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Abstract

We consider the problem of estimating the size, V C(G), of a minimum vertex cover of a graph G,
in sublinear time, by querying the incidence relation of the graph. We say that an algorithm is an (α, ε)-
approximation algorithm if it outputs with high probability an estimate V̂ C such that V C(G) − εn ≤

V̂ C ≤ α · V C(G) + εn, where n is the number of vertices of G.
We show that the query complexity of such algorithms must grow at least linearly with the average

degree d̄ of the graph. In particular this means that for dense graphs it is not possible to design an
algorithm whose complexity is o(n).

On the positive side we first describe a simple (O(log(d̄/ε), ε)-approximation algorithm, whose
query complexity is ε−2 · (d̄/ε)log(d̄/ε)+O(1).

We then show a reduction from local distributed approximation algorithms to sublinear approx-
imation algorithms. Using this reduction and the distributed algorithm of Kuhn, Moscibroda, and
Wattenhofer [KMW05] we can get an (O(1), ε)-approximation algorithm, whose query complexity is
ε−2 · (d̄/ε)O(log(d̄/ε).
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1 Introduction

As the need for computers to store and process massive data sets increases, the need for sublinear algorithms
becomes evident. In recent years efforts were made to design sublinear algorithms for the central problems
of computer science. These efforts can be classified into a few classes of problems.

• First, sublinear-time algorithms that obtain approximate solutions to classic problems of computer sci-
ence. Among these, we mention as an example the study of sublinear algorithms for clustering (e.g.,
[Ind99b, MOP01, CS04b]), and the study of sublinear algorithms for estimating the weight of a min-
imum spanning tree of a graph (e.g., [CRT01, CS04a]). Other works in this area include [Ind99a,
BCIS05].

• Another main direction of research is the area of property testing [RS96, GGR98] (see [Ron01, Fis01]
for surveys). In this area the goal is to design sublinear-time algorithms, and in many cases even
constant-time algorithms, to solve approximate versions of decision problems. In some cases, prop-
erty testing algorithms can be adapted to obtain approximate solutions as described in the previous
item (see for example [GGR98] and [ADPR03]). Recently the area of property testing was extended
to tolerant property testing and distance approximation (see [PRR04] for definitions). In distance ap-
proximation the goal is to approximate in sub-linear time the distance of an object to having a given
property.

• A third direction is research on streaming algorithms. In the streaming model the algorithm receives
its input as a stream of data. The goal is to compute a certain desired output using space that is
sublinear (preferably polylogarithmic) in the input size. For a survey on streaming see [Mut].

We extend these efforts for designing sublinear algorithms to one of the fundamental problems of com-
puter science: approximating the size of a minimum vertex cover in a graph, or alternatively approximating
the size of a maximum matching of a graph. While solving the first problem exactly is NP-complete, there
exist polynomial-time algorithms that find an exact solution for the second problem. However, for both
problems no sublinear-time approximation algorithms were known.

1.1 Definitions and Our Results

We consider undirected simple graphs G = (V,E) where |V | = n and |E| = m. The degree of a vertex v is
denoted by d(v) = dG(v). We denote the maximum degree of the graph by d = dG, and the average degree
by d̄ = d̄G (that is, d̄ = 2m

n ). Let V C(G) denote the minimum size of a vertex cover of G. In this paper we

are interested in randomized algorithms that compute an estimate, V̂ C of V C(G).

Definition 1 Let α ≥ 1 and 0 ≤ ε ≤ 1. We say that a value V̂ C is an (α, ε)-estimate of V C(G) if

V C(G) − εn ≤ V̂ C ≤ α · V C(G) + εn.

An algorithm that is given ε as a parameter and computes with probability at least 2/3 an (α, ε)-estimate of
V C(G) for some value of α, is an (α, ε)-approximation algorithm.

We note that it is not possible to obtain a purely multiplicative approximation (i.e., ε = 0) in sublinear-time
in general. In particular it is not possible to distinguish between a graph that is an independent set (for
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which the vertex cover is of size 0) and a graph that contains a single, randomly selected, edge (for which
the vertex cover is of size 1) in time o(n). On the other hand, suppose we have an (α, ε)-approximation
algorithm. Then it is possible to use it in order to find a purely multiplicative estimate, where the running
time will depend on 1/ν(G) where ν(G) = V C(G)

n .

The Model. We assume that the approximation algorithm is given access to a graph G in the form of a
query oracle, where we consider three types of queries:

• Vertex-pair queries: For any pair of vertices u, v ∈ V , the algorithm may query whether there is an
edge (u, v) ∈ E.

• Neighbor queries: For any vertex v and index i, the algorithm may query who is the i’th neighbor of
v (if v has less than i neighbors then the algorithm receives a special symbol).

• Degree queries: For any vertex v, the algorithm may query what is the degree d(v) of v.

Our Results. We first present a simple sublinear (2 log d + 1, ε)-approximation algorithm for the size of
the minimum vertex cover. The query complexity of this algorithm is O(ε−2 · dlog d). When the average
degree d̄ is significantly smaller than the average degree d, we can improve on the above and obtain an

(O(log(d̄/ε)), ε)-approximation algorithm whose query complexity is ε−2 ·
(
d̄/ε

)log(d̄/ε)+O(1)
.

Next we show a reduction from local distributed approximation algorithms to sublinear approxima-
tion algorithms. Using this reduction and the distributed algorithm of Kuhn, Moscibroda, and Watten-
hofer [KMW05] we can get an (O(1), ε)-approximation algorithm for the minimum vertex cover using
ε−2 · d̃O(log d̃) queries, where d̃ = min{d, 8d̄/ε}. This reduction allows us also to obtain an (O(log d̃), ε)-
estimate of the minimum size of a dominating set using ε−2 · d̃O(log d̃) queries, by applying the algorithm
in [KMW05].

Finally we show that Ω(d̄) queries are necessary for obtaining an (α, ε)-estimate of V C(G) for every
ε < 1/8 and when d̄ = O(n/α). This bound holds when the algorithm is allowed all types of queries. In
particular this implies that for dense graphs (that is, d̄ = Θ(n)), and constant α, a linear (in n) number of
queries is necessary.

2 General Lower Bounds on V C(G)

We start by giving two simple lower bounds on V C(G) as a function of n, d and d̄. Since V C(G) ≤ n − 1
we immediately get some approximation of V C(G). We state our bounds in terms of the size of a maximal
matching M in G. Since |M | ≤ V C(G) ≤ 2|M |, bounds on M directly imply bounds on V C(G). We note
that the first lemma slightly improves the bound given in [BDD+04].

Lemma 1 In every graph G there is a matching of size at least m
2d−2 = n

2 · d̄
2(d−1) .

Observe that the lower bound in Lemma 1 depends on the ratio between d̄ and d (or, more precisely, d̄ and
d − 1). This bound is not exactly tight, in the sense that it is known that for regular graphs (d̄ = d) there is
a perfect matching of size n/2, while the lower bound is roughly n/4. However, the lemma demonstrates
the following general behavior: the more regular the graph is (i.e., as d̄ is closer to d), the larger is the lower
bound.
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Proof: Consider the following process for finding a maximal matching M : Starting from the original graph
G, until there are no remaining edges in the graph, or all vertices with non-zero degree have the same degree
in the current graph, pick an edge (v, w) that is incident to a vertex with minimum degree in the current
graph. Add the edge to M and remove this edge and all other edges that are incident to v and w.

If the above procedure stops when there are still edges in the graph, then there is perfect matching
between the remaining vertices, and we add all these edges to M .

We claim that |M | ≥ m/(2d− 2). To verify this observe that in each of the first steps (before we reach,
if at all, a perfect matching), for each edge that is added to the matching, we ”throw away” at most (2d− 2)
edges. In the last step, if m′ is the remaining number of edges, then we have a matching of size at least
m′/d.

When the graph is connected but very sparse (i.e., d < 2), then the following lower bound slightly
improves the bound in Lemma 1.

Lemma 2 In every connected graph there is a matching of size at least n−1
d .

Proof: Since the graph is connected it has a spanning tree T . Using T we construct a matching M as
follows: Let u be a leaf of the tree, and let v be it’s parent in the tree. Add the edge (u, v) to M , and remove
from T this edge and all other edges that are incident to v. Now T is disconnected into a few connected
subtrees. Continue in the same manner with each one of the subtrees until all edges of T are removed.

As to the size of M , note that the spanning tree has n − 1 edges, and for each edge that is added to M ,
at most d edges are removed from T . Thus |M | ≥ (n − 1)/d.

It directly follows from Lemma 2 that if a graph G has CC(G) > 1 connected components, then there
is a matching of size at least n−CC(G)

d .

3 A Simple Sublinear Approximation Algorithm

We first present an algorithm for approximating the size of a minimum vertex cover where the algorithm
is not sublinear. We later show how to use this algorithm in order to obtain a sublinear approximation
algorithm. We assume for now that the maximum degree d of the graph is known. We later remove this
assumption.

Algorithm 1 (Approximate size of minimum vertex cover)

1. Let C = ∅ be the initial vertex cover, and let i = 1.

2. While E 6= ∅ do:

(a) Add all vertices whose degree is at least d/2i to C .

(b) Remove from the graph all edges that are incident with the vertices added to C .

(c) i = i+1.

3. Output |C|.

Theorem 1 Algorithm 1 constructs a vertex cover C such that V C(G) ≤ |C| ≤ (2 log d + 1) · V C(G).
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Proof: First it is clear that |C| ≥ V C(G) since the algorithm removes edges from the graph only if at least
one of their endpoints is added to C , and therefore C is a vertex cover.

As to the upper bound on the size of C: let O be a minimum vertex cover of G of size V C(G), and let O
be all the vertices not in O. We will prove shortly that in each iteration at most 2 · V C(G) new vertices are
added from O to the cover C . Since the number of iterations is at most log d (because after log d iterations
all remaining vertices of the graph have degree 0), then the total number of vertices added to C from O is
at most 2 · V C(G) · log d. The claim follows by adding to this the V C(G) vertices in O that may also be
added by the algorithm to C .

To complete the proof we prove that on each iteration at most 2 · V C(G) new vertices are added from
O to the cover C . Indeed suppose we are at the beginning of the i’th iteration. At this point the degree of all
vertices is at most d/2i−1. Thus the number of edges remaining between O and O is at most V C(G)·d/2i−1 .
Denote by Xi the number of vertices in O of degree at least d/2i at the beginning of the i′th iteration (recall
that there are no edges inside O since O is a vertex cover). Therefore, Xi · d/2i ≤ V C(G) · d/2i−1, and so
Xi ≤ 2V C(G) as claimed.

We now use Algorithm 1 in order to obtain a sublinear randomized algorithm that outputs with high
probability an (α, ε)-estimate of V C(G). The query complexity of the algorithm is O

(
ε−2 · dlog d

)
. We

later show how to replace the dependence on the maximum degree d with a dependence on the average
degree d̄.

The idea is to select uniformly and independently Θ(1/ε2) vertices, and for each sampled vertex to
determine if it would be added by Algorithm 1 to the vertex cover. This is done by examining for each
sampled vertex v, the log d-neighborhood of v.

Algorithm 2 (Sublinear approximation algorithm for V C(G) )

1. Uniformly and independently select s = 2/ε2 vertices from G. Let the subset (multiset) of
selected vertices be denoted by S.

2. For each v ∈ S, consider the subgraph Gk(v) induced by the k-neighborhood of v, where
k = log d.

3. For each v ∈ S, run Algorithm 1 on Gk(v), where the degree of the vertices in Gk(v) that
are at distance exactly k from v is as it is in G. Set Xv = 1 if v is selected to be added to the
vertex cover, and otherwise Xv = 0.

4. Output V̂ C = n
s ·

∑
v∈S Xv .

The query complexity of Algorithm 2 is as claimed previously: building the subgraph Gk(v) can be
done by constructing a BFS tree of depth k = log d rooted at v, using O(dk) neighbor queries. Then we can
run Algorithm 1 on the subgraph induced by the BFS tree, where the degree of the leaves of the tree is as in
G. This requires O(dk) degree queries.

Theorem 2 Let G be an undirected graph with degree at most d. Then Algorithm 2 is a (2 log d + 1, ε)-
approximation algorithm for the size of the minimum vertex cover.

Proof: By an additive Chernoff bound, if s = 2/ε2, then the probability that V̂ C > |C| + εn or V̂ C <
|C| − εn (where |C| is the output of Algorithm 1) is at most 2 · e−2sε2 < 1/3. The theorem follows by
applying Theorem 1.
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3.1 Dependence on the average degree

It is possible to replace the dependence that the algorithm has on the maximum degree d by a dependence on
the average degree d̄, or more precisely on O(d̄/ε). For the sake of simplicity we present this modification
for Algorithm 2, but it can be applied to any (α, ε)-approximation algorithm for the size of the minimum
vertex cover.

In order to achieve the dependence on the average degree we slightly modify Algorithm 1 and Algo-
rithm 2. We first define a procedure that will be used by the modified algorithms. For any integer 0 ≤ i ≤ n,
let V≥i = {v : deg(v) ≥ i} be the set of vertices of degree at least i.

Procedure Compute d̂:

1. Sample q = O(1/ε) vertices, and for each sampled vertex query its degree.

2. Set d̂ to be 1 plus the (ε/4)q largest degree in the sample.

Claim 3 With probability at least 5/6 over the choice of the sample selected by Procedure Compute d̂ it
holds: (1) |V

≥d̂| ≤ εn/2 and (2) d̂ ≤ 8d̄/ε.

Proof: To verify the first claim, consider an ordering of the vertices in G according to their degree (from
large to small, breaking ties arbitrarily). Let d̃ε/2 be the degree of the ε

2n vertex in this order. By definition

|V
≥d̃ε/2

| ≥
ε

2
n , while |V

≥d̃ε/2+1| <
ε

2
n (1)

Therefore, if the number of sampled vertices that belong to V
≥d̃ε/2

is at least ε
4q, then necessarily |V

≥d̂+1| <
ε
2 · n. But by a multiplicative Chernoff bound, the probability that there are less than ε

4q vertices in the
sample that belong to V

≥d̃ε/2
, is exp−Ω(εq), which for our choice of q is a small constant.

To verify the second claim observe that |V≥8d̄/ε| ≤
ε
8n. Hence, once again by a multiplicative Chernoff

bound, the probability that there are at least ε
4q vertices in the sample that belong to V≥8d̄/ε is exp−Ω(εq). But

if there are less than ε
4q vertices in the sample that belong to V≥8d̄/ε, then necessarily d̂ ≤ 8d̄/ε as claimed.

We now describe the modifications needed in Algorithms 1 and 2. First we add the following two initial
steps to Algorithm 1:

1. Call Procedure Compute d̂.

2. Add to the vertex cover all vertices in the graph of degree ≥ d̂, and remove all their incident edges.

By Claim 3 with probability at least 5/6 the number of vertices added to the vertex cover by the second
step of the modified algorithm is at most ε

2n, and the resulting graph has a maximum degree of at most 8d̄/ε.
Now Algorithm 1 continues its execution on the resulting graph. The number of iterations of the modified
algorithm is hence log d̂, and the size of the final vertex cover is at most (2 log d̂ + 1) · V C(G) + ε

2n.
As to Algorithm 2, it is modified correspondingly as follows:

1. Call Procedure Compute d̂ and set s = 16/ε2.
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2. Use the modified Algorithm 1 to decide for each selected vertex whether it belongs to the vertex
cover or not (where there is no need to call Procedure Compute d̂ for each selected vertex since d̂ was
already computed).

Since s = 16/ε2, by an additive Chernoff bound, with probability at least 5/6,
∣∣∣ V̂ C − |Cd̂|

∣∣∣ ≤ ε
2n, where

Cd̂ is the vertex cover constructed by Algorithm 1 given d̂. By adding up the probability that d̂ does not

have the properties stated in Claim 3 with the probability that V̂ C deviates by more than ε
2n from |Cd̂| we

get that with probability at least 2/3 we obtain an estimate V̂ C such that

V C(G) − (ε/2)n ≤ V̂ C ≤ (2 log d̂ + 1) · V C(G) + εn . (2)

Note that if, when constructing the (log d̂)-neighborhood of a selected vertex v (by constructing its BFS
tree), we reach a vertex that has degree greater than d̂, then we do not need to continue the BFS from that
vertex. Hence the number of queries performed by the sublinear algorithm is

O
(
ε−2 · d̂log d̂

)
= O

(
ε−2 ·

(
8d̄/ε

)log(8d̄/ε)
)

= ε−2 · (d̄/ε)log(d̄/ε)+O(1) (3)

Note that d̄ ≤ d and so the modified algorithm cannot have a worse performance than the original algorithm.

3.2 Obtaining a purely multiplicative approximation

Recall that in the introduction we defined ν(G) = V C(G)
n . In this subsection we explain how to use any

(α, ε)-approximation algorithm A (e.g., Algorithm 2) in order to get a purely multiplicative factor approx-
imation at a cost that depends on 1/ν(G), conditioned on ν(G) > 0. That is, the smaller is the minimum
vertex cover, the larger is the query complexity of the algorithm.

Specifically, if the query complexity of A is QA(n, d, d̄, ε) (where this function is assumed to be mono-
tonically non-decreasing with 1/ε), then we can obtain an estimate V̂ C that with probability at least 2/3

satisfies V C(G) ≤ V̂ C ≤ 2α · V C(G) by performing O
(
QA(n, d, d̄, ν(G)/4) · log2(1/ν(G))

)
queries.

As is described in detail below, this is done by running algorithm A with decreasing values of ε. In each
iteration we have (with high probability) an interval to which V C(G) belongs. We stop when the interval is
sufficiently small. We note that the approximation factor of 2α can be reduced to (1 + γ)α for any γ < 1
by introducing a dependence on 1/γ, but for simplicity, we show it just for γ = 1.

Assume that algorithm A is given, in addition to the additive approximation parameter ε, a confidence
parameter, δ, and provides an (α, ε)-estimate with probability at least 1 − δ (instead of 2/3). Clearly, this
can be done at the cost of increasing the complexity of A by a multiplicative factor of of log(1/δ). We shall
run an iterative procedure, where in iteration i we execute algorithm A with ε = εi = 2−i, and δ = δi =
(1/3) · 2−i. Let V̂ Ci be the output of A in the i’th iteration, and let Ṽ Ci = V̂ Ci + 2−in. By definition of
algorithm A, with probability at least 1 − 1

3 · 2−i, we have that V C(G) ≤ Ṽ Ci ≤ αV C(G) + 2−i+1n, or
equivalently

1

α
· (Ṽ Ci − 2−i+1n) ≤ V C(G) ≤ Ṽ Ci (4)

The procedure terminates once the ratio between the upper bound and the lower bound on V C(G) in

Equation (4) is at most 2α, conditioned on the lower bound being positive. That is, when
gV Ci

gV Ci−2−i+1n
≤ 2

and Ṽ Ci−2−i+1n > 0. It then outputs the lower bound, 1
α · (Ṽ Ci−2−i+1n). Assume that in each iteration
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we have that V C(G) ≤ Ṽ Ci ≤ αV C(G) + 2−i+1n, where by our setting of the δi’s, this holds with
probability at least 2/3. Then a ratio of at most 2α is necessarily obtained for i ≤ log(4/ν(G)). To verify

this, let Ṽ Ci = βV C(G) = βν(G)n, where we have that 1 ≤ β ≤ α + 1
2 . Then

gV Ci
gV Ci−2−i+1n

= β
β−(1/2) .

Since β ≥ 1, this ratio is at most 2, as required. Also note that since Ṽ Ci ≥ ν(G) · n, we also have that
Ṽ Ci − 2−i+1n > 0 (for i ≤ log(4/ν(G))).

The upper bound on the total number of queries follows from our bound on the iteration i upon which
the procedure terminates.

4 From Local Distributed Approximation Algorithms to Sublinear Approx-
imation Algorithms

In this section we show a reduction from distributed approximation algorithms to sublinear approximation
algorithms. A distributed algorithm that runs on a (synchronous) network G consists of some number k of
communication rounds. In each round every node in G can send messages to its neighbors. After k rounds,
each node completes its computation. In particular, if the goal of the algorithm is to select a vertex cover for
the graph, then after k rounds each node decides whether it belongs to the cover or not.

As long as the the number of rounds is smaller than the diameter of the network, such algorithms are
by nature local, as any node can gather information about nodes that are at most distance k away. Still the
goal of many such algorithms can be global: that is, to compute some global function of the network. There
is usually a tradeoff between the locality of the computation and the quality of the global approximation
achieved.

We first state the reduction for the specific problem of vertex cover, and then specify what should hold
so that the reduction is true also for other problems and settings.

Theorem 3 Let G be a distributed network with n nodes and degree at most d. Let A be a deterministic
distributed algorithm that computes in k rounds a vertex cover C . Then it is possible to design a randomized
sublinear algorithm that outputs an estimate V̂ C, such that with probability at least 2/3:

|C| − εn ≤ V̂ C ≤ |C| + εn.

The query complexity of the sublinear algorithm is O(ε−2 · dk).

Proof: The sublinear algorithm is obtained from algorithm A analogously to the way Algorithm 2 was
obtained from Algorithm 1:

Algorithm 3 (Reduction algorithm)

1. Uniformly and independently select s = 2/ε2 vertices from G. Let the subset (multiset) of
selected vertices be denoted by S.

2. For each v ∈ S, consider the subgraph Gk(v) induced by the k-neighborhood of v.

3. For each v ∈ S, run Algorithm A on Gk(v), where the degree of vertices in Gk(v) that are at
distance exactly k from v is as it is in G.
Set Xv = 1 if A decided to add v to the vertex cover C , and otherwise Xv = 0.

4. Output V̂ C = n
s ·

∑
v∈S Xv .
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The simple but important observation is that for any vertex v, if we run Algorithm A on the subgraph
Gk(v), then it makes the same decision about vertex v as it would if we would run A for k rounds on the
whole graph G. But this is clear since in k rounds no information that originated in a vertex whose distance
from v is greater than k can reach v. In other words, the decision of vertex v can only depend on messages
sent by vertices at distance at most k from v.

Note that the degree of vertices in Gk(v) that are at distance exactly k from v is viewed by Algorithm 3
as it in G. This is done since in the distributed algorithm vertices at distance k from v can check their
degrees without receiving any messages from vertices farther away from v. Thus what v sees in k rounds
in G is identical to what it sees by running A only on it’s k-neighborhood Gk(v) (although other vertices in
Gk(v) may have a different view than what they have in G).

Therefore the variables Xv defined in Step 3 of the algorithm are assigned the correct values. That is,
Xv = 1 if and only if v ∈ C where C is the vertex cover computed by the distributed algorithm. Now
using an additive Chernoff bound, if s = 2/ε2, then with probability at least 2/3 we get: |C| − εn ≤ V̂ C ≤
|C| + εn.

Kuhn, Moscibroda, and Wattenhofer [KMW05] prove the following theorem:

Theorem 4 ([KMW05]) For any integer k such that k = O(log d), it is possible to compute a vertex cover,
whose size is up to a factor of 2 · d5/k larger than the size of the minimum vertex cover, in O(k) rounds. In
particular, for a sufficiently small γ, it is possible to get a 2(1 + γ)-approximation in O((log d)/γ) rounds.

By combining Theorem 3 with Theorem 4 we can get an (O(1), ε)-estimate of V C(G) using ε−2 ·
dO(log d) queries. Here too we can replace the dependence on d by a dependence on Θ(d̄/ε).

4.1 Extension of the Reduction to Other Settings

The above reduction can be generalized to other problems and settings as follows:

1. Randomized algorithms: If the distributed algorithm is randomized then it is still possible to get a
similar reduction with the following simple changes.

First the sublinear algorithm should take a slightly larger sample so that its error probability is smaller.
Then using a union bound and adding the error probability of the distributed algorithm, we will get a
total error of at most 2/3 as before.

Second, if the k-neighborhoods of two vertices u, v sampled by the reduction algorithm intersect, then
when we run the distributed algorithm on Gk(u) and Gk(u), we must make sure that it uses the same
coin tosses for vertices in Gk(u) ∩ Gk(v).

2. Reduction to Other problems: A similar reduction can be designed for any distributed algorithm
that approximates some global function f(G) of the graph, as long as f is a weighted sum of some
subset of the vertex set and the weights are in a bounded range. For example, it is possible to obtain an
(O(log d̃), ε)-estimate of the minimum size (weight) of a dominating set using ε−2 · d̃O(log d̃) queries,
where d̃ = min{d, 8d̄/ε}, by applying the algorithm in [KMW05].

5 A Lower Bound

In this section we prove the following lower bound on the number of queries needed to approximate the
minimum size of a vertex cover. Note that for dense graphs, that is, graphs for which the average degree is
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Θ(n), we get that any constant factor approximation requires Ω(n) queries. Also recall that by Lemma 1,
every graph with m edges and maximum degree d has a vertex cover of size m

2d−2 = n · d̄
4(d−1) where d̄ is

the average degree. Since d < n, this lower bound is greater than d̄
4 . Since the size of a minimum vertex

cover is at most n − 1, any lower bound on the query complexity of (α, ε)-approximation algorithms can
hold only when the average degree is O(n/α), as is the case in Theorem 5.

Theorem 5 For any n, α > 1, b ≤ n−1
4α and ε < 1/8, an (α, ε)-approximation algorithm of the minimum

vertex cover of graphs with average degree Θ(b) requires Ω(b) queries. This lower bound holds when all
types of queries are allowed.

Proof: We define two families of n-vertex graphs denoted G1 and G2, respectively. In both families, all
graphs contain (an isomorphic copy of) the following graph, G0, as a subgraph. The graph G0 is a complete
bipartite graph over n − 1 vertices whose left-hand-side, denoted L, contains b − 1 vertices, and whose
right-hand-side, denoted R, contains n − b vertices. We assume for simplicity that n − 1 and n − b − 1 are
even. The construction can easily be adapted to deal with the case that one of them is odd.

In the graphs that belong to G1, the single remaining vertex, which we refer to as the special vertex, is
incident to all vertices in R. The graphs in G1 differ in the identity of the special vertex. In addition, the
graphs in G1 differ in the labelings of the edges between vertices in R and the special vertex, where we allow
all possible labelings.

In the graphs that belong to G2, the single remaining special vertex has no incident edges. Instead, there
is a perfect matching between the vertices in R, where for each possible perfect matching there is a graph in
G2. See Figure 1 for an illustration of the two families of graphs.

.

.

.

.

.

.

special vertex

.

.

.

.

.

.

special vertex

L

R

|R| = n − b,
all vertices
have
degree b

Graphs in G1

|L| = b − 1,
all vertices
have
degree n − b

all vertices
|L| = b − 1,

has degree n − b

have
degree n − b

L

R

|R| = n − b,

Graphs in G2

all vertices
have degree b

has degree 0

contains a
perfect matching;

Figure 1: An illustration of the families of graphs in the lower bound proof.

By construction, in both families of graphs, all graphs have average degree Θ(b): In G1 there are n − b
vertices with degree b and b vertices with degree n − b, and in G2 there are n − b vertices withe degree b,
b − 1 vertices with degree n − b, and a single vertex with degree 0. As for the size of the minimum vertex
cover, all graphs in G1 have a vertex cover of size b ≤ n−1

4α , and the minimum vertex cover for graphs in G2

is n−1
2 (since all vertices but the special vertex can be matched).
By definition, for graphs in G1, any (α, ε)-approximation algorithm should output (w.h.p.) an estimate

V̂ C ≤ α ·
(

n−1
4α

)
+ εn while for graphs in G2 it should hold that V̂ C ≥ n−1

2 − εn. Since ε < 1/8 we have
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that α ·
(

n−1
4α

)
+ εn < n−1

2 − εn. Hence it suffices to show that no algorithm that performs o(b) queries can
distinguish between a graph uniformly selected from G1 and a graph uniformly selected from G2.

Consider the execution of any given approximation algorithm when the graph is either uniformly selected
from G1 or is uniformly selected from G2. In particular, we may think of a uniformly selected graph from
each of the families as being constructed in the course of the execution of the algorithm. That is, whenever
the algorithm performs a query, the answer is determined according to the conditional distribution given all
past queries and answers. The simple, but important observation is the following. As long as the special
vertex is not revealed (in the course of any type of query) and a matching edge between vertices in R is not
revealed (in the course of either a vertex-pair query or a neighbor query), the conditional distribution on the
answers is identical for both distributions on graphs.

To verify this recall that the graphs in G1 and the graphs in G2 differ only in two related aspects: (1)
In G1 every vertex v ∈ R has the special vertex as one of its b neighbors, while in G2 every v ∈ R has a
single matching neighbor in R as one of its b neighbors (in both families all other neighbors are the vertices
in L); (2) in G1 the special vertex is incident to every v ∈ R (and thus has degree n − b), while in G2

it is an isolated vertex. Other than these differences, the incidence relation is determined by the common
subgraph, G0. Therefore, as long as the algorithm only views edges and vertices from G0, it sees exactly
the same distribution on answers. We note that in order to fully formalize this argument one has to define
two processes that interact with any given approximation algorithm. One process constructs a uniformly
selected graph from G1 in the course of the interaction, and the other process constructs a uniformly selected
graph from G2. We believe that defining such processes (which tends to be cumbersome) is not necessary in
this case. For an example of a lower bound in which such processes were defined see [GR02].

Hence it remains to show that if the algorithm performs o(b) queries then the probability that one of
these events occurs (in either distributions) is o(1). The probability that the special vertex is observed in the

t’th query when this query is either a degree query or a vertex-pair query, is O
(

n−2(t−1)
n

)
. The reason is

that after t − 1 queries, at most 2(t − 1) different vertices were observed. Since t = o(b) = o(n/4α), this
probability is O(1/n). The probability that the special vertex is observed when answering a neighbor query

(for graphs selected from G1) is O
(

1
b−t+1

)
. The reason is that after t − 1 queries, the number of edges

already incident to a vertex is at most t − 1. Since t = o(b), this probability is O(1/b).
As for matching edges (in graphs that belong to G2), the probability of obtaining such an edge in the t’th

query where t = o(b) = o(n) is O(1/n) when the query is a vertex-pair query, and is O(1/b) when it is a
neighbor query. The claim concerning neighbor queries is straightforward. To verify the claim concerning
vertex-pair queries, consider any two vertices u, v ∈ R, and assume that the algorithm performs a vertex-
pair query on this pair after performing t − 1 = o(n) previous queries (in which no matching edge was yet
obtained). Let H(v) be the subset of vertices w ∈ R for which the algorithm queried the pair v, w (and
obtained a negative answer), and define H(u) analogously.

Consider all perfect matchings between vertices in R that are consistent with the answers that the algo-
rithm received in its previous t− 1 queries. We claim that amongst these, the number of matchings in which
u and v are not matched is Ω(n) larger than the number of matchings in which u and v are matched. To see
why this is true, consider each matching M in which u and v are matched. Let (w, z) be any matched pair
such that w /∈ H(v) and z /∈ H(u). Define Mw,z to be the same as M except that v is matched with w and u
is matched with z. Since the number of such pairs (w, z) is at least 1

2 ·(n−b−2−|H(v)|−|H(u)|) = Ω(n),
we get Ω(n) different matchings for each matching M . Furthermore, the matchings defined for different
M ’s differ in at least one edge.

10



Therefore, if we sum over all o(b) queries, the probability that one of the events mentioned above occurs
is o(1), and the theorem follows.
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