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Ratzeburger Allee 160, 23538 Lübeck, Germany
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Abstract

The combination of two major challenges in machine learning is investi-
gated: dealing with large amounts of irrelevant information and learning from
noisy data. It is shown that large classes of Boolean concepts that depend on
a small number of variables—so-called juntas—can be learned efficiently from
random examples corrupted by random attribute and classification noise.

To accomplish this goal, a two-phase algorithm is presented that copes with
several problems arising from the presence of noise: firstly, a suitable method
for approximating Fourier coefficients in the presence of noise is applied to
infer the relevant variables. Secondly, as one cannot simply read off a truth
table from the examples as in the noise-free case, an alternative method to
build a hypothesis is established and applied to the examples restricted to the
relevant variables.

In particular, for the class of monotone juntas depending on d out of n
variables, the sample complexity is polynomial in log(n/δ), 2d, γ−da , and γ−1

b ,
where δ is the confidence parameter and γa, γb > 0 are noise parameters
bounding the noise rates away from 1/2. The running time is bounded by the
sample complexity times a polynomial in n.

So far, all results hold for the case of uniformly distributed examples—the
only case that (apart from side notes) has been studied in the literature yet.
We show how to extend our methods to non-uniformly distributed examples
and derive new results for monotone juntas.

For the attribute noise, we have to assume that it is generated by a product
distribution since otherwise fault-tolerant learning is in general impossible: we
construct a noise distribution P and a concept class C such that it is impossible
to learn C under P -noise.

Keywords: learning of Boolean functions, noise-tolerant learning, learning under
irrelevant information, juntas, Fourier analysis
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1 Introduction

Learning in the presence of huge amounts of irrelevant information and learning
in the presence of noise have attracted considerable interest in the past. In this
paper, we investigate what happens when these worlds collide: How can we learn
Boolean concepts that depend on only a small number d of attributes—so-called
d-juntas—under the unpleasant effects of attribute and classification noise?

Efficient learning in the presence of irrelevant information is considered to be
among the most important and challenging issues in machine learning (see Mossel,
O’Donnell, and Servedio [22]) with a wide range of applications (see Akutsu, Miyano,
and Kuhara [1] and Blum and Langley [7]). The goal is to design fast algorithms
that learn from a number of examples that may depend exponentially on d (since the
output hypotheses are represented by their truth tables being of size 2d) but only
logarithmically on the number n of all attributes. While this goal has been achieved
for various junta subclasses and learning models (see e.g. Littlestone [19]), it is an
open question whether the class of all n-ary d-juntas can be PAC-learned efficiently
under the uniform distribution. The fastest algorithm to date was proposed by
Mossel et al. [22] and runs in time n0.704d · poly(n, 2d, log(1/δ)), where δ is the
confidence parameter. Their algorithm combines two methods: the Fourier method
infers relevant variables via estimating Fourier coefficients and the parity method
learns the concept via solving linear equations over GF(2). In particular, the Fourier
method yields an algorithm for learning the class of monotone d-juntas in time
poly(n, 2d, log(1/δ)).

As coping with irrelevant information has been identified as a core challenge in
many machine learning applications, it is most natural to take into account that real-
world data are often disturbed by noise. Angluin and Laird [2] were the first to inves-
tigate PAC-learning in the presence of classification noise, whereas attribute-noise
was first considered for the class of k-DNF formulas by Shackelford and Volper [24]
and later by Decatur and Gennaro [10]. Bshouty, Jackson, and Tamon [9] introduced
the notion of noisy distance between concepts and showed how this quantity relates
to uniform-distribution PAC-learning in the presence of attribute and classification
noise. Further aspects of learning in noisy settings were investigated by Goldman
and Sloan [13] and by Miyata, Tarui, and Tomita [20].

Our main contribution is an algorithm that efficiently learns large classes of
juntas despite the presence of almost arbitrary attribute and classification noise.
Thus we manage to cope with both problems: irrelevant information and noise.

More precisely, we assume that a learning algorithm receives uniformly dis-
tributed examples (x1, . . . , xn, y) ∈ {0, 1}n × {−1,+1} in which each attribute
value xi is flipped independently with probability pi and the sign of the label y
is switched with probability η. To avoid that the noise-affected data is turned into
completely random noise, we require that there be constants γa, γb > 0 such that
for all attribute noise rates pi, |1− 2pi| ≥ γa and for the classification noise rate η,
|1 − 2η| ≥ γb. We call such noise distributions (γa, γb)-bounded noise. We show
that the class of Boolean functions we call s-low d-juntas is exactly learnable from
poly(log n, 2d, log(1/δ), γ−da , γ−1

b ) examples in time ns · poly(n, 2d, log(1/δ), γ−da , γ−1
b )

under (γa, γb)-bounded noise. Roughly speaking, a concept is s-low if it suffices to
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check all Fourier coefficients up to the s-th level in order to find all relevant at-
tributes (see Section 3). As a main application, the class of monotone d-juntas,
for which s = 1, is learnable in time poly(n, 2d, log(1/δ), γ−da , γ−1

b ) under (γa, γb)-
bounded noise.

A function is 1-low iff its function value is correlated with each relevant variable,
i.e., for each relevant variable xi, at least one of the subfunctions fxi=0 and fxi=1

is unbalanced. Coincidentally, it has been shown that certain greedy algorithms
studied by Arpe and Reischuk [3, 4] and Fukagawa and Akutsu [11] successfully infer
all relevant attributes of such functions in case of uniformly distributed attributes
disturbed by attribute noise with small noise rates. Compared to the greedy method,
the Fourier technique can cope with almost arbitrary attribute noise rates. While
the Fourier method easily extends to concepts of a higher degree of balance, such
an extension is not known for the greedy method.

We now briefly describe how we solve the manifold problems that occur when
trying to extend results from the noise-free case to the noisy case. In the noise-free
setting, it is trivial to achieve the time bound nd ·poly(n, 2d, log(1/δ)) for the whole
class of n-ary d-juntas by testing for all subsets of d variables whether these are
relevant. This is accomplished by checking whether the examples restricted to these
variables do not contain any contradictions. In the noisy case, however, there is no
obvious way to check whether a subset of the variables is relevant. We solve this
problem by adapting the Fourier method presented by Mossel et al. [22]. For this
it is necessary to approximate Fourier coefficients of Boolean functions from highly
disturbed data.

Also, in the noise-free setting, once the relevant variables are inferred, one can
just read off a truth table from the undisturbed examples. This is impossible in case
of unreliable data. To overcome this problem, we apply a learning algorithm for ar-
bitrary concepts to the examples restricted to the relevant variables. This restriction
is essential since in this way, the number of examples needed to build a hypothesis
does not depend on n but only on d. The learning algorithm uses the Fourier-based
learning approach originated by Linial, Mansour, and Nisan [17] and extended to
the noisy scenario by Bshouty, Jackson, and Tamon [9]. A direct application of the
algorithm of Bshouty et al. yields a sample complexity of nd+O(1). By first applying
our procedure to detect all relevant attributes, we significantly improve this sample
complexity to depend only polylogarithmically on n (and exponentially on d).

So far all results are valid for uniformly distributed attribute vectors—the only
case for which positive noise-tolerant learning results have previously been ob-
tained in the literature (as far as we are aware). We extend our methods to non-
uniform attribute distributions, i.e., the oracle first draws an example according
to a product distribution D with rates d1, . . . , dn ∈ [γc, 1 − γc] for some γc > 0
and then applies (γa, γb)-bounded noise. We show that in this setting, mono-
tone d-juntas are learnable from poly(logn, 2d

2
, log(1/δ), γ−da , γ−1

b ) examples in time
poly(n, 2d

2
, log(1/δ), γ−da , γ−1

b ), provided that γc ≥ 0.2764. It turns out that the ex-
tension is not as straightforward as one might first think: while the method for the
case of uniformly distributed attributes relies on the fact that the orthonormal basis
of parity functions is compatible with the exclusive or operation used in the noise
model, this is no more the case for the biased orthonormal bases that are appro-
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priate for non-uniform distributions. We solve this problem by combining unbiased
parity functions with biased inner products. As a consequence, the analysis becomes
a lot more intricate since in order to approximate a biased Fourier coefficient f̂(I),
I ⊆ [n], one already has to have good approximations to all coefficients f̂(J), J ( I.
In addition, we have to provide a lower bound on the absolute value of nonzero
biased Fourier coefficients for monotone juntas (see Section 5 for details).

Finally, we prove that without restricting the attribute noise distributions (for
example to product distributions), noise-tolerant learning is in general impossible:
we construct an attribute noise distribution P (that is not a product distribution)
and a concept class C such that it is impossible to learn C under P -noise. In particu-
lar, this shows that our results may not be extended to arbitrary noise distributions.

Our proofs have three main ingredients: standard Hoeffding bounds [14], har-
monic analysis of Boolean functions under uniform [6] and non-uniform [12] distri-
bution, and the noise operator TP , a generalization of the Bonami-Beckner operator
Tρ, formally introduced by O’Donnell [23] and previously studied in several con-
texts [15, 5, 21, 9].

In Section 2, we introduce basic notation, definitions, and tools and present the
considered learning and noise model. After reviewing how to learn juntas in the
noise-free case in Section 3, we show how to handle the noisy case in Section 4.
Section 5 deals with the extension of our results to non-uniformly distributed at-
tributes.

2 Preliminaries

We consider Boolean functions f : {0, 1}n → {−1,+1}, also called concepts. The
class of all n-variate concepts is denoted by Bn. A concept is monotone if for all
x, y ∈ {0, 1}n such that x ≤ y, we have f(x) ≥ f(y) (note that for variables, the
value 1 for “true” is larger than the value 0 for “false”, whereas for function values
−1 (true) and 1 (false), it is the other way round). For I ⊆ [n] = {1, . . . n}, we define
the parity function χI ∈ Bn by χI(x) = (−1)

P

i∈I xi. For x, y ∈ {0, 1}n, x⊕y denotes
the vector obtained from component-wise exclusive or. We denote probabilities by
P and expectations by E. The uniform distribution over {0, 1}n is denoted by Un.
The functions log and ln denote the binary and the natural logarithm, respectively.

A concept class is a set of concepts f ∈ Bn. Let C be a concept class and f ∈ C.
A vector (x1, . . . , xn, y) ∈ {0, 1}n × {−1,+1} is called an example. It is consistent
with f if f(x1, . . . , xn) = y. A sequence of m examples is called a sample of size m.

Consider the space R{0,1}n

of real-valued functions on the hypercube. The inner
product 〈f, g〉 = Ex∼Un

[f(x)g(x)] induces the norm ‖f‖2 =
√
〈f, f〉 and turns R{0,1}n

into a Hilbert space of dimension 2n with orthonormal basis (χI | I ⊆ [n]), see for
example Bernasconi [6].

Let f : {0, 1}n → R and I ⊆ [n]. The Fourier coefficient of f at I is

f̂(I) = Ex∼Un
[f(x) · χI(x)] = 2−n

∑
x∈{0,1}n f(x) · χI(x) .

If I = {i}, we write f̂(i) instead of f̂({i}). We have the Fourier expansion

f(x) =
∑

I⊆[n] f̂(I) · χI(x) (1)
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for all x ∈ {0, 1}n. Given a sample S = (xk, yk)k∈[m] ∈ ({0, 1}n × {−1,+1})m (with
yk = f(xk)), define the empirical Fourier coefficient of f at I given S by

f̃S(I) = 1
m

∑m
k=1 χI(x

k) · yk . (2)

By standard Hoeffding bounds [14], f̃S(I) approximates f̂(I) up to an additive error
of ε with probability at least 1− δ, provided that m ≥ 2 · ln(δ/2) · (1/ε2) uniformly
distributed examples are given.

A function f ∈ Bn depends on variable xi (and xi is relevant to f) if the (n− 1)-
variate subfunctions fxi=0 and fxi=1 with xi set to 0 and 1, respectively, are not
equal. Denote the set of relevant variables of f by rel(f). A function that depends
on at most d variables is called a d-junta, and the class of n-variate Boolean d-juntas
is denoted by J n

d . The class of monotone d-juntas is denoted by MONn
d , and the

class of juntas such that the function restricted to its relevant variables is symmetric
is denoted by SYMn

d .
To learn a target concept f ∈ C, we assume that a learning algorithm has access

to a noisy example oracle EX P,η(f), where P : {0, 1}n → [0, 1] is a probability
distribution called the attribute noise distribution and η ∈ [0, 1] is the classification
noise rate. On request, EX P,η(f) first generates an attribute vector x ∈ {0, 1}n
according to Un and computes y = f(x). Then it generates an attribute noise vector
a ∈ {0, 1}n according to P and a classification noise bit b ∈ {−1,+1} which is set
to −1 with probability η and to 1 with probability 1 − η. Finally it returns the
(P, η)-noisy example (x⊕ a, y · b). If an example oracle applies only attribute noise,
we denote it by EX P,−(f). If no noise is applied at all, we just write EX (f). Let
δ ∈ (0, 1] be a confidence parameter. An algorithm A exactly learns the class C
under noise (P, η) (or (P, η)-learns C) with confidence 1−δ if for any target concept
f ∈ C, given access to EX P,η(f), A outputs a hypothesis h ∈ Bn such that with
probability at least 1 − δ, h = f . The class C is exactly (P, η)-learnable if there is
an algorithm A that on any input δ > 0, learns C under noise (P, η) with confidence
1− δ. The number of calls to EX P,η(f) is called the sample complexity of A.

For the time being, we restrict ourselves to uniformly distributed attribute values.
The case of non-uniform distributions is discussed in Section 5.

Since arbitrary attribute noise distributions often turn out to make learning im-
possible, we often restrict ourselves to product attribute noise considered for example
by Goldman and Sloan [13]. Here, each attribute xi of an example is flipped inde-
pendently with some probability pi ∈ [0, 1], called the (attribute) noise rate of xi.
Thus we have P (a1, . . . , an) =

∏n
i=1 p

ai

i · (1− pi)1−ai .

3 Learning Juntas—A Review of the Noise-Free

Case

In this section we review the “Fourier algorithm” described by Mossel et al. [22].
We first look at how one can learn monotone juntas and then show how to extend
the method to learn larger subclasses of juntas. This will be helpful to make clear
why we are interested in s-low juntas and to understand the methods presented in
Section 4.
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Let f ∈ MONn
d be a monotone d-junta. It is well known (cf. [22]) that f is corre-

lated with all of its relevant variables, i.e., the probability that xi and f(x) take the
same value differs from 1/2 and thus f̂(i) = Px∼Un

[f(x) = xi]−Px∼Un
[f(x) 6= xi] 6= 0.

This fact may be exploited to infer the relevant variables of f from (uniformly dis-
tributed) random examples (xk, f(xk)), xk ∈ {0, 1}n, k ∈ [m], as follows: simply
approximate the Fourier coefficients f̂(i) by the empirical coefficients f̃(i) defined
in (2). If sufficiently many independent examples are available, then with high prob-
ability, the relevant variables are exactly those for which f̃(i) is sufficiently far away
from zero, i.e., |f̂(i)| ≥ τ for some threshold τ > 0.

Once we have correctly inferred the relevant variables, it is easy to derive a
consistent hypothesis: we obtain an appropriate truth table by restricting the given
examples to the relevant variables. With high probability (see Blumer et al. [8]),
there is only one hypothesis having the same set of relevant variables and being
consistent with the function table, namely the target concept f .

Clearly, the approach also works for non-monotone functions with the property
that all relevant variables are correlated with the function value. Moreover, we can
use the following fact (implicitly used in Mossel et al. [22]) to extend the method to
larger classes of Boolean functions:

Lemma 3.1 Let f ∈ Bn. Then for all i ∈ [n], xi is relevant to f if and only if there
exists I ⊆ [n] such that i ∈ I and f̂(I) 6= 0.

Hence whenever we find a nonzero Fourier coefficient f̂(I), we know that all variables
xi, i ∈ I, are relevant to f . Moreover, all relevant variables can be detected in this
way, and we only have to check out subsets of size at most d = | rel(f)|. However,
there are Θ(nd) such subsets, an amount that we would like to reduce. This leads
us to the following definition:

Definition 3.2 Let f ∈ J n
d , xi ∈ rel(f), and s ∈ [d]. Variable xi is s-low for f if

there exists an I ⊆ [n] such that i ∈ I, |I| ≤ s, and f̂(I) 6= 0. The concept f is s-low
if all xi ∈ rel(f) are s-low for f . The set of s-low d-juntas is denoted by Rn

d(s).

In these terms, monotone juntas are 1-low, i.e., MONn
d ⊆ Rn

d(1). Even more: all
juntas that are locally (anti-)monotone are 1-low; these are juntas that can be
turned into a monotone function by negating some input variables. This includes
all monomials and clauses of arbitrary literals. Actually, the vast majority of juntas
belongs to Rn

d (1) since a random junta fulfills f̂(i) 6= 0 for all xi ∈ rel(f) with
overwhelming probability, see Blum and Langley [7] and Mossel et al. [22].

Also for other subclasses C of J n
d , finding the smallest s such that C ⊆ Rn

d(s)
has recently attracted considerable interest: The class of all unbalanced d-juntas is
contained in Rn

d((2/3) ·d) (see Mossel et al. [22]), and the class SYMn
d \{χI | |I| ≤ d}

of symmetric d-juntas that are not parity functions is now known to be contained
in Rn

d (O(d/ log d)) (see Kolountzakis et al. [16]).
In the left part of Fig. 1, we present the algorithm (which we call IRV) described

by Mossel et al. [22] for inferring the relevant variables of s-low d-juntas.

Proposition 3.3 ([22]) Let f ∈ Rn
d (s) be an s-low d-junta. Then with probability

at least 1− δ, algorithm IRV exactly infers the relevant variables of f from a sample
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of size poly(log n, 2d, log(1/δ)) in time ns · poly(n, 2d, log(1/δ)).

4 Learning Juntas—The Noisy Case

Now let us see what we can do if the example generating oracle behaves unreliably.
We first introduce the noise operator TP which is crucial to the proofs of Section 4.2.
In addition, this operator adds some structure and insight to results of Bshouty et
al. [9].

4.1 The Noise Operator

For an attribute noise distribution P : {0, 1}n → [0, 1], we define the noise operator
TP : R{0,1}n → R{0,1}n

by TP (f)(x) = Ea∼P [f(x⊕a)]. If f ∈ Bn, then TP (f)(x) is the
expected value returned by the oracle EX P,−(f) provided that x is the outcome of
the oracle’s draw of the attribute vector according to Un. By linearity of the mean,
TP is a linear operator.

For I ⊆ [n] and a ∼ P , let pI be the probability that an odd number of bits ai
with i ∈ I is set to one, i.e.,

pI = Pa∼P [χI(a) = −1] (3)

and let αI = Ea∼P [χI(a)] = 1 − 2pI. The following lemma states how the Fourier
coefficients of TP (f) are related to those of f :

Lemma 4.1 Let f : {0, 1}n → R, P be an attribute noise distribution, and I ⊆ [n].

Then T̂P (f)(I) = αI · f̂(I).

Proof. We have

T̂P (f)(I) = Ex∼Un
[TP (f)(x) · χI(x)] = Ex∼Un

[Ea∼P [f(x⊕ a) · χI(x)]]
= Ea∼P [Ex∼Un

[f(x⊕ a) · χI(x)]] = Ea∼P [Ex∼Un
[f(x) · χI(x⊕ a)]]

= Ea∼P [Ex∼Un
[f(x) · χI(x) · χI(a)]] = αI · f̂(I) .

2

Several additional properties of TP used in the proofs of Section 4.2 are provided
by the following lemma.

Lemma 4.2 Let f : {0, 1}n → [−1, 1] and P : {0, 1}n → [0, 1] be an attribute noise
distribution. Then

(a) TP (f)(x) =
∑

I⊆[n] αI f̂(I)χI for all x ∈ {0, 1}n.

(b) ‖TP (f)‖1 = Ex∼Un
[ |Ea∼P [f(x⊕ a)] | ].

(c) ‖TP (f)‖22 = Ex∼Un
[ (Ea∼P [f(x⊕ a)])2 ] =

∑
I⊆[n] α

2
I f̂(I)2.

(d) ‖TP (f)‖22 ≤ ‖TP (f)‖1 ≤ ‖TP (f)‖2.

(e) ‖TP (f)‖22 ≥ minI⊆[n] α
2
I · ‖f‖22.
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Proof. Part (a) follows by Fourier expansion (1), part (b) is immediate from the
definitions, and part (c) follows from the definitions and from Parseval’s equation
‖f‖22 =

∑
I⊆[n] f̂(I)2. The first inequality of part (d) follows since for all g : {0, 1}n →

[−1,+1], we have

‖g‖22 =
∑

x∈{0,1}n

g(x)2 ≤
∑

x∈{0,1}n

|g(x)| = ‖g‖1 .

Clearly, |TP (f)(x)| ≤ 1 for all x ∈ {0, 1}n if |f(x)| ≤ 1 for all x ∈ {0, 1}n. The
second inequality of part (d) follows from E[|X|]2 ≤ E[X2] for real-valued random
variables X. Finally, part (e) is an immediate consequence of part (c). 2

From these properties, it follows that ‖TP (f−g)‖1 equals twice the noisy distance
between f and g introduced by Bshouty et al. [9]. Furthermore, one of their main
results, which is also used in our proofs, easily follows from Lemma 4.2:

Theorem 4.3 ([9]) Let P : {0, 1}n → [0, 1] be a probability distribution and f, g ∈
Bn. Then 1

2
‖TP (f − g)‖22 ≤ ‖TP (f − g)‖1 ≤ ‖TP (f − g)‖2.

4.2 Approximating Fourier Coefficients

Given a uniformly distributed (P, η)-noisy sample, the empirical Fourier coefficient
f̃S(I) approximates Ex∼Un,a∼P,b∼η[χI(x⊕ a) · f(x) · b)]. It is easy to see (cf. Bshouty

et al. [9]) that this expectation equals (1− 2pI) · (1− 2η) · f̂(I) with pI as defined
in (3). Using standard Hoeffding bounds [14], we obtain

Lemma 4.4 Let f ∈ Bn, P be an attribute noise distribution and η ∈ [0, 1] be
a classification noise rate. Let δ, ε > 0 and S be a (P, η)-noisy sample of size
m ≥ 2 · ln(2/δ) · (1/ε2). Then |f̃S(I)− (1− 2pI)(1− 2η)f̂(I)| ≤ ε with probability at
least 1− δ.

Thus we can infer f̂(I) from f̃(I) by this method if and only if pI 6= 1/2.
Unfortunately, it can happen that pI = 1/2 for some I (even if Pa∼P [ai = −1] 6= 1/2
for all i ∈ [n]). Even worse, we can construct a concept class C and an attribute
noise distribution P such that C is (information-theoretically) not (P,−)-learnable:

Theorem 4.5 There is a concept class C and an attribute noise distribution P such
that C is not (P,−)-learnable. In addition, P may be chosen such that pi < 1/2 for
all i ∈ [n].

Proof. We set n = 2, P (00) = 4/8, P (01) = 3/8, P (10) = 1/8, and P (11) = 0.
Then P[a1 = 1] = 1/8 and P[a2 = 1] = 3/8. Let f(x) = χ[2](x) = (−1)x1+x2 and
choose C = {f,−f}. By Lemma 4.2 (c), ‖TP (2f)‖22 = 2

∑
I⊆[n] α

2
Iχ̂[2](I)

2 = 2α2
[2] =

(4/8− 3/8− 1/8+0)2 = 0 (note that χ̂I(J) = 1 iff I = J and χ̂I(J) = 0 otherwise),
hence also ‖TP (2f)‖1 = 0. This implies that |Ea∼P [f(x⊕ a)− (−f)(x⊕ a)]| = 0 for
all x ∈ {0, 1}n. But from this it follows that (x, f(x⊕ a)) and (x,−f(x ⊕ a)) with
x ∼ Un and a ∼ P are identically distributed (see the proof of [9, Theorem 2]). Thus
(x⊕ a, f(x)b) and (x ⊕ a,−f(x)b) (with P[b = −1] = η) are identically distributed
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by [9, Lemma 1]. Hence f and −f are information-theoretically indistinguishable
under P -attribute noise. 2

In contrast, things look much nicer for product distributions P with noise rates
pi that are all different from 1/2:

Definition 4.6 (γa-bounded product distribution) Let P be a product distri-
bution with rates p1, . . . , pn and γa > 0. P is called a γa-bounded product distribution
if for all i ∈ [n], |1− 2pi| ≥ γa.

It is easy to prove by induction that γa-bounded product distributions satisfy

∀I ⊆ [n] : |1− 2pI| ≥ γ
|I|
a (4)

From now on, we restrict ourselves to γa-bounded product distributions. However,
all results extend to arbitrary distributions for which condition (4) holds.

If all pI 6= 1/2, then all Fourier coefficients are approximable, hence the whole
target concept can be approximated via its Fourier expansion (1). Consequently, all
concepts are learnable under these conditions by computing the hypothesis

h(x) = sgn
∑

I⊆[n]
f̃(I)

(1−2pI )·(1−2η)
· χI(x) . (5)

The necessary sample and time complexity are as follows:

Proposition 4.7 Let C = Bn, P be a γa-bounded product attribute noise distribu-
tion, and η be a classification noise rate such that γb = |1 − 2η| > 0. Then C is
exactly (P, η)-learnable with confidence 1− δ using sample complexity and running
time poly(2n, log(1/δ), γ−na , γ−1

b ).

Proof. For any ε > 0, Bshouty et al. [9] defined ∆ε
P (C) to be the minimum noisy

distance between ε-far concepts inside C, i.e.,

∆ε
P (C) = min

{
1
2
‖TP (f − g)‖1 | f, g ∈ C : 1

2
‖f − g‖1 > ε

}
.

Thus ∆ε
P (C) measures how close ε-far concepts in C can become when TP is applied

to them.
By [9, Theorem 8], choosing ε = 2−n−1 and Tε = 2[n], it remains to bound ∆ε

P (C)
from below to prove the claim. Note that PAC-learning with accuracy 1 − 2−n−1

is just exact learning since concepts differing in a fraction of inputs that is smaller
than 2−n must be equal. As observed in Section 4.2 (see (4)), |αI | = |1−2pI| ≥ γ

|I|
a .

Let f, g ∈ C be distinct concepts. Since (f(x) − g(x))/2 ∈ {−1, 0,+1} for all
x ∈ {0, 1}n, we have ‖(f − g)/2‖22 = ‖(f − g)/2‖1 ≥ 2−n. By Lemma 4.2 (e), we
have

‖TP ((f − g)/2)‖22 ≥ min
I⊆[n]

α2
I · ‖(f − g)/2‖22 ≥ γ2n

a · 4 · ‖f − g‖1 ≥ γ2n
a · 2−n+2 .

By Theorem 4.3, 1
2
‖TP (f−g)‖1 ≥ 2−nγ2n

a , yielding ∆ε
P (C) ≥ 2−nγ2n

a . Thus 1/∆ε
P (C)

is linear in 2n and polynomial in γ−na , and the desired result follows from [9, The-
orem 8] which yields a sample and time complexity polynomial in 1/ε, log(1/δ),
1/(1− 2η), |Tε| and 1/∆ε

P (C). 2
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Although sample and time complexity are exponential in n, the method described
will prove useful as part of our noise-tolerant learning algorithm for juntas (see
Section 4.4).

Since d-juntas have all of their Fourier weight located in levels 0, . . . , d (by
Lemma 3.1), we obtain a better (but still not satisfactory) sample and time com-
plexity by summing only over all I ⊆ [n] of size at most d in equation (5).

Proposition 4.8 Let P be a γa-bounded product attribute noise distribution and
η be a classification noise rate such that γb = |1 − 2η| > 0. Then J n

d is exactly
(P, η)-learnable with confidence 1 − δ using sample complexity and running time
nd · poly(n, log(1/δ), γ−da , γ−1

b ).

Proof. We proceed similarly as in the proof of Proposition 4.7, but choose ε = 2−d−1

and Tε = {I ⊆ [n] | |I| ≤ d} (since f̂(I) = 0 for all I of size larger than d). It
remains to bound ∆ε

P (J n
d ) (as defined above in the proof of Proposition 4.7) from

below. By (4), |αI| = |1− 2pI | ≥ γ
|I|
a . Consequently, for distinct concepts f, g ∈ J n

d

and h = f − g, h depends on at most 2d variables, i.e., ĥ(I) = 0 whenever |I| > 2d.
We have

‖TP (h)‖22 ≥ γ4d
a ·

∑

I⊆[n]

ĥ(I)2 ≥ γ4d
a · 4ε = γ4d

a · 2−d+1 .

By Theorem 4.3, 1
2
‖f−g‖1 ≥ 2−d−1 ·γ4d

a , yielding ∆ε
P (J n

d ) = 1
2
‖f−g‖1 ≥ 2−d−1 ·γ4d

a .
Thus 1/∆ε

P (J n
d ) is linear in 2d and polynomial in γ−da , and the desired result follows

from [9, Theorem 8]. 2

Unfortunately, sample and time complexity do not drop for subclasses such
as the monotone juntas since the Fourier weight may be spread evenly over all
Θ(nd) nonzero coefficients (as it is the case for example for monomials, see e.g. [23,
Sec. 3.3]).

In the sequel we show how to combine the method just described with the
idea of first detecting the relevant variables, as we did in the noise-free case. In
Theorem 4.11, we show that this significantly reduces the sample complexity from
O(nd+O(1)) to poly(log n, 2d). In addition, for s-low d-juntas with s < d, also the
running time decreases from O(nd+O(1)) to O(ns+O(1)).

4.3 Inferring the Relevant Variables

The detection of relevant variables works similarly to the noise-free case. The follow-
ing modifications to the algorithm IRV (shown in the left part of Fig. 1) vaccinate it
against noise; the resulting algorithm Noisy-IRV is shown in the right part of Fig. 1.

Firstly, the noisy version has to obtain some information about the noise pa-
rameters. In the variant presented here, it receives bounds γa, γb > 0 such that
|1 − 2pi| ≥ γa for all i ∈ [n] and |1 − 2η| ≥ γb as additional inputs. Secondly, the
number of examples that have to be drawn increases by a factor of 4 · (γsa · γb)−2.
Furthermore, the noise-free oracle EX (f) is replaced by the noisy oracle EX P,η(f).
In particular, in line 2 of Noisy-IRV, xk = x′k ⊕ ak and yk = y′k · bk for appropriate
noise-free data x′k, y′k and noise ak, bk. Next, to ensure that in line 5 of the algo-
rithm, β is an appropriate measure to decide whether the Fourier coefficient f̂(I)

10



Algorithm IRV

1 input δ ∈ (0, 1], s ∈ [d]
2 request m = 2 · ln( 2n

δ
) · 22d

examples (xk, yk)k∈[m] from EX (f)

3 R← ∅
4 for I ⊆ [n] with 1 ≤ |I| ≤ s do

5 β ← 1
m
·∑m

k=1 χI(x
k) · yk

6 if |β| ≥ 2−d−1

7 then R← R ∪ {xi | i ∈ I}
8 output ‘‘relevant variables:’’ R

Algorithm Noisy-IRV

1 input δ ∈ (0, 1], s ∈ [d], γa, γb > 0
2 request m = 8 · ln( 2n

δ
) · 22d · (γsa · γb)−2

examples (xk, yk)k∈[m] from EX P,η(f)

3 R← ∅
4 for I ⊆ [n] with 1 ≤ |I| ≤ s do

5 β ← (γ
|I|
a · γb)−1 · 1

m
·∑m

k=1 χI(x
k) · yk

6 if |β| ≥ 2−d−1

7 then R← R ∪ {xi | i ∈ I}
8 output ‘‘relevant variables:’’ R

Figure 1: Algorithms IRV (Infer Relevant Variables) and Noisy-IRV to infer all rele-
vant variables of concepts in Rn

d (s) in the noise-free and the noisy case, respectively.

vanishes, we divide the expression given in the noise-free setting by γ
|I|
a · γb, which

is a lower bound for |1− 2pI| · |1− 2η|.

Theorem 4.9 Let f ∈ Rn
d(s) be an s-low junta. Let P be a γa-bounded attribute

noise distribution and η be a classification noise rate such that γb = |1 − 2η| > 0.
Then with probability 1− δ, on input δ, s, γa, γb, the variables classified as “relevant”
by Noisy-IRV are exactly the relevant variables of f .

Proof. Let S be the (P, η)-noisy sample that the algorithm obtains from the oracle
EX P,η(f). Let t = 2−d. Noisy-IRV classifies xi as “relevant” if and only if |f̃S(I)| ≥
(1/2) · γ|I|a · γb · t for some I of size at most s with i ∈ I. By Lemma 4.4, for every
I ⊆ [n] of size at most s,

|f̃S(I)− (1− 2pI)(1− 2η)f̂(I)| ≤ 1
2
· γsa · γb · t (6)

with probability at least 1− δ
n
.

Consider some variable xi ∈ rel(f). By assumption, there exists an I ⊆ [n] of
size at most s such that i ∈ I and f̂(I) 6= 0. Since f̂(I) is an integer multiple of
| rel(f)|, |f̂(I)| ≥ 2−d. In particular, if (6) is satisfied, then

|f̃S(I)| ≥ |1− 2pI | · |1− 2η| · |f̂(I)| − 1
2
· γsa · γb · t ≥ 1

2
· γsa · γb · t ,

i.e., |β| ≥ t/2, so xi is classified as “relevant” with probability at least 1− δ/n.
Now consider some variable xi 6∈ rel(f). Thus f̂(I) = 0 for all I ⊆ [n] with i ∈ I

by Lemma 3.1. By (6), with probability at least 1 − δ
n
, |f̃S(I)| ≤ 1

2
· γsa · γb. We

conclude that xi is correctly classified with probability at least 1− δ/n.
Finally, the probability that at least one out of the n variables is not classified

correctly is at most n · (δ/n) = δ. 2

Note that Noisy-IRV is not only applicable to product attribute noise. The per-
formance guaranteed by Theorem 4.9 is also valid for general distributions, provided
that γa can be chosen such that |1− 2pI | ≥ γ

|I|
a for all I ⊆ [n] with 1 ≤ |I| ≤ s.

Sample complexity and running time of Noisy-IRV can be bounded as follows:
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Proposition 4.10 The algorithm Noisy-IRV has sample complexity O(log(n/δ) ·
22d · γ−2s

a γ−2
b ) and running time ns · poly(n, 2d, log(1/δ), γ−sa , γ−1

b ).

4.4 Two-Phase-Learning of Juntas

The approach of learning juntas in the presence of noise is basically the same as
in the noise-free case. We proceed in two phases: in the first phase, we infer all
relevant variables with high probability. In the second phase, we build up the truth
table of a suitable hypothesis.

The main difference to the algorithm used in the noise-free setting is that we
cannot just read off the truth table from the examples since these may contain
inconsistencies. Moreover, such a truth table is unlikely to be correct.

Fortunately, we have seen in Section 4.2 how to build a good hypothesis in the
presence of attribute noise. The trick is that we do not apply Proposition 4.7 to the
whole given sample, but restrict the sample to the variables classified as relevant in
the first phase. As a consequence, the sample and time complexity for the second
phase do not depend on n anymore, but only on the number d of relevant variables.

This results in an algorithm for learning the class J n
d in the presence of attribute

and classification noise with sample complexity growing only polynomially in log n
and 2d (instead of nd as in Proposition 4.8). Moreover, for the subclass Rn

d(s), the
time complexity depends on ns instead of nd. Precisely, the algorithm, which we
call Learn-Noisy-Juntas, is as follows:

1. Run Noisy-IRV(δ/2, s, γa, γb). Let R be the set of indices of variables classified
as relevant.

2. Request m examples from EX P,η(f), where m = poly(2d, log(2/δ), γ−da , γ−1
b ) is

the sample size as required in Proposition 4.7 with n = d.

3. Compute f̃(I) for all I ⊆ R (see (2)).

4. Output the hypothesis h(x) = sgn
∑

I⊆R
f̃(I)

(1−2pI )·(1−2η)
· χI(x).

Theorem 4.11 The algorithm Learn-Noisy-Juntas exactly (P, η)-learns the class
Rn
d(s) with confidence 1− δ from a sample of size poly(log n, 2d, log(1/δ), γ−da , γ−1

b )
in running time ns · poly(n, 2d, log(1/δ), γ−da , γ−1

b ).

Proof. Let f ∈ Rn
d (s). With probability at least 1 − δ/2, Noisy-IRV successfully

infers the relevant variables of f . By Proposition 4.7, again with probability at
least 1 − δ/2, hypothesis h exactly coincides with f . Hence, Learn-Noisy-Juntas
succeeds in exactly learning the target concept with probability at least 1− δ. The
sample complexity can easily be derived from the above description of the algorithm.
The claimed running time follows from Proposition 4.10 and Proposition 4.7. 2

For the class of all d-juntas and the class of monotone d-juntas, respectively, we
obtain:

Corollary 4.12 (a) The class J n
d can be exactly (P, η)-learned with confidence 1− δ

from a sample of size poly(logn, 2d, log(1/δ), γ−da , γ−1
b ) in running time nd ·

poly(n, log(1/δ), γ−da , γ−1
b ).
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(b) The class MONn
d can be exactly (P, η)-learned with confidence 1−δ from a sample

of size poly(log n, 2d, log(1/δ), γ−da , γ−1
b ) in time poly(n, 2d, log(1/δ), γ−da , γ−1

b ).

5 Non-Uniformly Distributed Attributes

In this section we sketch how to generalize our results to product attribute distribu-
tions (not to be confused with attribute noise). We confine ourselves to presenting
results for monotone functions only. The more delicate task of studying the general
applicability of the methods to s-low juntas will be left for future investigations.

The examples are now distributed according to an attribute distribution D :
{0, 1}n → [0, 1], which we assume to be a product distribution with rates d1, . . . , dn.
Let σi =

√
di · (1− di) be the standard deviation of variable xi. A learning algorithm

has access to an oracle EX P,η(f,D) that first generates an attribute vector x ∼ D
and then applies (P, η)-noise as in the uniform case. When using methods from
the uniform setting, we now obtain expectations with respect to D instead of Un.
Consequently, we have to adjust the inner product on our concept space and choose
an appropriate orthonormal basis, as has been proposed by Furst, Jackson, and
Smith [12]. For i ∈ [n], define χDi : {0, 1}n → R by χDi (x) = di−xi

σi
. For I ⊆ [n],

define χDI : {0, 1}n → R by χDI (x) =
∏

i∈I χi(x). Note that χUn

I = χI . The functions
(χDI | I ⊆ [n]) form an orthonormal basis with respect to the inner product 〈f, g〉D =

Ex∼D[f(x)g(x)]. The D-biased Fourier coefficient of f at I is f̂(I) = 〈f, χDI 〉D, using
the same notation as in the uniform case. It is not difficult to see that Lemma 3.1
generalizes to biased Fourier coefficients, paving the way to carry over techniques
from the uniform setting, at least for noise-free data.

In the noisy setting, the main problem is that in general, χDI (x ⊕ a) 6= χDI (x) ·
χDI (a). Hence we cannot just approximate Ex∼D,a∼P,b∼η[χ

D
I (x ⊕ a) · f(x) · b)] and

proceed as in the uniform case. On the other hand, using χUn

I , we obtain

Ex∼D,a∼P,b∼η[χ
Un

I (x⊕ a) · f(x) · b)] = (1− 2pI) · (1− 2η) · 〈f, χUn

I 〉D ,

but 〈f, χUn

I 〉D does not properly work together with the definition of biased Fourier
coefficients. The way out is provided by a clever combination of biased Fourier
coefficients, the inner product 〈·, ·〉D, and the “unbiased” parity functions χUn

I , pre-
sented in Lemma 5.1. Its proof relies on explicit calculations of the biased Fourier
coefficients of the unbiased parity functions and the application of the identity
〈f, χUn

I 〉D =
∑

J⊆[n]〈f, χDJ 〉D〈χUn

I , χDJ 〉D.

Lemma 5.1 Let f : {0, 1}n → R and I ⊆ [n]. Then

f̂(I) =
(∏

i∈I(2σi)
)−1 · 〈f, χUn

I 〉D −
∑

J(I

∏
i∈I\J

1−2di

2σi
· f̂(J) .

Before we prove Lemma 5.1, we calculate 〈χUn

I , χDJ 〉D. This may be of independent
interest for other applications.

Lemma 5.2 Let J ⊆ I ⊆ [n]. Then

〈χUn

I , χDJ 〉D =
∏

i∈J

(2σi) ·
∏

i∈I\J

(1− 2di) .
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Proof. We have

χUn

i (x) · χDi (x) = (−1)xi · di − xi
σi

=

{
di

σi
if xi = 0,

1−di

σi
if xi = 1.

Hence, using χDI =
∏

i∈I χ
D
i , we obtain

〈χUn

I , χDJ 〉D =
∑

x∈{0,1}n

D(x) · χUn

I (x) · χDJ (x)

=
∑

x∈{0,1}n

∏

i∈[n]:xi=0

(1− di) ·
∏

i∈[n]:xi=1

di ·
∏

i∈J :xi=0

di
σi
·
∏

i∈J :xi=1

1− di
σi
·
∏

i∈I\J

(−1)xi

=
∑

x∈{0,1}n

∏

i∈J

σi ·
∏

i∈[n]\J

(d xi

i · (1− di)1−xi) ·
∏

i∈I\J

(−1)xi

=
∑

x∈{0,1}n

∏

i∈J

σi ·
∏

i∈[n]\I

(d xi

i · (1− di)1−xi) ·
∏

i∈I\J

((−1)xi · d xi

i · (1− di)1−xi)

= 2|J | ·
∏

i∈J

σi ·
∑

x∈{0,1}I\J

∏

i∈I\J

((−1)xi · d xi

i · (1− di)1−xi)

= 2|J | ·
∏

i∈J

σi · (Px∼D[χUn

I\J = 1]− Px∼D[χUn

I\J = −1])

= 2|J | ·
∏

i∈J

σi · (1− 2dI\J) =
∏

i∈J

(2σi) ·
∏

i∈I\J

(1− 2di) ,

where analogous to pI , we define dI = Px∼D[χUn

I = −1] for I ⊆ [n]. By induction,
1− 2dI =

∏
i∈I(1− 2di). 2

Proof of Lemma 5.1. We first show that 〈χUn

I , χDJ 〉D = 0 for all J 6⊆ I:

χDI =
∏

i∈I

χDi =
∏

i∈I

(2σi)
−1 · (χUn

i + (2di − 1) · 1) ∈ 〈χUn

J | J ⊆ I〉

implies 〈χDJ | J ⊆ I〉 ⊆ 〈χUn

J | J ⊆ I〉. Since both sides of this relation are subspaces
of R{0,1}n

of equal dimension, the spaces coincide. In particular, χUn

I ∈ 〈χDJ | J ⊆ I〉.
Consequently, 〈χUn

I , χDJ 〉D = 0 for all J 6⊆ I. Now

〈f, χUn

I 〉D = 〈f,
∑

J⊆[n]

〈χUn

I , χDJ 〉D · χDJ 〉D =
∑

J⊆I

〈f, χDJ 〉D · 〈χUn

I , χDJ 〉D

=
∑

J⊆I

f̂(J) · χ̂Un

I (J) =
∑

J(I

f̂(J) · χ̂Un

I (J) + f̂(I) · χ̂Un

I (I) .

Hence
f̂(I) = χ̂Un

I (I)−1 ·
(
〈f, χUn

I 〉D −
∑

J(I

f̂(J) · χ̂Un

I (J)
)
.

The claim now follows from Lemma 5.2. 2

The threshold to recognize nonzero Fourier coefficients is given by the least abso-
lute value of the considered nonzero coefficients. For monotone functions, we have:
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Lemma 5.3 Let f ∈ Bn be a monotone Boolean function and i ∈ [n]. Then xi ∈
rel(f) if and only if f̂(i) ≥ 2 ·∏xj∈rel(f) min{dj, 1− dj}.

Proof. Clearly, if xi 6∈ rel(f), then f̂(i) = 0, so assume that xi ∈ rel(f). We have

f̂(i) =
∑

x∈{0,1}n

D(x) · f(x) · di − xi
σi

=
∑

x′∈{0,1}[n]\{i}

D(x′) ·
(

(1− di) · fxi=0(x
′) · di

σi
− di · fxi=1(x

′) · 1− di
σi

)

= σi ·
∑

x′∈{0,1}[n]\{i}

D(x′)(fxi=0(x
′)− fxi=1(x

′))

= σi ·
∑

x′∈{0,1}rel(f)\{i}

D(x′)(f ′
xi=0(x

′)− f ′
xi=1(x

′)) ,

where for x ∈ {0, 1}J , J ⊆ [n], D(x) =
∏

j∈J d
xi

i ·(1−di)1−xi and for g : {0, 1}J → R,

g′ : {0, 1}rel(g) → R denotes the restriction of g to its relevant variables. If f is
monotone, then fxi=0 ≥ fxi=1 and if xi is relevant to f , then fxi=0(x

′) 6= fxi=1(x
′)

for at least one x′ ∈ {0, 1}[n]\{i}. Hence

f̂(i) ≥ 2 · σi · min
x′∈{0,1}rel(f)\{i}

D(x′) = 2 · σi ·
∏

xj∈rel(f)\{xi}

min{dj, 1− dj} .

We conclude the proof by showing σi ≥ min{di, 1− di}:
If di ≤ 1/2, then σi =

√
di · (1− di) ≥ di = min{di, 1− di}. Similarly, if di ≥ 1/2,

then σi ≥ 1− di = min{di, 1− di}. 2

The lemma also holds for locally (anti-)monotone functions with f̂(i) replaced by
|f̂(i)|.

Theorem 5.4 The algorithm Noisy-Monotone-IRV-PDA shown in Fig. 2 accom-
plishes the following. Let f ∈ MONn

d be a monotone d-junta. Let D be a prod-
uct attribute distribution with rates di ∈ [γc, 1 − γc] for some γc > 0. Let P
be a γa-bounded attribute noise distribution and η be a classification noise rate
such that |1 − 2η| ≥ γb > 0. Then with probability 1 − δ, the variables clas-
sified as “relevant” by Noisy-Monotone-IRV-PDA are exactly the relevant vari-
ables of f , where the algorithm has access to EX P,η(f,D). Moreover, algorithm
Noisy-Monotone-IRV-PDA has sample complexity poly(log n, log(1/δ), γ−1

a , γ−1
b , γ−dc )

and running time poly(n, log(1/δ), γ−1
a , γ−1

b , γ−dc ).

Proof. The proof is an extension of the proof of Theorem 4.9. Let S be the D-
distributed (P, η)-noisy sample that the algorithm obtains from the oracle EX P,η(f,D)
and let ε = γdc . By Lemma 5.1,

f̂(i) = (2σi)
−1 · 〈f, χUn

I 〉D −
1− 2di

2σi
· f̂(∅) .

Since Ex∼D,b∼η[f(x) · b] = (1 − 2η) · f̂(∅), it follows analogously to the proof of
Lemma 4.4 that with probability at least δ/2n,

|φi− (1−2di) ·f(∅)| ≤ σi · ε, provided that m ≥ 2 · ln
(4n
δ

)
· (1− 2di)

2

(1− 2η)2 · σ2
i · ε2

. (7)
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Algorithm Noisy-Monotone-IRV-PDA

1 input δ ∈ (0, 1], d1, . . . , dn, p1, . . . , pn, η
2 request m = 2 · ln( 4n

δ
) · γ−2d

c · (γa · γb)−2 · (γc · (1− γc))−1

examples (xk, yk)k∈[m] from EX P,η(f,D)

3 R← ∅
4 φ0 ← 1

(1−2η)·m

∑m
k=1 y

k

5 for i = 1 to n do

6 φi ← (1− 2di) · φ0

7 ψi ← 1
(1−2pi)·(1−2η)·m

∑m
k=1 y

k · χUn

i (xk)

8 βi ← ψi−φi

2·
√
di·(1−di)

9 if |β| ≥ γdc
10 then R← R ∪ {xi}
11 output ‘‘relevant variables:’’ R

Figure 2: Algorithm Noisy-Monotone-IRV-PDA (IRV = Infer Relevant Variables,
PDA = Product Distributed Attributes) to infer all relevant variables of monotone
concepts from product distributed attributes (with rates di ∈ [γc, 1 − γc]) in the
presence of (γa,γb)-bounded noise.

Moreover, since Ex∼D,a∼P,b∼η[f(x) · b · χUn

I (x⊕ a)] = (1− 2pi) · (1− 2η) · 〈f, χUn

I 〉D,
with probability at least 1− δ/2n,

|ψi − 〈f, χUn

I 〉D| ≤ σi · ε, provided that m ≥ 2 · ln
(

4n
δ

)
· 1

(1−2pi)2·(1−2η)2 ·σ2
i ·ε

2 . (8)

Since the number of examples requested by the algorithm dominates both numbers
given in (7) and (8), with probability at least 1− δ/n,

|βi − f̂(i)| =

∣∣∣∣∣
ψi − φi

2σi
− 〈f, χ

Un

I 〉D − (1− 2di)f̂(∅)
2σi

∣∣∣∣∣ ≤
2 · ε · σi
2 · σi

= ε .

Noisy-Monotone-IRV-PDA classifies xi as “relevant” if and only if |βi| ≥ ε. If f̂(i) =
0, then |βi| ≤ ε with probability at least 1 − δ/n, and if f̂(i) 6= 0, then |βi| ≥ ε
with probability at least 1− δ/n (since f̂(i) ≥ 2ε by Lemma 5.3). Consequently, all
variables are classified correctly with probability at least 1− δ. 2

Next we describe how to construct a hypothesis. We use Lemma 5.1 to suc-
cessively approximate all biased Fourier coefficients level by level, i.e., given a D-
distributed (P, η)-noisy sample S = (xk, yk)k∈[m] and having inferred the set R of
relevant variable indices, we compute for each I ⊆ R the value

βI =

(
(1− 2pI)(1− 2η)

∏

i∈I

2σi

)−1

· 1

m
·
m∑

k=1

ykχI(x
k)−

∑

J(I

∏

i∈I\J

1− 2di
2σi

βJ (9)

and build the hypothesis h(x) = sgn
∑

I⊆R βI · χDI (x).

16



To ensure that βI approximates f̂(I) well enough, reasonably good approxima-
tions of all coefficients f̂(J), J ⊆ I, are required. This feedback effect leads to a
necessary sample size of 2ω(| rel(f)|). In case that |1 − 2di| ≤ σi (which is the case
if and only if |1 − 2di| ≤ 1/

√
5, i.e., di ∈ [0.2764, 0.7236]), the following theorem

provides upper bounds on the sample and time complexity for learning monotone
juntas from product distributed examples in the presence of product attribute and
classification noise:

Theorem 5.5 Let D be a product attribute distribution with rates di ∈ [0.2764, 0.7236].
Let P be a γa-bounded product attribute noise distribution and η be a classifica-
tion noise rate with |1 − 2η| ≥ γb > 0. Then the class MONn

d can be exactly
learned under noise (P, η) with confidence 1− δ from a D-distributed sample of size
poly(log n, 2d

2
, log(1/δ), γ−da , γ−1

b ) in running time poly(n, 2d
2
, log(1/δ), γ−da , γ−1

b ).

Before we prove Theorem 5.5, we show that a suitable hypothesis can be build
provided that the set of relevant variables is already known:

Lemma 5.6 Let f ∈ Bn and D be a product attribute distribution such that for
all xi ∈ rel(f), |1 − 2di| ≤ 1/

√
5. Let P be a γa-bounded product attribute noise

distribution and η be a classification noise rate with |1− 2η| ≥ γb > 0. Let R ⊆ [n]
such that rel(f) = {xi | i ∈ R} and let S be a D-distributed (P, η)-noisy sample of
size

m ≥ poly
(
2d

2

, log(1/δ), γ−da , γ−1
b

)
,

where d = | rel(f)|. Let βI as defined in (9). Then with probability at least 1 − δ,
the hypothesis h defined by

h(x) = sgn
∑

I⊆R

βI · χDI (x)

coincides with f .

Proof. We first proof by induction on |I| that |βI − f̂(I)| ≤ ε provided that

m ≥ poly
(
2|I|

2

, log(1/δ), γ−|I|
a , γ−1

b

)
. (10)

For |I| = 0, β∅ = (1 − 2p∅) · (1 − 2η) · 1
m

∑m

k=1 y
k. By Hoeffding bounds, with

probability at least 1− δ,

|β∅ − f̂(∅)| ≤ ε, provided that m ≥ 2 · ln
(2
δ

)
· 1

(1− 2η)2 · ε2
,

which is clearly dominated by (10).
Now consider I ⊆ [n] with |I| ≥ 1 and assume that the claim holds for all J ⊆ [n]

of size at least |I| − 1. Let

ψI =
(
(1− 2pI) · (1− 2η) ·

∏

i∈I\J

2σi

)−1

· 1

m

m∑

k=1

yk · χUn

I (xk)
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and

φI =
∑

J(I

( ∏

i∈I\J

1− 2di
2σi

)
· βJ .

Since Ex∼D,a∼P,b∼η[f(xk) · bk · χUn

I (xk ⊕ ak)] = (1 − 2pI) · (1 − 2η) · 〈f, χUn

I 〉D, with
probability at least 1− δ · 2−|I|,

∣∣∣ψI −
(∏

i∈I

2σi
)−1 · 〈f, χUn

I 〉D
∣∣∣ ≤ ε/2 ,

provided that

m ≥ 2 · ln
(2 · 2|I|

δ

)
· 1

(1− 2pI)2 · (1− 2η)2 · (∏i∈I 2σi)2 · ε2
,

which again is dominated by (10) since
(∏

i∈I 2σi
)−1 ∈ 2O(|I|).

Furthermore, by induction hypothesis, with probability at least 1− δ · 2−|I|,

|βJ − f̂(J)| ≤ ε · 2−|J |−1 ,

provided that

m ≥ poly
(
2|J |

2

, log
(2|I|

δ

)
, γ−|J |

a , γ−1
b

)
.

Therefore, since we assume that |1− 2di| ≤ σi,
∣∣∣φI −

∑

J(I

( ∏

i∈I\J

1− 2di
2σi

)
· f̂(J)

∣∣∣ ≤
∑

J(I

∣∣∣
∏

i∈I\J

1− 2di
2σi

∣∣∣ · |βJ − f̂(J)|

≤
∑

J(I

2−|I\J | · 2−|J |−1 · ε = ε/2

with probability at least 1− δ · 2|I|−1
2|I|

, provided that

m ≥ poly
(
2(|I|−1)2, log(1/δ), |I|, γ−|I|

a , γ−1
b

)2
, ε−1, 2|I|−1

)

= poly
(
2|I|

2

, log(1/δ), γ−|I|
a , γ−1

b

)2
, ε−1

)

for a suitable polynomial. Finally,

|βI − f̂(I)| =
∣∣∣ψI − φI −

((∏

i∈I

2σi
)−1 · 〈f, χUn

I 〉D −
∑

J(I

( ∏

i∈I\J

1− 2di
2σi

)
· βJ
)∣∣∣

≤ ε/2 + ε/2 = ε

with probability at least 1− δ. This finishes the induction proof.
Now we apply this result to estimate how closely h approximates f :

If |βI − f̂(I)| ≤
(∏

i∈I σi
)
· ε/2d for all I ⊆ R, then

∣∣∣
∑

I⊆R

βI · χDI (x)− f̂(x)
∣∣∣ ≤

∑

I⊆R

∣∣∣βI · f̂(I)
∣∣∣ ·
∣∣∣χDI (x)

∣∣∣

≤ 2−d ·
∑

I⊆R

∣∣χDI (x)
∣∣

≤ 2−d ·
∑

I⊆R

(∏

i∈I

σi
)−1 ≤ ε .
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Hence, taking ε = 1, we have to request

m = poly
(
2d

2

, log(1/δ), γ−da , γ−1
b ,

2d∏
i∈R σi · 1

)

examples to guarantee h(x) = f(x) for all x ∈ {0, 1}n with probability at least 1−δ.
For all i ∈ R, |1− 2di| ≤ σi implies σi ≥ 1/

√
5. Thus

(∏
i∈R σi

)−1 ∈ 2O(d), which is

absorbed by poly(2d
2
). 2

Now we can prove Theorem 5.5:
Proof of Theorem 5.5. By Theorem 5.4, we can infer the set of relevant attributes
correctly with probability at least 1 − δ/2, provided that we are given a sample
of size m ≥ poly(logn, log(1/δ), γ−1

a , γ−1
b , γ−dc ), which is dominated by the claimed

sample complexity since γ−dc ∈ 2O(d). By Lemma 5.6, f can be exactly recovered
from

poly
(
2d

2

, log(1/δ), γ−da , γ−1
b

)

examples with probability at least 1 − δ/2. Combining these bounds, the claimed
sample complexity follows. The claimed running time obviously suffices. 2

6 Conclusion

We have investigated the learnability of Boolean juntas in the presence of attribute
and classification noise. While arbitrary noise distributions may render learning
impossible, we have presented an algorithm to learn the class of s-low d-juntas under
product attribute and classification noise with rates different from 1/2. For s = 1,
these include all monotone juntas. Moreover, the algorithm does not only work
for product noise distributions but for any distribution satisfying a more general
condition (as stated in (4)). In addition, we have shown how to generalize the
methods to non-uniformly distributed examples.

The major goal is to settle the question whether learning juntas in the pres-
ence of noise can be done as efficiently (up to unavoidable factors due to noise)
as in the noise-free case. At present, this means whether or not running time
nc·d · poly(n, 2d, γda, γ

−1
b ) can be achieved for learning J n

d , with some constant c < 1
(c < 0.704 would even improve the noise-free case). While we have shown that the
“Fourier part” of Mossel et al. [22] carries over to the noisy scenario, it seems that an
adaption of the “parity part” is intractable since it requires noise-tolerant learning
of parity functions. We suspect that non-trivial lower bounds (based on hardness
assumptions) can be shown.
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