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Abstract

This paper studies the computational complexity of the following type of quadratic pro-
grams: given an arbitrary matrix whose diagonal elements are zero, find x ∈ {−1,+1}n that
maximizes xT Ax. This problem recently attracted attention due to its application in various
clustering settings (Charikar and Wirth, 2004) as well as an intriguing connection to the fa-
mous Grothendieck inequality (Alon and Naor, 2004). It is approximable to within a factor
of O(log n) [Nes98, NRT99, Meg01, CW04], and known to be NP-hard to approximate within
any factor better than 13/11 − ε for all ε > 0 [CW04]. We show that it is quasi-NP-hard to
approximate to a factor better than O(logγ n) for some γ > 0.

The integrality gap of the natural semidefinite relaxation for this problem is known as the
Grothendieck constant of the complete graph, and known to be Θ(log n) (Alon, K. Makarychev,
Y. Makarychev and Naor, 2005 [AMMN]). The proof of this fact was nonconstructive, and did
not yield an explicit problem instance where this integrality gap is achieved. Our techniques
yield an explicit instance for which the integrality gap is Ω( log n

log log n
), essentially answering one

of the open problems of [AMMN].
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1 Introduction

This paper deals with the following class of quadratic programs (henceforth denoted MaxQP):

Maximize xT Ax

Subject to xi ∈ {−1, 1} ∀i ∈ [n]

Here the matrix A is arbitrary, except that the trace (sum of all diagonal entries) is zero.
This subcase of quadratic programming has attracted a lot of attention recently thanks to a

surprising web of connections. First, it is an attractive subcase to begin with, being a generalization
of problems such as MAX-CUT, in which the constraints involve pairs of vertices. Second, the ob-
vious generalization of the seminal MAX-CUT algorithm of Goemans and Williamson fails already
for this problem — the mixed signs of the entries of A cause problems for the GW rounding algo-
rithm. One would hope that investigating this problem would lead to new techniques for analyzing
SDP relaxations for other problems. Third, it seems to capture the essential difficulty of a natural
optimization problem called correlation clustering introduced by Bansal, Blum, and Chawla [BBC],
which was the motivation for its study in Charikar and Wirth [CW04]. (It is also studied in physics
in context of spin glass models, see [Tal03]). Finally, the integrality gap of the obvious SDP re-
laxation seems related to questions studied in analysis. In particular, the famous Grothendieck’s
inequality implies an O(1)-approximation to the bipartite case of this problem where the objective
is xT Ay where x, y are vectors in {−1, 1}. This was pointed out by Alon and Naor [AN04], who
gave an algorithmic version of Grothendieck’s inequality (in other words, a rounding algorithm for
the obvious SDP relaxation). They used this algorithm to derive an O(1)-approximation to the
cut norm of a matrix, which plays an important role in approximation algorithms for dense graph
problems [FK99].

Motivated by the Goemans-Williamson work, Nesterov and Nemirovskii had independently [Nes98,
NRT99] obtained O(log n)-approximations to MaxQP. This algorithm was later rediscovered in the
clustering context by Charikar and Wirth, who also pointed that the known hardness results for
MAX-CUT implied that 13/11 − ε approximation is NP-hard. They raised the obvious question,
whether the approximation ratio can be improved from log n to O(1).

In this paper we resolve this question on the negative side, and prove the following:

Theorem 1. There exists a constant γ > 0 such that if NP 6⊆ DTIME(nlog3 n), then MaxQP
cannot be approximated in polynomial time to a factor smaller then O(logγ n).

Furthermore, we show that the existence of sufficiently strong PCPs implies that computing a
O(log n)-approximation is also hard.

Independently, Khot and O’Donnell [KO] have proved that MaxQP cannot be approximated
in polynomial time up to a factor smaller then O(log log n). Their proof assumes Khot’s unique
games conjecture [Kho02].

The second aspect of our work is a better understanding of the standard SDP relaxation for the
MaxQP problem, which is used both in the above-mentioned O(log n)-approximation, as well as in
a formal study by Alon et al [AMMN] of the Grothendieck constant of a graph. The Grothendieck
constant of an n-node graph G = (V, E) is the maximum integrality gap of the above SDP among
all matrices A whose entries are non-zero precisely for {i, j} that are edges in E. Alon et al.
proved that this integrality gap, the Grothendieck constant, is Ω(log n) for the complete graph.
This improves upon Kashin and Szarek [KS03], who obtained a bound of Ω(

√
log n). However,

both proofs are non-constructive, in the sense that they do not generate an explicit instance for
which the integrality gap is achieved. We essentially answer this question and provide an explicit
quadratic form for which the integrality gap is Ω( log n

log log n).
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The rest of the paper is organized as follows. First we present a few definitions and previous
results & conjectures in Section 2. Then we prove Theorem 1 and the stronger hardness result
assuming the strong version of the unique games conjecture in section 3. Section 4 contains the
explicit construction of an instance that achieves integrality gap of Ω( log n

log log n).

2 Preliminaries

The MaxQP problem we consider is defined as follows

Definition 1 (MaxQP). An instance of the MaxQP problem is a matrix M ∈ R
n×n with non-

negative trace and a set of variables {x1, ..., xn}. The objective is to find an assignment A : {xi} 7→
{−1, 1} that maximizes the quadratic form xT Mx. The objective value of an instance I under
assignment A is denoted by I(A).

The natural semi-definite relaxation for MaxQP is defined as

Definition 2 (MaxQP relaxed version). Given a matrix M ∈ R
n×n with non-negative trace, assign

unit vectors (i.e. vectors of l2 norm 1) vi ∈ Rn such to maximize the expression
∑

ij Mij · 〈vi, vj〉.
A common starting point for our hardness results is the label cover problem defined below.

Definition 3. The Label Cover problem L(V, W, E, [R], {σv,w}(v,w)∈E) is defined as follows. We
are given a regular bipartite graph with left side vertices V , right side vertices W, and a set of edges
E. In addition, for every edge (v, w) ∈ E we are given a map σv,w : [R] → [R]. A labelling of the
instance is a function ` assigning one label to each vertex of the graph, namely ` : V ∪W → [R]. A
labelling ` satisfies an edge (v, w) if

σv,w(`(w)) = `(u) .

The value of the label cover problem is defined to be the maximum, over all labellings, of the fraction
of edges satisfied.

The PCP Theorem [AS98, ALM+98] combined with Raz’s parallel repetition theorem [Raz98]
yields the following theorem, which will be used in the proof of Theorem 1

Theorem 2 (Quasi-NP-hardness). There exists a constant γ > 0 so that for any language L in
NP, any input w and any R > 0, one can construct a labeling instance L, with |w|O(log R) vertices,
and label set of size R, so that: If w ∈ L, `(L) = 1 and otherwise `(L) < R−γ. Furthermore, L can
be constructed in time polynomial in its size.

A better lower bound can be achieved if we assume a strengthened version of the above theorem.
Specifically, the parameter γ in Theorem 2 translates directly to the γ of Theorem 1, and therefore
a PCP with parameter γ = 1 would imply the optimal hardness of approximation ratio for MaxQP

, namely Θ(log n).

2.1 Analytic notions

In this paper we consider properties of boolean functions over n variables, namely functions over n
variables that admit only two values. We consider functions f : {−1, 1}n 7→ R and say a function is
boolean-valued if its range is {−1, 1}. The domain {−1, 1}n is viewed as a probability space under
the uniform measure and the set of all functions f : {−1, 1}n 7→ R as an inner product space under
〈f, g〉 = E[fg]. The associated norm in this space is given by ‖f‖2 =

√
E[f2]. We also define the

r-norm for every 1 ≤ r < ∞, by ‖f‖r = (E[|f |r])1/r. In addition, let ‖f‖∞ = max {|f(x)|}.
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Fourier expansion. For S ⊆ [n], let χS denote the parity function on S, χS(x) =
∏

i∈S xi. It
is well known that the set of all such functions forms an orthonormal basis for our inner product
space and thus every function f : {−1, 1}n → R can be expressed as

f =
∑

S⊆[n]

f̂(S)χS .

Here the real quantities f̂(S) = 〈f, χS〉 are called the Fourier coefficients of f and the above is
called the Fourier expansion of f . Plancherel’s identity states that 〈f, g〉 =

∑
S f̂(S)ĝ(S) and in

particular, ‖f‖2
2 =

∑
S f̂(S)2. Thus if f is boolean-valued then

∑
S f̂(S)2 = 1, and if f : {−1, 1}n →

[−1, 1] then
∑

S f̂(S)2 ≤ 1. We speak of f ’s squared Fourier coefficients as weights, and we speak
of the sets S being stratified into levels according to |S|. So for example, by the weight of f at level
1 we mean

∑
|S|=1 f̂(S)2.

For a function f as above we denote its linear part by

f=1 =
∑

S⊂[n],|S|=1

f̂(S)χS

and similarly its non-linear part by

f 6=1 =
∑

S⊆[n],|S|6=1

f̂(S)χS .

Vector functions. In the last part of the paper we consider functions f : {−1, 1}n 7→ S
d−1, i.e.

functions that map into vectors of l2 norm 1 (vectors that lie on the unit d-dimensional sphere).
Such functions can also be represented in the same Fourier basis as

f =
∑

S⊆[n]

f̂(S)χS .

Consider the n ”coordinate mappings” fi : {−1, 1}n 7→ [−1, 1], defined by fi(x)
def
= (f(x))i (i.e., the

value of fi at x is equal to the i’th coordinate of the vector f(x)). It is easy to see that the Fourier
coefficients of f are vectors whose coordinates are the corresponding coefficients of the functions
fi. The coefficients of f are vectors of norm at most 1, that is, lie inside the unit d-dimensional
ball f̂(S) ∈ B

d−1.

3 Hardness of QP

In this section we prove the hardness result for the MaxQP problem, Theorem 1, as stated before.
The proof reduces a label cover instance to an instance of MaxQP by encoding an assignment
to the label cover instance using the long code. An assignment over the long code variables is
regarded as a boolean function, and the objective value can easily be expressed in terms of the
Fourier coefficients of these functions.

Our construction is clearly inspired by the recent MAX-CUT result [KKMO] and relates to
other recent results for SPARSEST-CUT [CKK+05, KV05]. The techniques applied in these results
are know to be limited to prove gaps of O(log log n) (technically, this arises from the tightness of
Bourgain’s theorem from Fourier analysis). The main reason we can achieve gaps of the order
O(logγ n) is that the quadratic forms of MaxQP instances can have arbitrary (and in particular
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negative) coefficients (except for the non-negative trace constraint). These coefficients are usually
thought of as probabilities for ”PCP tests”, and we show that ”negative probability” tests allow
us to impose strong constraints on the functions derived from assignments. In particular, we can
impose the constraints that these functions are very close to being linear (as proved in Claim 1 of
Lemma 2).

3.1 The reduction

Given an instance of label cover L = L(V, W, E, [R], {σv,w}(v,w)∈E), we describe a reduction which
constructs an instance of MaxQP denoted QL. The trace of our initial construction will not be
zero, however in Subsection 3.4 we eliminate all non-zero diagonal entries in QL.

Parameters. Let L = L(V, W, E, [R], {σv,w}(v,w)∈E) be an instance of label cover, where the size
of the instance is n = |V | + |W |. The reduction uses three parameters, ν, b, and d, which are set
by

ν
def
= min

{
1

2n
,

ε

100R

}
, and b, d

def
= e10R + 4ν−6 .

The variables. For every vertex u ∈ V ∪ W of the original instance L, the reduction generates
d sets of new variables, denoted

{
Ci

u

}
i∈[d]

. There will be a variable C i
u(x) ∈ Ci

u for every element

x ∈ {−1, 1}R of the R-dimensional discrete hypercube. The QP instance QL will therefore be

defined over N
def
= d(|V | + |W |)2R variables.

The quadratic form. When restricted to a subset C i
u, an assignment f to the variables of the QP

instance can be viewed as a Boolean function f i
u, defined by f i

u(x)
def
= f(Ci

u(x)). Let fu
def
= Ei∈[d][f

i
u].

We write our quadratic form as a convex combination of bilinear forms, defined over the functions
f i

u. We have two kinds of forms: the internal forms, and the external forms.

• Internal Forms. For every u ∈ V ∪ W and every i, j ∈ [d] we write

Tu,i,j(f)
def
= − b

∑

S⊆[R], |S|6=1

f̂ i
u(S)f̂ j

u(S) .

In addition, let

Tu(f) = Ei,j∈[d][Tu,i,j(f)] = −b
∑

S⊆[R], |S|6=1

f̂u
2
(S).

• External Forms. For every edge (v, w) ∈ E and every i, j ∈ [d] we write

Tv,w,i,j(f) =
∑

k∈[R]

f̂ i
v({k})f̂ j

w({σv,w(k)}) ,

and let
Tvw(f) = Ei,j∈[d][Tv,w,i,j(f)] =

∑

k∈[R]

f̂v({k})f̂w({σv,w(k)}).
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Our QP instance is given by the following quadratic form.

QL(f)
def
= νEu∈V ∪W [Tu(f)] + (1 − ν)E(v,w)∈E [Tvw(f)] (1)

This concludes our reduction, up to a small modification to achieve trace zero that will be discussed
in Subsection 3.4. In the next two subsections we proceed in proving completeness and soundness
properties for the reduction (Lemma 1 and Lemma 2 respectively). We then show in Subsection 3.4
that removing diagonal entries does not change the properties of QL significantly, and finally in
Subsection 3.5 we conclude the proof of Theorem 1.

3.2 Completeness

Let L and QL be as above. Recall that the value of L is the maximal fraction of edges that can be
satisfied by a labelling, and that the value of QL, val(QL), is the maximal value that it can obtain
for a Boolean assignment. The following lemma states that the value of L is a lower bound for the
value of QL.

Lemma 1. If val(L) ≥ 1 − ε, then val(QL) ≥ (1 − ε)(1 − ν).

Proof: According to the assumption, L has some labelling l : V ∪ W → [R] satisfying at least

1 − ε of its constraints. We define an assignment f for the QP instance by f i
u(x)

def
= xl(u).

The Fourier coefficients of f i
u are f̂ i

u({l(u)}) = 1, and f̂ i
u(S) = 0 whenever S 6= {l(u)}. Hence

for every u ∈ V ∪W and i, j ∈ [d] we have Tu,i,j(f) = 0, and therefore Tu = 0. Next, let (v, w) ∈ E
and i, j ∈ [d]. If the edge (v, w) is satisfied by the labelling, namely σvw(l(v)) = l(w) (this is true
for at least a (1 − ε)-fraction of the edges), then

Tv,w,i,j(f) =
∑

k∈[R]

δk,l(v)δσvu(k),l(w) = 1.

If the edge (v, w) is not satisfied by the labelling then the expression above yields 0. Hence the
overall value of the QP instance is

QL(f) = νEu∈V ∪W [Tu(f)] + (1 − ν)E(v,w)∈E [Tvw(f)] ≥ (1 − ν)(1 − ε) ≥ (1 − ε)(1 − ν) .

�

3.3 Soundness

Let us state the soundness property of QL.

Lemma 2. If QL(f) ≥ ε for assignment f , then there exists a labelling for L which satisfies at
least an Ω(ε)-fraction of the edges.

Proof. Consider any assignment with QL(f) ≥ ε. As a first step, we show that the functions fu

induced by such an assignment are extremely close to being linear functions.

Claim 1. For all vertices u ∈ V ∪ W it holds that ‖Tv(f)‖2
2 ≤ 1√

b
.
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Proof: Note that, being averages of Boolean functions, the functions fu take values in [−1, 1].
Their L2 norm is thus bounded by 1. In particular, their Fourier coefficients are each bounded by
1 in absolute value.

According to the construction, the absolute value of every Tvw form is bounded by:

|Tvw(f)| =
∣∣Ei,j∈[d][Tvw(i, j)]

∣∣ =
R∑

k=1

∣∣∣f̂v({k})
∣∣∣
∣∣∣f̂w({{σv,w(k)}})

∣∣∣ ≤ R

For a Tv form we have

Tv(f) = −b
∑

|S|6=1

f̂v(S)2 = −b‖f 6=1
v ‖2

2 ,

By equation 1 and the assumption QL(f) ≥ ε we have:

ε ≤ QL(f) = νEu∈V ∪W [Tu(f)] + (1 − ν)E(v,w)∈E [Tvw(f)] ≤ −νbEu∈V ∪W [‖f 6=1
u ‖2

2] + R (2)

Which implies Eu∈V ∪W [‖f 6=1
u ‖2

2 ≤ 2R
νb . Now suppose that there exists an f such that ‖A 6=1

f ‖2
2 > 1√

b
.

This implies:

Ef

[
‖A 6=1

f ‖2
2

]
≥ 1

n

[
1 · 1√

b
+ (n − 1) · 0

]
=

1

n
√

b
>

2R

νb

In contradiction to the previous conclusion.
�

Claim 2. For all vertices u ∈ V ∪ W it holds that
∑R

k=1 |f̂v({k})| ≤ 2.

Proof: By the previous Lemma, ‖f 6=1
v ‖2

2 ≤ 1√
b
≤ e−5R.

Now suppose that
∑R

k=1 |f̂v({k})| > 2. Since f=1
v is a linear function with coefficients {f̂v({k})|k ∈

[R]}, there exists a value y ∈ {+1,−1}R for which f=1
v (y) =

∑R
k=1 |f̂v({k})| > 2. For this y we

have f 6=1
v (y) = fv(y) − f=1

v (y) ≤ −1. Therefore,

‖f 6=1
v ‖2

2 ≥ 2−R ,

and this is a contradiction. �

The following simple argument shows that the expected value of Tvw is large for the assignment f .

Claim 3. E(v,w)∈E [Tvw(f)] ≥ 1
2ε.

Proof: We are assuming that QL(f) = νEu[Tu(f)] + (1 − ν)E(v,w)∈E [Tvw(f)] ≥ ε. Note that

Tu(f) ≤ 0. Hence, E(v,w)∈E [Tvw(f)] ≥ ε
1−ν ≥ 1

2ε. �

Using the previous claims, we now define a random label assignment as follows. The assignment
to every v ∈ V ∪W is randomly and independently chosen to be k with probability 1

2 |f̂v({k})| (the

sum of these probabilities is at most one by Claim 2), and with probability 1 − 1
2

∑
k |f̂v({k})| we

leave v un-assigned.

Let cvw be an indicator random variable that is set to 1 if and only if the label assignment above
satisfies the label-cover constraint on the edge (v, w).

The expected number of constraints satisfied by our assignment is:
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E(v,w)∈E(L)[cv,w] = Ev,w


∑

k∈[R]

1

2
|f̂v({k})| ·

1

2
|f̂w(σvw(k))|




≥ 1

2
Ev,w[

∑

k∈[R]

f̂v({k})f̂w(σvw(k))]

=
1

4
Ev,w [Tvw] ≥ 1

8
ε

This completes the proof of Lemma 2.

3.4 Removing the diagonal

The instance QL constructed in the previous section has non-zero trace. However since we took
care to have d “copies” of every set of variables, the interaction of any variable set C i

u with itself,
both in Tv and Tvw, is negligible. More formally, consider the QP instance BL, that is obtained
from QL by removing all terms of the form Tu,i,i(f).

Recall that Tu,i,j(f) = −b
∑

|S|6=1 f̂ i
u(S)f̂ j

u(S), and therefore

|Tu,i,i(f)| ≤ b
∑

S

f̂ i
u

2
(S) = b .

Hence, for any specific assignment f , the difference in value of QL and BL is bounded by

|QL(f) − BL(f)| ≤ ν

(|V | + |W |)d2

∑

u∈V ∪W

Tu,i,i ≤
νb

d2
=

ν

b
≤ e−10R

3.5 Concluding the hardness proofs

Theorem 1 now follows as simple corollary of Lemma 1 and Lemma 2.

Proof of Theorem 1. Given an instance of label cover L as in theorem 2, construct QL as described
above. The QP instance has the following properties:

1. The size of the instance is N = O(nlog R · 2R).

2. By lemma 1, if there exists an assignment A satisfying more than a 1 − ε fraction of the
equations of L, then the value of the QP is at least 1 − ε − o(ε).

3. By lemma 2, if the value of QL is at least δ, then there exists an assignment that satisfies
Ω(δ) of the constraints of L.

Set R = log2 n. Suppose that we could approximate val(QL) in polynomial time to a factor
better then O(logγ N). Then if the best assignment for L satisfies fraction 1 of the equations, we can

find a solution to the QP instance of value 1 · logγ(N) = logγ(nlog R2R) = Ω(logγ(2log2 n)) = Ω(Rγ).
On the other hand, if every assignment satisfies at most Rγ of the constraints, then any QP

solution will have value at most Rγ . Thus in time poly(N) = nO(log2 n) we can distinguish between

the two cases of the label cover instance. By theorem 2, this implies NP ⊆ DTIME(nlog3 n).
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4 Explicit Integrality Gap

In this section we prove Theorem 3, showing an explicit family of MaxQP instances with increasing
integrality gap. Our construction was inspired by the recent embedding lower bound of Khot and
Vishnoi [KV05].

Theorem 3. There exists a family of MaxQP instances of unbounded size, where the integrality
gap of instances over n variables is Ω( log n

log log n).

Notation. For any n ∈ N we define an explicit quadratic form as follows. Let F def
= {f |f :

{1,−1}n 7→ {1,−1}} be the set of all Boolean functions on n bits. Let R
def
= 2n and N = 2R def

= 22n

.
For any f ∈ F and T ⊆ [n], let f ◦ T ∈ F denote the function defined by f ◦ T (x) = f(x ⊕ T ),
where x ⊕ T denotes the vector obtained from x by flipping the value of xk for every k ∈ T .

Let f ∼η f ′ the distribution on pairs of functions f, f ′ ∈ F where f is chosen uniformly at
random and f ′ is obtained by flipping each value of f independently with probability η. Denote
by ρ ∼η {±1}n the distribution on n-bit strings such that each entry is chosen independently to be
−1 with probability η and 1 otherwise.

4.1 The construction

Our construction makes use of three parameters, that we fix as follows. Let ν = 1
R2 , b = N10 , d =

b2 = N20

Variables. We generate an instance of QP, denoted In = (V, M) where V is the set of variables
and M a matrix of dimension |V | × |V |. It will be more convenient for us to have more than one
label for each variable. That is, we first define a quadratic form over a larger number of variables,
and then identify some of them, thereby obtaining a form over a smaller number of variables each
having more than one label. The initial set of variables is V = {〈f, g, i〉|f, g ∈ F , i ∈ [d]}. We
define an equivalence relation over the variables by setting 〈f, g ◦T, i〉 ≡ 〈fχT , g, i〉 for every subset
T ⊆ [n], and identify all the variables that belong to the same equivalence class.

We partition the labels into disjoint sets by setting

Vf,i = {〈f, g, i〉|g ∈ F}.
Given an assignment A to the variables (whether a Boolean or a vector assignment), its restriction
to Vf,i can be viewed as a function over F . We denote this function by Ai

f .

The quadratic form. Our final quadratic form is a convex combination of bilinear forms over
the functions Ai

f , which are defined in terms of their Fourier representation. As in the case of the
hardness reduction, we have internal forms and external forms.

• Internal Forms. For every f ∈ F we let Mf be defined by

Mf (A)
def
= Ei,j∈[d]


−b

∑

|α|6=1

Âi
f (α)Âj

f (α)


 .

Note that if we define Af
def
= Ei∈[d][A

i
f ], then

Mf (A) = −b
∑

|α|6=1

Âf
2
(α) . (3)
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• External forms. For every f, f ′ ∈ F , let Mf,f ′ be defined by

Mf,f ′(A)
def
= Ei,j∈[d]


∑

|α|=1

Âi
f (α)Âj

f (α)


 =

∑

|α|=1

Âf (α)Âf ′(α) (4)

The final quadratic form is given by the following convex combination of the internal and external
forms:

Mn(A)
def
= ν · Ef∈F [Mf ] + (1 − ν) · Ef∼ηf ′

[
Mf,f ′

]

We now state the main lemma of this section,

Lemma 3. For every 0 < η < 1
2 , for every large enough n, the MaxQP instance In satisfies the

following properties:

1. For every Boolean assignment A, we have Mn(A) ≤ 1

R
η

1−η

2. There exists a vector assignment Av for which Mn(A) ≥ 1 − 2η.

Before we prove Lemma 3, let us show how it implies Theorem 3.
Proof:[Proof of Theorem 3.] The number of variables in the instance In is N2·d

R = O(N22).

According to Lemma 3, the integrality gap is R
η

1−η · (1−2η). Fix η = 1
2 − 1

log R , then the integrality
gap becomes:

R
η

1−η · (1 − 2η) = Ω(R
1− 2

log R · 1

log R
) = Ω(

R

log R
) = Ω(

log N

log log N
)

�

4.2 Integral solution

In this subsection we prove the first part of Lemma 3.

Lemma 4. For any Boolean assignment A, the value of the QP instance In satisfies Mn(A) ≤ 1

R
η

1−η
.

To prove this lemma, we start by examining a few properties of the boolean functions {Af |f ∈
F}. The fact that every variable of the instance In has several labels implies a certain relationship
between the Fourier coefficients of the functions Af . This is formalized in the following claim.

Claim 4. For any T ⊆ [n] and any f ∈ F it holds ∀x ⊆ [n] Âf (x) = ÂfχT
(x ◦ T ).

Proof:

Consider a certain function f ∈ F and subset T ⊆ [n]. Since for every function g ∈ F the
vertices 〈f, g ◦ T, i〉 ≡ 〈fχT , g, i〉 were identified, the assignment A must satisfy:

∀g Af (g ◦ T ) = AfχT
(g)

Writing these equations in Fourier basis we have:

∀g
∑

x⊆[n]

Âf (x)χx(g ◦ T ) =
∑

x⊆[n]

ÂfχT
(x)χx(g)

9



If the values Âf (x) are fixed, this system of linear equations has one possible solution is

∀x Âf (x) = ÂfχT
(x ◦ T ). In fact this is the only possible solution, as the linear system of

equations above has full rank.
�

Another property of any assignment with Mn(A) > 0 is that each Af is extremely close to being
a linear function. The following two claims prove this fact for two different measures of distance -
the l1 and l2 norms.

Claim 5. For any assignment such that Mn(A) > 0 it holds that ∀f ∈ F ‖A 6=1
f ‖2

2 ≤ 1
N6

Proof: By equations 3 and 4 we have

Mn(A) = νEf

[
−b‖A 6=1

f ‖2
2

]
+ (1 − ν)Ef∼ηf ′∈F


∑

|α|=1

Âf (α)Âf ′(α)


 (5)

Assuming Mn(A) > 0 this translates to

0 < Mn(A) ≤ 1 − ν − bEf

[
‖A 6=1

f ‖2
2

]
≤ 2 − νbEf

[
‖A 6=1

f ‖2
2

]

According to the choice of parameters we obtain

Ef

[
‖A 6=1

f ‖2
2

]
≤ 2

νb
<

1

N8

Now suppose that there exists an f such that ‖A 6=1
f ‖2

2 > 1
N6 . This implies:

Ef

[
‖A 6=1

f ‖2
2

]
≥ 1

N

[
1 · 1

N6
+ (N − 1) · 0

]
>

1

N8

In contradiction to the previous conclusion.
�

Claim 6.

∀f ∈ F
∑

x⊆[n]

|Af (x)| ≤ 2

Proof: By Claim 5, for every f ∈ F we have ‖A 6=1
f ‖2

2 < 1
N8 ≤ e−4R.

The rest of the argument is the same as in claim 2.
�

We can now proceed with the proof of Lemma 4.
Proof:[Lemma 4] Consider any Boolean assignment A to the variables of I. Suppose that Mn(A) >
0 (the assignment that achieves the maximum over Mn(A) definitely satisfies this). From equation
5 we have

Mn(A) ≤ Ef∼ηf ′∈F [
∑

x⊆[n]

Âf (x)Âf ′(x)]

Using the assignment A, we proceed to define a random function Φ = ΦA : F 7→ [R] as follows.
For every set of the form {fχS |S ⊆ [n]} we pick an arbitrary representative f , and set ΦA(f) to

10



be x with probability 1
2 |Âf (x)| , and with probability 1− 1

2

∑
x |Âf (x)| we set it arbitrarily to zero

(note that the above probabilities are indeed non-negative, and that they sum up to 1 by Claim 6).

Once an assignment for f has been chosen, we set Φ(fχT )
def
= Φ(f) ⊕ T for every T ⊆ [n]. Note

that the resulting function Φ must be balanced, that is, it must satisfy

∀x ⊆ [n] . Pr
f∈F

[Φ(f) = x] =
1

R
(6)

This implies the following bound on the stability of ΦA, proven by Khot [Kho] (see proof in the
Appendix)

Lemma 5 (Khot). For any function Ψ : {±1}t 7→ [R] such that ∀i ∈ [R] . Prx∈{±1}t [Ψ(x) = i] = 1
R

it holds that:

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′)] ≤ 1

R
η

1−η

.

The usefulness of ΦA is given by the following claim, in which it is shown to bound Mn(A).

Claim 7.

Mn(A) ≤ 4 Pr
f∼ηf ′∈F

[Φ(f) = Φ(f ′)] + ν

Proof: Let N(f) = {fχT |T ⊆ [x]}, and Pr[f, f ′] = Prρ∼η{±1}R [f ′ = fρ] be the probability of
obtaining f ′ from f under η noise. Let I(f, f ′) be the indicator random variable that is 1 if and
only if Φ(f) = Φ(f ′). By definition of Φ we have:

Pr
f∼ηf ′∈F

[Φ(f) = Φ(f ′)] =
1

|F |2
∑

f,f ′∈F
Pr[f, f ′] · I(f, f ′)

=
1

|F |2
∑

f∈F


 ∑

f ′ /∈N(f)

Pr[f, f ′]I(f, f ′) +
∑

T⊆[x]

Pr[f, fχT ]I(f, f ′)




≥ 1

|F |2
∑

f∈F

∑

f ′ /∈N(f)

Pr[f, f ′]I(f, f ′)

since for f /∈ N(f) the values of Φ(f) and Φ(f ′) are independent

=
1

|F |2
∑

f∈F

∑

f ′ /∈N(f)

Pr[f, f ′]
∑

x⊆[n]

1

2
|Âf (x)|1

2
|Âf ′(x)|

=
1

4|F |2

( ∑

f,f ′∈F
Pr[f, f ′]

∑

x⊆[n]

|Âf (x)||Âf ′(x)|

−
∑

f∈F

∑

T⊆[n]

Pr[f, fχT ]
∑

x⊆[n]

|Âf (x)||ÂfχT
(x)|

)

≥ 1

4
Mn(A) − 2R

N
≥ 1

4
Mn(A) − 1

4
ν

�

This lemma together with the bound of Lemma 5 yields

Mn(A) ≤ 4

R
η

1−η

+ ν = O(
1

R
η

1−η

) , (7)
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Proving Lemma (4).
�

4.3 Vector solution

Consider the vector assignment, given by the Fourier coefficients:

∀α Âf (α) = Âi
f (α) =





1
RfχT |α| = 1, α = T ⊆ [n]

0 o/w

Notice that the vectors Âf (α) are orthogonal, and their norms satisfy

∀α ‖Âf (α)‖2 =





1
R |α| = 1

0 o/w
(8)

In the standard basis, these vectors can be written as:

Af (g) = Ai
f (g) =

1

R

∑

T⊆[n]

g(1 ◦ T ) · fχT

Khot and Vishnoi observed that the above vector assignment assigns the same vector to all
vertices in the equivalence classes {fχT |T ⊆ [n]}.

Lemma 6. For the vector solution above we have Mn(A) ≥ 1 − 2η.

Proof: Recall by equation 5

Mn(A) = νEf

[
−b‖A 6=1

f ‖2
2

]
+ (1 − ν)Ef∼ηf ′∈F

[∑

α

Âf (α)Âf ′(α)

]

by equation 8

= (1 − ν)Ef∼ηf ′∈F

[∑

α

Âf (α)Âf ′(α)

]

= Ef∼ηf ′∈F


∑

T⊆[n]

1

R
fχT · 1

R
f ′χT


 = Ef∼ηf ′∈F

[
1

R
〈f, f ′〉

]

= (1 − ν) · (1 − 2η) ≥ 1 − 2η

�

Lemma 3 now follows from Lemmas 4 and 6.

4.4 Removing the diagonal

As the parameter d is much larger b, we can apply a modification very similar to the corresponding
modification in the hardness of approximation result (Subsection 3.4), to obtain a matrix with zero
diagonal entries. The details are omitted for brevity.

12



References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
intractability of approximation problems. Journal of the ACM, 45:501–555, 1998.

[AMMN] Noga Alon, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. Quadratic
forms on graphs. To appear STOC 2005.

[AN04] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s inequality.
In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 72–80, New York, NY, USA, 2004. ACM Press.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM, 45:70–122, 1998.

[BBC] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn.,
56(1-3):89–113.

[CKK+05] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar.
On the hardness of approximating multicut and sparsest-cut. In manuscript, 2005.

[CW04] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
grothendieck’s inequality. In FOCS ’04: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’04), pages 54–60, Washington,
DC, USA, 2004. IEEE Computer Society.

[FK99] A. M. Frieze and R. Kannan. Quick approximation to matrices and applications. Com-
binatorica, 19:175–200, 1999.

[Kho] Subhash Khot. personal communications, march 2005.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In STOC ’02: Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
767–775, New York, NY, USA, 2002. ACM Press.

[KKMO] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan ODonnell. Optimal inapprox-
imability results for max-cut and other 2-variable csps? In FOCS 2004.

[KO] S. Khot and R. O’Donnell. personal communications, march 2005.

[KS03] B. S. Kashin and S. J. Szarek. On the gram matrices of systems of uniformly bounded
functions. Proceedings of the Steklov Institute of Mathematics, 243:227–233, 2003.

[KV05] S. Khot and N. Vishnoi. On embeddability of negative type metrics into l1. manuscript,
2005.

[Meg01] A. Megretski. Relaxation of quadratic programs in operator theory and system analysis.
Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux,
2000), (3):365–392, 2001.

[Nes98] Y. Nesterov. Global quadratic optimization via conic relaxation. Working paper CORE,
1998.

13



[NRT99] A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic form over
intersection of ellipsoids with common center. Mathematical Programming, 86(3):463–
473, 1999.

[Raz98] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
June 1998.

[Tal03] Michel Talagrand. Spin Glasses: a Challenge to Mathematicians, volume 46 of Ergbnisse
der Mathematik und ihrer Grenzgebiete. New York, 2003.

A Stability of balanced multi-valued functions

For completeness, we provide the proof of Khot’s Lemma 5:
Proof:[Lemma 5] Given Ψ, define ∀j ∈ [R] Φj(x) : {±1}t 7→ {0, 1} as follows:

Φj(x)
def
=





1 Ψ(x) = j

0 o/w

Then:

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′) = j] = Pr
x∼ηx′∈D

[Φj(x) = Φj(x
′) = 1] = Ex∼ηx′∈{±1}t [Φj(x)Φj(x

′)]

= Ex∈{±1}t,ρ∼η{±}t [(
∑

α⊆[t]

Φ̂j(α)χα(x))(
∑

β⊆[t]

Φ̂j(β)χβ(x ⊕ ρ))]

=
∑

α⊆[t]

Φ̂j
2
(α)Eρ∼η{±}t [χα(ρ)))] =

∑

α⊆[t]

Φ̂j
2
(α)(1 − 2η)|α|

= ‖T√
1−2η[Φj ]‖2

2

Where Tδ[f ] is the Beckner operator:

Tδ[f ] =
∑

S

δ|S|f̂(S)χS

Now using the Beckner inequality (which states ‖Tδ[f ]‖p ≤ ‖f‖r for r ≤ p , δ ≤
√

r−1
p−1):

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′) = j] = ‖T√
1−2η[Φj ]‖2

2

≤ ‖Φj‖2
2−2η using Beckner

= Ex∈{±1}t [Φj(x)2−2η]2/2−2η

= ( 1
R)

1
1−η by properties of Φj

Therefore:

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′)] =
∑

j∈[R]

Pr
x∼ηx′∈{±1}t

[Ψ(x) = Ψ(x′) = j] ≤ R · 1

R1/1−η
=

1

R
η

1−η

�
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