
Narrow Proofs May Be Spacious:

Separating Space and Width in Resolution

Jakob Nordström

Royal Institute of Technology (KTH)

SE-100 44 Stockholm, Sweden

jakobn@kth.se

August 23, 2005

Abstract

The width of a resolution proof is the maximal number of literals in
any clause of the proof. The space of a proof is the maximal number of
memory cells used if the proof is only allowed to resolve on clauses kept in
memory. Both of these measures have previously been studied and related
to the refutation size of unsatisfiable CNF formulas. Also, the resolution
refutation space of a formula has been proven to be at least as large as
the refutation width, but it has remained unknown whether space can be
separated from width or the two measures coincide asymptotically. We
prove that there is a family of k-CNF formulas for which the refutation
width in resolution is constant but the refutation space is non-constant,
thus solving an open problem mentioned in several previous papers.

1 Introduction

A proof system for a language L is a polynomial-time algorithm V such that for
all x ∈ L there is a string π (a proof) for which V (x, π) = 1. For x 6∈ L, it should
hold for all strings π that V (x, π) = 0. The complexity of a proof system V is
the smallest bounding function g : N 7→ N such that x ∈ L if and only if there
is a proof π of size |π| ≤ g

(

|x|
)

for which V
(

x, π
)

= 1. If a proof system is of
polynomial complexity, it is said to be polynomially bounded. A propositional
proof system is a proof system for tautologies in propositional logic.

The central task of proof complexity is to construct and investigate the power
of different propositional proof systems. This is done for at least two reasons.

The first reason is the connection to the question of P versus NP, which
is recognized as a major open problem in computational complexity theory
and mathematics. Since NP is exactly the set of languages with polynomially
bounded proof systems, and since Tautology can be seen to be the dual prob-
lem of Satisfiability, we have the famous theorem of Cook and Reckhow [17]
that NP = co-NP if and only if there exists a polynomially bounded propo-
sitional proof system. Thus, if it could be shown that there are no polynomially
bounded proof systems for propositional tautologies, P 6= NP would follow as

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 66 (2005)

ISSN 1433-8092

a corollary since P is closed under complement. One way of approaching this
distant goal is to study stronger and stronger proof systems and try to prove
superpolynomial lower bounds on proof size. However, despite the fact that
the last decade has seen some impressive successes for a variety of propositional
proof systems, it seems that we are still very far from fully understanding the
reasoning power of even quite simple ones.

The second reason is that designing efficient algorithms for proving tautolo-
gies is a very important problem not only in theoretical computer science but
also in applied research and in industry, for instance in the context of formal
methods. All automated theorem provers, regardless of whether they actually
produce a written proof or not, explicitly or implicitly define a system in which
proofs are searched for and rules which determine what proofs in this system
look like. Lower bounds on proofs in such proof systems give lower bounds on
the running time of corresponding automated theorem provers. In the other
direction, theoretical upper bounds on proof size in a system can give upper
bounds on the running time of a proof search algorithm, provided that the al-
gorithm can be shown to search for proofs in the system in an efficient manner.

Also, the field of proof complexity has rich connections to cryptography,
artificial intelligence and mathematical logic. Some good surveys of proof com-
plexity are [4, 6, 15, 35].

Any propositional logic formula can be converted to a formula in conjunctive
normal form that is only linearly larger and is unsatisfiable if and only if the
original formula is a tautology. Therefore, any sound and complete system which
produces refutations of unsatisfiable formulas in conjunctive normal form can
be considered as a general propositional proof system.

One such proof system, which is the focus of this paper, is resolution. The
resolution proof system appeared in [11], and began to be studied in connection
with automated theorem proving in [19, 20, 30]. Because of the simplicity of
resolution—there is only one derivation rule—and because all lines in a proof are
clauses, this system is well adapted to proof search algorithms. Many real-world
automated theorem provers are based on resolution.

Being so simple and fundamental, resolution was a natural target to attack
when trying to prove lower bounds in proof complexity. In this context, it is
most straightforward to prove bounds on the length of proofs, i.e., the number
of clauses, which is easily seen to be polynomially related to the proof size.
In 1968, Tseitin [33] presented a superpolynomial lower bound on refutation
length in resolution, but it was not until almost 20 years later that Haken [24]
proved the first exponential lower bound, which has later been followed by many
similar results, for instance in [5, 10, 16, 29, 34].

A second complexity measure for resolution refutations other than length
is the minimal width, measured as the maximal size of a clause in the refuta-
tion. This measure was introduced by Ben-Sasson and Wigderson in [10], and
was shown to be strongly correlated to proof length. Ben-Sasson and Wigder-
son proved that the width W

(

F ` 0
)

of refuting a k-CNF formula F over

n variables is bounded by the refutation length L
(

F ` 0
)

by W
(

F ` 0
)

=

O
(
√

n logL(F ` 0)
)

, and used this to rederive and simplify many lower bounds
on length by proving bounds on width.

The results on width lead to the question of whether other complexity mea-
sures could yield interesting insights as well. In [22, 31], Esteban and Torán

2

initiated the investigation of proof space in resolution. Intuitively, the space of
a resolution proof is the maximal number of clauses one needs to keep in mem-
ory while verifying the proof. A number of upper and lower bounds for proof
space in resolution and other proof systems were subsequently presented in for
instance [1, 8, 21, 23]. In several of these papers it was noted that the lower
bounds on resolution refutation space for different formula families matched
known lower bounds on refutation width. Atserias and Dalmau [3] showed that
this was not a coincidence, but that the minimal refutation space Sp

(

F ` 0
)

of
any unsatisfiable k-CNF formula F is at least as large as the minimal refutation
width W

(

F ` 0
)

minus a constant term.
An immediate follow-up question to this is whether the lower bound on

space in terms of width is asymptotically strict. That is, does there exist a
family

{

Fn

}∞

n=1
of k-CNF formulas such that Sp

(

Fn ` 0
)

= ω
(

W
(

Fn ` 0
))

or

does it always hold that Sp
(

Fn ` 0
)

= O
(

W
(

Fn ` 0
))

?
Another natural question concerns the relation between space and length. It

is not too hard to see that upper bounds on width imply upper bounds on length,
and as a consequence of the result in [3] this must be true for space with respect
to length as well. In the other direction, we have the result from [10] that upper
bounds on length imply upper bounds on width. Does a similiar bound hold for
refutation space, or is there a family of k-CNF formulas {Fn}∞n=1 that separates

space from length in the sense that Sp
(

Fn ` 0
)

= ω
(√

n logL(Fn ` 0)
)

, for n
the number of variables in Fn?

A plausible candidate for answering these two questions is the family of
pebbling contradictions defined in terms of pebble games on directed acyclic
graphs. Determining the space complexity of refuting pebbling contradictions
in resolution has been mentioned as an interesting open problem in [7, 21, 23, 32].

In this paper, we answer the first question above by separating space from
width. This is done by proving a non-constant lower bound on space for pebbling
contradictions on binary trees, thus at least partially solving the open problem
about the space complexity of pebbling contradictions as well. More precisely,
our results are as follows (formal definitions are given in Sections 2 and 4).

Theorem 1.1. Let Th denote the complete binary tree of height h and Pebd
Th

the
pebbling contradiction of degree d ≥ 2 defined on Th. Then the space of refuting
Pebd

Th
by resolution is bounded by Sp

(

Pebd
Th

` 0
)

= Ω
(
√

h
)

.

Corollary 1.2. There is a family
{

Fn

}∞

n=1
of k-CNF formulas of size O(n)

such that W
(

Fn ` 0
)

= O(1) but Sp
(

Fn ` 0
)

= Ω
(√

log n
)

.

The organization of this paper is as follows. We start by presenting the
resolution proof system in Section 2. Section 3 gives a short introduction to
pebble games, and in Section 4 we review some previous results connecting
resolution and pebbling. The lower bound on refutation space which separates
space from width is then proven in three steps.

• First, we define a modified pebble game and establish a lower bound for
this game in terms of the standard black-white pebble game (Sections 5
and 6).

• Next, we show that a resolution refutation of a pebbling contradiction
induces a pebbling of the underlying graph in our modified pebble game
(Section 7).

3

• Finally, we prove that if a set of clauses induces many pebbles, the set
must be large. Since a resolution refutation induces a pebbling, and such
a pebbling must contain many pebbles at some point, we deduce that the
clause space of the resolution derivation must be large (Section 8).

We conclude in Section 9 by giving suggestions for further research.

2 The Resolution Proof System

A literal over a propositional logic variable x is either x itself or its negation x.
We define x = x. Two literals a and b are strictly distinct if a 6= b and a 6= b.

A clause C = a1 ∨ . . .∨ak is a set of literals. We say that C is ordinary if all
literals are strictly distinct. All clauses are assumed ordinary unless otherwise
stated. We say that C is a subclause of D if C ⊆ D. An ordinary clause
containing at most k literals is called a k-clause.

A CNF formula F = C1 ∧ . . . ∧ Cm is a set of clauses. A k-CNF formula is
a CNF formula consisting of k-clauses.

In the following, we let A, B, C, D denote clauses, C, D sets of clauses, x, y
propositional variables, a, b, c literals, α, β truth value assignments and ν a truth
value 0 or 1. We define

αx=ν
(

y
)

=

{

α
(

y
)

if y 6= x,

ν if y = x.

We let Vars(C) denote the set of variables and Lit(C) the set of literals in
a clause C. (Although the notation Lit(C) is slightly redundant given the
definition of a clause as a set of literals, we include it for clarity.) This notation
is extended to sets of clauses by taking unions.

A resolution derivation π : F → A of a clause A from a CNF formula F is
a sequence of clauses π = {D1, . . . , Dτ} such that Dτ = A and each line Di,
1 ≤ i ≤ τ , is either one of the clauses in F (axioms) or is derived from clauses
Dj , Dk in π with j, k < i by the resolution rule

B ∨ x C ∨ x

B ∨ C
. (1)

We refer to (1) as resolution on the variable x and B ∨ C as the resolvent of
B∨x and C∨x on x. A resolution refutation of a CNF formula F is a resolution
derivation of the empty clause 0 (the clause with no literals) from F .

For F a formula and G = {G1, . . . , Gn} a set of formulas, we say that G
implies F , denoted G � F , if every truth value assignment satisfying all formulas
G ∈ G satisfies F as well.

Resolution is sound and implicationally complete. That is, if there is a reso-
lution derivation π : F → A then F � A, and if F � A then there is a resolution
derivation π : F → A′ for some A′ ⊆ A. In particular, F is unsatisfiable if and
only if there is a resolution refutation of F .

The graph Gπ of a resolution derivation π is a directed acyclic graph (DAG)
with the clauses of the derivation labelling the vertices and edges added from
the assumption clauses to the resolvent for each application of the resolution
rule. A resolution derivation π is tree-like if any clause in the derivation is used

4

at most once as a premise in an application of the resolution rule, i.e., if Gπ is
a tree (we may make copies of the axioms in order to make Gπ into a tree).

The length L
(

F
)

of a CNF formula F is the number of clauses in it, and

for π a resolution derivation L
(

π
)

is the number of clauses in π. The length

of refuting F by resolution is L
(

F ` 0
)

= minπ:F→0

{

L
(

π
)}

. The length of

refuting F by tree-like resolution LT

(

F ` 0
)

is defined by taking the minimum
over all tree-like resolution refutations πT of F .

The width W
(

C
)

of a clause C is |C|. The width of a set of clauses C is

W
(

C
)

= maxC∈C

{

W
(

C
)}

. The width of deriving a clause A from the formula F

by resolution is W
(

F ` A
)

= minπ:F→A

{

W
(

π
)}

.
If a resolution refutation has constant width, it must be of size polynomial

in the number of variables. Conversely, if all refutations of a formula are very
wide, it seems reasonable that any refutation of this formula must be very long
as well. This intuition is made precise in the following theorem.

Theorem 2.1 ([10]). The width of refuting a CNF formula F is bounded from
above by

W
(

F ` 0
)

≤ W
(

F
)

+ O

(

√

n logL
(

F ` 0
)

)

,

where n is the number of variables in F .

In [13], it was shown that this bound on width in terms of length is essentially
optimal.

We next define the measure of space. Following the exposition in [22], a
proof can be seen as a Turing machine computation, with a special read-only
input tape from which the axioms can be downloaded and a working memory
where all derivation steps are made. The clause space of a resolution proof is
the maximal number of clauses that need to be kept in memory simultaneously
during a verification of the proof. The variable space is the maximal “total”
space needed, where also the width of the clauses is taken into account.

For the formal definition, it is convenient to use the following alternative
definition of resolution introduced by [1]. We use the standard notation [n] =
{1, 2, . . . , n}.
Definition 2.2 (Resolution). A clause configuration C is a set of clauses. A
sequence of clause configurations C0, . . . , Cτ is a resolution derivation from F
if C0 = ∅ and for all t ∈ [τ], Ct is obtained from Ct−1 by one of the following
rules:

Axiom Download Ct = Ct−1∪{C} for some C ∈ F .

Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.

Inference Ct = Ct−1∪{D} for some D 6∈ Ct−1 inferred by resolution from
C1, C2 ∈ Ct−1.

A derivation π : F → A of a clause A from F is a resolution derivation C0, . . . , Cτ

such that Cτ = {A}. A resolution refutation of F is a derivation of 0 from F .

Definition 2.3 (Clause space [1, 7]). The clause space of a resolution deriva-
tion C0, . . . , Cτ is max0≤i≤τ

{

|Ci|
}

. The clause space of deriving A from F is

Sp
(

F ` A
)

= minπ:F→A

{

Sp
(

π
)}

. Sp
(

F ` 0
)

is the minimal clause space of
any resolution refutation of F .

5

Definition 2.4 (Variable space [1]). The variable space of a configuration C
is VarSp

(

C
)

=
∑

C∈C
W

(

C
)

. The variable space of a resolution derivation

C0, . . . , Cτ is max0≤i≤s

{

VarSp
(

Ci

)}

, and VarSp
(

F ` 0
)

is the minimal variable
space of any resolution refutation of F .

Restricting the resolution derivations to tree-like resolution, we get the mea-
sures SpT

(

F ` 0
)

and VarSpT

(

F ` 0
)

in analogy with LT

(

F ` 0
)

defined
above.

All contradictory CNF formulas can be refuted in clause space linear in the
formula size. More precisely:

Theorem 2.5 ([22]). Any unsatisfiable CNF formula F on n variables can be
refuted in clause space n + 2.

Theorem 2.6 ([22]). Any unsatisfiable CNF formula F with m clauses can be
refuted in clause space m + 1, i.e., Sp

(

F ` 0
)

≤ L
(

F
)

+ 1.

Thus the interesting question is which formulas demand this much space,
and which formulas can be refuted in for instance logarithmic or even constant
space. It has been shown that there are polynomial-size formulas that meet the
upper bounds of Theorems 2.5 and 2.6 up to a multiplicative constant.

Theorem 2.7 ([1, 31]). There is a polynomial-size family {Fn}∞n=1 of unsat-
isfiable 3-CNF formulas such that Sp

(

F ` 0
)

= Ω
(

L
(

F
))

= Ω
(

|Vars(F)|
)

.

Lower bounds on clause space have been presented for a number of different
CNF formula families [1, 8, 31]. As was mentioned above, in these papers it
was observed that the lower bounds on refutation space coincided with the lower
bounds on refutation width. This lead to the conjecture that the width measure
is a lower bound for the clause space measure, a conjecture that was proven true
in [3].

Theorem 2.8 ([3]). Let F be an arbitrary unsatisfiable CNF formula. Then it
holds that Sp

(

F ` 0
)

≥ W
(

F ` 0
)

− W
(

F
)

.

In fact, if one does the calculations in the proof of Theorem 2.8 carefully,
one can sharpen the inequality to Sp

(

F ` 0
)

− 3 ≥ W
(

F ` 0
)

− W
(

F
)

. In
other words, the extra clause space exceeding the minimum 3 needed for any
resolution derivation is bounded from below by the extra width exceeding the
minimum W

(

F
)

. An immediate corollary of this theorem is that for polynomial-
size k-CNF formulas, constant clause space implies polynomial proof length.

A very natural question, which has remained open, is what holds in the
other direction. Do the space and width measures coincide asymptotically or is
there a formula family separating space from width? We remark that in order
for this question to be interesting, we should restrict our attention to families
of k-CNF formulas. Any resolution refutation of an unsatisfiable CNF formula
F with minimum clause width k can be shown to require clause space at least
k + 2 [22], so it is easy to find CNF formulas {Fn}∞n=1 of growing width such
that W

(

Fn ` 0
)

− W
(

Fn

)

= O(1) but Sp
(

Fn ` 0
)

= Ω(n).
In this paper, we settle the open question of the relationship between space

and width by proving that there is a family of k-CNF formulas {Fn}∞n=1 such
that W

(

Fn ` 0
)

= O(1) but Sp
(

Fn ` 0
)

= ω(1).

6

3 Pebble Games

Pebble games were devised for studying programming languages and compiler
construction, but have found a variety of applications in computational com-
plexity theory. In connection with resolution, pebble games have been employed
both to analyze resolution derivations with respect to how much memory they
consume (using the original definition of space in [22]) and to construct CNF for-
mulas which are hard for different variants of resolution in various respects (see
for example [2, 9, 12, 14]). An excellent survey of pebbling up to 1980 is [28].

The black pebbling price of a DAG G captures the memory space, i.e.,
the number of registers, required to perform the deterministic computation de-
scribed by G. The space of a non-deterministic computation is measured by the
black-white pebbling price of G. We say that vertices of G with indegree 0 are
sources and vertices with outdegree 0 targets .

Definition 3.1 (Pebble game). Suppose that G is a DAG with sources S and
a unique target z. The black-white pebble game on G is the following 1-player
game. At any point in the game, there are black and white pebbles placed on
some vertices of G, at most one pebble per vertex. A pebble configuration is a
pair of subsets P = (B, W) of V

(

G
)

, comprising the black- and white-pebbled
vertices. The rules of the game are as follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them,
a black pebble may be placed on v.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertex v have pebbles on
them, the white pebble on v may be removed.

A legal black-white pebbling reaching (B, W) in G is a sequence of configura-
tions P =

{

P0, . . . , Pτ

}

such that P0 = (∅, ∅), Pτ = (B, W), and for all t ∈ [τ],
Pt follows from Pt−1 by one of the rules above.

The cost of a pebbling configuration P = (B, W) is cost(P) = |B ∪W | and
the cost of a of a legal pebbling P =

{

P0, . . . , Pτ

}

is maxt∈[τ]

{

cost
(

Pt

)}

. The
black-white pebbling price of (B, W), denoted BW-Peb(B,W), is the minimal
cost of any legal pebbling reaching (B, W).

A legal black-white pebbling of G is a pebbling reaching ({z}, ∅), and the
black-white pebbling price of G, denoted BW-Peb(G), is the minimal cost of any
legal pebbling of G.

A legal black pebbling of G is a pebbling reaching ({z}, ∅) using only black
pebbles, i.e., Wt = ∅ for all t, and the (black) pebbling price of G, denoted
Peb(G), is the minimal cost of any legal black pebbling of G.

A black-white pebbling visiting z is a pebbling such that P0 = Pτ = (∅, ∅)
and there exists a t ∈ [τ] such that z ∈ Bt ∪Wt. The minimum cost of such a

pebbling is denoted BW-Peb
∅(G).

It is easy to see that BW-Peb
∅(G) ≤ BW-Peb(G) ≤ BW-Peb

∅(G) + 1.
We think of the moves in a pebbling as occurring at integral time intervals

t = 1, 2, . . . and talk about the pebbling move “at time t” (which is the move
resulting in configuration Pt) or the moves “during the time interval

[

t1, t2
]

”.

7

In this paper we will consider pebblings of complete binary trees. We let T
denote a complete binary tree considered as a DAG with edges directed towards
the root. We write Th when we want to specify that the height of the tree is h.
We use z to denote the unique target vertex of T , i.e., the root.

The black pebbling price of Th can be established by induction over the tree
height. We omit the easy proof.

Theorem 3.2. Peb(Th) = h + 2.

General bounds for the black-white pebbling price of trees of any arity was
presented in [27]. We give a simplified proof with tight bounds for the case of
complete binary trees.

Theorem 3.3. BW-Peb(Th) =
⌊

h
2

⌋

+ 3 and BW-Peb
∅(Th) =

⌊

h−1
2

⌋

+ 3.

The proof is facilitated the following proposition, which is an immediate
consequence of Definition 3.1.

Proposition 3.4 ([18]). If P is a black-white pebbling of a DAG G visiting
the target, then one can get a dual pebbling P of G by reversing the sequence of
moves and switching the colours of the pebbles.

Proof of Theorem 3.3. In all of this proof, we let z1, z2 denote the immediate
predecessors of the root z of the tree.

We first show that BW-Peb
∅(Th+2) ≥ BW-Peb

∅(Th) + 1. Suppose not, and

let P be a pebbling in cost K = BW-Peb
∅(Th) for Th+2 making the minimum

number of pebbling moves. Let T i
h, i ∈ [4], be the four disjoint subtrees of

height h in Th+2. It is easy to see that P restricted to V
(

T i
h

)

yields a legal
pebbling of T i

h visiting its root. It follows that there must exist distinct times
ti, i ∈ [4], when T i

h contains K pebbles and the rest of Th+2 is empty. Number
the subtrees so that t1 < t2 < t3 < t4.

Suppose that the root z of Th+2 has been pebbled before time t3. Then we
can get a shorter pebbling of Th+2 by completing the subpebbling of T 3

h but
ignoring pebbles moves outside T 3

h after time t3.
Consequently, z must be pebbled for the first time after t3. But at time t3

the rest of the tree is empty, so in that case we can get a shorter legal pebbling
by ignoring all moves outside T 3

h before time t3 and performing all moves in P
after time t3. Contradiction. Thus BW-Peb

∅(Th+2) ≥ BW-Peb
∅(Th) + 1.

Next, it is easy to see that BW-Peb
∅(Th+1) ≤ BW-Peb(Th). First black-

pebble z1 with using a pebbling P in cost BW-Peb(Th). Place white pebbles
on z and z2, and then remove the pebbles from z1 and z. Finally, use the dual
pebbling P to get the white pebble off z2 in the same cost BW-Peb(Th).

Since BW-Peb(T1) = BW-Peb
∅(T1) = 3, it follows that BW-Peb

∅(Th) ≥
⌊

h−1
2

⌋

+ 3 and BW-Peb(Th) ≥
⌊ (h+1)−1

2

⌋

+ 3 =
⌊

h
2

⌋

+ 3. It remains to demon-
strate that there are pebblings meeting these lower bounds. We construct such
pebblings inductively.

Suppose for h odd that BW-Peb(Th) = BW-Peb
∅(Th) =

⌊

h−1
2

⌋

+ 3 =
⌊

h
2

⌋

+ 3. Using the same pebbling as above for Th+1, it is easy to see that

BW-Peb
∅(Th+1) =

⌊

h
2

⌋

+3, and since the pebbling cost cannot increase by more

than one when the height is increased by one we get BW-Peb
∅(Th+2) =

⌊

h
2

⌋

+4 =
⌊

h+1
2

⌋

+ 3. In the same way we get BW-Peb(Th+1) =
⌊

h+1
2

⌋

+ 3.

8

To pebble Th+2 in cost
⌊

h+1
2

⌋

+ 3 leaving a pebble on z, first black-pebble

the root z1 of the subtree T 1
h+1 in cost

⌊

h+1
2

⌋

+ 3. Leaving the pebble on z1,

make a pebbling visiting the root z2 of T 2
h+1 in cost

⌊

h
2

⌋

+ 3 =
⌊

h+1
2

⌋

+ 2 using
the pebbling for T 2

h+1 constructed inductively. In this pebbling there is a time t

when z2 is pebbled and T 2
h+1 contains at most

⌊

h+1
2

⌋

+1 pebbles. At this time t,
place a black pebble on z and remove the black pebble on z1 without exceeding
the total limit of

⌊

h+1
2

⌋

+ 3 pebbles on Th+2. Then finish the pebbling of T 2
h+1.

The theorem follows.

4 Resolution and Pebbling Contradictions

A pebbling contradiction defined on a DAG G encodes the pebble game on G by
defining the sources to be true and the targets false, and specifying that truth
propagates through the graph according to the pebbling rules.

Definition 4.1 (Pebbling contradiction [10]). Let G be a DAG with sources
S and a unique target z and with all vertices of G having indegree 0 or 2, and
let d ∈ N+. Associate d distinct variables x(v)1, . . . , x(v)d with every vertex
v ∈ V

(

G
)

. The dth degree pebbling contradiction on G, denoted Pebd
G, is the

conjunction of the following clauses:

• ∨d
i=1 x(s)i for all s ∈ S (source axioms),

• x(z)i for all i ∈ [d] (target axioms),

• x(u1)i ∨ x(u2)j ∨ x(v)1 ∨ . . .∨ x(v)d for all v ∈ V
(

G
)

\ S, where u1, u2 are
the two predecessors of v, and all i, j ∈ [d] (pebbling axioms).

The formula Pebd
G is a (2+d)-CNF formula with O

(

d2 ·
∣

∣V
(

G
)∣

∣

)

clauses over

d · |V
(

G
)

| variables. See Figure 1 for an example pebbling contradiction.

It is easy to see that pebbling contradictions are unsatisfiable. Pebd
G can

be refuted in resolution by deriving
∨d

i=1 x(v)i for all v ∈ V
(

G
)

inductively in

topological order and then resolving with the target axioms x(z)i, i ∈ [d]. This
proves the next theorem.

Theorem 4.2 ([9]). For any DAG G with all vertices having indegree 0 or 2,
there is a resolution refutation π : Pebd

G → 0 with L
(

π
)

= O
(

d2 ·
∣

∣V
(

G
)∣

∣

)

and

W
(

π
)

= 2d.

Tree-like resolution is good at refuting pebbling contradictions Peb1
G but is

bad at refuting Pebd
G for d ≥ 2.

Theorem 4.3 ([7]). For any DAG G with all vertices having indegree 0 or 2,
there is a tree-like resolution refutation π of Peb1

G such that L
(

π
)

= O
(∣

∣V
(

G
)∣

∣

)

and Sp
(

π
)

= O(1).

Theorem 4.4 ([9]). For any DAG G with all vertices having indegree 0 or 2,
LT

(

Peb2
G ` 0

)

= 2Ω(Peb(G)).

For refutation clause space, the upper bound Sp
(

Pebd
G ` 0

)

= Peb(G) + C ,
where C is a constant independent of d, is fairly obvious: Just take an optimal

9

z

v w

p q r u

(

x(p)1 ∨ x(p)2
)

∧
(

x(q)1 ∨ x(q)2
)

∧
(

x(r)1 ∨ x(r)2
)

∧
(

x(u)1 ∨ x(u)2
)

∧
(

x(p)1 ∨ x(q)1 ∨ x(v)1 ∨ x(v)2
)

∧
(

x(p)1 ∨ x(q)2 ∨ x(v)1 ∨ x(v)2
)

∧
(

x(p)2 ∨ x(q)1 ∨ x(v)1 ∨ x(v)2
)

∧
(

x(p)2 ∨ x(q)2 ∨ x(v)1 ∨ x(v)2
)

∧
(

x(r)1 ∨ x(u)1 ∨ x(w)1 ∨ x(w)2
)

∧
(

x(r)1 ∨ x(u)2 ∨ x(w)1 ∨ x(w)2
)

∧
(

x(r)2 ∨ x(u)1 ∨ x(w)1 ∨ x(w)2
)

∧
(

x(r)2 ∨ x(u)2 ∨ x(w)1 ∨ x(w)2
)

∧
(

x(v)1 ∨ x(w)1 ∨ x(z)1 ∨ x(z)2
)

∧
(

x(v)1 ∨ x(w)2 ∨ x(z)1 ∨ x(z)2
)

∧
(

x(v)2 ∨ x(w)1 ∨ x(z)1 ∨ x(z)2
)

∧
(

x(v)2 ∨ x(w)2 ∨ x(z)1 ∨ x(z)2
)

∧ x(z)1

∧ x(z)2

Figure 1: The pebbling contradiction Peb
2
T2

for the complete binary tree of height 2.

black pebbling and derive x(v)1 ∨ . . . ∨ x(v)d when vertex v is pebbled. This is
not quite an optimal strategy with respect to clause space, however. We can do
at least a little bit better.

Theorem 4.5 ([23]). Sp
(

Peb2
Th

` 0
)

≤
⌈

2h+1
3

⌉

+ 3 ≈ 2
3Peb(G).

It is not known if this bound is tight, since no corresponding lower bound
on Sp

(

Pebd
G ` 0

)

has been shown for pebbling degree d ≥ 2 in unrestricted
resolution (in terms of the pebbling price or otherwise). The only previously
known lower bound on the refutation clause space of pebbling contradictions is a
bound SpT

(

Pebd
Th

` 0
)

= h+O(1) for the special case of tree-like resolution [23].
Unfortunately, this does not tell us anything about unrestricted resolution. For
tree-like resolution, if the only way of deriving D is from clauses C1, C2 such
that SpT

(

F ` Ci

)

≥ s, then SpT

(

F ` D
)

≥ s + 1 since one of the clauses Ci

must be kept in memory while deriving the other clause. This seems to be very
different from how unrestricted resolution works with respect to space.

However, the resolution refutation of Pebd
Th

in the proof of Theorem 4.5
in [23] is structurally quite similar to the optimal black-white pebbling of Th pre-
sented in [27], and it is hard to see how any resolution refutation could do better.
This raises the suspicion that the black-white pebbling price BW-Peb(Th) ≈ h/2

10

might be a lower bound for Sp
(

Pebd
Th

` 0
)

, and in general that Sp
(

Pebd
G ` 0

)

≥
BW-Peb(G) for any DAG G and d ≥ 2.

This suspicion is somewhat strengthened by the fact that for variable space,
we do have a lower bound for unrestricted resolution.1

Theorem 4.6 ([7]). For any d ∈ N+, VarSp
(

Pebd
G ` 0

)

≥ BW-Peb(G).

If the refutation clause space of pebbling contradictions would be constant,
Theorem 4.6 would imply that as BW-Peb(G) grows larger, the clauses in mem-
ory get wider, and thus weaker. Still it would somehow be possible to derive
a contradiction from a constant number of these clauses of unbounded width.
This appears counterintuitive.

On the other hand, for d = 1 refutations of Peb1
G in constant space have

exactly these “counterintuitive” properties. The resolution refutation of Peb1
G

in [7] is constructed by first downloading the pebbling axiom for the target z
and then propagating falsity downwards by resolving with pebbling axioms for
vertices v ∈ V

(

G
)

\ S in reverse topological order. This finally yields a clause
∨

v∈S x(v)1 ∨ x(z)1 of width |S| + 1, which can be eliminated by resolving one
by one with the source axioms x(v)1 for all v ∈ S and then with the target
axiom x(z)1 to yield the empty clause 0.

If we want to establish a non-constant lower bound on Sp
(

Pebd
G ` 0

)

for
d ≥ 2, we have to pin down why this case is different. Intuitively, the difference is
that with only one variable per vertex, a single CNF clause x(v1)1∨ . . .∨x(vm)1
can express the disjunction of the falsity of an arbitrary number of vertices
v1, . . . , vm, but for d = 2, the straightforward way of expressing that both
variables x(vi)1 and x(vi)2 are false for at least one out of m vertices requires
2m CNF clauses.

A resolution proof refutes a pebbling contradiction by deriving x(v)i and
x(v)i for some variable x(v)i and then resolving to get 0, or, in other words,
by proving that some vertex v is both true and false. Arguing very informally,
if we let black pebbles in a DAG G correspond to the conjunction of truth
∨d

i=1 x(v)i for all black-pebbled vertices v, and white pebbles in G correspond

to the disjunction of falsity
∧d

i=1 x(w)i for all white-pebbled vertices w, the
clauses in a pebbling contradiction encode that truth propagates “upwards”
and falsity “downwards” in Pebd

G exactly in accordance with the rules of the
black-white pebble game on G. In view of this, is does not seem too far-fetched
that a resolution refutation should somehow have to mimic a pebbling of the
DAG on which the formula is based.

If we could make the connection between resolution and pebbling by asso-
ciating truth with black pebbles and falsity with white pebbles, for d ≥ 2 we
would expect that such a connection should yield a lower bound on the refu-
tation space of a pebbling contradiction in terms of the pebbling price of the
underlying graph. This is the guiding intuition behind our results.

5 Modifying the Black-White Pebble Game

To prove a lower bound on the refutation clause space of pebbling contradictions,
we want to interpret resolution derivations in terms of pebble placements on the

1To be precise, the result in [7] is for d = 1, but the proof generalizes easily to any d ∈ N+.

11

corresponding graph. The translation from sets of clauses to sets of pebbles,
which is presented in Section 7, follows the ideas sketched at the end of the
previous section, but the problem is that the pebble configurations induced by
a resolution derivation using this translation do not obey the rules of the black-
white pebble game. Therefore, we need to introduce new rules for the pebble
game and define a slightly altered cost function.

In this section, we present the modified pebble game used for analyzing
resolution derivations. Assuming a technical lemma, we then show that for
binary trees we get essentially the same bound on pebbling price in this new
pebble game as in the black-white pebble game of Definition 3.1. The rather
lengthy proof of the key lemma is given in the next section.

We define our adapted pebble game in two steps. Our first modification is
that in the context of resolution, it appears that a more natural rule for white
pebble removal is that a white pebble can be removed from a vertex when a
black pebble is placed on this same vertex. This does not really change anything.

Definition 5.1 (S-pebble game). Suppose that G is a DAG with sources S
and a single target z. The superpositioned black-white pebble game, or S-pebble
game, is as in Definition 3.1, except that a vertex may have both a black and a
white pebble on it, and the pebbling rules are (1)–(3) in Definition 3.1 and (4’)
below instead of rule (4) in Definition 3.1.

4’. A white pebble on v can be removed only if there is a black pebble on v.

Lemma 5.2. Suppose that S =
{

S0, . . . , Sτ

}

is an S-pebbling of a DAG G. Then

there is an ordinary black-white pebbling P =
{

P0, . . . , Pτ

}

such that Wt ⊆ W ′
t

and Bt ⊆ B′
t for Pt =

(

Bt, Wt

)

and St =
(

B′
t, W

′
t

)

. In particular, cost(P) ≤
cost(S).

The proof is an easy induction over S, yielding a pebbling P as stated in the
lemma. To avoid being overly formalistic, we ignore the fact that the inductive
construction might yield “idle moves” Pt = Pt+1 and moves simultaneously
removing a white pebble and placing a black pebble in P . It is clear that this
is not a problem.

Our second, and far more substantial, modification of the pebble game is
motivated by the fact that when analyzing resolution derivations, we are forced
to deal with “backward” pebbling moves and even “illegal erasures” of white
pebbles. In order to prove lower bounds for a pebble game allowing for such
moves, we have to keep track exactly on which white pebbles have been used to
get a black pebble on a vertex. Loosely put, removing a white pebble from a
vertex v without placing a black pebble on the same vertex should be in order,
provided that all black pebbles placed on vertices above v in the DAG with the
help of the white pebble on v are removed as well.

We need some notation and terminology to define and analyze our new
pebble game. Recall that T denotes a complete binary tree with root z. We
use p, q, r, u, v, w to denote arbitrary vertices in V

(

T
)

and U, V, W to denote

arbitrary subsets of vertices in V
(

T
)

.
For v a vertex of T , we let T v denote the vertices in the complete binary

subtree of T rooted in v, and T v
∗ = T v \{v} the vertices in T v without its root v.

We let P v denote the vertices in the unique path from v to the root z of T and
P v
∗ = P v \

{

v
}

the path without v (see Figure 2).

12

P v
∗

v

T v
∗

T \
(

T v ∪ P v
)

Figure 2: Referencing sets of vertices of a tree T relative to a vertex v ∈ V
`

T
´

.

We say that the vertex v is below u if v ∈ T u
∗ and above u if v ∈ P u

∗ . We say
that u and v are unrelated if v 6∈ T u ∪P u. We let succ(v) denote the immediate
successor of v and pred(v) the immediate predecessors. For a leaf v we have
pred (v) = ∅ and for the root z we have succ(z) = ∅. If succ(u) = succ(v) for
u 6= v, u and v are siblings , and we write v = sibl(u). We blur the distinction
somewhat between a tree T and the vertices in V

(

T
)

and write for instance

T \
(

T v ∪P v
)

instead of V
(

T
)

\
(

T v ∪P v
)

to denote all vertices in the tree
unrelated to v.

The following definition extends the concepts of “below” and “above” from
vertices to sets of vertices.

Definition 5.3. For sets of vertices V, W in a binary tree, we say that W is a
roof over V if there is no w ∈ W such that P w

∗ ∩V 6= ∅ and for each v ∈ V there
is a w ∈ P v ∩W . The set W is below the vertex u if W ⊆ T u

∗ . If P w
∗ ∩W = ∅

for all w ∈ W , the vertex set W is simple.

Next, we present the concept used to keep track of for each black pebble
which white pebbles (if any) this black pebble is dependent on. It might be
easier to parse this rather technical definition by first studying Figure 3 and the
explanations in Example 5.5.

Definition 5.4 (Subconfiguration). If v is a vertex of T and W ⊆ T v
∗ is a

simple set below v, we say that v〈W 〉 is a subconfiguration with a black pebble
on v supported by white pebbles on w ∈ W . The black pebble on v in v〈W 〉
is said to be dependent on the white pebbles in W . We refer to v〈∅〉 as an
independent black pebble.

We define the cover of v〈W 〉 to be cover (v〈W 〉) = T v \ ⋃

w∈W T w. The
boundary of v〈W 〉 is ∂v〈W 〉 = {v}∪W . The interior of v〈W 〉 is int(v〈W 〉) =
cover (v〈W 〉) \ ∂v〈W 〉 and the closure is cl(v〈W 〉) = cover (v〈W 〉)∪ ∂v〈W 〉.

If cover (v〈V 〉) ⊆ cover(u〈U〉), we say that v〈V 〉 is covered by u〈U〉 and
write v〈V 〉 � u〈U〉. If v〈V 〉 � u〈U〉 and v〈V 〉 6= u〈U〉, we write v〈V 〉 ≺ u〈U〉. If
cover (v〈V 〉)∩ cover (u〈U〉) = ∅, the subconfigurations v〈V 〉 and u〈U〉 are non-
overlapping . If cl(v〈V 〉)∩ cl(u〈U〉) = ∅, v〈V 〉 and u〈U〉 are non-touching .

When we specify the set W of white-pebbled vertices in v〈W 〉 by enumerating
the members of W , we will abuse notation somewhat by omitting the curly
brackets inside 〈 and 〉 around this set.

13

v1

v4 v7

v2

v6

v8 v9

v3

v5

v10 v11 v12 v13 v14 v15

Figure 3: The subconfigurations v1〈v2, v6〉, v4〈v8, v9〉 and v7〈∅〉.

Example 5.5. Consider the subconfigurations in Figure 3. For v1〈v2, v6〉 we have

cover (v1〈v2, v6〉) = {v1, v3, v7, v14, v15},
∂v1〈v2, v6〉 = {v1, v2, v6},

int(v1〈v2, v6〉) = {v3, v7, v14, v15},
cl(v1〈v2, v6〉) = {v1, v2, v3, v6, v7, v14, v15}.

Since cl(v4〈v8, v9〉) = {v4, v8, v9}, the subconfigurations v1〈v2, v6〉 and v4〈v8, v9〉
are non-touching. For v7〈∅〉 we have cover(v7〈∅〉) = {v7, v14, v15}, so v7〈∅〉 and
v1〈v2, v6〉 are overlapping, or more precisely it holds that v7〈∅〉 ≺ v1〈v2, v6〉.

Note that � is an order relation and that the minimal elements are sub-
configurations v〈pred (v)〉. We will use the following characterization of �
repeatedly.

Observation 5.6. v〈V 〉 � u〈U〉 if and only if v ∈ T u, P v ∩U = ∅ and V is a
simple roof below v over U ∩T v.

Proof. By Definition 5.4, U and V are simple sets below u and v, respectively,
and v〈V 〉 � u〈U〉 if and only if cover(v〈V 〉) = T v\⋃

w∈V T w ⊆ T u\⋃

w∈U T u =
cover (u〈U〉).

(⇒) Suppose that cover (v〈V 〉) ⊆ cover(u〈U〉). Since v ∈ cover(v〈V 〉) ⊆
cover (u〈U〉), we have v ∈ T u but v 6∈ ⋃

w∈U T w, and this second condition is
equivalent to P v ∩U = ∅. If V is not a roof over U ∩T v, there is a w ∈ U ∩ T v

such that P w ∩V = ∅. For such a w we would have w ∈ cover (v〈V 〉) but
w 6∈ cover (u〈U〉), which contradicts cover(v〈V 〉) ⊆ cover (u〈U〉).

(⇐) Suppose that v ∈ T u and P v ∩U = ∅ for V a simple roof below v over
U ∩ T v, but that cover (v〈V 〉) 6⊆ cover(u〈U〉). By assumption T v ⊆ T u and
v 6∈ ⋃

w∈U T w, so v ∈ cover(u〈U〉). Thus there must exist a v′ ∈ T v
∗ such that

v′ ∈ cover (v〈V 〉) \ cover(u〈U〉) and succ(v′) ∈ cover (u〈U〉). This implies that
v′ ∈ U ∩T v, but the fact that v′ ∈ cover (v〈V 〉) shows that P v′ ∩V = ∅. That
is, V is not a roof over U ∩T v. Contradiction.

Our modified black-white pebble game is defined in terms of subconfigu-
rations of black and white vertices.

Definition 5.7 (Labelled black-white pebble game). For T a binary tree
with root z, a labelled black-white pebbling , or L-pebbling , of T is a sequence
L =

{

L0 = {∅}, L1, . . . , Lτ

}

of sets of subconfigurations Lt such that Lt+1 is
obtained from Lt by one of the following rules:

14

Introduction Lt+1 = Lt ∪
{

v〈pred (v)〉
}

for v〈pred (v)〉 6∈ Lt.

Merger Lt+1 = Lt ∪
{

u〈(U ∪V) \ {v}〉
}

for u〈U〉, v〈V 〉 ∈ Lt such that v ∈ U .

Reversal Lt+1 = Lt ∪
{

v〈V 〉
}

if v〈V 〉 ≺ u〈U〉 for some u〈U〉 ∈ Lt.

Erasure Lt+1 = Lt \
{

v〈V 〉
}

for v〈V 〉 ∈ Lt.

A legal L-pebbling of T is an L-pebbling L such that Lτ =
{

z〈∅〉
}

.
We write u〈U〉 = merge(v〈V 〉, w〈W 〉) if u〈U〉 = v〈(V ∪W)\{w}〉 for w ∈ V ,

and refer to this as a merger on w. We let Bl
(

Lt

)

=
{

v ∈ V
(

T
)

| ∃ v〈W 〉 ∈ Lt

}

denote the black pebbles and Wh
(

Lt

)

=
{

w ∈ V
(

T
)

| ∃v〈W 〉 ∈ Lt s.t. w ∈ W
}

the white pebbles in Lt.

In the L-pebble game, one can remove a white pebble without placing a
black pebble on the same vertex, but if so the rule for erasure makes sure that
any black pebble dependent on the removed white pebble is removed as well. A
normal removal of a white pebble from w according to rule (4’) of the S-peb-
ble game corresponds to merging v〈V 〉 and w〈W 〉 into v〈(V ∪W) \ {w}〉 and
then erasing v〈V 〉 and w〈W 〉. Note that if u〈U〉 = merge(v〈V 〉, w〈W 〉), then
cover (u〈U〉) = cover (v〈V 〉) .∪ cover (w〈W 〉), where

.∪ denotes disjoint union.
The “backward” pebbling moves mentioned in the beginning of this section

are moves according to the reversal rule. The intuition for cover (v〈W 〉) is that
this is the set of vertices already taken care of by v〈W 〉, in the sense that if the
rest of the pebbling is performed optimally no black pebbles will be placed on
cover (v〈W 〉). For the relation �, the intuition is that if v〈V 〉 � u〈U〉, any legal
pebbling reaching u〈U〉 should be at least as expensive as an optimal pebbling
reaching v〈V 〉. Arguing informally, it seems plausible that making reversals can
only weaken pebble configurations, and so the rule for reversal should not affect
the pebbling cost.

We have not yet defined L-pebbling cost, however. It turns out that to make
the proof of our lower bound for refutation space go through, we cannot define
configuration cost as

∣

∣Bl
(

Lt

)

∪Wh
(

Lt

)∣

∣. We have to be slightly more careful.

Definition 5.8 (L-pebbling price). The cost of a set of subconfigurations L
is defined as cost(L) = maxB

{
∣

∣B ∪Wh
(

L
)
∣

∣

}

where B ⊆ Bl
(

L
)

ranges over all
subsets such that if u, v ∈ B, u 6= v, either u and v are unrelated or, assuming
that u ∈ P v

∗ , there is a white pebble w ∈ Wh
(

L
)

∩
(

P v \ P u
)

in between u

and v. We say that such a set B ⊆ Bl
(

L
)

is an admissible choice for L.

The cost of an L-pebbling L =
{

L0, . . . , Lτ

}

is maxt∈[τ]

{

cost(Lt)
}

. The
L-pebbling price L-Peb(v〈W 〉) of a subconfiguration v〈W 〉 is the minimum cost
of any L-pebbling such that Lτ = {v〈W 〉}, and the L-pebbling price of T is
L-Peb(T) = L-Peb(z〈∅〉).

Although the restriction on B ⊆ Bl
(

Lt

)

in Definition 5.8 might seem very
technical, it can be given some intuitive motivation. At all times when there are
two black pebbles on the same path, except for when the immediate successor
of a black-pebbled vertex has just been black-pebbled, we would expect there
to be a white pebble in between them supporting the uppermost black pebble.
Otherwise it seems that one of these black pebbles must be redundant. For
example, the black pebble on v7 in Figure 3 appears redundant in view of the
black pebble on v1.

15

We want to prove that the L-pebbling price of a binary tree T is asymp-
totically at least as large as the black-white pebbling price BW-Peb(T). The
main obstacle in the proof is how to handle the reversal moves. It might seem
intuitively clear that an optimal L-pebbling strategy does not need any reversal
moves, but unfortunately, the proof of this turns out to be rather involved.

What we need to get rid of reversal moves is Lemma 5.9 stated below.
We spend the rest of this section demonstrating how the desired lower bound
L-Peb(T) = Ω

(

BW-Peb(T)
)

follows from this assumption, postponing a proof
of Lemma 5.9 until the next section.

Lemma 5.9. Suppose that L is an L-pebbling of a complete binary tree T . Then
there is an L-pebbling L′ of T without reversals such that cost(L′) = O

(

cost(L)
)

.

It is not too hard to see that taking a legal reversal-free L-pebbling L =
{

L0, . . . , Lτ

}

of T and looking at
{

Bl
(

Lt

)

,Wh
(

Lt

)}

for 1 ≤ t ≤ τ , we get a
legal S-pebbling of T in at most the same cost. We prove this formally in the
next two lemmas.

Lemma 5.10. Suppose that L is a reversal-free L-pebbling of T . Then there is
a reversal-free L-pebbling L′ of T with cost(L′) ≤ cost(L) such that every v〈V 〉
in L′ occurs during one contiguous time interval, and every v〈V 〉 in L′ except
z〈∅〉 is used in exactly one merger, after which it is erased.

Proof. We construct L′ by backward induction over L =
{

L0, . . . , Lτ

}

. Let

L′
τ = Lτ =

{

z〈∅〉
}

. Our induction hypothesis is that L′
t ⊆ Lt for L′

t consisting
of non-overlapping subconfigurations. The backward induction step from t + 1
to t is a case analysis over the moves Lt Lt+1 in L.

Introduction Lt+1 = Lt ∪
{

v〈pred(v)〉
}

: Set L′
t = L′

t+1 \
{

v〈pred (v)〉
}

. Note
that we might have L′

t = L′
t+1 if v〈pred(v)〉 6∈ L′

t+1. In any case, the
induction hypothesis holds for L′

t.

Merger Lt+1 = Lt ∪
{

v〈(V ∪W) \ {w}〉
}

: If v〈(V ∪W) \ {w}〉 6∈ L′
t+1, set

L′
t = L′

t+1. The induction hypothesis trivially remains true. Otherwise,
set L′

t =
(

L′
t+1 ∪

{

v〈V 〉, w〈W 〉
})

\
{

v〈(V ∪W) \ {w}〉
}

. By the induction
hypothesis we have v〈V 〉, w〈W 〉 6∈ L′

t+1, since L′
t+1 is non-overlapping

and v〈V 〉 and w〈W 〉 are covered by merge(v〈V 〉, w〈W 〉) by Definitions 5.4
and 5.7. For the same reason L′

t must be non-overlapping. We can get from
L′

t to L′
t+1 in three steps L′

t+1/3 = L′
t ∪

{

v〈(V ∪W) \ {w}〉
}

, L′
t+2/3 =

L′
t+1/3 \

{

v〈V 〉
}

, L′
t+1 = L′

t+2/3 \
{

w〈W 〉
}

by first merging v〈V 〉 and

w〈W 〉, then erasing v〈V 〉 and finally erasing w〈W 〉.

Erasure Lt+1 = Lt \
{

v〈V 〉
}

: All erasure moves in L′ are taken care of in
connection with mergers, so set L′

t = L′
t+1.

We claim that all moves in L′ constructed in this way are legal. If u〈U〉 ∈ L′
t,

then u〈U〉 ∈ Lt and for u〈U〉 6= u〈pred(u)〉 we know that this subconfiguration
must have been derived at a time t′ ≤ t in L by a merger of v〈V 〉, w〈W 〉 ≺ u〈U〉.
Thus the backward construction of L′ will yield a correct derivation of u〈U〉.

Also, any subconfiguration v〈V 〉 occurs only in one merger, after which it
is immediately erased. At all times t′ > t after which v〈V 〉 was erased from L′

directly after the first merger move, there is a u〈U〉 � v〈V 〉 in L′
t′ . Since all L′

t′

16

are non-overlapping, the subconfiguration v〈V 〉 never appears again (this can
easily be formalized by a forward induction argument).

Finally, by construction L′
t ⊆ Lt, and for the merger moves in L′ we have

L′
t+1/3, L

′
t+2/3 ⊆ Lt+1. This shows that for all L′ ∈ L′ and all admissible choices

B ⊆ Bl
(

L′
)

according to Definition 5.8 such that cost(L′) =
∣

∣B ∪Wh
(

L′
)∣

∣, the
set B is also an admissible choice for a corresponding L ∈ L, so cost(L′) ≤
cost(L), and it follows that cost(L′) ≤ cost(L).

Lemma 5.11. Suppose that L is a reversal-free L-pebbling of a complete binary
tree T . Then there is an S-pebbling S of T such that cost(S) ≤ cost(L).

Proof. By Lemma 5.10, without loss of generality we can assume that each v〈V 〉
is erased from L precisely after it has been used in a merger, and that v〈V 〉 is
erased before w〈W 〉 when both subconfigurations are eliminated after a move
v〈(V ∪W) \ {w}〉 = merge(v〈V 〉, w〈W 〉), so that the white pebble on w is re-
moved before the black pebble on w. Also, by the construction in Lemma 5.10 it
holds that if the subconfigurations v

〈

V
〉

, u
〈

U
〉

∈ Lt are distinct but overlapping,

then they are ordered, say v
〈

V
〉

≺ u
〈

U
〉

, and u
〈

U
〉

has just been derived in one

step from v
〈

V
〉

by a merger. Because of this “non-overlappingness” property,

we have cost(Lt) =
∣

∣Bl
(

Lt

)

∪Wh
(

Lt

)∣

∣ for all Lt ∈ L.
It follows that we are done if we can construct an S-pebbling S with moves

matching the moves in L exactly. For such an S it must hold that cost(S) ≤
cost(L), since there will be no pebbles that Definition 5.8 does not charge L but
that S has to pay for.

Let S0 = (∅, ∅) and construct St+1 inductively by looking at the moves in
Lt Lt+1.

Introduction Lt+1 = Lt ∪
{

v〈pred (v)〉
}

: Place white pebbles on pred(v) and
then a black pebble on v in S.

Merger Lt+1 = Lt ∪
{

v〈(V ∪W) \ {w}〉
}

for v〈V 〉, w〈W 〉 ∈ Lt: No change
of pebbles in S, but note that if v〈V 〉 and w〈W 〉 are now removed, the
change in pebbles on T in L is exactly the same as after an application of
rule (4’) on v.

Erasure Lt+1 = Lt \
{

v〈V 〉
}

: This is the only nontrivial case. In general,
an erasure move in an L-pebbling can remove an arbitrary number of
white pebbles without any black pebbles being even close to these white
pebbles, and there is no way we can match such a move in an S-peb-
bling. But since we can assume that L is an L-pebbling as described in
Lemma 5.10, we know that v〈V 〉 has just been used in a merger. It follows
that the only pebble that disappears when going from

{

Bl
(

Lt

)

,Wh
(

Lt

)}

to
{

Bl
(

Lt+1

)

,Wh
(

Lt+1

)}

is either the black pebble on v, which is always
a legal removal, or some white pebble on w ∈ V which has just been
eliminated in the merger move by a black pebble, and this is a legal removal
according to rule (4’).

We see that S generated in this way is a legal S-pebbling, if we modify each
introduction step into three pebble placement moves.

Putting it all together, we get that the L-pebbling price is asymptotically at
least as large as the black-white pebbling price.

17

Theorem 5.12. For T a complete binary tree, L-Peb(T) = Ω
(

BW-Peb(T)
)

.

Proof. Let L be an arbitrary L-pebbling of T . Assuming Lemma 5.9, there exists
a legal L-pebbling L′ of T without reversal moves with cost(L′) = O

(

cost(L)
)

.
By Lemma 5.11, we can construct an S-pebbling S of T for which cost(S) ≤
cost(L′). Finally, using Lemma 5.2 we get a plain old black-white pebbling P
of T such that cost(P) ≤ cost(S). The theorem follows.

6 Getting Rid of Reversal Pebbling Moves

We now prove Lemma 5.9, i.e., that the reversal rule can be eliminated from the
L-pebble game without increasing the pebbling price by more than a constant
factor. This provides the missing link in the proof of Theorem 5.12.

Although this section is very technical, the structure of the argument is
quite straightforward. Before plunging into the proof, we try to give an informal
overview of where we are going.

1. First we show that without loss of generality one can assume that an opti-
mal L-pebbling L is non-overlapping , by which we mean that all subcon-
figurations in Lt ∈ L are non-overlapping with exception for those involved
in the current merger or reversal move (Definition 6.6 and Lemma 6.9).

2. Then we observe that if we restrict an L-pebbling to a subset of the ver-
tices in T in the natural way, we get a valid L-pebbling on this subset.
We refer to this restriction operation as projection (Definition 6.7 and
Proposition 6.10).

3. This leads to the idea of trying to get rid of reversals in the following way:
When the cover of a set of subconfigurations L shrinks as the result of a
reversal move, we can eliminate this reversal by projecting the L-pebbling
moves made so far on what remains after the reversal move. If we do this
by forward induction for all reversal moves in L, we get a reversal-free
L-pebbling L′.

4. The problem is that these projection operations do not preserve pebbling
cost—the pebbling L may contain reversal moves such that the projected
pebbling L′ becomes more expensive than L. We identify which kind
of reversals in L spoil our construction of a reversal-free and cheap peb-
bling L′ by projection. Allowing some temporary wishful thinking, we
then establish that if such wasteful reversals could somehow be avoided,
the construction sketched above would work (Definition 6.12, Lemma 6.13
and Corollary 6.14).

5. Finally, we prove that wasteful reversals can be eliminated. If a pebbling
L makes a wasteful reversal, we can replace such a move by a stronger,
non-wasteful reversal without increasing the total pebbling cost by more
than a constant factor (Lemma 6.19).

Summing this up, Lemma 5.9 follows.
The rest of this section contains the formal proof of the lemma. Although

the technical machinery might appear cumbersome, we believe that the proof

18

should be easier to follow if the reader tries to digest what the definitions mean
and what is proven about them simply by drawing a binary tree of suitable
height and working out small examples in this binary tree while reading.

Below,we assume without loss of generality that no obviously redundant
pebbling moves are performed, in the sense that if a subconfiguration v〈V 〉 is
derived at time t, then this subconfiguration is not just thrown away but is used
at some time t′ > t further on in the pebbling before being erased. We state
this formally.

Observation 6.1. Let L =
{

L0, . . . , Lτ

}

be an arbitrary L-pebbling. Then there

is a pebbling L′ =
{

L′
0, . . . , L

′
τ ′

}

such that cost(L′) ≤ cost(L), L′
τ ′ = Lτ and if

v〈V 〉 ∈ L′
t \ L′

t−1, then v〈V 〉 is used in a merger or reversal move before being
erased from L′ at some time t′ > t.

Proof sketch. L′ can be constructed by backward induction over L in the same
manner as in the proof of Lemma 5.10 on page 16.

We start by extending Definition 5.4 to sets of subconfigurations.

Definition 6.2 (L-configuration). An L-configuration is a set of subconfigu-
rations L =

{

vi〈Vi〉 | i ∈ [m]
}

.
We define cover(L) =

⋃

vi〈Vi〉∈L
cover (vi〈Vi〉). We say that L1 is covered by

L2 and write L1 � L2 if cover (L1) ⊆ cover (L2). If cover(L1) = cover(L2), we
say that L1 and L2 coincide and write L1 ∼ L2. L is non-overlapping if all
distinct v〈V 〉, u〈U〉 ∈ L are pairwise non-overlapping and non-touching if all
distinct v〈V 〉, u〈U〉 ∈ L are pairwise non-touching. Two L-configurations L1, L2

are mutually non-overlapping or mutually non-touching if all v〈V 〉 ∈ L1 and
u〈U〉 ∈ L2 are pairwise non-overlapping or non-touching, respectively.

For an arbitrary set of vertices V ⊆ V
(

T
)

, we define the canonical represen-
tation canon(V) of V to be the unique non-touching L′ such that cover (L′) = V .
For L an arbitrary L-configuration, we define canon(L) to be the canonical rep-
resentation of cover (L). For L with canon(L) = L′, the boundary of L is defined
as ∂L =

⋃

v〈V 〉∈L′ ∂v〈V 〉, the interior is int(L) =
⋃

v〈V 〉∈L′ int(v〈V 〉) and the

closure is cl(L) =
⋃

v〈V 〉∈L′ cl(v〈V 〉).
Example 6.3. Returning to Figure 3 on page 14, if we look at the L-configuration
L =

{

v1〈v2, v6〉, v4〈v8, v9〉, v7〈∅〉
}

we have cover(L) = {v1, v3, v4, v7, v14, v15}.
Since v7〈∅〉 is covered by v1〈v2, v6〉 and the subconfigurations v1〈v2, v6〉 and
v4〈v8, v9〉 are non-touching, we get the canonical representation simpy by leav-
ing out v7〈∅〉, i.e., canon(L) =

{

v1〈v2, v6〉, v4〈v8, v9〉
}

. Using this canonical
representation of L, we see that

∂L = {v1, v2, v4, v6, v8, v9},
int(L) = {v3, v7, v14, v15},
cl(L) = {v1, v2, v3, v4, v6, v7, v8, v9, v14, v15}.

The L-configuration L is overlapping because of v7〈∅〉 and v1〈v2, v6〉, but for
instance L1 =

{

v1〈v2, v6〉, v7〈∅〉
}

and L2 =
{

v4〈v8, v9〉
}

are mutually non-
touching.

An alternative constructive definition of canonical representation is given
in the following observation. We leave it to the reader to verify that the two
descriptions of canonical representation are indeed equivalent.

19

Observation 6.4. The canonical representation of V can be constructed as
follows: for each v ∈ V such that succ(v) 6∈ V or v = z, add the subconfigu-
ration v〈W 〉, where W ⊆ T v

∗ is the maximal set such that for all w ∈ W it holds
that P w

∗ \ P v
∗ ⊆ V but w 6∈ V .

We allow a mild abuse of notation by omitting curly brackets around single-
ton L-configurations, writing for instance v〈V 〉 � L, u〈U〉 = L and w〈W 〉 ∪L
instead of

{

v〈V 〉
}

� L,
{

u〈U〉
}

= L and
{

w〈W 〉
}

∪L.
As a final preliminary before moving on to part 1 in the proof outline above,

we collect some properties of the L-pebbling cost function of Definition 5.8.

Proposition 6.5. Suppose that L, L1, L2 are arbitrary L-configurations.

1. If L1 ⊆ L2 then cost(L1) ≤ cost(L2).

2. 1
2 (cost(L1) + cost(L2)) ≤ cost(L1 ∪L2) ≤ 2 (cost(L1) + cost(L2)).

3. If L is non-overlapping, cost(L) =
∣

∣Bl
(

L
)

∪Wh
(

L
)∣

∣, and if in addition L
is non-touching, cost(L) =

∣

∣Bl
(

L
)∣

∣ +
∣

∣Wh
(

L
)∣

∣ =
∣

∣∂L
∣

∣.

4. If L1 and L2 are mutually non-touching, cost(L1∪L2)=cost(L1)+cost(L2).

5. For all L, cost(L) ≥
∣

∣∂L
∣

∣. If L is non-touching equality holds, and if L is
non-overlapping but touching strict inequality holds.

6. If L′
i = canon(Li) for i = 1, 2, then cost(L′

1 ∪L′
2) ≤ cost(L1 ∪L2).

7. If L′ = canon(L), then cost(L∪L′) = cost(L), and there is an L-pebbling
from L to L′ which does not cost more than L.

The reason we need Proposition 6.5 is that the cost function in the L-pebble
game does not charge for all pebbles in Bl

(

L
)

∪Wh
(

L
)

. Because of this, the
pebbling cost might change in unintuitive ways when L-configurations are mod-
ified. Informally, what Proposition 6.5 says is that the changes in cost cannot
be too unintuitive. All claims in the proposition follow from Definitions 5.7, 5.8
and 6.2. Before proving the proposition, we try to explain what the different
parts are used for.

Part 1 is the fundamental observation that the pebbling cost can never de-
crease when new subconfigurations are added. The L-pebbling cost function is
not an additive measure, but part 2 says that there are linear upper and lower
bounds on cost(L1 ∪L2) in terms of cost(L1) and cost(L2).

For non-overlapping and non-touching L-configurations, L-pebbling cost be-
haves as ordinary ordinary black-white pebbling cost, in that the cost of a union
of subconfigurations is the sum of the individual costs adjusted for overlapping
pebbles. This is parts 3 and 4.

Parts 5 and 6 tell us that for any given set of vertices, the cheapest way of
covering this set is to use canonical L-configurations, and if L is not canonical,
by part 7 it does not cost anything extra to make L canonical.

Proof of Proposition 6.5. Part 1 is obvious. If L1 ⊆ L2, any admissible choice
for B ⊆ Bl

(

L1

)

in the sense of Definition 5.8 is also an admissible choice for
the black pebbles in L2. The first inequality in part 2 follows from part 1, since
cost(L1 ∪L2) ≥ max

{

cost(L1), cost(L2)
}

≥ 1
2 (cost(L1) + cost(L2)).

20

The second inequality in part 2 is more complicated. Let B ⊆ Bl
(

L1 ∪L2

)

be an admissible choice such that cost(L1 ∪L2) =
∣

∣B ∪Wh
(

L1 ∪L2

)∣

∣. Set

Bi = B ∩Bl
(

Li

)

for i = 1, 2. If B1 and B2 were admissible choices for L1 and
L2 respectively, we would have cost(L1) + cost(L2) ≥ cost(L1 ∪L2), but this
need not be the case in general. All pairs of unrelated vertices u, v ∈ B are still
admissible choices for L1 and L2, but there may exist u, v ∈ B1 with u ∈ P v

∗ such
that there is a w ∈ Wh

(

L2

)

in between u and v but
(

P v \ P u
)

∩Wh
(

L1

)

= ∅.
If so, we cannot charge for both u and v in L1.

Consider a closest pair of such vertices u, v ∈ B1, i.e., such that u ∈ P v
∗ and

(

P v\P u
)

∩Wh
(

L2

)

6= ∅ but
(

P v\P u
)

∩Wh
(

L1

)

= ∅, and in addition there is no

black pebble in L1 in between u and v, or formally
(

P v
∗ \P u

)

∩Bl
(

L1

)

= ∅. Mark

u to be removed from B1 and associate u with a vertex wu ∈
(

P v\P u
)

∩Wh
(

L2

)

which made u admissible for L1 ∪L2. Going through all closest pairs u, v ∈ B1,
u ∈ P v

∗ , in this way and throwing away all vertices u marked for removal, we
get an admissible choice B′

1 ⊆ B1 for L1, and each u thrown away is associated
with a distinct wu ∈ Wh

(

L2

)

\Wh
(

L1

)

. Then we do the same procedure for L2.
We see that for each black pebble u eliminated in B1 or B2, there is a distinct
white pebble wu ∈ Wh

(

L1 ∪L2

)

that contributes to the cost of L1 or L2. Hence,
cost(L1) + cost(L2) ≥ 1

2cost(L1 ∪L2).

For part 3, if L is non-overlapping it is easy to verify that B = Bl
(

L
)

is an
admissible choice in Definition 5.8, and if in addition L is non-touching it holds
that ∂L = Bl

(

L
) .∪ Wh

(

L
)

.

In part 4, let Bi be any admissible choice for Li. Then B1 ∪B2 is admissi-
ble for L1 ∪L2 and

(

Bl
(

L1

)

∪Wh
(

L1

))

∩
(

Bl
(

L2

)

∪Wh
(

L2

))

= ∅ by the mutual
non-touchingness, so cost(L1 ∪L2) ≥ cost(L1) + cost(L2). Also, for any admis-
sible choice B ⊆ Bl

(

L1 ∪L2

)

it holds that Bi = B ∩Bl
(

Li

)

is an admissible
choice for Li because of mutual non-overlappingness, and thus cost(L1 ∪L2) ≤
cost(L1) + cost(L2).

For L′ = canon(L) it holds that Bl
(

L′
)

⊆ Bl
(

L
)

and Wh
(

L′
)

⊆ Wh
(

L
)

, and

Bl
(

L′
)

is always an admissible choice for L in Definition 5.8. If L is non-over-
lapping but touching the inclusions above are strict. Using part 3, we get part 5.
Part 6 follows in the same way by observing that Bl

(

L′
1 ∪L′

2

)

⊆ Bl
(

L1 ∪L2

)

and Wh
(

L′
1 ∪L′

2

)

⊆ Wh
(

L1 ∪L2

)

.

For part 7, Bl
(

L∪L′
)

= Bl
(

L
)

and Wh
(

L∪L′
)

= Wh
(

L
)

, which shows that
the cost is the same. To get the claim about pebbling, suppose that v〈V 〉, u〈U〉
are overlapping for v ∈ T u but v〈V 〉 6� u〈U〉. Then we can derive w〈W 〉 with
cover (w〈W 〉) = cover(v〈V 〉)∪ cover(u〈U〉) and substitute it for v〈V 〉 and u〈U〉
at no extra cost by first deriving ui〈V ∩T ui

∗ 〉 for all ui ∈ U ∩ int(v〈V 〉) from v〈V 〉
by reversals, and then merging all ui〈V ∩T ui

∗ 〉 in turn with u〈U〉. The resulting
L-configuration L∪

{

ui〈V ∩T ui
∗ 〉

}

∪w〈W 〉 costs no more than L, since the only
change is that already white-pebbled vertices are also black-pebbled. Finally,
erase u〈U〉, v〈V 〉 and all ui〈V ∩T ui

∗ 〉. The claim follows by induction.

We define non-overlapping pebblings as L-pebblings where each introduction
is immediately followed by a merger when possible, each merger is immediately
followed by erasures of the merged subconfigurations, and all reversals from a
subconfiguration u〈U〉 are performed in sequence after which u〈U〉 is erased.
We refer to these merger-and-erasures and reversals-and-erasure moves as ex-
pansions and implosions , respectively.

21

Definition 6.6 (Non-overlapping pebbling). A non-overlapping L-pebbling
L is a sequence of the following types of moves.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉, for v〈pred (v)〉 6� Lt and Lt non-touching.

Expansion Lt+3 =
(

Lt ∪merge(u〈U〉, v〈V 〉)
)

\
{

u〈U〉, v〈V 〉
}

for u〈U〉, v〈V 〉 ∈
Lt and Lt non-overlapping.

Implosion Lt+m+1 =
(

Lt \ u〈U〉
)

∪M for Lt and M =
{

vi〈Vi〉 | i ∈ [m]
}

non-
touching, and M � u〈U〉 ∈ Lt.

We say that u〈U〉 M is a nontrivial implosion if M ≺ u〈U〉.

Note that after introduction and expansion the resulting L-configuration is
non-overlapping, and after implosion Lt+m+1 is non-touching.

We want to prove that without loss of generality we can assume L-pebblings
to be non-overlapping. The notation in the proof of this fact is simplified by
introducing projections .

Definition 6.7 (Projection). Let u〈U〉, v〈V 〉 be arbitrary subconfigurations,
L an arbitrary L-configuration, and M an arbitrary non-touching L-configura-
tion.

If u〈U〉 and v〈V 〉 are overlapping, the projection of u〈U〉 on v〈V 〉 is defined
as projv〈V 〉(u〈U〉) = canon(cover (u〈U〉)∩ cover(v〈V 〉)), i.e., the unique subcon-
figuration w〈W 〉 such that cover (w〈W 〉) = cover (u〈U〉)∩ cover(v〈V 〉). If u〈U〉
and v〈V 〉 are non-overlapping, we define projv〈V 〉(u〈U〉) = ∅.

The projection of u〈U〉 on M is projM(u〈U〉) =
⋃

v〈V 〉∈M
projv〈V 〉(u〈U〉), and

projM(L) =
⋃

u〈U〉∈L
projM(u〈U〉).

In order to grasp this definition, it might be helpful to study the example in
Figure 4. Here and in the following, we adopt the convention that projections
resulting in ∅ are implicitly eliminated from all L-configurations.

The next observation says that any L-configuration L can be written as a
disjoint union of the sets of subconfigurations of L covered by each subcon-
figuration in canon(L), and that the cost of L is the sum of the costs of the
sets in this disjoint union. The proof is immediate from Definition 6.7 and
Proposition 6.5, parts 4 and 5.

Observation 6.8. Let L′ = canon(L). Then it holds that L is a disjoint
union of the sets projv〈V 〉(L) =

{

u〈U〉 | v〈V 〉 � u〈U〉 ∈ L
}

for all v〈V 〉 ∈ L′.
Also, cost(L) =

∑

v〈V 〉∈L′ cost(projv〈V 〉(L)), and for all v〈V 〉 ∈ L′ it holds that

cost(v〈V 〉) ≤ cost(projv〈V 〉(L)).

Using Proposition 6.5, Definition 6.7 and Observation 6.8, we can prove that
for every overlapping L-pebbling we can find a non-overlapping pebbling which
is at least as good and at least as cheap.

Lemma 6.9. Suppose that L is an arbitrary legal L-pebbling of T . Then there
is a non-overlapping L-pebbling L′ of T such that cost

(

L′
)

≤ cost
(

L
)

.

Proof. Given L =
{

L0, . . . , Lτ

}

, we create the “backbone” L′ =
{

L′
0, . . . , L

′
τ

}

of a non-overlapping pebbling by setting L′
t = canon(Lt). By Proposition 6.5,

part 5, cost(L′
t) ≤ cost(Lt), so we are done if we can fill in the holes in the

22

(a) The L-configuration L. (b) The L-configuration M.

(c) The projection projM(L).

Figure 4: Example L-configurations L and M and projected L-configuration projM(L).

transitions L′
t L′

t+1 in cost max
{

cost(Lt), cost(Lt+1)
}

using the non-over-
lapping moves of Definition 6.6. This is basically just an exercise in applying
Proposition 6.5. Consider the moves Lt Lt+1 in L.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉: If v〈pred(v)〉 � L′
t, set L′

t+1 = L′
t.

Otherwise, introduce v〈pred (v)〉 and canonize by expanding (at most three
times) to get L′

t+1 = canon(Lt+1) in cost at most cost(Lt+1) by parts 6
and 7 of Proposition 6.5 (since canon(v〈pred (v)〉) = v〈pred(v)〉).

Merger Lt+1 = Lt ∪merge(u〈U〉, v〈V 〉) for u〈U〉, v〈V 〉 ∈ Lt: Lt+1 ∼ Lt, so set
L′

t+1 = L′
t = canon(Lt+1).

Reversal Lt+1 = Lt ∪
{

v〈V 〉
}

for v〈V 〉 ≺ u〈U〉 ∈ Lt: Lt+1 ∼ Lt, so set
L′

t+1 = L′
t = canon(Lt+1).

Erasure Lt+1 = Lt \
{

v〈V 〉
}

for v〈V 〉 ∈ Lt: If v〈V 〉 � Lt+1 we have Lt+1 ∼ Lt

and can set L′
t+1 = L′

t, so assume that v〈V 〉 6� Lt+1.

Since L′
t is non-touching, there is a u〈U〉 ∈ L′

t such that v〈V 〉 � u〈U〉.
It follows from Observation 6.8 that for w〈W 〉 ∈ L′

t, w〈W 〉 6= u〈U〉, we
have projw〈W 〉(Lt+1) = projw〈W 〉(Lt). Thus, letting Lu

i = proju〈U〉(Li) for
i = t, t + 1, by Proposition 6.5, part 4, it is sufficient to show that we can
implode u〈U〉 = canon(Lu

t) = canon(Lu
t+1 ∪ v〈V 〉) into M = canon(Lu

t+1)
in cost at most max

{

cost(Lu
t+1 ∪ v〈V 〉), cost(Lu

t+1)
}

= cost(Lu
t+1 ∪ v〈V 〉).

By part 1 of the same proposition, it is enough to check that it holds
that cost(M∪ u〈U〉) ≤ cost(Lu

t+1 ∪ v〈V 〉). But this is just part 6 of the
proposition.

Eliminating “idle moves” L′
t+1 = L′

t, we see that we get a non-overlapping
pebbling in accordance with Definition 6.6.

23

Lemma 6.9 tells us that as far as pebbling cost is concerned, without loss
of generality we may assume that an L-pebbling L that reaches z〈∅〉 is non-
overlapping. This completes part 1 in the proof of Lemma 5.9 sketched at the
beginning of this section.

If L =
{

L0, . . . , Lτ

}

is a non-overlapping pebbling ending in an implosion
u〈U〉 M, it seems natural to try to replace the moves in L leading to u〈U〉
by a reversal-free pebbling reaching M � u〈U〉. Since u〈U〉 and Lτ−1 \u〈U〉 are
mutually non-touching by definition, this substitution should not affect the cost
of the pebbling outside cl(u〈U〉). Intuitively, one natural candidate for such a
substitution is the projection of L on M. We next show that projecting any
L-pebbling on any non-touching L-configuration M, we get a legal L-pebbling
inside cl(M), modulo some insignificant technical details easily taken care of.
This is part 2 in our proof outline.

Proposition 6.10. For L =
{

L0, . . . , Lτ

}

an arbitrary L-pebbling and M a

non-touching L-configuration, let projM(L) =
{

L′
0, . . . , L

′
τ

}

for L′
t = projM(Lt).

Then projM(L) is a legal L-pebbling if we eliminate idle moves L′
t+1 = L′

t and
take care of that one reversal or erasure Lt Lt+1 in L may correspond to a
sequence of reversals or erasures respectively in projM(L). Legalizing projM(L)
by performing these moves one by one does not affect the pebbling cost. Also, if
L does not contain any reversals, then neither does projM(L).

Proof. By induction over the pebbling moves Lt Lt+1 in L. Case analysis:

Introduction If v〈pred (v)〉 6� M the projection does not change, and otherwise
adding v〈pred(v)〉 = projM(v〈pred (v)〉) is a legal introduction move.

Merger Suppose that Lt+1 = Lt ∪
{

u〈(U ∪V) \ {v}〉
}

for u〈U〉, v〈V 〉 ∈ Lt

such that v ∈ U . For all w〈W 〉 ∈ M such that v 6∈ int(w〈W 〉), it is
straightforward, if tediuos, to verify that u〈(U ∪V) \ {v}〉 projects the
same subconfigurations on w〈W 〉 as do u〈U〉 and v〈V 〉 together. Suppose
that v ∈ int(w〈W 〉). Since M is non-touching there is at most one such
w〈W 〉 ∈ M, and projw〈W 〉(u〈(U ∪V) \ {v}〉) can be verified to be a legal
merger of projw〈W 〉(u〈U〉) and projw〈W 〉(v〈V 〉).

Reversal If v〈V 〉 � u〈U〉 it holds that projM(v〈V 〉) � projM(u〈U〉), so adding
projM(v〈V 〉) is a sequence of legal reversals. As this sequence of rever-
sals is performed, the pebbling cost increases monotonously by part 1 of
Proposition 6.5.

Erasure If Lt+1 = Lt \
{

v〈V 〉
}

for v〈V 〉 ∈ Lt, removing projM(v〈V 〉) from L′
t

is a sequence of legal erasures. As this sequence of erasures is performed,
the pebbling cost decreases monotonously by part 1 of Proposition 6.5.

We see that the cost of this pebbling is maxt∈[τ]

{

projM(Lt)
}

, and if L is
reversal-free then so is projM(L), since every move in L is matched by the same
kind of moves in projM(L).

In view of Proposition 6.10, the transformation from a non-overlapping peb-
bling L to a reversal-free pebbling L′ seems obvious: by forward induction over
the moves in L, replace each implosion u〈U〉 M at time t by a local projection
of

{

L0, . . . , Lt

}

on M. Since by induction there are no reversals before time t,
the projection must be a reversal-free pebbling inside cl(M). Doing this for all

24

(a) The subconfiguration u〈U〉. (b) Wastefully lowered black pebble.

(c) Superfluous white pebble. (d) Wasteful “split” of u〈U〉.

Figure 5: A subconfiguration u〈U〉 and three wasteful implosions of u〈U〉.

implosions, we get a globally reversal-free pebbling L′ ending in z〈∅〉. This is the
transformation described in part 3 of our road map for the proof of Lemma 5.9.

There is only one problem. Although projM(L) is a legal L-pebbling, it is not
true in general that cost(projM(L)) ≤ cost(L). For instance, if v〈V 〉 � u〈∅〉 for
V 6= ∅, then projv〈V 〉(u〈∅〉) = v〈V 〉 and hence cost(projv〈V 〉(u〈∅〉)) = 1 + |V | >
cost(u〈∅〉) = 1. Looking at this counterexample, however, it seems clear that
having gotten as far as u〈∅〉, reversing to the weaker and more expensive config-
uration v〈V 〉 is a blind alley that no optimal pebbling would go into. What we
want to do next is to define formally which reversals are wasteful in this sense,
and to prove that for pebblings avoiding such wasteful reversals, projection does
not increase the pebbling cost.

Since the definition of wastefulness turns out to be quite technical, we first
try to give some more intuition for which kind of reversals we disapprove of.

Example 6.11. Consider the subconfiguration u〈U〉 in Figure 5(a).

1. If v ∈ T u
∗ , the reversal u〈U〉 v〈T v

∗ ∩U〉 is acceptable only if T v
∗ ∩U $ U ,

i.e., if we get rid of white pebbles by lowering the black pebble from u to v.
The reversal in Figure 5(b) does not satisfy this.

2. For V a simple roof below u over U , we approve of u〈U〉 u〈V 〉 only
if for all w ∈ V it holds that T w ∩U 6= ∅. Otherwise, unnecessary white
pebbles have been introduced, as in Figure 5(c).

3. If u〈U〉 is imploded into non-touching {v1〈V1〉, v2〈V2〉} such that, say,
v2 ∈ T v1

∗ , it should not be the case that v1

〈(

V1 \ P v2

)

∪V2

〉

� u〈U〉, for
if so we could have reversed to this stronger subconfiguration instead of
{v1〈V1〉, v2〈V2〉} at no extra cost. The implosion in Figure 5(d) violates
this condition.

The reversals from u〈U〉 in figures 5(b), 5(c) and 5(d) are all examples
of wasteful implosions for which our reversal-free pebbling L′ constructed by

25

projection may become more expensive than L. Looking at these examples,
it is easy to believe that such moves are nonoptimal and that it ought to be
possible to eliminate them. The formal definition of wastefulness is as follows.

Definition 6.12 (Wasteful implosion). For a non-touching L-configuration
M = {vi〈Vi〉} � u〈U〉, the implosion u〈U〉 M is non-wasteful if

1. for every v ∈ Bl
(

M
)

\ {u} there is a w ∈ U ∩T
succ(v)
∗ such that it holds

for the path pv = P w \ P
succ(v)
∗ that pv ∩

(

Bl
(

M
)

∪Wh
(

M
))

= ∅,

2. for every v ∈ Wh
(

M
)

there is a w ∈ U ∩ T v such that it holds for the path

pv = P w \ P v
∗ that pv ∩Bl

(

M
)

= ∅,

3. the paths above from
(

Bl
(

M
)

∪Wh
(

M
))

\{u} to Wh
(

u〈U〉
)

= U can all
be chosen pairwise disjoint, i.e., such that pv ∩ pv′ = ∅ if v 6= v.

If u〈U〉 M is not a non-wasteful implosion it is said to be wasteful .

Definition 6.12 identifies the offending reversal moves for which our projec-
tive construction of a reversal-free but cheap pebbling fails. Continuing accord-
ing to part 4 in our proof plan, we show that for pebblings without such wasteful
moves the projective construction works. This is the next lemma.

Lemma 6.13. Suppose that L =
{

L0, . . . , Lτ−2, Lτ−1 = u〈U〉 M
}

is a peb-
bling without reversals except for a final non-wasteful implosion u〈U〉 M.
Then cost(projM(Lt)) ≤ cost(Lt) for all t > τ , and cost(projM(L)) ≤ cost(L).

Proof. Let L′
t = projM(Lt) for all t < τ . By Proposition 6.10, it suffices to show

cost(L′
t) ≤ cost(Lt) to get cost(projM(L)) ≤ cost(L).

By the proof of Lemma 5.10, cover(Lt) grows monotonously with t in a
non-redundant reversal-free pebbling, so in particular Lt � u〈U〉 for all t. By
the same lemma, L is non-overlapping. This means that we can confine our-
selves to looking at non-overlapping L-configurations Lt, since the overlapping
L-configurations during expansion moves do not affect the pebbling cost. Using
Proposition 6.5, part 3, we have that cost(Lt) =

∣

∣Bl
(

Lt

)

∪Wh
(

Lt

)∣

∣. Hence, to

prove cost(L′
t) ≤ cost(Lt) it is enough to find for each v ∈ Bl

(

L′
t

)

∪Wh
(

L′
t

)

an

associated vL ∈ Bl
(

Lt

)

∪Wh
(

Lt

)

such that vL 6= wL if v 6= w.

If v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

∩
(

Bl
(

Lt

)

∪Wh
(

Lt

))

, an obvious choice is vL = v.

Suppose therefore that v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

\
(

Bl
(

Lt

)

∪Wh
(

Lt

))

. Then

v ∈ ∂M, since it is easy to check that v ∈ int(M) implies v ∈ Bl
(

Lt

)

∪Wh
(

Lt

)

.

Also, there is a subconfiguration wv

〈

Wv

〉

∈ Lt such that v ∈ int
(

wv

〈

Wv

〉)

,

namely the wv

〈

Wv

〉

projecting the pebble on v. Lastly, note that if v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

∩ ∂M, it is a routine matter to verify that v has the same

colour in L′
t and M, i.e., either v ∈ Bl

(

L′
t

)

∩Bl
(

M
)

or v ∈ Wh
(

L′
t

)

∩Wh
(

M
)

.

We choose vL ∈ Bl
(

Lt

)

∪Wh
(

Lt

)

for such vertices v by first associating a unique

vu ∈ U = Wh
(

u〈U〉
)

to v as follows.

1. If v ∈ Bl
(

L′
t

)

∩Bl
(

M
)

, pick a vertex vu ∈
(

U ∩T
succ(v)
∗

)

\ T v and a path

pv = P vu \P
succ(v)
∗ to vu such that pv ∩

(

Bl
(

M
)

∪Wh
(

M
))

= ∅ as guaran-
teed by Definition 6.12. For the subconfiguration wv〈Wv〉 ∈ Lt projecting
the black pebble on v, we must have succ(v) ∈ cover

(

wv

〈

Wv

〉)

since

v ∈ int
(

wv

〈

Wv

〉)

, and consequently succ(v) ∈ pv ∩ cover
(

wv

〈

Wv

〉)

6= ∅.

26

2. If v ∈ Wh
(

L′
t

)

∩Wh
(

M
)

, pick vu ∈ U ∩T v and pv = P vu \ P v
∗ such that

pv ∩Bl
(

M
)

= ∅ as guaranteed by the definition. For wv〈Wv〉 ∈ Lt project-

ing the white pebble on v, we have v ∈ int
(

wv

〈

Wv

〉)

⊆ cover
(

wv

〈

Wv

〉)

,

so v ∈ pv ∩ cover
(

wv

〈

Wv

〉)

6= ∅.
According to Definition 6.12 all the paths pv above can be chosen disjoint.

We now use these paths to choose a distinct vL ∈ Bl
(

Lt

)

∪Wh
(

Lt

)

for

each v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

\
(

Bl
(

Lt

)

∪Wh
(

Lt

))

. By construction, L′
t � Lt �

u〈U〉, and in particular wv〈Wv〉 � u〈U〉 for all wv〈Wv〉 found above. Note that
pv ∩ cover

(

wv

〈

Wv

〉)

6= ∅ and that pv 6⊆ cover (u〈U〉) since the lowest vertex
in pv is a white pebble of u〈U〉. This implies that Wv ∩ pv 6= ∅, for otherwise
pv ⊆ cover(wv〈Wv〉) which yields the contradiction wv〈Wv〉 6� u〈U〉. Thus we
can choose vL ∈ Bl

(

Lt

)

∪Wh
(

Lt

)

to be the vertex in Wv ∩ pv. Since all paths
pv are disjoint, all such vL are distinct. They must also be distinct from the
v ∈

(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

∩
(

Bl
(

Lt

)

∪Wh
(

Lt

))

, since
(

pv \ {v}
)

∩ cl(M) = ∅ and

hence vL 6∈
(

Bl
(

L′
t

)

∪Bl
(

L′
t

))

⊆ cl(M). It follows that cost(L′
t) ≤ cost(Lt).

We can use Lemma 6.13 to eliminate non-wasteful implosions one by one.
If L =

{

L0, . . . , Lτ (Lτ \ u〈U〉)∪M
}

is a non-overlapping reversal-free peb-
bling except for a final non-wasteful implosion u〈U〉 M, then by definition
Lτ = {vi〈Vi〉} is non-touching, and using Observation 6.8 each Lt can be
written as a non-touching union of Lvi

t = projvi〈Vi〉(Lt) such that cost(Lt) =
∑

vi〈Vi〉∈M
cost(Lvi

t). For all vi〈Vi〉 ∈ Lt, Lvi =
{

Lvi

0 , . . . , Lvi

τ−1, {vi〈Vi〉}
}

can
be seen to be pairwise non-touching pebblings without reversals. It follows by
Lemma 6.13 that we can locally replace Lu

t for the imploded subconfiguration
u〈U〉 by projM(Lu

t) without increasing the global pebbling cost. Doing this by
forward induction for all implosions in turn, we get Corollary 6.14.

Corollary 6.14. Let L =
{

L0, . . . , Lτ = {z〈∅〉}
}

be a non-overlapping L-peb-
bling of T without wasteful implosions. Then there is an L-pebbling L′ of T
without any reversal moves such that cost(L′) ≤ cost(L).

This concludes part 4 in the proof outline on page 18.
All that remains is to show that in an arbitrary non-overlapping L-peb-

bling we can always replace wasteful implosions by non-wasteful ones without
increasing the pebbling cost by more than a constant factor. It will take a couple
of technical lemmas before we get there, but the intuition from Example 6.11 is
clear: if Lt Lt+m+1 is a wasteful implosion, we should be able to match this
move with a non-wasteful implosion L′

t L′
t+m+1 instead, where L′

i � Li and
cost(L′

i) ≤ cost(Li) for i = t, t + m + 1. The only thing that complicates the
matter is that we may have to pay extra for the transitional L-configurations
during the implosion L′

t L′
t+m+1 because of overlapping subconfigurations.

The cornerstone of our proof is the fact that for every wasteful implosion
u〈U〉 L, there is a non-wasteful implosion to M � L with cost(M) ≤ cost(L).

Lemma 6.15. If u〈U〉 L is a wasteful implosion, then there is a non-touching
M such that u〈U〉 � M � L, cost(M) ≤ min {cost(u〈U〉), cost(L)} and u〈U〉
M is a non-wasteful implosion.

Proof. If u〈U〉 M is a non-wasteful implosion, it holds that cost(M) =
∣

∣Bl
(

M
)∣

∣ +
∣

∣Wh
(

M
)∣

∣ ≤ cost(u〈U〉) = 1 + |U |, since by Definition 6.12 every

v ∈
(

Bl
(

M
)

∪Wh
(

M
))

\ {u} can be associated with a distinct w ∈ U .

27

(a) The subconfiguration. (b) Wasteful implosion L. (c) Non-wasteful M � L.

Figure 6: Wasteful and corresponding non-wasteful implosion according to condition 1.

(a) The subconfiguration. (b) Wasteful implosion L. (c) Non-wasteful M � L.

Figure 7: Wasteful and corresponding non-wasteful implosion according to condition 2.

We demonstrate that if u〈U〉 L is a wasteful implosion, we can find an
M such that u〈U〉 � M � L and cost(M) ≤ cost(L). If u〈U〉 M is also
a wasteful implosion, we repeat this construction. Sooner or later the process
must terminate for some M � u〈U〉 such that u〈U〉 M is non-wasteful—if
nothing else, by definition the trivial implosion u〈U〉 u〈U〉 is.

According to Definition 6.12, the configuration L =
{

vi〈Vi〉
}

can be wasteful
with respect to u〈U〉 in three ways.

1. Some black pebble v ∈ Bl
(

L
)

\ {u} lacks a path. If succ(v) ∈ Wh
(

L
)

we must have succ(v) ∈ cover(u〈U〉), so we can add canon({succ(v)}) =
succ(v)〈v, sibl (v)〉 to L and set M = canon(L∪ succ(v)〈v, sibl (v)〉) � L
with cost(M) ≤ cost(L) + |{sibl(v)}| − |{v, succ(v)}| < cost(L). Oth-
erwise, all paths from succ(v) downwards in T sibl(v) are either blocked
by r1, . . . , rm ∈ Bl

(

L
)

∩T sibl(v) or reach sources in T sibl(v) without pass-
ing pebbled vertices (we can have m = 0). From this we can conclude
that V = T succ(v) \

(

T v ∪ ⋃

i∈[m] T
ri

)

⊆ cover(u〈U〉), so we can add

canon(V) = succ(v)〈v, r1, . . . , rm〉 � u〈U〉 to L, which increases the cost
by 1 for succ(v). Setting M = canon(L∪ succ(v)〈v, r1, . . . , rm〉) � L re-
moves the pebbles from v and r1, . . . , rm and decreases the cost by at
least 1, so cost(M) ≤ cost(L). See Figure 6 for a simple example.

2. There is a white pebble w ∈ Wh
(

L
)

such that all paths downwards in

T w either are blocked by r1, . . . , rm ∈ Bl
(

L
)

∩T w
∗ or reach sources in T w

without passing pebbled vertices. If so, we have V = T w \ ⋃

i∈[m] T
ri ⊆

cover (u〈U〉), and we can add canon(V) = w〈r1, . . . , rm〉 � u〈U〉 to L at
no extra cost and set M = canon(L∪w〈r1, . . . , rm〉) � L. Here we get a
strict inequality cost(M) < cost(L) since the canonization eliminates at
least the pebbles on w. This case is illustrated in Figure 7.

28

(a) The subconfiguration u〈U〉. (b) Wasteful implosion L of u〈U〉.

(c) Non-wasteful implosion u〈U〉 M�L.

Figure 8: Wasteful and corresponding non-wasteful implosion according to condition 3.

3. There are paths for all v ∈
(

Bl
(

L
)

∪Wh
(

L
))

\ {u} to w ∈ U , but they
cannot be chosen disjoint. Start picking disjoint paths bottom-up so that
when we choose a path for a white pebble v ∈ Wh

(

L
)

we have already

determined paths for all w ∈
(

Bl
(

L
)

∪Wh
(

L
))

∩T v
∗ , and when we choose

a path for a black pebble v ∈ Bl
(

L
)

we have already determined paths for

all w ∈
(

Bl
(

L
)

∪Wh
(

L
))

∩T
sibl(v)
∗ , i.e., for all of T succ(v) \ {v}. For note

that for black pebbles, the vertex sibl(v) itself cannot be black-pebbled in
L, for if so there would be no path for v and we would have case 1. For the
same reason, succ(v) is not white-pebbled in L, and then sibl (v) cannot
be white-pebbled or succ(v) black-pebbled either since L is non-touching.

At some point we reach a v such that no matter how we choose the paths
below, we cannot choose a disjoint path for v. Consider the colour of v.

(a) v is black. There are white pebbles in U ∩T
sibl(v)
∗ reachable from v,

but they are all blocked by paths already chosen from r1, . . . , rm ∈
Bl

(

L
)

∩T
sibl(v)
∗ . This means that {succ(ri) | i ∈ [m]} ⊆ cover(u〈U〉),

so we can add the subconfigurations canon({succ(ri) | i ∈ [m]}) =
{

succ(ri)〈ri, sibl (ri)〉 | i ∈ [m]
}

to L at an additional cost 2m. Rea-
soning in the same way, we can also include the subconfiguration
succ(v)〈v, succ(r1), . . . , succ(rm)〉 at a further cost of 1 for the un-
pebbled vertex succ(v). When we canonize, the pebbles on the ver-
tices v, r1, . . . , rm, succ(r1), . . . , succ(rm) all disappear and the cost
decreases by 2m + 1, resulting in M � L with cost(M) ≤ cost(L).

(b) v is white. The construction is analogous. Let the blocking black peb-
bles be r1, . . . , rm ∈ Bl

(

L
)

∩T v
∗ . Again succ(ri)〈ri, sibl(ri)〉, i ∈ [m],

can be added at an extra cost 2m. Since succ(ri), i ∈ [m], block
all paths from v we have T v \ ⋃

i∈[m] T
succ(ri) ⊆ cover (u〈U〉), so

29

v〈succ(r1), . . . , succ(rm)〉 can be added as well at no additional cost.
Canonizing decreases the cost by 2m + 1, which yields M � L with
cost(M) < cost(L). The transition from Figure 8(b) to Figure 8(c)
is accomplished by applying this construction twice.

In all cases we can find a non-touching L-configuration M such that u〈U〉 �
M � L and cost(M) ≤ cost(L). The lemma follows.

The following transitivity property of non-wasteful implosions is immediate
from Definition 6.12.

Observation 6.16. If u〈U〉 {vi〈Vi〉 | i ∈ [m]} and vi〈Vi〉 Mi for i ∈ [m]
are all non-wasteful implosions, then u〈U〉 {Mi | i ∈ [m]} is a non-wasteful
implosion.

It follows from Observation 6.16, that if u〈U〉 L is a wasteful implosion
and u〈U〉 M � L is a corresponding non-wasteful implosion for M minimal,
then all nontrivial “local implosions” from subconfigurations in M to sets of
subconfigurations in L are wasteful. We formalize this as a lemma.

Lemma 6.17. Suppose that u〈U〉 L is a wasteful implosion and let M � L
be minimal such that u〈U〉 M is non-wasteful. Then for each v〈V 〉 ∈ M
and each non-touching L′ such that M � L′ � L, either projv〈V 〉(L

′) = v〈V 〉 or
v〈V 〉 projv〈V 〉(L

′) is a wasteful implosion. In particular, for each v〈V 〉 ∈ M
it holds that cost(v〈V 〉) ≤ cost(projv〈V 〉(L

′)).

Proof. Suppose that there are v〈V 〉 ∈ M and L′ such that projv〈V 〉(L
′) ≺ v〈V 〉

and v〈V 〉 projv〈V 〉(L
′) is a non-wasteful implosion. Then by the transitivity

in Observation 6.16 it holds that M′ =
(

M∪ projv〈V 〉(L
′)

)

\ v〈V 〉 ≺ M is a
non-wasteful implosion of u〈U〉. This contradicts the minimality of M.

If v〈V 〉 projv〈V 〉(L
′) is a wasteful implosion, Lemma 6.15 says that there

is a non-wasteful implosion to an L-configuration M′ � projv〈V 〉(L
′) such that

cost(M′) ≤ cost(projv〈V 〉(L
′)). But we have just proven that this non-wasteful

M′ must be identical with v〈V 〉, so cost(v〈V 〉) ≤ cost(projv〈V 〉(L
′)).

Very roughly, the next lemma says that wasteful implosions are preserved
under mergers.

Lemma 6.18. Suppose for i = 1, 2 that ui〈Ui〉 � Li and cost(ui〈Ui〉) ≤ cost(Li)
for Li non-overlapping, and that u1〈U1〉 and u2〈U2〉 are mutually non-over-
lapping with u2 ∈ U1. Then cost(merge(u1〈U1〉, u2〈U2〉)) ≤ cost(L1 ∪L2).

Proof. The L-configurations L1 and L2 must be mutually non-overlapping since
they are covered by u1〈U1〉 and u2〈U2〉, respectively. By part 3 of Proposi-
tion 6.5, we have cost(L1 ∪L2) =

∣

∣Bl
(

L1

)

∪Wh
(

L1

)

∪Bl
(

L2

)

∪Wh
(

L2

)∣

∣. The
only way this could be less than cost(merge(u1〈U1〉, u2〈U2〉)) = cost(u1〈U1〉) +
cost(u2〈U2〉) − 1 ≤ cost(L1) + cost(L2) − 1 is if there are at least two ver-
tices in

⋂

i=1,2

(

Bl
(

Li

)

∪Wh
(

Li

))

. But Bl
(

Li

)

∪Wh
(

Li

)

⊆ cl(Li) ⊆ cl(ui〈Ui〉)
since Li � ui〈Ui〉 by the assumptions of the lemma, and also by assumption
cl(u1〈U1〉)∩ cl(u1〈U1〉) = {u2}, so this is impossible.

Combining Lemmas 6.17 and 6.18, we can provide the fifth and final com-
ponent in the proof of Lemma 5.9, namely that any non-overlapping L-pebbling
L can be transformed into a pebbling L′ without wasteful implosions such that
L′ has asymptotically the same cost as L.

30

Lemma 6.19. Suppose that L is a non-overlapping L-pebbling of T . Then
there is a non-overlapping pebbling L′ of T without wasteful implosions such
that cost(L′) = O

(

cost(L)
)

.

Proof. Given a non-overlapping L-pebbling L, we build a non-overlapping peb-
bling L′ such that if we let Li ∈ L denote the starting configuration of the ith
move according to the rules in Definition 6.6, there is a corresponding L′

i ∈ L′

such that the following invariants hold.

1. L′
i is non-touching.

2. L′
i � Li.

3. For all u〈U〉 ∈ L′
i, it holds that cost(u〈U〉) ≤ cost(proju〈U〉(Li)).

4. The cost of the L-pebbling transition from L′
i−1 to L′

i in L′ does not exceed
4 · max

{

cost(Li−1), cost(Li)
}

.

To see that the lemma follows from this, note that invariants 1 and 2 im-
ply that for every v〈V 〉 ∈ Li there is a u〈U〉 ∈ L′

i such that v〈V 〉 � u〈U〉.
Then plugging invariant 3 into Proposition 6.5, part 4, we get cost(L′

i) =
∑

u〈U〉∈L′

i
cost(u〈U〉) ≤ ∑

u〈U〉∈L′

i
cost(proju〈U〉(Li)) = cost(Li). Using invari-

ant 4 to bound the cost of the pebbling transitions L′
i−1 L′

i, we get the
desired result cost(L′) = O

(

cost(L)
)

.
The construction is by forward induction over the moves in L. Assume that

the invariants hold for Lt and L′
t.

Introduction Lt+1 = Lt ∪ v〈pred (v)〉: If v〈pred(v)〉 ≤ L′
t we set L′

t+1 = L′
t.

For the subconfiguration u〈U〉 ∈ L′
t such that v〈pred(v)〉 � u〈U〉, we have

cost(u〈U〉) ≤ cost(proju〈U〉(Lt)) ≤ cost(proju〈U〉(Lt ∪ v〈pred(v)〉)), and for

u′
〈

U ′
〉

∈ L′
t distinct from u〈U〉 nothing changes. All invariants stay true.

If v〈pred (v)〉 6� L′
t, we introduce v〈pred(v)〉 and expand to get L′

t+1 =
canon(L′

t ∪ v〈pred (v)〉). Invariants 1 and 2 obviously hold. We claim that
invariant 3 holds with respect to Lt+1 for all L-configurations L′ in the
transition L′

t L′
t+1 upto and including L′

t+1 = canon(L′
t ∪ v〈pred(v)〉).

This claim yields invariants 3 and 4 for L′
t+1.

To prove the claim, observe that invariant 3 holds for L′
t ∪ v〈pred (v)〉 with

respect to Lt+1 = Lt ∪ v〈pred (v)〉 by the induction hypothesis and the
fact that projv〈pred(v)〉(Lt ∪ v〈pred (v)〉) = v〈pred(v)〉. Since L′

t+1 is ob-
tained by repeated merging of non-overlapping subconfigurations from
L′

t ∪ v〈pred(v)〉, and since by induction over each such merger these sub-
configurations meet the conditions in Lemma 6.18, the claim follows.

Expansion Lt+3 =
(

Lt ∪merge(v1〈V1〉, v2〈V2〉)
)

\
{

v1〈V1〉, v2〈V2〉
}

: By induc-
tion L′

t � Lt ∼ Lt+3, so there is a u〈U〉 ∈ L′
t such that v1〈V1〉, v1〈V1〉 �

u〈U〉. For u′
〈

U ′
〉

∈ L′
t distinct from u〈U〉 there are no changes, and if

cost(proju〈U〉(Lt+3)) ≥ cost(u〈U〉) nothing needs to be done and we can
set L′

t+3 = L′
t.

It can be the case, however, that the expansion within proju〈U〉(Lt+3)
decreased the cost so that u〈U〉 is now too expensive. If so, we implode

31

u〈U〉 to a minimal non-wasteful L-configuration M � proju〈U〉(Lt+3) and

set L′
t+3 =

(

L′
t \ u〈U〉

)

∪M.

Invariants 1 and 2 are immediate. Invariant 3 follows from Lemma 6.17
since M is chosen minimal. Thus, cost(M) ≤ cost(proju〈U〉(Lt+3)), and by
the induction hypothesis we know that cost(u〈U〉) ≤ cost(proju〈U〉(Lt)).
Using parts 1 and 2 of Proposition 6.5, we see that the implosion sequence
L′

t L′
t+3 causes an extra cost of at most

cost(u〈U〉 ∪M) ≤ 2 · (cost(u〈U〉) + cost(M))

≤ 2 · (cost(proju〈U〉(Lt)) + cost(proju〈U〉(Lt+3)))

≤ 4 · max
i∈{t,t+3}

{

cost(proju〈U〉(Li))
}

,

which yields invariant 4.

Implosion Lt+m+1 =
(

Lt ∪M
)

\ v〈V 〉 for M =
{

vi〈Vi〉 | i ∈ [m]
}

: This case
is completely analogous to the expansion case. Again v〈V 〉 is covered
by some u〈U〉 ∈ L′

t, and if cost(u〈U〉) > cost(proju〈U〉(Lt+m+1)) we im-
plode u〈U〉 to a minimal non-wasteful M � proju〈U〉(Lt+m+1) and set

L′
t+m+1 =

(

L′
t \ u〈U〉

)

∪M. Using Lemma 6.17 and Proposition 6.5, we
get invariants 1-4.

Going through the moves in L =
{

L0, . . . , Lτ

}

, this construction yields a L-peb-

bling L′ =
{

L′
0, . . . , L

′
τ ′

}

without wasteful implosions such that L′
τ ′ � Lτ and

cost(L′) ≤ 4 · cost(L).

Thereby, the proof of Lemma 5.9 outlined in the beginning of this section is
complete. We repeat the proof in condensed form for completeness.

Proof of Lemma 5.9. Let L be an arbitrary L-pebbling of T . By Observa-
tion 6.1, we can assume L to be non-redundant. Using Lemma 6.9, we get a non-
overlapping pebbling L′ with cost(L′) ≤ cost(L). If L′ contains wasteful implo-
sions, Lemma 6.19 yields a non-wasteful pebbling L′′ in cost(L′′) = O

(

cost(L′)
)

.
Finally, Corollary 6.14 transforms L′′ into a reversal-free L-pebbling L′′′ of T
such that cost(L′′′) ≤ cost(L′′) = O

(

cost(L)
)

. The lemma follows.

7 Resolution Derivations Induce Labelled Pebblings

In this section, we shift our focus to resolution and show that clause configura-
tions can be interpreted in terms of labelled pebble configurations in such a way
that resolution derivations induce legal L-pebblings. We first give some techni-
cal preliminaries. Then we try to explain the intuition for how sets of clauses
are translated into sets of pebbles. Finally, we state the formal definitions and
prove the correspondence between resolution derivations and L-pebblings.

We start with the technicalities. For simplicity, in the following we will
write v1, . . . , vd instead of x(v)1, . . . , x(v)d for the d variables associated with
the vertex v in a dth degree pebbling contradiction.

Definition 7.1. Assume that G is a DAG with a unique target z and all vertices
having indegree 0 or 2. Then we define *Pebd

G = Pebd
G \

{

z1, . . . , zd

}

to be the
pebbling contradiction with target axioms removed.

32

We observe that without loss of generality we may study the formula *Pebd
G

and prove lower bounds for Sp
(

*Pebd
G ` ∨d

l=1 zl

)

instead of Sp
(

Pebd
G ` 0

)

.

Observation 7.2. For any DAG G with a unique target z and all vertices
having indegree 0 or 2, it holds that Sp

(

Pebd
G ` 0

)

= Sp
(

*Pebd
G ` ∨d

l=1 zl

)

.

Proof. For any resolution derivation π∗ : *Pebd
G → ∨d

l=1 zl, we can get a reso-

lution refutation of Pebd
G from π∗ in the same space by resolving

∨d
l=1 zl with

all zl, l = 1, . . . , d, in space 3. In the other direction, for π : Pebd
G → 0 we can

extract a derivation of
∨d

l=1 zl in at most the same space by simply omitting
all downloads of and resolution steps on zl in π, leaving the literals zl in the
clauses. Instead of the final empty clause 0 we get some clause D ⊆ ∨d

l=1 zl, and

since *Pebd
T 2 D $

∨d
l=1 zl and resolution is sound, we have D =

∨d
l=1 zl.

The following easy lemma will be used repeatedly.

Lemma 7.3. Suppose that C, D are clauses and C, D sets of clauses.

1. C∪
{

C
}

� D if and only if C � a ∨ D for all a ∈ Lit(C).

2. C∪D � D for D =
{

D1, . . . , Dm

}

if and only if C �
∨

i∈[m] ai ∨ D for all

choices of literals (a1, . . . , am) ∈ Lit(D1) × · · · × Lit(Dm).

Proof. For part 1, assume that C∪
{

C
}

� D and consider an assignment α such
that α(C) = 1 and α(D) = 0 (if there is no such α, then C � D ⊆ a∨D). Such
an α sets all a to true. Conversely, if C � a∨D for all a ∈ Lit(C) and α is such
that α(C) = α(C) = 1, it must hold that α(D) = 1.

Part 2 follows from part 1 by induction.

We introduce some space-saving notation. If pred(r) =
{

p, q
}

we say that

the axioms for r in *Pebd
G is the set Axd(r) =

{

pi ∨ qj ∨
∨d

l=1 rl | i, j ∈ [d]
}

.

If r is a source, we define Axd(r) =
{
∨d

i=1 ri

}

. For V a set of vertices, let

Axd(V) =
{

Axd(v) | v ∈ V
}

.

For v a vertex in T , we let B
(

v
)

=
∨d

i=1 vi. For V ⊆ V
(

T
)

, we define

B
(

V
)

=
{

B
(

v
)

| v ∈ V
}

and AV =
∨

v∈V

∨

i∈[d] vi. B
(

V
)

can be understood as
“truth of all vertices in V ” and AV as “truth of some vertex in V ”.

This concludes the technical preliminaries. We next try to provide some
intuition for how clause configurations are translated into pebble configurations.

Let us associate each vertex v ∈ V
(

T
)

with the clauses Axd(v). In a black-
white pebbling of T , if at some time t there is an independent black pebble
on v, an optimal pebbling will not pebble any vertex in T v after time t. As an
analogy of this, a clause configuration Ct should induce an independent black
pebble on v only if no axioms from Axd(T v) = *Pebd

T v need be used to derive
∨d

l=1 zl. This holds if and only if

C∪
(

*Pebd
T \ *Pebd

T v

)

�
∨d

l=1 zl (2)

by the implicational completeness of resolution. If (2) holds for v but not for
succ(v), we can interpret this by saying that the resolution derivation “has
reached as far as v but not any farther” and indicate this fact by placing an
independent black pebble on v.

33

It turns out that (2) is equivalent with the condition that C together with
the truth of all vertices unrelated to v should imply truth of some vertex on the
path from v to the root, or more concisely

C∪B
(

T \
(

T v ∪P v
))

� AP v , (3)

and the condition (3) is more convenient to work with. In the next lemma, we
prove the equivalence of (2) and (3). The lemma is intended only as a way to
strengthen the intuition and motivate the formal definitions below. It will not
be used in the following and is therefore optional reading.

Lemma 7.4. Suppose that the clause configuration C is derived from *Pebd
T for

a complete binary tree T with root z and let r be an arbitrary vertex in V
(

T
)

.

Then C∪B
(

T \
(

T r ∪P r
))

� AP r if and only if C∪
(

*Pebd
T *Pebd

T r

)

�
∨d

l=1 zl.

Proof. Note first that if r = z, the two implications are exactly the same.
Assume therefore that r is not the root and that it has sibling s and successor u.

(⇒) Suppose that C∪B
(

T \
(

T r ∪P r
))

� AP r . For all v ∈ T \
(

T r ∪P r
)

it holds that *Pebd
T \ *Pebd

T r �
∨d

l=1 vl, since *Pebd
T v ⊆ *Pebd

T \ *Pebd
T r and

*Pebd
T v �

∨d
l=1 vl, and the fact that resolution is implicationally complete means

that these clauses are all derivable. Write AP r = AP r
∗
∨ ∨d

i=1 ri. Resolve with

ri ∨ sj ∨
∨d

l=1 ul for all i, j ∈ [d] to get
{

sj ∨ AP r
∗
| j ∈ [d]

}

, derive
∨d

j=1 sj by

implicational completeness and then resolve the clauses
{

sj ∨ AP r
∗
| j ∈ [d]

}

and
∨d

j=1 sj to get AP r
∗
. In the same way we can eliminate all vertices in P r \ {z}

from AP r
∗

and derive
∨d

l=1 zl using only axioms from *Pebd
T \ *Pebd

T r . Since

resolution is sound this implies that C∪
(

*Pebd
T \ *Pebd

T r

)

�
∨d

l=1 zl.
(⇐) Rewrite the assumption as

C∪Axd
(

T \
(

T r ∪P r
))

∪Axd
(

P u
∗

)

∪
{

ri ∨ sj ∨
∨d

l=1 ul | i, j ∈ [d]
}

�
∨d

l=1 zl.

Repeated use of Lemma 7.3 yields

C∪Axd
(

T \
(

T r ∪P r
))

∪Axd(P u
∗) �

∨d
l=1 rl ∨

∨d
l=1 zl

and proceeding in the same way for all w ∈ P u
∗ we get

C∪Axd
(

T \
(

T r ∪P r
))

� AP r .

Any α satisfying B
(

T \
(

T r ∪P r
))

must satisfy Ax d
(

T \
(

T r ∪P r
))

and thus

C∪B
(

T \
(

T r ∪P r
))

� AP r .

Continuing our intuitive argument, the simplest case for a black pebble on
a vertex v is when C �

∨d
i=1 vi. Let us restrict our attention to this case and

think of a black pebble on v as derived truth B
(

v
)

=
∨d

i=1 vi of v. One way of
looking at a dependent black pebble on v supported by white pebbles on W , or,
in L-pebbling terminology, a subconfiguration v〈W 〉, is that given independent
black pebbles on all w ∈ W we can eliminate the white pebbles and get v〈∅〉.
By analogy, a clause configuration C should induce a subconfiguration v〈W 〉 if
we would get an induced independent black pebble on v by assuming the truth

34

C =
{

ui ∨ vj ∨
∨d

l=1 zl, pi ∨ qj ∨
∨d

l=1 rl,
∨d

l=1 wl | 1 ≤ i, j ≤ d
}

z

r w

u

v

p q

L(C) = {z〈u, v〉, r〈p, q〉, w〈∅〉}

Figure 9: An example clause configuration C and induced L-configuration L(C).

of all w ∈ W , i.e., if C∪B
(

W
)

�
∨d

i=1 vi. Figure 9 (which is Figure 3 but with
renamed vertices) gives an example of this intuitive understanding of induced
pebble configurations.

Our formal definitions follow the intuition presented above quite closely,
modulo a few technical details.

Definition 7.5 (Support). Suppose for C a set of clauses, v ∈ V
(

T
)

a vertex

and V ⊆ T \ P v a set of vertices that C∪B
(

V
)

� AP v . Then V is a support

for v with respect to C, and if there is no V ′ $ V such that C∪B
(

V ′
)

� AP v

the support is minimal . If V is a minimal support for v with respect to C such
that C∪B

(

V
)

2 AP v
∗
, we say that v is maximal with respect to C and V .

For V a support of v, we define the supporting white pebbles of v to be
swp(v, V) =

{

w ∈ V ∩T v
∗ | P w

∗ ∩V = ∅
}

.

When it is clear from context, we sometimes omit which support or vertex
is minimal or maximal with respect to what. Note that swp(v, V) is a simple
roof below v over V ∩T v

∗ .

Definition 7.6 (Induced L-configuration). For C a set of clauses derived
from *Pebd

T , the induced L-configuration L(C) consists of all subconfigurations
v〈V 〉 such that

1. there is a minimal support V ′ ⊆ T \ P v for v with respect to C,

2. v is maximal with respect to C and V ′,

3. V = swp(v, V ′).

Remark 7.7. The reason we use V = swp(v, V ′) instead of V ′ ∩T v
∗ is that we

need simple sets (Definition 5.3) to define our induced subconfigurations v〈V 〉,
but the supporting sets V ′ are not necessarily simple. For instance, if we let

C′ =
{

ui ∨ vj ∨ ql ∨
∨d

n=1 zn, pi ∨ qj ∨
∨d

n=1 rn,
∨d

n=1 wn | 1 ≤ i, j, l ≤ d
}

in Figure 9, the root z has the minimal supporting set V ′ = {u, v, q}. For
technical reasons, it is simpler to ignore all but the topmost vertices in V ′,
so by Definition 7.6 we get L(C′) = L(C). Anyway, it seems very plausible
that optimal resolution derivations should never result in clause configurations

35

like C′, so we probably do not lose anything by restricting the white pebbles to
V = swp(v, V ′) instead of V ′ ∩T v

∗ .

Note also that a black pebble on v is defined in terms of AP v , not
∨d

i=1 vi.
This means that for

C′′ =
{

ui ∨ vj ∨
∨d

n=1 zn, pi ∨ qj ∨
∨d

n=1 rn,
∨d

n=1 wn ∨ ∨d
n=1 zn | 1 ≤ i, j ≤ d

}

we again get an independent black pebble w〈∅〉 and L(C′′) = L(C).

Recall that the goal of this section is to show that resolution derivations
induce L-pebblings. Suppose that π =

{

C0, . . . , Cτ

}

is a resolution derivation

of
∨d

l=1 zl from *Pebd
T . For C0 = ∅ we obviously get L(C0) = ∅, and it is

not hard to see that at the end of the derivation Cτ =
{
∨d

n=1 zn

}

induces a

single independent black pebble L(Cτ) =
{

z〈∅〉
}

on the root of T . Hence, we

are done if we can prove that
{

L(C0), . . . L(Cτ)
}

forms the backbone of a legal
L-pebbling L, where the transitions L(Ct) L(Ct+1) can be accomplished in
accordance with the rules of the L-pebble game.

By the L-pebbling rules in Definition 5.7, any subconfiguration v〈V 〉 may be
erased from L freely at any time. Consequently, we need not worry about sub-
configurations v〈V 〉 ∈ L(Ct) \ L(Ct+1) disappearing during the transition from
Ct to Ct+1. What we do need to check, though, is that no v〈V 〉 suddenly appears
inexplicably in L(Ct+1) as a result of a resolution derivation step Ci Ci+1,
but that we can always derive any v〈V 〉 ∈ L(Ct+1) \ L(Ct) from L(Ct) by the
L-pebbling rules.

The rest of this section is devoted to proving this. We first make a pair
of observations. The first observation relates subset containment of supporting
sets and the order relation between corresponding subconfigurations.

Observation 7.8. If u ∈ P v and U ′, V ′ ⊆ T \ P v are such that U ′ ∩T v
∗ ⊆

V ′ ∩T v
∗ , then u〈swp(u, U ′)〉 � v〈swp(v, V ′)〉.

Proof. Using the characterization of � in Observation 5.6, it is sufficient to
prove that v ∈ T u and P v ∩ swp(u, U ′) = ∅ and that swp(v, V ′) is a simple roof
below v over swp(u, U ′)∩ T v.

The condition v ∈ T u is equivalent to u ∈ P v, and since U ′ ⊆ T \P v it clearly
holds that P v ∩ swp(u, U ′) ⊆ P v ∩U ′ = ∅. Both swp(v, V ′) and swp(u, U ′)∩ T v

are simple sets below v by assumption. The only nontrivial part is to establish
that swp(v, V ′) is a roof over swp(u, U ′)∩T v.

Suppose that w ∈ swp(u, U ′)∩ T v. To prove that swp(v, V ′) is a roof, we
need to find a w′ ∈ P w ∩ swp(v, V ′). Since by assumption swp(u, U ′)∩T v ⊆
U ′ ∩T v

∗ ⊆ V ′ ∩T v
∗ , it holds that w ∈ V ′ ∩T v

∗ . If w ∈ swp(v, V ′) we are done,
so suppose w 6∈ swp(v, V ′). The reason that w is missing from swp(v, V ′) must
be that P w

∗ ∩V ′ 6= ∅, but if we pick w′ ∈ P w
∗ ∩V ′ of maximal height we get

P w′

∗ ∩V ′ = ∅ and w′ ∈ swp(v, V ′). This w′ satisfies w ∈ P w ∩ swp(v, V ′), which
shows that swp(v, V ′) is a roof over swp(u, U ′)∩ T v.

The second observation says that if a support V ′ is not minimal or a vertex v
is not maximal with respect to a clause configuration C, then this just means
that C induces something stronger than v〈swp(v, V ′)〉.
Observation 7.9. If C∪B

(

V ′
)

� AP v for V ′ ⊆ T \ P v, then there is a sub-
configuration u〈U〉 ∈ L(C) such that v〈swp(v, V ′)〉 � u〈U〉.

36

Proof. Minimize U ′ ⊆ V ′ and then maximize u ∈ P v so that C∪B
(

U ′
)

� AP u .
Set U = swp(u, U ′) and use Observation 7.8.

With the help of these observations we can analyze how new subconfigu-
rations v〈V 〉 can appear in L(Ct+1) after a resolution derivation step Ci Ci+1.

Observation 7.10 (Inference). If Ct+1 is derived from Ct by inference, then
L(Ct+1) = L(Ct).

Proof. Ct and Ct+1 have the same logical consequences.

Lemma 7.11 (Erasure). Suppose that Ct+1 is derived from Ct by erasure.
Then for each v〈V 〉 ∈ L(Ct+1) there is a u〈U〉 ∈ L(Ct) such that v〈V 〉 � u〈U〉.

Proof. By assumption there is a V ′ ⊆ T \ P v such that V = swp(v, V ′) and
Ct+1 ∪B

(

V ′
)

� AP v . Certainly, the same implication holds for Ct ⊇ Ct+1. The
lemma follows from Observation 7.9.

In particular, all new subconfigurations resulting from an erasure Ct Ct+1

can be obtained from L(Ct) by reversal. One way of interpreting this is that no
white pebbles can just disappear at an erasure step except if the black pebble
that they support disappear as well. This is exactly the kind of “controlled
removal” of white pebbles that the L-pebble game was designed to capture.

Lemma 7.12 (Axiom download). If Ct+1 = Ct ∪{C} for an axiom clause
C ∈ Axd(r), then all subconfigurations v〈V 〉 ∈ L(Ct+1) \ L(Ct) can be obtained
from L(Ct)∪ r〈pred (r)〉 by reversals from subconfigurations in L(Ct) followed
by mergers on {r}∪ pred(r).

Proof. By assumption, there is a minimal V ′ ⊆ T \ P v with V = swp(v, V ′)
such that Ct ∪{C}∪B

(

V ′
)

� AP v for C ∈ Axd(r). We will use repeatedly the

fact that B
(

r
)

� C.

It is intuitively clear that axioms C ∈ Axd(r) should not yield any interesting
new subconfigurations v〈V 〉 if r ∈ T \ T v, and for r ∈ T v we should be able to
explain new subconfigurations with the help of r〈pred (r)〉. We prove this by a
case analysis over r.

r ∈ T \
(

T v ∪P v
)

: We have Ct ∪B
(

V ′ ∪{r}
)

� AP v for V ′ ∪{r} ⊆ T \ P v, so
Observation 7.9 tells us that there is a u〈U〉 ∈ L(Ct) such that v〈V 〉 =
v〈swp(v, V ′)〉 = v〈swp(v, V ′ ∪{r})〉 � u〈U〉.

r ∈ P v
∗ : Write C = pi ∨ qj ∨

∨d
l=1 rl for {p, q} = pred(r) 6= ∅ and let p be the

vertex in P v ∩ pred(r). Using Lemma 7.3 to move pi to the right of the
implication sign yields Ct ∪B

(

V ′
)

� AP v ∨ pi = AP v , and since V ′ is
minimal it follows that v〈V 〉 ∈ L(Ct).

r = v: Note first that we are prepared to accept the introduction of r〈pred (r)〉
without any explanation, so if Ct ∪{C}∪B

(

V ′
)

� AP r for pred(r) ⊆ V ′

no further analysis is needed for r〈swp(r, V ′)〉 = r〈pred (r)〉. In particular,
this is always the case if pred(r) = ∅, i.e., if r is a source.

Suppose that v〈V 〉 = r〈swp(r, V ′)〉 ∈ L(Ct+1) for V 6= pred(r) = {p, q},
and write C = pi ∨ qj ∨

∨d
l=1 rl. We want to derive r〈V 〉 by the pebbling

rules from L(Cr)∪ r〈pred (r)〉. By symmetry, we get two subcases.

37

1. p ∈ V, q 6∈ V : By Definition 7.5, we have p ∈ V ′ and q 6∈ V ′. Observe
that this implies that V ′ ⊆ T \ P q . Also, we can use Lemma 7.3
to move qj to the right-hand side of the implication sign and get

Ct ∪B
(

V ′
)

� AP r ∨ qj ⊆ AP r ∨ ∨d
j=1 qj = AP q . Plugging this

into Observation 7.9 shows that there is a w〈W 〉 ∈ L(Ct) such that
q
〈

V \ {p}
〉

= q
〈

swp(q, V ′)
〉

� w〈W 〉. Thus we can derive q
〈

V \ {p}
〉

from L(Ct) by reversal and then merge r〈pred (r)〉 = r〈p, q〉 with
q
〈

V \ {p}
〉

to obtain r
〈

({p, q}∪ (V \ {p})) \ {q}
〉

= r〈V 〉.
2. p, q 6∈ V : Again by Definition 7.5, we have p, q 6∈ V ′. If we use

Lemma 7.3 twice we get Ct ∪B
(

V ′
)

� AP p ∧ AP q , and noting that

V ′ ⊆ T \
(

P p ∪P p
)

we can apply Observation 7.9 to derive p
〈

V ∩ T p
∗

〉

and q
〈

V ∩T q
∗

〉

from L(Ct) by reversals. Merging these subconfigu-

rations with r〈p, q〉, we get r
〈(

V ∩T p
∗

)

∪
(

V ∩T q
∗

)〉

= r〈V 〉.

r ∈ T v
∗ : By assumption, Ct ∪ {C}∪B

(

V ′
)

� AP v , and since r∈T v
∗ and B

(

r
)

�C

we have Ct ∪B
(

V ′ ∪{r}
)

� AP v for V ′ ∪{r} ⊆ T \ P v . If P r ∩V ′ 6= ∅,
it holds that swp(v, V ′ ∪{r}) = swp(v, V ′) and we can obtain v〈V 〉 from
L(Ct) by reversal according to Observation 7.9, so suppose P r ∩V ′ = ∅.
Pick U ′ ⊆ V ′ ∪ {r} minimal and then u ∈ P v maximal with respect
to U ′ such that Ct ∪B

(

U ′
)

� AP u . By the minimality of V ′ we have
r ∈ U ′, and since P r

∗ ∩U ′ ⊆ P r
∗ ∩V ′ = ∅ it holds that r ∈ swp(u, U ′).

Consequently, we cannot use u〈U〉 = u
〈

swp(u, U ′)
〉

∈ L(Ct) to derive
v〈V 〉 6� u〈U〉 by reversal. However, since U ′ ⊆ V ′ ∪{r}, Observation 7.8
tells us that v

〈

(V ∪{r}) \ T r
∗

〉

= v
〈

swp(v, V ′ ∪{r})
〉

� u〈U〉 can be de-

rived by reversal from L(Ct). If we could also derive r
〈

V ∩T r
∗

〉

from
L(Ct)∪ r〈pred (r)〉, a merger would produce the desired subconfiguration
v
〈((

(V ∪{r}) \ T r
∗

)

∪
(

V ∩T r
∗

))

\ {r}
〉

= v〈V 〉.
Hence, we are done if we can derive r

〈

V ∩ T r
∗

〉

= r
〈

swp(v, V ′)∩T r
∗

〉

=

r
〈

swp(r, V ′)
〉

from L(Ct)∪ r〈pred (r)〉. But AP r ⊇ AP v , so by assumption

we have Ct ∪{C}∪B
(

V ′
)

� AP r for V ′ ⊆ T \ P r. This is almost exactly

the case r = v above, where we proved that r
〈

swp(r, V ′)
〉

is derivable from
L(Ct)∪ r〈pred (r)〉. The only difference is that now it is not necessarily
true that V ′ is a minimal support and that r is maximal with respect to
V ′. But these assumptions were not used in the derivation of r

〈

swp(r, V ′)
〉

from L(Ct)∪ r〈pred (r)〉 anyway, so we can reuse exactly the same proof
here to get r

〈

swp(r, V ′)
〉

. This concludes the analysis for r ∈ T v
∗ .

Studying the pebbling moves in the case analysis above, we see that all sub-
configurations v〈V 〉 ∈ L(Ct+1) \L(Ct) can be obtained from L(Ct)∪ r〈pred (r)〉
by a (possibly empty) sequence of reversals from L(Ct), followed by a (possibly
empty) sequence of mergers on {r}∪ pred(r).

Combining the results proven for axiom download, inference and erasure, we
can show that a resolution derivation induces a legal L-pebbling.

Theorem 7.13. Let π =
{

C0, . . . , Cτ

}

be a resolution derivation of
∨d

l=1 zl

from *Pebd
T . Then

{

L(C0), . . . , L(Cτ)
}

is the backbone of a legal L-pebbling L
of T such that maxt∈[τ]

{

cost(L(Ct))
}

= Ω
(

cost(L)
)

.

38

Proof. The fact that
{

L(C0), . . . , L(Cτ)
}

essentially is a legal L-pebbling was
proven in Observation 7.10, Lemma 7.11 and Lemma 7.12, where it was ex-
plicitly indicated how the “holes” in L(Ct) L(Ct+1) could be filled in by
L-pebbling moves to get a legal pebbling L.

The bound maxt∈[τ]

{

cost(L(Ct))
}

= Ω
(

cost(L)
)

does not follow immedi-
ately from this, however. The problem is that a single resolution derivation
step Ct Ct+1 may induce several L-pebbling moves to get from L(Ct) to
L(Ct+1) in L. Therefore, we have to consider the possibility that the maximal
pebbling cost in L is reached in some intermediate L-configuration L′ in between
L(Ct) and L(Ct+1).

Since inference steps in π do not change the set of induced L-configurations,
we get two cases.

1. Ct Ct+1 is an erasure. The moves to get from L(Ct) to L(Ct+1) are a
series of reversals from L(Ct) followed by a series of erasures from L(Ct).
In view of part 1 of Proposition 6.5, without loss of generality we can let
L′ be the L-configuration after all reversals but before all erasures. Then
L′ = L(Ct)∪L(Ct+1), and by part 2 of Proposition 6.5, we have cost(L′) ≤
2 ·

(

cost(L(Ct)) + cost(L(Ct+1))
)

≤ 4 · maxi∈[t,t+1]

{

cost(L(Ci))
}

.

2. Ct Ct+1 is a download of C ∈ Axd(v). In this case the moves to get from
L(Ct) to L(Ct+1) are a possible introduction of v〈pred (v)〉 followed by a
series of reversals from L(Ct), then a series of mergers on {v}∪ pred(v)
and finally a series of erasures of subconfigurations not derived in the
merger moves. Again by part 1 of Proposition 6.5, we may let L′ be the
L-configuration after all mergers but before the erasures.

All pebbles in Bl
(

L′
)

∪Wh
(

L′
)

are present in either L(Ct) or L(Ct+1),
except possibly for the pebbles on {v}∪ pred (v) which may have been
introduced and then merged away. Since by construction all subconfigu-
rations resulting from these mergers must be contained in L(Ct+1), the
pebbles on {v}∪ pred (v) are the only ones that can appear and then dis-
appear during the intermediate pebbling steps. Arguing as in the proof
of part 2 of Proposition 6.5, we see that if we remove {v}∪ pred(v) from
Bl

(

L′
)

∪Wh
(

L′
)

the pebbling cost cannot decrease by more than 5.

Since all pebbles Bl
(

L′
)

\
(

{v}∪ pred(v)
)

and Wh
(

L′
)

\
(

{v}∪ pred(v)
)

are

contained in Bl
(

L(Ct)
)

∪Bl
(

L(Ct+1)
)

and Wh
(

L(Ct)
)

∪Wh
(

L(Ct+1)
)

,
respectively, appealing to part 2 of Proposition 6.5 again we get that
maxi∈[t,t+1]

{

cost(L(Ci))
}

≥ 1
4

(

cost(L′) − 5
)

.

This establishes that even if the maximal cost in the L-pebbling L in-
duced by π =

{

C0, . . . , Cτ

}

is attained in some intermediate L-configuration

L′ 6∈
{

L(Ct) | t ∈ [τ]
}

, it still holds that maxt∈[τ]

{

cost(L(Ct))
}

= Ω
(

cost(L)
)

.
The theorem follows.

8 A Separation of Space from Width in Resolution

We have proven that Sp
(

Pebd
Th

` 0
)

= Sp
(

*Pebd
Th

` ∨d
l=1 zl

)

, and that each

resolution derivation π : *Pebd
Th

→ ∨d
i=1 zi induces a legal L-pebbling L of Th

such that maxC∈π

{

cost(L(C))
}

= Ω
(

cost(L)
)

. From Sections 5 and 6 we know

39

that cost(L) = Ω
(

BW-Peb(T)
)

. The final component needed to piece together
the proof of our lower bound on the refutation space of pebbling contradictions
is to show that the number of pebbles in an induced L-configuration L(C) and
the number of of clauses in C are somehow connected.

We cannot expect a proof of this fact to work regardless of the pebbling
degree d. The induced L-pebbling in Section 7 makes no assumptions about d,
but we know that Sp

(

*Peb1
G ` z1

)

= Sp
(

Peb1
G ` 0

)

= O(1). If we look

at the resolution refutation π of Peb1
G in constant space sketched at the end of

Section 4, we see that the induced L-pebbling starts by placing white pebbles on
pred(z) and a black pebble on z, i.e., introducing z〈pred(z)〉, and then pushes
the white pebbles downwards by introducing v〈pred (v)〉 for all v in reverse
topological order and merging until it reaches z〈S〉 for S the source vertices
of G. Finally, the white pebbles in S are eliminated one by one by introducing
s〈∅〉 and merging. The reason that Peb1

G can be refuted in constant space is
that one single clause

∨

v∈V v1∨z1 can induce an arbitrary number |V | of white
pebbles, or, phrasing it differently, that white pebbles are free for d = 1.

Below, we prove lower bounds
∣

∣C
∣

∣ = Ω
(√

N
)

for N induced unrelated black
pebbles in Theorem 8.4 and for N induced white pebbles in Theorem 8.8. As
we just observed, we will need d ≥ 2 in the bound for the white pebbles, but
for the black pebbles of Theorem 8.4 it turns out that the result holds for
all d ∈ N+. We conclude the section by combining the two theorems to prove
the lower bound on refutation clause space Sp

(

Pebd
Th

` 0
)

in Theorem 1.1 and
the separation of space and width in Corollary 1.2.

In the proofs, we will use the following definitions.

Definition 8.1. The vertex v is represented positively in the clause configura-
tion C if

{

v1, . . . , vd

}

∩Lit(C) 6= ∅ and negatively if
{

v1, . . . , vd

}

∩Lit(C) 6= ∅. If
v is represented positively but not negatively, we say that v is purely positive
in C, and v is purely negative if it is represented negatively but not positively.

For a clause C we use V
(

C
)

=
{

v | {v1, . . . , vd}∩Vars(C) 6= ∅
}

to denote

all vertices represented in C. Conversely, we let Vars(V) =
{

v1, . . . , vd | v ∈ V
}

be the set of all variables representing vertices in a vertex set V .

Definition 8.2. For v a vertex in T and α a truth value assignment, v is said
to be true under α if α

(
∨d

i=1 vi

)

= 1 and false under α if α
(
∨d

i=1 vi

)

= 0. If

α
(

vi

)

= 1 for all i ∈ [d], we say that α makes v supertrue. We define

αv=ν
(

ui

)

=

{

α
(

ui

)

if u 6= v,

ν if u = v

and say that αv=0 flips v to false and αv=1 flips v to supertrue.

Definition 8.3. A restriction ρ is a partial truth value assignment. We repre-
sent a restriction as the set of literals ρ = {a1, . . . , am} set to true by ρ. For a
clause C, the ρ-restriction of C is

C|ρ =

{

1 if ρ∩Lit(C) 6= ∅,
C \ {a | a ∈ ρ} otherwise,

where 1 denotes the trivially true clause, and the ρ-restriction C|ρ of a set of
clauses C is the union of the ρ-restrictions C|ρ 6= 1 for C ∈ C.

40

The proof of the lower bound for black pebbles is based on the observation
that if C is sufficiently small and the set of induced pebbles U is sufficiently
large, C contains too many positive literals from U to imply AP u for all u ∈ U .

Theorem 8.4. Let C be a set of clauses and U ⊆ V
(

T
)

a set of unrelated
vertices. Suppose that C induces a black pebble u〈Wu〉 on each u ∈ U . Then
∣

∣C
∣

∣ ≥
√

|U |/d.

Proof. Let S = |C| and N = |U |. By Definition 7.6, if u〈Wu〉 ∈ L(C) there is a
Vu ⊆ T \P u such that Wu = swp(u, Vu) and C∪B

(

Vu

)

� AP u but C∪B
(

Vu

)

2
AP u

∗
. In other words, for each u ∈ U there is a truth value assignment αu such

that αu

(

C
)

= αu

(

B
(

Vu

))

= 1 but αu

(

AP u
∗

)

= 0. Since C∪B
(

Vu

)

� AP u , this

implies that αu

(
∨d

i=1 ui

)

= 1. Flipping u to false falsifies AP u , so it must hold

that αu=0
u

(

C∪B
(

Vu

))

= 0, and Vars(u) ∩Vars(Vu) = ∅ shows that the falsified
clause is in C. It follows that all u ∈ U are represented positively in C.

Fix an arbitrary u ∈ U . We want the truth value assignment αu for u
described above to make as many vertices u′ ∈ U \ {u} as possible supertrue
without falsifying C. Obviously, B

(

Vu

)

is not falsified by flipping vertices to
supertrue, and since the vertices in U are unrelated AP u

∗
is not satisfied. Let

α0 = αu. For all u1, . . . , uN−1 ∈ U \ {u} in some arbitrary fixed order, if

αuj=1
j−1

(

C
)

= 1, set αj = αuj=1
j−1 , otherwise set αj = αj−1. Every time we cannot

flip a vertex uj to supertrue there is some clause Cj ∈ C falsified by this flip,

and since all variables uj
i are left untouched in this case and fix all such Cj to

true, these clauses cannot block the flipping of ul to supertrue for l 6= j. Hence,
αN−1 makes all except at most S vertices in U \ {u} supertrue.

It follows that we can assume without loss of generality that for each u ∈ U ,
αu is such that αu

(

C
)

= αu

(

B
(

Vu

))

= 1, αu

(

AP u
∗

)

= 0 and all but S vertices
in U \ {u} are supertrue under αu.

Let us say that a clause C ∈ C is positively U -sparse if it holds that
∣

∣

{

ui | u ∈ U, i ∈ d
}

∩Lit(C)
∣

∣ ≤ d(S + 1), i.e., if there are at most d(S + 1)
positive literals from vertices u ∈ U in C, and positively U -dense otherwise.
Observe that there can be at most dS(S + 1) vertices in U represented posi-
tively in positively U -sparse clauses in C.

Suppose that N > dS(S + 1). We proved above that all vertices in U
are represented positively in C, so there must exist a u ∈ U that only oc-
curs in positively U -dense clauses. Fix such a vertex u and consider the truth
value assignment αu=0

u . By construction, it holds that αu=0
u

(

AP u

)

= 0 and

αu=0
u

(

B
(

Vu

))

= 1, and for all C ∈ C where u is not purely positive we have

αu=0
u

(

C
)

= 1. Consider C ∈ C such that u is purely positive in C. Then Lit(C)
contains at most d literals from u and at most dS positive literals from vertices
u′ ∈ U \ {u} not supertrue under αu. Since C is U -dense it must also contain
a positive literal from some other vertex in U . By construction this vertex is
supertrue, so such a literal fixes C to true. It follows that αu=0

u

(

C
)

= 1. But

this yields αu=0
u

(

C∪B
(

Vu

))

= 1 and αu=0
u

(

AP u

)

= 0, which contradicts the as-

sumption that C∪B
(

Vu

)

� AP u . Thus, N ≤ dS(S + 1) < d(S + 1)2.

The idea behind the proof of the lower bound for white pebbles is similar, but
here we want to flip the pebbled vertices w ∈ Wh

(

u〈Wu〉
)

= Wh
(

u
〈

swp(u, Vu)
〉)

to false instead of supertrue. This is complicated by the fact that such flips may

41

falsify the clauses B
(

Vu

)

of the support. To get around this problem, we need

to bound the size
∣

∣Vu

∣

∣ of the supporting set in terms of |C|.
The following result seems to be part of mathematical folklore.

Lemma 8.5. A minimally unsatisfiable CNF formula F must have more clauses
than variables.

Proof. Study the bipartite graph on F × Vars(F). Since F is unsatisfiable there
is no matching, so by Hall’s theorem there is a G ⊆ F such that |G| > |N(G)|.
Pick G of maximal size and suppose G 6= F . Then G is satisfiable. Using Hall’s
theorem again, there is a matching between F \G and Vars(F)\N(G), so F \G
and G are simultaneously satisfiable. Contradiction.

We can use Lemma 8.5 to get an upper bound on the size of a minimal
supporting set, provided that the pebbling degree d is strictly greater than 1.

Lemma 8.6. Suppose for a clause set C and a vertex v that there is a V ⊆ T \P v

such that C∪B
(

V
)

� AP v but for all V ′ $ V it holds that C∪B
(

V ′
)

2 AP v .
Then |C| > (d − 1)|V |.

Proof. For any restriction ρ, it clearly holds that D|ρ � D|ρ if D � D. Define

ρ =
{

ui | u ∈ P v , i ∈ [d]
}

. Obviously, AP v |ρ = 0, and since V ⊆ T \P v we have

B
(

V
)

|
ρ

= B
(

V
)

, so C|ρ ∪B
(

V
)

� 0. By the minimality of V , for all V ′ $ V

there is an α such that α
(

AP v

)

= 0 but α
(

C∪B
(

V ′
))

= 1, and the fact that α

and ρ coincide on Vars(P v) demonstrates that C|ρ ∪B
(

V ′
)

2 0. That is, B
(

V
)

must be contained in any minimally unsatisfiable subset of C|ρ ∪B
(

V
)

. The set

B
(

V
)

contains |V | clauses and d|V | variables, so by Lemma 8.5 we must have
∣

∣C
∣

∣ ≥
∣

∣C|ρ
∣

∣ > (d − 1)|V |.

For convenience, we also prove in a separate lemma that if C induces a white
pebble on w, all literals wi, i ∈ [d], are represented in Lit(C).

Lemma 8.7. Suppose for a clause set C and a vertex w that there is a v ∈ P w
∗

and a V ⊆ T \P w
∗ such that C∪B

(

V
)

� AP v but C∪B
(

V \ {w}
)

2 AP v . Then

there is a subset
{

wi ∨ Ci | i ∈ [d]
}

⊆ C for which wj 6∈ Lit(Ci) if j 6= i.

Proof. Pick α such that α
(

C
)

= α
(

B
(

V \ {w}
))

= 1 but α
(

AP v

)

= 0. Then it

must be the case that α
(
∨d

i=1 wi

)

= 0. For all i ∈ [d] we have αwi=1
(

B
(

V
))

= 1

but αwi=1
(

AP v

)

= 0, so flipping wi while keeping wj false for j 6= i must falsify
some clause in C. This establishes that there are clauses wi ∨ Ci ∈ C for all
i ∈ [d] such that wj 6∈ Lit(Ci) for j 6= i.

With the help of Lemmas 8.6 and 8.7 we can establish a lower bound on |C|
in terms of the number of induced white pebbles.

Theorem 8.8. Suppose that C is a clause set and W ⊆ V
(

T
)

an arbitrary set of

vertices such that C induces white pebbles on all w ∈ W , i.e., Wh
(

L(C)
)

⊇ W .

Then
∣

∣C
∣

∣ ≥
√

(d − 1)|W |.

Proof. Let S = |C| and N = |W |. If C induces a white pebble on w, by
Definition 7.6 there is a vw

〈

Ww

〉

= vw

〈

swp(vw, Vw)
〉

∈ L(C) for which it holds
that vw ∈ P w

∗ and w ∈ Ww ⊆ Vw, where Vw ⊆ T \ P v is a supporting set such

42

that C∪B
(

Vw

)

� AP vw but C∪B
(

V ′
)

2 AP vw for all V ′ $ Vw . By Lemma 8.6

it holds that |Vw| < S
d−1 .

Fix an arbitrary w, and let us write Dw = AP vw for brevity. By assumption,
there exists an αw such that αw

(

C
)

= αw

(

B
(

Vw \ {w}
))

= 1 but αw

(

Dw

)

= 0.

Note that αw

(
∨d

i=1 wi

)

= 0. We want αw to falsify as many as possible of the

variables w′
i ∈ Vars(W \ {w}). For every w′ ∈ Vw, the clauses B

(

Vw \ {w}
)

force exactly one variable w′
i to true for i ∈ [d] arbitrary, which gives a total

of at most S
d−1 − 2 variables, and trivially at most S more positive literals w′

i

are needed in order to satisfy C (less if we can pick negative literals or variables
from vertices v 6∈ W). All other variables in Vars(W \ {w}) can be flipped
to false without falsifying C∪B

(

Vw

)

or satisfying Dw. Consequently, without

loss of generality we may assume that αw sets all but dS
d−1 − 2 of the variables

w′
i ∈ Vars(W \ {w}) to false.

Suppose that N > S2

d−1 . Let us say that a clause C ∈ C is negatively

W -sparse if it holds that
∣

∣

{

wi | w ∈ W, i ∈ [d]
}

∩Lit(C)
∣

∣ ≤ d
d−1S and negatively

W -dense otherwise. There are dN distinct negative literals wi for w ∈ W ,
i ∈ [d], and we know by Lemma 8.7 that all of them are present in C. At most

d
d−1S2 < dN literals can occur in negatively W -sparse clauses in C, so there is
some w with a literal wi that occurs only in negatively W -dense clauses.

Fix such a literal wi and consider the truth value assignment αwi=1
w . We

have αwi=1
w

(

Dw

)

= 0 and αwi=1
w

(

B
(

Vw

))

= 1, and the only clauses C ∈ C
that can turn false are those where wi ∈ Lit(C) and wj 6∈ Lit(C) for j 6= i,
since αwi=1

w

(

wj

)

= 0. Such a clause C is W -dense by assumption, and must

therefore contain at least dS
d−1 other negative literals from vertices w′ ∈ W \{w}.

At most dS
d−1 − 2 of the the variables w′

j are true under αwi=1
w , so we can find

some satisfied literal w′
j ∈ Lit(C). It follows that C is true under αwi=1

w , which

implies that αwi=1
w

(

C
)

= 1. But this is impossible since C∪B
(

Vw

)

� Dw. Thus,

S ≥
√

(d − 1)N .

At last, we can now prove the main theorem of this paper.

Theorem 1.1 (restated). Let Th denote the complete binary tree of height h
and Pebd

Th
the pebbling contradiction of degree d ≥ 2 defined on Th. Then the

space of refuting Pebd
Th

by resolution is bounded by Sp
(

Pebd
Th

` 0
)

= Ω
(
√

h
)

.

Proof. According to Observation 7.2, Sp
(

Pebd
G ` 0

)

= Sp
(

*Pebd
G ` ∨d

i=1 zi

)

.

Let π =
{

C0, . . . , Cτ

}

be a resolution derivation of
∨d

i=1 zi from *Pebd
Th

in
minimal clause space.

Combining Theorems 3.3, 5.12 and 7.13, we know that the derivation π in-
duces a legal L-pebbling L of the tree Th such that there is a clause configuration
Ct ∈ π with cost(L(Ct)) = Ω

(

cost(L)
)

= Ω
(

BW-Peb(Th)
)

= Ω
(

h
)

. Fix such an

induced L-configuration Lt = L(Ct) with cost(Lt) = K = Ω
(

h
)

.

If
∣

∣Wh
(

Lt

)∣

∣ ≥ 1
3K, we have

∣

∣Ct

∣

∣ = Ω
(√

K
)

by Theorem 8.8. Suppose that
∣

∣Wh
(

Lt

)∣

∣ < 1
3K. Then there is an admissible choice of B ⊆ Bl

(

Lt

)

in the sense
of Definition 5.8 such that |B| > 2

3K.
Look at all closest related pairs of vertices u, v ∈ B, i.e., such that u ∈ P v

∗

but
(

P v
∗ \ P u

)

∩B = ∅. For each such pair there must exist a white pebble

wu ∈ Wh
(

Lt

)

∩
(

P v \ P u
)

, since both u and v are admissible, and we can pick

43

an arbitrary such wu and associate it with u. Note that wu 6= wu′ if u 6= u′

since we consider closest pairs u, v. Remove all upper vertices u of such pairs
u, v from B to get B′ =

{

v ∈ B | T v
∗ ∩B = ∅

}

.

All vertices in B′ are unrelated, and for each u ∈ B \B′, we have identified
a distinct associated wu ∈ Wh

(

Lt

)

. Consequently, we cannot have removed

more than a total of 1
3K black pebbles, so

∣

∣B′
∣

∣ > 1
3K and by appealing to

Theorem 8.4 we get
∣

∣Ct

∣

∣ = Ω
(
√

K
)

= Ω
(
√

h
)

.

It follows that Sp
(

Pebd
G ` 0

)

= Sp
(

π
)

≥
∣

∣Ct

∣

∣ = Ω
(
√

h
)

.

Since W
(

Pebd
G ` 0

)

= O(d) for all pebbling contradictions by Theorem 4.2,
fixing d ≥ 2 in Theorem 1.1 yields a separation of clause space from width.
Corollary 1.2 follows if we let Fn = Peb2

Th
for h = blog nc.

Corollary 1.2 (restated). There is a family
{

Fn

}∞

n=1
of k-CNF formulas of

size O(n) such that W
(

Fn ` 0
)

= O(1) but Sp
(

Fn ` 0
)

= Ω
(√

log n
)

.

9 Conclusion and Open Problems

We have proven a non-constant lower bound on the refutation clause space
of pebbling contradictions in resolution. Our result is the first lower bound on
refutation space which is not the consequence of a lower bound on the refutation
width for the same formulas, but instead separates the two measures.

This answers an open question in [7, 21, 23, 32]. However, we believe that
our answer can be strengthened in several ways.

Firstly, we conjecture that the lower bounds for
∣

∣C
∣

∣ in terms of the number of

induced pebbles N in Theorems 8.4 and 8.8 can be improved from
∣

∣C
∣

∣ = Ω
(√

N
)

to
∣

∣C
∣

∣ = Ω
(

N
)

. This would yield a tight linear bound measured in the tree
height for the refutation clause space of pebbling contradictions over complete
binary trees, which we strongly suspect to be the correct result.

Conjecture 9.1. For any constant d ≥ 2, Sp
(

Pebd
Th

` 0
)

= Θ
(

BW-Peb(Th)
)

=
Θ(h).

Note that the proofs in Section 8 do not use in any way that C is derived
from *Pebd

T and that we therefore know quite a lot about the structure of the
clauses in C. For instance, it is not hard to show the following lemma, which
we state without proof.

Lemma 9.2. Suppose that D is a clause derived from *Pebd
T by resolution.

Then D = D′ ∨ ∨d
i=1 si for some s ∈ V

(

T
)

such that V
(

D′
)

⊆ T s
∗ .

Using this kind of information, we think that there should be room for
improvement of the bounds in Section 8.

Secondly, we would like to generalize the lower bound on the refutation
space of pebbling contradictions to the k-DNF resolution proof systems Res(k)
introduced in [25], where the clause configurations C consist of k-DNF formulas.
We believe that pebbling contradictions Pebk+1

Th
separate k-DNF resolution and

(k+1)-DNF resolution with respect to space.

44

Conjecture 9.3. For k-DNF resolution refutations of pebbling contradictions
on complete binary trees, fixing k it holds that WRes(k)

(

Pebk+1
Th

` 0
)

= O(1)

and SpRes(k)

(

Pebk+1
Th

` 0
)

= Ω(h) but SpRes(k+1)

(

Pebk+1
Th

` 0
)

= O(1).

Proving this conjecture would establish that the k-DNF resolution proof
systems form a strict hierarchy with respect to clause space, which would be an
improvement of the separation result in [21] for the restricted case of tree-like
k-DNF resolution.

Thirdly, it would be nice to extend the bound on refutation space of pebbling
contradictions to DAGs other than trees that have better size-pebbling price
trade-off. For L = L

(

F
)

the number of clauses in a formula F , we want to

find a formula family which improves the the bound Sp
(

F ` 0
)

= Ω
(√

log L
)

in Theorem 1.1 to Sp
(

F ` 0
)

= Ω
(

L
)

or at least Sp
(

F ` 0
)

= Ω
(

Lε
)

for some

constant ε > 0, but for which it still holds that W
(

F ` 0
)

= O(1).
Our guess is that the black-white pebbling price is a lower bound for pebbling

contradictions over any DAG.

Conjecture 9.4. For d ≥ 2 and for G an arbitrary DAG with a unique target
and with all vertices having indegree 0 or 2, Sp

(

Pebd
G ` 0

)

= Ω
(

BW-Peb(G)
)

.

Since there are DAGs Gn of constant fan-in and size O(n) which have black-
white pebbling price BW-Peb(Gn) = Θ

(

n/ logn
)

[26], a proof of Conjecture 9.4
would immediately yield the following corollary.

Corollary 9.5 (assuming Conjecture 9.4). There is a family of unsatisfi-
able k-CNF formulas

{

Fn

}∞

n=1
of size O(n) such that W

(

Fn ` 0
)

= O(1) but

Sp
(

Fn ` 0
)

= Ω
(

n/ logn
)

.

A final question is whether refutation space can be separated from refutation
length in the sense that there can be shown to exist a polynomial-size family
of k-CNF formulas such that Sp

(

F ` 0
)

= ω
(√

n logL(F ` 0)
)

, where n is the
number of variables in F . This would be an interesting contrast to the relation
W

(

F ` 0
)

= O
(
√

n logL(F ` 0)
)

between length and width proven in [10]. We
believe that such a formula family exists.

Conjecture 9.6. There is a family of k-CNF formulas
{

Fn

}∞

n=1
over n vari-

ables such that Sp
(

F ` 0
)

= ω
(√

n logL(F ` 0)
)

.

Of course, if we could prove Conjecture 9.4, we would immediately get a
positive answer to Conjecture 9.6 as well, using the same formula family as in
Corollary 9.5.

Acknowledgements

I am grateful to my supervisor, Professor Johan H̊astad, for giving feed-back
to my ideas (sometimes supporting, sometimes criticizing them), and for pro-
viding a couple of ingenious ones of his own. Also, I would like to thank
Douglas Wikström for interesting discussions about theoretical computer sci-
ence in general and pebble games in particular. Finally, a special thanks to
Joel Brynielsson, who introduced me to the mysteries of METAPOST.

45

References

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi
Wigderson. Space complexity in propositional calculus. SIAM Journal on
Computing, 31(4):1184–1211, 2002.

[2] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general resolu-
tion. In Proceedings 34th Annual ACM Symposium on Theory of Computing
(STOC ’02), pages 448–456, May 2002.

[3] Albert Atserias and Victor Dalmau. A combinatorical characterization of
resolution width. In Proceedings 18th IEEE Annual Conference on Confer-
ence on Computational Complexity (CCC ’03), pages 239–247, July 2003.

[4] Paul Beame. Proof Complexity. Lecture notes, Institute for Advanced
Study, 2000.

[5] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The ef-
ficiency of resolution and Davis-Putnam procedures. SIAM Journal on
Computing, 31(4):1048–1075, 2002.

[6] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past,
present, and future. Bulletin of the European Association for Theoretical
Computer Science, 65:66–89, June 1998.

[7] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings 34th
Annual ACM Symposium on Theory of Computing (STOC ’02), pages
457–464, May 2002.

[8] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae
in resolution. Random Structures and Algorithms, 23(1):92–109, August
2003.

[9] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal
separation of treelike and general resolution. Combinatorica, 24(4):585–603,
September 2004.

[10] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution
made simple. Journal of the ACM, 48(2):149–169, March 2001.

[11] A. Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University
of Chicago, 1937.

[12] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen.
On the relative complexity of resolution refinements and cutting planes
proof systems. SIAM Journal on Computing, 30(5):1462–1484, 2000.

[13] Maria Luisa Bonet and Nicola Galesi. A study of proof search algorithms for
resolution and polynomial calculus. In Proceedings 40th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS ’99), October 1999.

[14] Josh Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution
refinements. In Proceedings 18th IEEE Symposium on Logic in Computer
Science (LICS 03), pages 138–147, June 2003.

46

[15] Samuel R. Buss, editor. Handbook of Proof Theory. Elsevier Science, Am-
sterdam, 1998.

[16] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution.
Journal of the ACM, 35(4):759–768, October 1988.

[17] Stephen A. Cook and Robert Reckhow. The relative efficiency of proposi-
tional proof systems. Journal of Symbolic Logic, 44(1):36–50, March 1979.

[18] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic
polynomial time recognizable languages. Journal of Computer and System
Sciences, 13(1):25–37, 1976.

[19] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem proving. Communications of the ACM, 5(7):394–397,
July 1962.

[20] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. Journal of the ACM, 7(3):201–215, 1960.

[21] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity
of resolution with bounded conjunctions. Theoretical Computer Science,
321(2-3):347–370, August 2004.

[22] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Infor-
mation and Computation, 171(1):84–97, 2001.

[23] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization
of treelike resolution space. Information Processing Letters, 87(6):295–300,
2003.

[24] Armin Haken. The intractability of resolution. Theoretical Computer Sci-
ence, 39(2-3):297–308, August 1985.

[25] Jan Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathemati-
cae, 170(1-3):123–140, 2001.

[26] Thomas Lengauer and Robert Endre Tarjan. Upper and lower bounds
on time-space tradeoffs. In Proceedings 11th Annual ACM Symposium on
Theory of Computing (STOC ’79), pages 262–277, May 1979.

[27] Thomas Lengauer and Robert Endre Tarjan. The space complexity of
pebble games on trees. Information Processing Letters, 10(4/5):184–188,
July 1980.

[28] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Re-
search Center, 1980. Appeared in Proceedings of the 5th IBM Symposium
on Mathematical Foundations of Computer Science, Japan.

[29] Ran Raz. Resolution lower bounds for the weak pigeonhole principle. Jour-
nal of the ACM, 51(2):115–138, 2004.

[30] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

47

[31] Jacobo Torán. Lower bounds for space in resolution. In Proceedings 13th
International Workshop Computer Science Logic (CSL ’99), volume 1683 of
Lecture Notes in Computer Science, pages 362–373. Springer-Verlag, 1999.

[32] Jacobo Torán. Space and width in propositional resolution. Bulletin of the
European Association for Theoretical Computer Science, 83:86–104, June
2004.

[33] Grigori Tseitin. On the complexity of derivation in propositional calculus.
In A. O. Silenko, editor, Structures in Constructive Mathematics and Math-
ematical Logic, Part II, pages 115–125. Consultants Bureau, New York-
London, 1968.

[34] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

[35] Alasdair Urquhart. The complexity of propositional proofs. Bulletin of
Symbolic Logic, 1(4):425–467, 1995.

48

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

