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Abstract

We study the classification problem Metric Labeling and its special case 0-Extension

in the context of earthmover metrics. Researchers recently proposed using earthmover metrics
to get a polynomial time-solvable relaxation of Metric Labeling; until now, however, no one
knew if the integrality ratio was constant or not, for either Metric Labeling or 0-Extension.
We prove

1. that the integrality ratio of the earthmover relaxation for Metric Labeling is Ω(log k),
k being the number of labels (this bound is tight), whereas the best previous lower bound
on the integrality ratio was constant;

2. that the integrality ratio of the earthmover relaxation for 0-Extension is Ω(
√

log k), k
being the number of terminals (the integrality ratio was known to be O((log k)/ log log k)),
whereas the best previous lower bound was constant;

3. that for no ε > 0 is there a polynomial-time O((log n)1/4−ε)-approximation algorithm for
0-Extension, n being the number of vertices, unless NP⊆DTIME(npoly(log n)), whereas
the strongest inapproximability result known before was MAX SNP-hardness; and

4. that there is a polynomial-time approximation algorithm for 0-Extension with perfor-
mance ratio O(

√

diam(d)), where diam(d) is the ratio of largest distance to smallest
nonzero distance in the terminal metric.

1 Introduction

Metric Labeling takes as input an undirected graph G with a nonnegative weight function
w on the edges, a metric space (T, d) (where the elements of T are called labels), and a non-
negative cost function c on node-label pairs. The goal is to assign, for every node v ∈ V (G),
a label t(v) ∈ T , minimizing the total cost of the assignment, which is

∑

v∈V (G) c(v, t(v)) +
∑

{u,v}∈E(G) w(u, v)d(t(u), t(v)). Motivated by applications in computer vision, this problem was
introduced by Kleinberg and Tardos [16], who proposed an approximation algorithm based on the
approximate representation of (T, d) as a combination of dominating tree metrics due to Bartal [3].
Using the recent improved representation of metrics as combinations of dominating tree metrics
due to Fakcharoenphol et al. [11], the Kleinberg-Tardos algorithm guarantees a O(log |T |) approx-
imation factor, which is the best result to date. (Constant factor approximations are known for
some special cases [16, 12, 8, 1].)
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A similar problem, in fact a special case of Metric Labeling, was suggested earlier by
Karzanov [14], who called it 0-Extension. The input to this problem is similar to the input
to Metric Labeling, except that T ⊆ V (G) (the elements of T are called terminals), and each
v ∈ T is required to satisfy t(v) = v; there is no cost function c. Equivalently, c : V → T satisfies
c(v, u) = 0 for all v ∈ V, u ∈ T , except that c(v, u) = ∞ for v ∈ T and u 6= v. Thus, the objective
function lacks the first term. One way to view this problem, which motivates its name, is that
we wish to extend the metric d on T to a semimetric on all of V (G) subject to the restriction
that every nonterminal must be at distance 0 from some terminal. (Such extensions are called
0-extensions.) Calinescu et al. [6] gave a O(log |T |)-approximation algorithm for 0-Extension.
The better analysis of Fakcharoenphol et al. [10] improved the guarantee to O(log |T |/ log log |T |).
The underlying idea in [6, 10] is to solve a linear programming relaxation that optimizes over all
metric extensions (rather than just 0-extensions), and then to “round” the solution using a new
partitioning procedure. Lee and Naor [17] later showed that this partitioning procedure can be used
to improve the bounds on Lipschitz extensions in Banach spaces. It is also interesting to note that
the same partitioning procedure was also applied in [11], improving the approximation guarantee
for Metric Labeling, as mentioned above.

An obvious question emerges from the above discussion: Can the upper bounds of O(log |T |) and
O(log |T |/ log log |T |) for Metric Labeling and 0-Extension, respectively, be improved? Past
experience indicates that pursuing this question may produce results whose impact goes beyond
solving the specific optimization problems. Unfortunately, improving the approximation guarantees
for these problems is impossible using the methods that were used by the above-mentioned algo-
rithms. Specifically, the bound on embedding a metric into a combination of dominating tree metrics
is asymptotically tight (a lower bound follows from [2, 18]), and the diameter-times-boundary vol-
ume bound of the partitioning is also tight (the proof is omitted from this extended abstract). The

metric relaxation of 0-Extension was shown to have integrality ratio Ω
(

√

log |T |
)

[6]. (A differ-

ent earlier construction of Johnson et al. [13] done in the context of Lipschitz extensions implies a
somewhat weaker bound.)

A promising direction was suggested independently by Charikar [7] and by Chekuri et al. [8].
They suggested a new linear programming relaxation, motivated by successful relaxations for the
special case in which d is a uniform metric [5, 16]. The same relaxation, with different objective
functions, can be used for 0-Extension and for Metric Labeling. The idea is to find an
optimal extension in the transportation metric over d (instead of an arbitrary metric extension). It
is often called the earthmover relaxation. (Transportation metrics are called earthmover distance
in the computer vision literature.) Chekuri et al. [8] showed that the earthmover relaxation for
Metric Labeling is at least as good as the Kleinberg-Tardos algorithm. Archer et al. [1] gave
an earthmover relaxation-based Metric Labeling algorithm whose performance depends on the
decomposability of the metric d. Furthermore, the previously known bad examples for the metric
relaxation for 0-Extension have constant integrality ratio in the earthmover relaxation (proofs
omitted from this extended abstract). Despite these positive indications and significant attention,
no progress has been reported on improving the upper bounds in the general case for either 0-

Extension or Metric Labeling. In fact, Chuzhoy and Naor [9] recently published a disturbing
result. They proved that unless NP ⊆ DTIME

(

npoly(log n)
)

, there is no polynomial-time algorithm

that approximates Metric Labeling within a factor of O
(

log |T |) 1

2
−ε

)

, for any ε > 0. Their

result does not apply to 0-Extension.

In this paper we resolve many of the questions mentioned above. In Section 3 we prove an Ω(log |T |)
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integrality ratio for the earthmover relaxation for Metric Labeling. In view of the known upper

bounds [8], this result is asymptotically tight. In Section 4 we prove an Ω
(

√

log |T |
)

integrality

ratio for the earthmover relaxation for 0-Extension. This matches the lower bound known for the
metric relaxation. A result of Bourgain [4] implies that the transportation metric over a Hamming
cube cannot be embedded into a convex combination of 0-extensions of the Hamming cube with
distortion which is bounded by an absolute constant (as the cube dimension increases). However,
this does not imply an integrality ratio, as we are interested in the Lipschitz constant of the
embedding (rather than the product of the Lipschitz constants of the embedding and its inverse).
In fact, when d is a Hamming cube metric, the earthmover relaxation gives an optimal integral
solution value! (The proof is omitted from this extended abstract.)

In Section 5 we use the construction from the previous section to prove that unless NP ⊆
DTIME

(

npoly(log n)
)

, there is no polynomial-time algorithm that approximates 0-Extension within

a factor of O
(

(log n)
1

4
−ε

)

, n = |V |, for any ε > 0. On a more optimistic note, in Section 6 we give an

algorithm for rounding the earthmover solution for 0-Extension that guarantees a O
(

√

diam(d)
)

approximation. Such a bound is not known for the metric relaxation. Through this work we develop
new techniques for analyzing transportation metrics, which may find further use in the numerous
areas in which such metrics arise.

2 Preliminaries

We often use k to denote |T |. For v ∈ V (G) let N(v) denote the set of neighbors of v. Informally,
the earthmover relaxation for 0-Extension assigns to each v ∈ V (G) a probability distribution
xv over the set of terminals. In other words, xv ∈ R

k is a nonnegative vector with ‖xv‖1 = 1. An
edge {u, v} ∈ E(G) gets stretched by the minimum cost of transporting mass to convert xu into
xv (or vice versa), where the cost of transporting a unit of mass from terminal i to terminal j is
d(i, j). This is simply a flow computation, and the vector fuv ∈ R

k×k denotes this flow. Formally,
the relaxation is the following linear program.

Minimize 1
2

∑

u∈V

∑

v∈N(u) w(u, v)[
∑

i∈T

∑

j∈T d(i, j)(fuv)ij ]

such that xu
j − xv

j +
∑

i∈T ((fuv)ij − (fuv)ji) ≥ 0 ∀u ∈ V, ∀v ∈ N(u), ∀j ∈ T

xj
j = 1 ∀j ∈ T

x, f ≥ 0.

Implicitly, we put xj
i = 0, ∀j ∈ T , ∀i ∈ T , i 6= j. (This is done by removing these variables from

the first set of constraints whenever u or v is a terminal.) Also, notice that for every ordered pair

(u, v) of nodes, 0 ≤ ∑

j∈T

(

xu
j − xv

j +
∑

i∈T ((fuv)ij − (fuv)ji)
)

=
∑

j∈T xu
j − ∑

j∈T xv
j . Therefore

∑

j∈T xu
j is a constant independent of u. The assignment for the terminals sets this constant to

1. The earthmover relaxation for Metric Labeling is identical, except for the objective function
which has an additional term of

∑

v∈V

∑

i∈T c(v, i)xv
i .

3 Integrality Ratio for Metric Labeling

Consider an infinite family of (bounded-degree) expanders. Let H be a member of this family and
let k be the number of nodes in H. We define the following instance of Metric Labeling:
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The label set T is the set V (H) of vertices of H. The metric on the label set is the shortest path
metric of H. The input graph G has V (G) = {{i, j} : i, j ∈ T, i 6= j} and E(G) = {{{i, j}, {i, j ′}} :
{j, j′} ∈ E(H)}. All edges have weight 1. The cost of assigning a label t to a node {i, j} is 0 if
t ∈ {i, j} and ∞ otherwise.

Consider the fractional solution that assigns to every node {i, j} a vector x{i,j} where x
{i,j}
i =

x
{i,j}
j = 1

2 , and the other entries are 0. Notice that the length of every edge in E(G) is exactly 1
2 ,

so the cost of this feasible solution is |E(G)|/2 = k|E(H)|/2.
To bound the cost of an integral solution we need the following lemma, whose proof we omit.

Lemma 1 Consider a tournament over k nodes. At least half the nodes have both their indegree
and their outdegree between k/8 and 7k/8.

Theorem 2 Any integral solution to the above instance has cost Ω(|E(G)| log k). Thus, the inte-
grality ratio for Metric Labeling is Ω(log k).

Proof: An integral solution must assign to a node {i, j} either label i or label j. Consider the
tournament on the label set T where there is an arc (i, j) if {i, j} is assigned to j and the reverse arc
otherwise. Call a label balanced if and only if both its indegree and its outdegree in the tournament
are between k/8 and 7k/8. By Lemma 1, at least half the labels are balanced.

Let t be a balanced label. Put I = {i : {t, i} is assigned t} and J = {j : {t, j} is assigned j}. By
definition we have k/8 ≤ |I|, |J | ≤ 7k/8. Therefore, there are at least ck expander edges {i, j} for
which i ∈ I and j ∈ J , where 8c is the expansion constant. Let Gt denote the subgraph of G that
is induced by the set of nodes {{t, i} : i ∈ T}. Clearly, E(G) is the disjoint union of all Gt’s. Every
Gt is just a copy of H. For some constant a, the number of terminals j at distance at most a log k
from t is o(k). Thus, Ω(k) edges in Gt are stretched to Ω(log k). Summing over all balanced labels,
we get that the total cost is Ω(k2 log k). 2

4 Integrality Ratio for 0-Extension

If the metric d on the terminals is the shortest-path metric of a high-girth expander, the earthmover
relaxation guarantees a constant integrality ratio for 0-Extension (proof omitted). Therefore, the
Metric Labeling construction does not work for 0-Extension. (An obvious suggestion is to
insist on a small girth expander, for example, by taking the Cartesian product of an expander with
itself. We don’t know if this works; however, the following modification does work.)

Consider an infinite family of (bounded-degree) expanders. Let H be a member of this family.
The terminal set T is V (H) × V (H). Let k = |V (H)|2 denote the number of terminals. The
metric d on the terminals is given by d ((u, v), (u′, v′)) =

√
log k · emdH ({u, v}, {u′, v′}) + dH(u, u′);

here dH is the shortest path metric on H, “{u, v}” denotes the probability distribution on vertices
which assigns mass 1/2 to each of u and v (likewise for “{u′, v′}”), and emdH({u, v}, {u′, v′}) is the
earthmover distance between the two probability distributions, the underlying metric being dH .

The set V ′ of nonterminals is V ′ =
(

V (H)
2

)

. Notice that |V ′| is approximately k
2 . The in-

put graph G has node set V = V (G) = T ∪ V ′. To define the edge set, put E1 =
{{{u, v}, {u, v′}} : u, v, v′ ∈ V (H) and {v, v′} ∈ E(H)} , E2 = {{(u, v), {u, v}} : u, v ∈ V (H)} ,
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and put E = E(G) = E1 ∪ E2. Edges in E1 join pairs of nonterminals and have weight
√

log k.
Edges in E2 join terminals to nonterminals and have weight 1.

Lemma 3 The cost of the fractional solution for this instance is O(k log k).

Proof: Consider the fractional solution that puts, for every {u, v} ∈ V ′, x
{u,v}
(u,v) = x

{u,v}
(v,u) = 1

2 . By

definition of d, the cost of an edge {(u, v), {u, v}} ∈ E2 (which has weight 1) is 1
2dH(u, v), which

is O(log k). There are O(k) such edges. The cost of an edge {{u, v}, {u, v ′}} ∈ E1, not including
its weight

√
log k, is the earthmover distance over d (not over dH) between the configuration

which splits its mass uniformly between (u, v) and (v, u) and the configuration which splits its mass
uniformly between (u, v′) and (v′, u). This is at most (1/2)d((u, v), (u, v′))+(1/2)d((v, u), (v′, u)) ≤
(1/2)[

√
log k · 1 + 0] + (1/2)[

√
log k + 1] =

√
log k + 1/2. Hence its cost, including its weight, is

O(log k). There are O(k) such edges as well. 2

Theorem 4 The integrality ratio for this instance is Ω
(√

log k
)

.

Proof: We will show that every integral solution must cost Ω
(

k(log k)3/2
)

. Together with
Lemma 3, this implies the lower bound.

Consider an arbitrary integral solution, where every {u, v} ∈ V ′ is assigned to ϕ ({u, v}) ∈
V (H) × V (H). Let γ > 0 be a sufficiently small constant, and let V1 =
{{u, v} ∈ V ′ : emdH ({u, v}, {u′, v′}) ≥ γ lg k, where (u′, v′) := ϕ(u, v)} . For every {u, v} ∈ V1, the
edges in E2 incident to {u, v} (one or two such edges) cost vertices at least

√
log k · (γ log k), by

definition of the metric d on the terminals. If V1 ≥ k
64 then the total cost is Ω

(

k(log k)3/2
)

.

Otherwise, define a directed graph on V (H) with no loops, parallel or antiparallel arcs as
follows. Every node e = {u, v} ∈ V ′ \ V1 contributes an arc. Let (u′, v′) = ϕ({u, v}).
If emdH ({u, v}, {u′, v′}) = 1

2dH(u, u′) + 1
2dH(v, v′), then add the arc (u, v). Otherwise,

emdH ({u, v}, {u′, v′}) = 1
2dH(u, v′) + 1

2dH(v, u′) (this is not obvious, but true); add the arc (v, u).
(In other words, given e = {u, v}, choose y, z such that {y, z} = {u, v} and emdH(e, {u′, v′}} =
(1/2)dH(y, u′) + (1/2)dH(z, v′) and then add arc (y, z).) Unless V1 = ∅, the resulting graph
is not a tournament. Hence add arbitrary dummy arcs to make a tournament. The num-
ber of arcs that need to be added is |V1| < k

64 . By Lemma 1, at least V (H)
2 = 1

2

√
k tour-

nament nodes have both indegree and outdegree between 1
8

√
k and 7

8

√
k. If we now remove

the dummy arcs, at least 1
4

√
k tournament nodes have both indegree and outdegree between

1
16

√
k and 7

8

√
k. (One has to remove (1/16)

√
k arcs to “ruin” two vertices.) Consider such

a node u ∈ V (H). Let Ou = {v ∈ V (H) : (u, v) is in the partial tournament} , and let Iu =
{v ∈ V (H) : (v, u) is in the partial tournament} . As |Iu| ≥ 1

16

√
k, there is a constant ε > 0 such

that I ′u = {v ∈ Iu : dH(u, v) ≥ ε log k} satisfies |I ′u| ≥ 1
32

√
k. We need γ ≤ ε

4 . As H is a bounded

degree expander, there are Θ(
√

k) constant-length, edge-disjoint paths between Ou and I ′u. Con-
sider any such path, and let v1 ∈ Ou and v2 ∈ I ′u be its endpoints. Notice that ϕ({u, v1}) = (u′, v′1),
where dH(u, u′) < γ log k. Similarly, ϕ({u, v2}) = (v′2, u

′′), where dH(v2, v
′
2) < γ log k. So,

dH(u′, v′2) > (ε−2γ) log k ≥ ε
2 log k. Therefore, d (ϕ({u, v1}), ϕ({u, v2})) is Ω(log k). By the triangle

inequality, there must be an edge {v, v′} ∈ E(H) along the path (which has constant length) such
that d (ϕ({u, v}), ϕ({u, v′})) is Ω(log k). Recall that every edge {{u, v}, {u, v′}} ∈ E1 has weight√

log k. Therefore, the total cost of such edges, fixing u ∈ V (H) with both indegree and outdegree
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at least 1
16

√
k, is Ω

(√
k log k · log k

)

. Summing over all such u (each edge is counted at most twice),

we get a total cost of Ω
(

k(log k)3/2
)

. 2

5 Hardness of 0-Extension

To prove the hardness of 0-Extension we start with the construction of [9] for the hardness of
Metric Labeling and modify this construction so that it works for 0-Extension. We achieve
this by applying a technique similar to the one applied in Section 4 to the Metric Labeling

instance of Section 3.

Let us first recall the k-prover protocol of [9]. We start with a Gap-3SAT(5) formula φ. There are
k provers P1, ..., Pk (k will be chosen later to be poly(log n), where n is the size of φ).

• For each (i, j), 1 ≤ i < j ≤ k, the verifier chooses, randomly and independently, a clause Cij

and a distinguished variable xij from the clause. Pi is sent Cij (and is expected to return
an assignment to all variables of the clause), Pj is sent xij (and is expected to return an
assignment to this variable), and every other prover is sent both Cij and xij (and is expected
to return an assignment to all variables of the clause). Thus the query sent to each prover
has

(

k
2

)

coordinates.

• The verifier checks, for each pair (i, j), that the answers of all the provers are consistent.

We denote the set of random strings used by the verifier by R. Given r ∈ R, and 1 ≤ i ≤ k, let
qi(r) be the query sent to Pi when the verifier chooses the random string r. Let Qi = ∪r{qi(r)} be
the set of all possible queries to Pi. For q ∈ Qi, let Ai(q) be the set of all possible answers of the
ith prover to q which satisfy all the clauses appearing in the query.

Consider any pair Pi and Pj of provers. Let qi ∈ Qi and qj ∈ Qj be a pair of queries such that
for some r ∈ R, qi = qi(r) and qj = qj(r). Let Ai and Aj denote the answers of provers Pi and
Pj , respectively, to the queries. We say that the answers are weakly consistent if the assignments
to Cij in Ai and to xij in Aj are consistent. The answers are called strongly consistent if they are
also consistent in every coordinate (a, b) 6= (i, j).

We use the following theorem of Chuzhoy and Naor [9].

Theorem 5 (Theorem 4.2 in [9]). There is a constant 0 < ε < 1 such that if φ is a Yes instance,
then there is a strategy of the k provers such that the verifier always accepts, and if φ is a No
instance, then for any strategy of the provers, for every pair Pi, Pj of provers, i < j, the probability
that their answers are weakly consistent is at most 1 − ε

3 .

We now construct a 0-Extension instance from an instance of Gap-3SAT(5) based on the k-prover
system described above. Recall that an instance of 0-Extension consists of a graph G(V ′∪̇T, E),
where the set of vertices consists of two parts, the terminals T and the nonterminals V ′. Each edge
is between a terminal and a nonterminal or between two nonterminals. Every edge has a weight,
which is the factor by which it contributes to the cost. Also provided is a metric on the set of
terminals.

Our 0-Extension instance is based on the Metric Labeling instance in [9], with additional
edges between nonterminals and terminals, and a special distance metric on the terminals. To
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define our instance, we proceed thus. We first define the set V ′ of nonterminals and the set T of
terminals. The set of nonterminals (resp., terminals) is precisely the set of vertices (resp., labels)
in the construction of [9]. We also define a graph GV ′ on V ′ and a graph GT on T . Finally we
define the weighted graph G(V ′∪̇T, E) of the input instance.

Nonterminals: V ′ consists of two types of nonterminals.

• For each i, 1 ≤ i ≤ k, and each query q ∈ Qi there is a query nonterminal v(i, q).

• For each random string r, there is a constraint nonterminal v(r).

The graph GV ′ on V ′ is defined by placing, for each i and r, an edge between constraint nonterminal
v(r) and query nonterminal v(i, qi(r)).

1 Each edge in GV ′ has length 1
2 .

Terminals: T also consists of two types of terminals.

• For each i such that 1 ≤ i ≤ k, each query q ∈ Qi, and each answer Ai ∈ Ai(q) to the query
q, there is a query terminal (v(i, q), Ai).

• For every random string r of the verifier, for every k-tuple (A1, A2, ..., Ak) of pairwise strongly
consistent answers satisfying Ai ∈ Ai(qi(r)) for 1 ≤ i ≤ k, there is a constraint terminal
(v(r), (A1, A2, ..., Ak)).

Note that for every nonterminal x, there is a set of terminals of the form (x, ·) derived from x. In
what follows we will represent a generic terminal by (x, y). The graph GT on T , defined only for the
purpose of defining the metric on T , is defined by the following edges: incident on every constraint
terminal (v(r), (A1, A2, ..., Ak)) is, for each i, an edge of length 1

2 to query terminal (v(i, qi(r)), Ai).

Metric on terminals: We now use the graphs GT and GV ′ to define the metric dT on T . To do
so, we first define two different metrics, ∆ on T and M∆ on V ′.

For t, t′ ∈ T , let ∆(t, t′) equal the minimum of k and the distance between t and t′ in GT . Note that
this is indeed a metric. For x, x′ ∈ V ′, let M(x, x′) be the minimum of k and the distance between
x and x′ in GV ′ . Now we can define the metric on the set T of terminals. For two terminals (x, y)
and (x′, y′), define dT ((x, y), (x′, y′)) =

√
k · M(x, x′) + ∆((x, y), (x′, y′)).

Input graph: The input graph consists of the set of nonterminals and terminals. There are two
kinds of edges. The first kind consists of edges between two nonterminals. These are precisely
the edges of the graph GV ′ and have weight

√
k. The second kind consists of those between a

nonterminal and a terminal, and are defined as follows: for every r ∈ R, and for every k-tuple
(A1, A2, ..., Ak) of strongly consistent answers, with Ai ∈ Ai(qi(r)) for 1 ≤ i ≤ k, there is an edge
between constraint nonterminal v(r) and constraint terminal (v(r), (A1, ..., Ak)). Similarly, for every
r ∈ R, i = 1, ..., k, and every possible answer Ai of prover Pi to qi(r), there is an edge between
query nonterminal v(i, qi(r)) and query terminal (v(i, qi(r)), Ai). To define the weight of an edge of
the second kind, we define the following. For a nonterminal v, let dv be the number of nonterminal-
nonterminal edges incident on v, and let zv be the number of nonterminal-terminal edges incident
on v. Then the weight of every nonterminal-terminal edge incident on v is wv = dv/zv. (If zv = 0
there are no edges awaiting weights.) Define y = 1

2

∑

v∈V ′ dv, the total number of nonterminal-
nonterminal edges. Note that y is also equal to k|R|.

1We assume without loss of generality that GV ′ is connected. In general it may be disconnected if the SAT formula
we start with itself has disconnected components of variables, where the connectivity is via common clauses. But we
can add dummy clauses to connect all variables, and this will yield a connected GV ′ .
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5.1 Yes Instance

We assume now that the SAT formula is a Yes instance. Then there is a strategy of the provers so
that the verifier accepts with probability 1. For i = 1, ..., k and query qi ∈ Qi, let fi(qi) ∈ Ai(qi)
be the answer of prover Pi to query qi under this strategy. Note that for each random string r,
f1(q1(r)), f2(q2(r)), ..., fk(qk(r)) are pairwise strongly consistent. From this strategy, we can define
the following assignment of nonterminals to terminals.

For every random string r, assign constraint nonterminal v(r) to constraint terminal
(v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))). For every random string r and i = 1, ..., k, assign query
nonterminal v(i, qi(r)) to query terminal (v(i, qi(r)), fi(qi(r))).

Consider an edge between two nonterminals, say, constraint nonterminal v(r) and query nonterminal
v(i, qi(r)). Let a = (v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))) and b = (v(i, qi(r)), fi(qi(r))). Since
v(r) is assigned to terminal a and v(i, qi(r)) is assigned to terminal b, the distance to which this
edge is stretched is dT (a, b) =

√
k · M(v(r), v(i, qi(r))) + ∆(a, b) ≤

√
k(1/2) + 1/2. This is because

v(r) and v(i, qi(r)) are neighbors in GV ′ and a and b are neighbors in GT . The weight of the edge
between the nonterminals v(r) and v(i, qi(r)) is

√
k; hence the contribution to the cost is at most√

k((1/2)
√

k+1/2). Since there are a total of y number of edges of this type, the total contribution
of such edges to the cost is at most yk.

Consider an edge between a nonterminal, say, a constraint nonterminal v(r), and a constraint
terminal b = (v(r), (A1, A2, ..., Ak)). (The case of an edge between a query nonterminal and a query
terminal is identical.) Let a = (v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))). Since v(r) is assigned to
a, the distance to which this edge is stretched is dT (a, b) =

√
k ·M(v(r), v(r))+∆(a, b) ≤

√
k ·0+k.

The inequality follows because the distances under ∆ are at most k. This is true for all the
zv(r) nonterminal-terminal edges incident on v(r). Since the weight of each such edge is wv(r) =
dv(r)/zv(r), the contribution to the cost of all these edges is at most wv(r)zv(r)k = dv(r)k. Summing
over all nonterminals v, we get that the total contribution to the cost of all nonterminal-terminal
edges is

∑

v∈V ′ dvk = 2yk. Thus the total cost in the Yes case is at most yk + 2yk = 3yk.

5.2 No Instance

Let f : V ′ → T be any assignment of nonterminals to terminals. For v ∈ V ′, define g(v), h(v) by
f(v) = (g(v), h(v)). Let V1 = {v ∈ V ′ : M(v, g(v)) ≥ γk} for some small constant 0 < γ < 1 to be
chosen later. We also pick a constant α > 0, to be fixed later. We consider two cases.

Case 1:
∑

v∈V1
dv > α

∑

v∈V ′ dv = α(2y). Take any nonterminal in V1, say, a constraint
nonterminal v(r) (the case of a query nonterminal is identical), and consider any terminal
a = (v(r), (A1, A2, ..., Ak)) such that there is an edge between v(r) and a. Then the distance to
which this edge is stretched is dT (f(v(r)), a) =

√
k · M(g(v(r)), v(r)) + ∆(f(v(r)), a) ≥

√
k ·

(γk) + 0 = γk3/2. The inequality follows from the fact that v(r) ∈ V1. This is true for all the zv(r)

nonterminal-terminal edges incident on v(r). Each such edge has a weight of wv(r) = dv(r)/zv(r).
Hence the contribution to the cost incurred by the nonterminal-terminal edges incident on
nonterminals in V1 is at least

∑

v∈V1
zvwv(γk3/2) = γk3/2

∑

v∈V1
dv > γk3/2[α(2y)] = 2γαyk3/2.

The inequality follows because we are in Case 1. Hence the total cost in this case is at least 2γαyk3/2.
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Case 2:
∑

v∈V1
dv ≤ α

∑

v∈V ′ dv = α(2y). We will first change the assignment f = (g, h) to
an assignment f ′ = (g′, h′) such that for all v ∈ V ′, g′(v) = v. (Such a “natural” assignment
corresponds to the Metric Labeling, not 0-Extension, work of Chuzhoy and Naor [9]. Once
we have such an assignment we will be able to invoke the main lemma of [9].) Furthermore, we will
not change f much in going to f ′: we will have ∆(f(v), f ′(v)) < γk for all v ∈ V ′\V1. We get the
“natural” assignment simply by changing the assignment of the nonterminal v from f(v) to that
terminal of the form (v, ·) which is closest, according to distance ∆ on T , to f(v).

But have we changed the assignments too much? Recall that by definition, for every v ∈ V ′\V1,
M(v, g(v)) < γk. That is, it takes fewer than 2γk steps in the graph GV ′ on nonterminals to
move from g(v) to v (the factor of 2 appears because every edge in GV ′ is of length 1

2). But this
implies that it takes fewer than 2γk steps in the graph GT on terminals to move from (g(v), h(v))
to some terminal of the form (v, ·); that is, ∆(f(v), f ′(v)) ≤ M(v, g(v)) < γk. (This follows from
the structure of the graph. If x and x′ are adjacent nonterminals and (x, y) is any terminal, then
there is a terminal (x′, y′) adjacent to (x, y); y′ “gives the same answer to the question” as y.)

Now, because g′(v) = v for all v ∈ V ′, we have a valid assignment in the sense of the Metric

Labeling, not 0-Extension, instance of [9]. An edge between two nonterminals, say v(r) and
v(i, qi(r)), is stretched to

dT

(

f ′(v(r)), f ′(v(i, qi(r)))
)

=
√

k · M
(

g′(v(r)), g′(v(i, qi(r)))
)

+ ∆
(

f ′(v(r)), f ′(v(i, qi(r)))
)

. (1)

By summing over all nonterminal-nonterminal edges, and ignoring the first term on the right-hand
side of (1), we get

∑

r,i

dT

(

f ′(v(r)), f ′(v(i, qi(r)))
)

≥
∑

r,i

∆
(

f ′(v(r)), f ′(v(i, qi(r)))
)

. (2)

Here’s the key point. By Proposition 4.4 and Lemma 4.5 in [9], we know that the right-hand side
of (2) is at least

(

k
2

)

ε
3 |R|. (While [9] does not “truncate” the distance metric on the terminal graph

at k, as we do for ∆, it can be shown that their proof works even when such truncation is done).
Since the total number of nonterminal-nonterminal edges is y = k|R|, we get that the total stretch
of nonterminal-nonterminal edges is at least (ε′k)y, for some constant ε′ > 0.

We now wish to compare this to the total stretch of these edges in the original assignment f . In
transforming f to f ′, we may have increased the total stretch. Call a nonterminal-nonterminal
edge bad if it is incident to at least one nonterminal in V1. Thus there are at most

∑

v∈V1
dv bad

edges. Since we are in Case 2, this means that there are at most (2α)y bad edges, i.e., at most a 2α-
fraction of all nonterminal-nonterminal edges is bad. Call the nonterminal-nonterminal edges which
are not bad good. Then, when we go back from f ′ to f , |∆(f ′(v), f ′(u)) − ∆(f(v), f(u))| ≤ 2γk;
this is true because if an edge with endpoints u, v is good, both u and v are not in V1, and hence
∆(f ′(v), f(v)) ≤ γk, and ∆(f ′(u), f(u)) ≤ γk. For a bad edge |∆(f ′(v), f ′(u))−∆(f(v), f(u))| ≤ k.
Hence the total stretch of nonterminal-nonterminal edges in the assignment f is at least (ε′k)y −
(2αy)k − y(2γk) = yk(ε′ − 2α− 2γ), where the first subtracted term corresponds to the bad edges,
and the second subtracted term corresponds to the good edges.

We choose α and γ small enough so that, for f , the total stretch of nonterminal-nonterminal edges
becomes at least ε′′yk, for some constant ε′′ > 0. Since each nonterminal-nonterminal edge has a
weight of

√
k, the total contribution of these edges to the cost, and hence the total cost in Case 2,

is at least ε′′yk3/2.
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Thus the ratio between the costs in the No and Yes cases is Ω(
√

k). As in [9], the size N of the
instance that we constructed is nO(k2), where n is the size of the formula φ from which we started.

Choosing k to be poly(log n), which is (log N)
1
2−δ for an arbitrarily small constant δ > 0, we get

Theorem 6 For any constant δ > 0, there is no O((log N)
1
4−δ)-approximation algorithm for 0-

Extension unless NP ⊆ DTIME(npoly(log n)).

6 A O(
√

diam(d))-Approximation Algorithm for 0-Extension

We define the diameter of (T, d) as diam(d) =
maxi,j d(i,j)
mini6=j d(i,j) . Alternatively, we can scale d so that

the minimum distance between different points is 1, and then the diameter is simply the largest
distance. We describe a rounding algorithm that guarantees a ratio of O(

√

diam(d)) between the
costs of the fractional solution and of the rounded solution. Let G = (V, E) be an input graph,
and let T ⊆ V denote the set of terminals. Given a solution x for the earthmover relaxation, let
emd(v, T ) = minj∈T {emd(xv, xj)}. The algorithm uses the following lemma.

Lemma 7 (Archer et al. [1]). There exist c1, c2 > 0 such that for every input graph G = (V, E),
for every set T of terminals, and for every solution x for the earthmover relaxation, there exists a
distribution on solutions y such that for every v ∈ V , if emd(xv, xj) > c1 · emd(v, T ), then yv

j = 0,
and furthermore, for every u, v ∈ V , Ey[emd(yu, yv)] ≤ c2 · emd(xu, xv).

We use the rounding algorithm of [16], designed for the case in which d is a uniform metric.

Lemma 8 (Kleinberg and Tardos [16].) There is a probabilistic polynomial-time rounding algo-
rithm that, given a feasible solution x to the earthmover relaxation, generates a probability distri-
bution over assignments ϕ : V → T satisfying ϕ(v) = v if v ∈ T such that for every u, v ∈ V ,
E[d(ϕ(u), ϕ(v)] ≤ ‖xu − xv‖1; and for every v ∈ V and i ∈ T , Pr[ϕ(v) = i] ≤ 2xv

i .

We are now ready to describe the algorithm. We assume that d is scaled so that the minimum
distance between different terminals is 1. Thus diam(d) is the maximum distance between terminals.
First, pick α in the range

√

diam(d) < α < 2
√

diam(d) uniformly at random. Assign to terminal
1 all nodes v ∈ V such that emd(v, T ) > α. Second, truncate x to a (random) solution y using
Lemma 7, ignoring the nodes already assigned. Use the uniform metric-case rounding algorithm of
Lemma 8 on y to assign the remaining nodes to terminals.

Theorem 9 The expected cost of the rounded solution is O(
√

diam(d)) times the cost of x.

Proof: We do an edge-by-edge analysis. We calculate the expected cost incurred in the first
phase and that incurred in the second phase, showing that both are O(

√

diam(d)) times the cost
of x in the linear program.

Take any edge {u, v}; first, we calculate the expected cost it incurs in the first phase. Choose u
so that emd(u, T ) ≤ emd(v, T ). By the triangle inequality, emd(xu, xv) ≥ emd(v, T ) − emd(u, T ).
As we draw α uniformly in a range of length

√

diam(d), we have that the probability that α ∈
[emd(u, T ), emd(v, T )] is at most emd(xu, xv)/

√

diam(d). If this happens, {u, v} is stretched to a
length of at most diam(d), so the expected contribution of these edges to the cost is at most the
cost of x times O(

√

diam(d)).
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Now we calculate the expected cost incurred in the second phase by an edge {u, v}. For it to
be positive, it must be the case that emd(u, T ), emd(v, T ) < 2

√

diam(d), for otherwise either one
or both of u and v was already assigned in the first phase, and hence there is no cost to charge
to {u, v} in the second phase. Hence we may assume emd(u, T ), emd(v, T ) < 2

√

diam(d), We
condition on α ≥ max{emd(u, T ), emd(v, T )}. This happens with probability at most 1, so we are
perhaps overestimating the cost of the rounding via the uniform-case algorithm. Suppose u, v are
assigned to terminals tu, tv, respectively. By Lemma 8, the guarantee of the uniform-case rounding
rounding algorithm is that Pr[tu 6= tv] ≤ ‖yu − yv‖1. Notice that by the triangle inequality,
d(tu, tv) ≤ emd(tu, xu) + emd(xu, xv) + emd(xv, tv). Further notice that by Lemma 8, yu

tu 6= 0, so

by Lemma 7, emd(tu, xu) ≤ c1 emd(xu, T ) ≤ 2c1

√

diam(d). The term emd(xv, tv) can be bounded
similarly, so d(tu, tv) ≤ emd(xu, xv) + 4c1

√

diam(d). Also, emd(xu, xv) ≥ Ey[emd(yu, yv)]/c2 ≥
Ey[‖yu − yv‖1]/(2c2) (as the minimum distance between different terminals is 1). Fix y. We have
E[d(tu, tv)] ≤ Pr[tu 6= tv] ·(emd(xu, xv)+4c1

√

diam(d)) ≤ ‖yu−yv‖1 ·(emd(xu, xv)+4c1

√

diam(d))
≤ 2·emd(xu, xv)+4c1

√

diam(d)·‖yu−yv‖1, as ‖yu−yv‖1 ≤ 2. Taking the expectation over y, we get
Ey[E[d(tu, tv)]] ≤ 2·emd(xu, xv)+4c1

√

diam(d)·Ey[‖yu−yv‖1] ≤ (2+8c1c2

√

diam(d))·emd(xu, xv),
using the above inequalities. Adding together the costs in the two phases gives us a ratio of
O(

√

diam(d)). 2
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Appendix

A Alternative Integrality Ratio Constructions

In this section we provide an alternative construction of a Metric Labeling instance for which
the earthmover relaxation has an integrality ratio of Ω(log |T |). We also show how the method used
in Section 4 can be applied to this construction to find an instance of 0-Extension with integrality
ratio Ω(

√

log |T |). This construction uses properties of certain linear codes, and is inspired by the
results in [15].

Fix a linear code C ⊆ {0, 1}n with distance at least ηn and rate at least (1 − δ)n where η and
δ are sufficiently small constants (the Gilbert-Varshamov bound shows that such codes exist with
δ ≈ H(η) where H() is the binary entropy function).

Let T0 be the orthogonal subspace of the code, i.e., T0 = C⊥. Let T denote the set of all cosets of
T0, i.e.,

T = {T0 + v : v ∈ {0, 1}n}.
Note that every coset has cardinality 2δn and the number of cosets is 2(1−δ)n.

Let ∆ denote the Hamming metric on {0, 1}n. Consider the following metric dEM on T .

For T, T ′ ∈ T ,
dEM (T, T ′) := min

u∈T,v∈T ′
∆(u, v).
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In fact, for any fixed u0 ∈ T, v0 ∈ T ′, we have

dEM (T, T ′) = min
v∈T ′

∆(u0, v) = min
u∈T

∆(u, v0).

This is indeed the earthmover distance; consider the uniform probability distribution on T and
T ′, respectively. The earthmover distance between these distributions (with underlying Hamming
metric) is exactly dEM (T, T ′). This is because there is a “matching” between points in T and T ′

such that the Hamming distance between every pair of matched points is exactly dEM .

The following two lemmas are from [15]. We provide the proofs here for completeness.

Lemma 10 Let θ > 0 be a sufficiently small constant. Then if two cosets T, T ′ are picked at
random from T , then with high probability dEM (T, T ′) ≥ θn.

Proof: Fix coset T and fix any u0 ∈ T . Consider the process of picking another random coset
T ′. One can pick a y ∈ {0, 1}n at random and define T ′ = T + y. Clearly,

Pr[∃v ∈ T ′ such that ∆(u0, v) ≤ θn] = Pr[∃u ∈ T such that ∆(u0, u + y) ≤ θn]

≤
∑

u∈T

Pr[∆(u0, u + y) ≤ θn]

≤ |T | · 2−(1−H(θ))n

= 2−(1−H(θ)−δ)n

where the inequality on the penultimate line follows because u + y is a random vector and its
distance from u0 has binomial distribution with mean n/2. 2

Lemma 11 Let f : T 7→ Rm be any assignment of vectors to points in T . Let ‖ · ‖ denote the
`2-norm. Then

ET,i[‖f(T ) − f(T + ei)‖2] ≥ 2η · ET,T ′ [‖f(T ) − f(T ′)‖2],

where ei denotes a vector whose ith coordinate is equal to 1 and the rest are 0. T and T ′ are random
cosets picked independently and i is picked randomly (and independently of T ) from 1 ≤ i ≤ n.

Proof: Clearly, it suffices to prove this when f is a real-valued function (i.e. m = 1), since the
desired inequality can be “split” into separate inequalities for every dimension. So assume f is a
real-valued function. Let f ′ be a function on {0, 1}n that is constant on every coset T and its value
on this coset equals f(T ). Clearly,

ET,ei
[|f(T ) − f(T + ei)|2] = Ex∈{0,1}n,ei

[|f ′(x) − f ′(x + ei)|2]
= Ex,ei

[f ′(x)2 + f ′(x + ei)
2 − 2f ′(x)f ′(x + ei)]

Note that Ex[f ′(x)2] = Ex,ei
[f ′(x + ei)

2] =
∑

S⊆[n] f̂
′(S)2. Also, using Fourier expansion,

Ex,ei
[f ′(x)f ′(x + ei)] = Ex,ei

[
∑

S,S′

f̂ ′(S)f̂ ′(S′)χS(x)χS′(x + ei)]

=
∑

S

f̂ ′(S)2Eei
[χS(ei)]

=
∑

S

f̂ ′(S)2(1 − 2|S|/n)
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Combining these, we get

ET,ei
[|f(T ) − f(T + ei)|2] = 4

∑

S⊆[n]

f̂ ′(S)2 · |S|
n

Now note that the function f ′ is constant on every coset of T0 and hence only those Fourier
coefficients are non-zero that are in T⊥

0 , i.e. those that are codewords in C. Thus either S = ∅ or
|S| ≥ ηn since the code has distance ηn. The lemma follows by observing that the total Fourier
mass on non-empty coefficients is given by

∑

S⊆n

f̂ ′(S)2 − f̂ ′(∅)2 = Ex[f ′(x)2] − Ex[f ′(x)]2

=
1

2
Ex,x′ [f ′(x)2 + f ′(x′)2 − 2f ′(x)f ′(x′)]

=
1

2
Ex,x′ [|f ′(x) − f ′(x′)|2]

=
1

2
ET,T ′ [|f(T ) − f(T ′)|2

2

A.1 Metric Labeling

Consider the following Metric Labeling instance. The label set is {0, 1}n. The distance between
two labels is the Hamming distance between them.

The input graph has vertices corresponding to cosets of T0, i.e., the set of vertices is T . There is
an edge between T and T + ei for every coset T and a coordinate vector ei. All edges have weight
1.

The cost of assigning a vertex corresponding to a coset T to a label x ∈ {0, 1}n is 0 if
x ∈ T ⊆ {0, 1}n, and ∞ otherwise.

Fractional Solution: The fractional solution assigns to every vertex T , a uniform probability
distribution on labels in T . The earth-mover distance between such distributions is exactly dEM .
For every edge (T, T + ei), we have dEM (T, T + ei) = 1. Thus the average cost per edge in the
fractional case is 1.

Integral Solutions: Now we will prove an Ω(n) lower bound on the average cost per edge of any
integral solution.

Take any labeling of vertices, i.e., a map h : T 7→ {0, 1}n such that for every coset T , h(T ) ∈ T .
We also think of values of h as vectors in Rn. The following series of inequalities gives the desired
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lower bound.

ET,i[∆(h(T ), h(T + ei)] = ET,i[‖h(T ) − h(T + ei)‖2]

≥ 2η · ET,T ′ [‖h(T ) − h(T ′)‖2]

= 2η · ET,T ′ [∆(h(T ), h(T ′))]

≥ 2η · ET,T [ min
u∈T,v∈T ′

∆(u, v)]

= 2η · ET,T ′ [dEM (T, T ′)],

which is Ω(n), where on the second line we used Lemma 11 and at the end we used Lemma 10.

Thus the integrality ratio of the earthmover relaxation for this instance is Ω(n), which is Ω(log |T |).

A.2 0-Extension

We define an instance of 0-Extension as follows. The set X of terminals is defined as

X := {(T, x) : T ∈ T , x ∈ {0, 1}n, x ∈ T}.

The metric dX on X is defined as

dX((T, x), (T ′, x′)) := L · dEM (T, T ′) + ∆(x, x′),

where L will be chosen to be
√

n later.

The set of nonterminals is defined to be T . The input graph has as its vertex set the union of the
set of terminals and the set of nonterminals. There is an edge between nonterminals T and T + ei.
These edges have a weight of K (which we will choose to be

√
n later). There are edges from a

nonterminal T to all terminals {(T, x) : x ∈ T}. These edges have a weight of 1.

Thus, the cost of an assignment f : T 7→ X of nonterminals to terminals is

cost(f) := K · ET,T+ei
[dX(f(T ), f(T + ei))] + ET,x∈T [dX(f(T ), (T, x))].

Call the two components of the cost function as cost1 and cost2, respectively.

Fractional Solution:

We construct a fractional solution whose cost is at most K · (L + 1) + n.

Assign to a nonterminal T the uniform probability distribution on the set of terminals {(T, x) :
x ∈ T}. Clearly, the “movement” (T, x) 7→ (T + ei, x + ei) “moves” this distribution to the
uniform probability distribution on the set of terminals {(T + ei, x

′) : x′ ∈ T + ei}. Therefore, the
contribution to the cost1 component of the cost is

K · dX((T, x), (T + ei, x + ei)) = K · (L · dEM (T, T + ei) + ∆(x, x + ei)) = K · (L + 1).

Also for any T and x0 ∈ T , the earthmover distance between the uniform distribution on set
{(T, x) : x ∈ T} and the distribution “concentrated” at (T, x0) is at most n. This is an upper
bound on the cost2 component of the fractional cost.
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Integral Solutions:

We will prove a min(Ω(nK), Ω(nL)) lower bound on the cost of any integral solution.

Let f : T 7→ X be any assignment of nonterminals to terminals. Denote f(T ) = (g(T ), h(T )),
where g(T ) ∈ T , h(T ) ∈ {0, 1}n and h(T ) ∈ g(T ).

We consider two cases.

Case (i): ET,T ′ [dEM (g(T ), g(T ′))] ≤ γn where γ > 0 is a small constant to be chosen later.

Applying the triangle inequality, we have

dEM (T, T ′) ≤ dEM (T, g(T )) + dEM (g(T ), g(T ′)) + dEM (g(T ′), T ′).

Taking expectation over random T, T ′ and using Lemma 10, we see that

θn ≤ 2 · ET [dEM (g(T ), T )] + γn.

Assuming γ ≤ θ/2, we have
ET [dEM (g(T ), T )] ≥ θn/4. (3)

Now we will show that the cost2-component of the cost is at least L · θn/4. Indeed,

cost2 = ET,x∈T [dX(f(T ), (T, x))]

= ET,x∈T [dX((g(T ), h(T )), (T, x))]

= ET,x∈T [L · dEM (g(T ), T ) + ∆(h(T ), x)]

≥ ET [L · dEM (g(T ), T )]

≥ L · θn/4.

Case (ii): ET,T ′ [dEM (g(T ), g(T ′))] ≥ γn.

From h(T ) ∈ g(T ), h(T ′) ∈ g(T ′), and the definition of dEM , we get

ET,T ′ [∆(h(T ), h(T ′)] ≥ γn.

We will show a lower bound of K · 2ηγn on the cost1-component of the cost.

cost1 = K · ET,T+ei
[dX((g(T ), h(T )), (g(T + ei), h(T + ei)))]

≥ K · ET,T+ei
[∆(h(T ), h(T + ei))]

= K · ET,T+ei
[‖h(T ) − h(T + ei)‖2]

≥ K · 2η · ET,T ′ [‖h(T ) − h(T ′)‖2]

= K · 2η · ET,T ′ [∆(h(T ), h(T ′))]

≥ K · 2η · γn,

where we used Lemma 11 again.

Choosing K = L =
√

n gives an upper bound of O(n) on the fractional cost and a lower bound
of Ω(n3/2) on the cost of any integral solution. This proves the Ω(

√

log |T |) integrality ratio for
0-Extension. Observe the tradeoff between the two cost components cost1 and cost2 that limits
to Ω(

√
log N) the lower bound we can prove.
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