integer product. Inf. Proc. Letters,
42(5):269–272, 03 July 1992.

[31] I. Macarie. Space-efficient deterministic simulation of prob-
abilistic automata. SIAM J. Comp., 27:448–465, 1998.

[32] A. Maciel and D. Th érien. Threshold circuits of small
majority-depth. Information and Computing, 146:55–83,
1998.

[33] G. Malajovich. An effective version of Kronecker’s theo-
rem on simultaneous Diophantine approximation. Technical
report, City University of Hong Kong, 1996.

[34] J. O’Rourke. http://maven.smith.edu/˜ orourke/TOPP. Web-
page.

[35] J. O’Rourke. Advanced problem 6369. Amer. Math.
Monthly, 88:769, 1981.

[36] A. Sch önhage. On the power of random access machines. In
H.A. Maurer, editor, Automata, languages and programming
ICALP’79, number 71 in LNCS, pages 520–529, 1979.

[37] J.T. Schwartz. Fast probabilistic algorithms for verification
of polynomial identities. J. ACM, 27:701–717, 1980.

[38] P. Tiwari. A problem that is easier to solve on the unit-cost
algebraic RAM. Journal of Complexity, 8:393–397, 1992.

[39] S. Toda. PP is as hard as the polynomial-time hierarchy.
SIAM J. Comp., 21(2):865–877, 1991.

[40] J. Tor án. Complexity classes defined by counting quantifiers.
J. ACM, 38:753–774, 1991.

[41] L.G. Valiant. Reducibility by algebraic projections. In
Logic and Algorithmic: an International Symposium held in
honor of Ernst Specker, volume 30, pages 365–380. Monogr.
No. 30 de l’Enseign. Math., 1982.

[42] K. W. Wagner. The complexity of combinatorial prob-
lems with succinct input representation. Acta Informatica,
23:325–356, 1986.

[43] K. Weihrauch. Computable Analysis. Springer Verlag, 2000.

[44] H. Wozniakowski. Why does information-based complexity
use the real number model? Theor. Comput. Sci., 219:451–
465, 1999.

[45] R.E.B. Zippel. Simplification of radicals with applications to
solving polynomial equations. Master’s thesis, M.I.T., 1977.

10

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

