
Settling the Complexity of 2-Player

Nash-Equilibrium

Xi Chen

Department of Computer Science

Tsinghua University

Beijing, P.R.China

xichen00@mails.tsinghua.edu.cn

Xiaotie Deng

Department of Computer Science

City University of Hong Kong

Hong Kong SAR, P.R.China

deng@cs.cityu.edu.hk

Abstract

We prove that finding the solution of two player Nash Equilibrium is PPAD-complete.

1 Introduction

Almost sixty years ago Morgenstern and von Neumann [13] initiated the study of game theory
with their applications to Economic behavior. A particularly interesting mathematical result
is their proof of the existence of equilibrium in the 2-player zero-sum game model where one
player’s gain is the loss of the other. It exploits duality properties of polytopes, which also lead
to Dantzig’s linear programming method [5] for optimization problems, as well as Yao’s princi-
ple [16] for finding algorithmic lower bounds. Nash proposed in the middle of the last century
to study the more general multiple person game model, and proved that there exists a set of
(mixed) strategies, now called Nash-equilibrium point, one for each player, such that no player
can benefit if it changes its own strategy. While 2-player zero-sum game has a polynomial-time
algorithm since linear programming has one, as by Khachian’s ellipsoid algorithm [11], the
existence proof of Nash equilibrium relied on the Kakutani’s fixed point theorem (a general-
ization of the Brouwer’s fixed point theorem [1]) which does not admit any polynomial-time
algorithm [3, 9]. Despite much effort on the important problem, no significant progress has
been made on algorithms for the original Nash-equilibrium problem in the last half century,
though both hardness results and polynomial-time algorithms have been derived for various
modified versions.

An exciting breakthrough was announced a few weeks ago that stated that finding Nash
equilibriums is indeed hard, by Daskalakis, Goldberg and Papadimitriou [6], for games with
four players or more. An ε approximation version was proven to be complete in the PPAD (
polynomial parity argument, directed version) class, introduced by Papadimitriou in his semi-
nal work about fifteen years ago [14]. The work was improved to the 3-player case by Chen and

1

Electronic Colloquium on Computational Complexity, Report No. 140 (2005)

ISSN 1433-8092

Deng [4], Daskalakis and Papadimitriou [7], independently, and with different proofs. Those
results leave the two player Nash-equilibrium the last opening problem in the long sequel of
search for an efficient solution.

Finding a Nash-equilibrium in a game between two players could be easier for several rea-
sons. First, the zero-sum version can be solved in polynomial time by linear programming.
Secondly, it admits a polynomial size rational number solution while games between three or
more player may only have solutions all in irrational numbers. Finally, an important technique
employed in the hardness proofs, that colors vertices of a graphical game, does not seem pos-
sible to work down to the case of two players.

In this work, we settle the problem with a PPAD-complete proof for the 2-player Nash-
equilibrium problem. Our proof gets rid of the graphical game model and derived a direct
reduction from 3-Dimensional Brouwer to 2-Nash. We need to design new gadgets for
various arithmetic and logic operations [6] but they all work.

The paper is arranged as follows: We review the necessary definitions in Section 2. In sec-
tion 3, we summarize the reduction from 3-Dimensional Brouwer to 3-Graphical Nash
in [6], in particular the types of gadgets required by the reduction. In Section 4, we present
our new gadgets and prove the correctness of the reduction. We conclude in Section 5 with
remarks and discussion.

2 Preliminaries

2.1 Games, Graphical Games and Nash Equilibriums

A game G between r ≥ 2 players is composed of two parts. First, every player p ∈ [r] where
[r] = {0, 1, ... r} has a set Sp of pure strategies. Second, for each p ∈ [r] and s ∈ S where

S = S1 × S2 × ... × Sr,

we have up
s as the payoff or utility of player p. Here s is called a pure strategy profile of the

game. For any p, we use S−p to denote the set of all strategy profiles of players other than
p. For any j ∈ Sp and s ∈ S−p, we use js to denote the pure strategy profile in S, which is
combined by j and s. A mixed strategy xp of player p ∈ [r] is a probability distribution over
Sp, that is, real numbers xp

j ≥ 0 for any j ∈ Sp and
∑

j∈Sp
xp

j = 1. A profile of mixed strategies

p of game G consists of r mixed strategies xp, p = 1, 2, ... r. For any p ∈ [r], xp is a mixed
strategy of player p. For any p ∈ [r] and s ∈ S−p, we define xs as

xs =
∏

p′∈[r], p′ 6=p

xp′

sp′

Now we give the definition of both accurate and approximate Nash equilibriums of a game.
Intuitively, a Nash equilibrium is a profile of mixed strategies p such that no player can gain
by unilaterally choosing a different mixed strategy, where the other strategies in the profile are
kept fixed. The concept of approximate Nash-equilibrium here was first proposed by [15].

2

Definition 1. A Nash equilibrium of G is a profile of mixed strategies p = {xp} such that

∑

s∈S−p

up
isxs >

∑

s∈S−p

up
jsxs =⇒ xp

j = 0

for any p ∈ [r] and i, j ∈ Sp.

Definition 2. An ε-Nash equilibrium of G is a profile of mixed strategies p = {xp} such that

∑

s∈S−p

up
isxs >

∑

s∈S−p

up
jsxs + ε =⇒ xp

j = 0

for any p ∈ [r] and i, j ∈ Sp.

A useful class of games are graphical games, which was first defined in [10] and then
generalized by [8]. Players in a graphical game are vertices of an underlying directed graph
G. A player u can affect the payoffs to player v only if uv ∈ G. While general games require
exponential data for their descriptions, graphical games have succinct representations. More
exactly, when the in-degree of the underlying graph G is bounded, the representation of the
graphical game is polynomial in the number of players and strategies.

2.2 TFNP, PPAD and r-Nash

Let R ⊂ Σ∗ × Σ∗ be a polynomial-time computable, polynomially balanced relation (that is,
there exists a polynomial p such that for any x and y satisfy (x, y) ∈ R, |y | ≤ p(|x|)). The
NP search problem QR specified by R is this : given input x ∈ Σ∗, return a y ∈ Σ∗ such that
(x, y) ∈ R, if such a y exists, and return the string “no” otherwise. An NP search problem is
said to be total if for every x, there exists a y such that (x, y) ∈ R. We use TFNP [12] to
denote the class of total NP search problems.

Definition 3. Given two problems QR1 , QR2 ∈ TFNP, we say that QR1 is reducible to QR2

if there exists a pair of polynomial-time computable functions (f, g) such that, for every input

x of R1, if y satisfies (f(x), y) ∈ R2, then (x, g(y)) ∈ R1.

One of the most interesting sub-classes of TFNP is PPAD which is the directed version
of class PPA. The totality of problems in PPAD is guaranteed by the following trivial fact:
in a directed graph, where the in-degree and out-degree of every vertex are no more than one,
if there exists a source, there must be another source or sink. Many important problems were
identified to be in PPAD [15], e.g. the search versions of Brouwer’s fixed point theorem,
Kakutani’s fixed point theorem, Smith’s theorem and Borsuk-Ulam theorem. r-Nash, that
is, the problem of finding an approximate Nash equilibrium in a game between r players, also
belongs to PPAD [15].

Definition 4. The input of problem r-Nash is a pair (G, 0k) where G is an r-player game in

normal form, and the output is a (1/2k)-Nash equilibrium of G.

3

3 Review of the Reduction in [6]

In this section, we briefly review the reduction from problem 3-Dimensional Brouwer to
3-Graphical Nash in [6]. First, we define the search problem 3-Dimensional Brouwer.

Definition 5 (3-Dimensional Brouwer). The input of the problem is a pair (C, 0n) where

C is a circuit with 3n input bits and 6 output bits ∆x+, ∆x−, ∆y+, ∆y−, ∆z+ and ∆z−. It

specifies a Brouwer function φ of a very special form. For any 0 ≤ i, j, k ≤ 2n − 1, we define a

cubelet Kijk in the unit cube [0, 1]3 as

Kijk =
{

(x, y, z)
∣

∣

∣
i2−n ≤ x ≤ (i + 1)2−n, j2−n ≤ y ≤ (j + 1)2−n, k2−n ≤ z ≤ (k + 1)2−n

}

and use cijk to denote its center. Brouwer function φ is a function on the set of centers. For

any cijk, φ(cijk) = cijk + δ where δ is one of the four increment vectors δ1, δ2, δ3, δ4 below,

and is specified by the 6 output bits of C(i, j, k) as follows:

case 1 : ∆x+ = 1 and other five bits are 0 ⇒ δ = δ1 = (α, 0, 0);

case 2 : ∆y+ = 1 and other five bits are 0 ⇒ δ = δ2 = (0, α, 0);

case 3 : ∆z+ = 1 and other five bits are 0 ⇒ δ = δ3 = (0, 0, α);

case 4 : ∆x− = ∆y− = ∆z− = 1 and other three bits are 0 ⇒ δ = δ4 = (−α,−α,−α),

where α = 2−2n is much smaller than the cubelet side. For any 0 ≤ i, j, k ≤ 2n − 1, the output

bits of C(i, j, k) are guaranteed to be one of the four cases above, and C satisfies the following

conditions on the boundary:

φ(c0jk) = c0jk + δ1 φ(ci0k) = ci0k + δ2 φ(cij0) = cij0 + δ3

φ(c(2n−1)jk) = c(2n−1)jk + δ4 φ(ci(2n−1)k) = ci(2n−1)k + δ4 φ(cij(2n−1)) = cij(2n−1) + δ4

with conflicts resolved arbitrarily. A vertex of a cubelet is said to be panchromatic if, among

the eight cubelets adjacent to it, there are four that have all four increments δ1, δ2, δ3 and δ4.

The output of the problem is a panchromatic vertex of φ which is specified by (C, 0n).

Theorem 1 ([6]). Search problem 3-Dimensional Brouwer is PPAD-complete.

In [6], a binary graphical game GG with degree 3 is constructed from (C, 0n). Given any
2−4n-Nash equilibrium of GG, a panchromatic vertex of (C, 0n) can be identified efficiently.

There are two kinds of vertices in GG, arithmetic vertices and interior vertices. For any
arithmetic vertex v, p[v] is a meaningful real number in any Nash equilibrium p, where p[v]
is the probability of v choosing strategy 1. Gadgets are designed to implement arithmetic and
logic operations among arithmetic vertices, and interior vertices are used to mediate between
arithmetic vertices, so that the latter ones obey the intended arithmetic relationship.

4

Totally 9 gadgets are necessary, i.e. Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨ and G¬. Every
gadget contains both arithmetic vertices and interior vertices. Furthermore, arithmetic ver-
tices in a gadget are classified as input vertices and output vertices. For example, a G+ gadget
contains 4 vertices v1, v2, v3 and w where w is an interior vertex and others are arithmetic
vertices. v3 is the output vertex of G+ and v1, v2 are both input vertices. A gadget only decide
payoffs of its interior vertex and output vertex. For example, by saying adding a G+ gadget,
we actually setup the payoffs of v3 and w, so that in any ε-Nash equilibrium of GG, we have
p[v3] = max(p[v1] + p[v2], 1) ± ε. For any arithmetic vertex v, there exists exactly one gadget
of which v is the output vertex, while it can be an input vertex of arbitrary many gadgets.

The main idea in the construction of GG comes from the following observation:

Let p = (x, y, z) be a point in the unit cube. If the increment of function φ at p
(interpolated from all the adjacent cubelets) is close enough to zero, then there
must exist a panchromatic vertex of Brouwer function φ near point p.

There are three distinguished vertices vx, vy and vz which encode a point p in the unit cube.
After extracting the 3n bits of p[vx], p[vy] and p[vz], we simulate circuit C with logic gadgets
G∧, G∨, G¬ and calculate the increment vector of φ. The above computation is repeated for
413 points around (p[vx],p[vy],p[vz]), and all the vectors are averaged as the displacement of
φ at p. Finally, we add it to p[vx], p[vy], p[vz], and use G= to make sure that, in any ε-Nash
equilibrium, the displacement of φ at p is very close to zero. The averaging maneuver used in
the interpolation here also resolves the problem caused by the brittle comparator G<.

Let k0 be an integer such that, for any input pair (C, 0n) of 3-Dimensional Brouwer,

the number of arithmetic vertices in the graphical game GG ≤
∣

∣ (C, 0n)
∣

∣

k0 .

The hardness proof of 4-Nash in [6] is based on a combined reduction from 3-Dimensional
Brouwer to 3-Graphical Nash to 4-Nash. In this work, we developed new structures (
which are called nodes here) to perform the task of vertices in the reduction above. Gadgets
are designed in the new setting, which allow us to directly reduce 3-Dimensional Brouwer
to 2-Nash, and prove the latter is also PPAD-complete.

4 Reduction from 3-Dimensional Brouwer to 2-Nash

In this section, we give a reduction from problem 3-Dimensional Brouwer to 2-Nash and
prove that the latter is also PPAD-complete. Let (C, 0n) be any input of 3-Dimensional
Brouwer, then a 2-player game G will be constructed. Given any ε-Nash equilibrium of the
game where ε = 2−(m+4n) and m is the smallest integer such that 2m ≥ |(C, 0n) |k0 (constant
k0 is defined at the end of section 3), a panchromatic vertex of φ can be identified easily.

Let’s call the two players P1 and P2. For any i ∈ {1, 2}, Pi has a set of nodes Ni where
|Ni | = K = 2m. Each node v contains two strategies (v, 0) and (v, 1). Thus the strategy set

5

Si of player Pi consists of totally 2K strategies where

Si =
{

(v, j)
∣

∣

∣
v ∈ Ni, j ∈ {0, 1}

}

.

To clarify the presentation, we always use v to denote nodes in N1 and w to denote nodes
in N2. Given a mixed strategy profile p of G, we use p[v] (p[w]) to denote the probability
of P1 choosing strategy (v, 1) (P2 choosing strategy (w, 1)) and pC [v] (pC [w]) to denote the
probability of P1 choosing (v, 1) and (v, 0) (P2 choosing (w, 1) and (w, 0)). It’s also called the
capacity of node v (w) in the profile p.

The idea of the construction is described informally as follows: The function of nodes in
N1 ∪ N2 is similar to the vertices in section 3. Nodes in N2 are called interior nodes, while
nodes in N1 are called arithmetic nodes, as for any v ∈ N1, p[v] is a meaningful real number
in any ε-Nash equilibrium p. Gadgets are designed to implement all the nine arithmetic and
logic operations in the new setting. Every gadget contains exactly one interior node in N2,
which is used to mediate between arithmetic nodes in the gadget, so that the latter ones obey
the intended arithmetic relationship.

Game G is built upon G∗ which is a variation of the 2-player Matching Pennies with an
exponentially large constant M = 24(m+n)+1. G∗ has the same number of players and same
strategy sets as G, and we use u∗ to denote its payoffs. To get G, we add a number of gadgets
into G∗, which form a network and perform a task similar to the graphical game in section 3.
Every gadget contains exactly one interior node in N2 and ≤ 3 arithmetic nodes in N1. One
of the arithmetic nodes is called the output node of the gadget, and others are called input
nodes. Let w ∈ N2 be the interior node and v ∈ N1 be the output node of a gadget G. By
saying adding G into G∗, we actually modifies the following payoffs of G∗ related to v and w :

the payoff u∗1
s to player P1 where the pure strategy profile s contains node v

the payoff u∗2
s to player P2 where the pure strategy profile s contains node w

More exactly, constants in [0, 1] are added to these payoffs, while most of them stay the same.
For any arithmetic node v ∈ N1, there is exactly one gadget of which v is the output node,
while it can be an input node of arbitrary many gadgets.

In the left part of this section, we first give the payoffs of game G∗ and define a class L of
games based on it. For any G ′ ∈ L, players can only choose nodes uniformly in a ≤ 1-Nash
equilibrium. Then, we design all the necessary gadgets in the new setting. Finally, we build
game G by inserting gadgets into G∗, and prove the correctness of the reduction.

4.1 Payoffs of Game G∗

Payoffs u∗ of game G∗ are described in figure 1 with constant M = 24(m+n)+1 = 2K424n.

Definition 6. A 2-player game G ′ (with same strategy sets as G) belongs to L if its payoffs

u′ satisfy that u
′i
s ∈ [u∗i

s , u∗i
s + 1] for any profile s ∈ S1 × S2 and i ∈ {1, 2}.

6

Payoffs u∗ of Game G∗

1: pick an arbitrary one-to-one correspondence C from N1 to N2

2: for any pure strategy profile s = ((v, i1), (w, i2)), v ∈ N1, w ∈ N2, i1, i2 ∈ {0, 1} do

3: if C(v) = w then

4: set u∗1
s = M and u∗2

s = −M

5: else

6: set u∗1
s = u∗2

s = 0

Figure 1: Payoffs u∗ of Game G∗

The following property of games in L is easy to prove.

Lemma 1. Let p be any ≤ 1-Nash equilibrium of game G ′ ∈ L, then for any node v ∈ N1,

w ∈ N2, the capacities of v and w in profile p satisfy

1

K
− ε < pC [v], pC [w] <

1

K
+ ε . (recall that ε =

1

2m+4n
=

1

K24n
)

4.2 Design of Arithmetic and Logic Gadgets

In this part, we design all the nine necessary gadgets, i.e. Gζ , G×ζ , G=, G+, G−, G<, G∧,
G∨ and G¬ in the new setting. Functions of them are similar to those in [6]. One difference
should be noticed here is the representation of bits. Let v be any node in N1, we say v stores
1 if p[v] = pC [v] and v stores 0 if p[v] = 0. We only prove the property of gadget G+, while
others can be verified similarly.

Definition 7. By x = y ± ε where ε > 0, we mean that y − ε ≤ x ≤ y + ε.

Proposition 1 (Gadget G+). Let G′ (with payoffs u′) be a 2-player game in L and nodes

v1, v2, v3 ∈ N1, w ∈ N2. Let pure strategy profile s1 = ((v1, 1), (w, 1)), s2 = ((v2, 1), (w, 1)),
s3 = ((v3, 1), (w, 0)), s4 = ((v3, 1), (w, 1)) and s5 = ((v3, 0), (w, 0)). If game G ′ satisfies

1). u
′2
s1

= u∗2
s1

+ 1, u
′2
s2

= u∗2
s2

+ 1 and for any other s which contains (w, 1), u
′2
s = u∗2

s ;

2). u
′2
s3

= u∗2
s3

+ 1 and for any other s which contains (w, 0), u
′2
s = u∗2

s ;

3). u
′1
s4

= u∗1
s4

+ 1 and for any other s which contains (v3, 1), u
′1
s = u∗1

s ;

4). u
′1
s5

= u∗1
s5

+ 1 and for any other s which contains (v3, 0), u
′1
s = u∗1

s ,

then in any ε-Nash equilibrium p of G ′, we have p[v3] = min(p[v1] + p[v2],pC [v3]) ± ε.

Proof. Properties 1)– 4) show that, in any mixed strategy profile p of game G ′, we have

payoff to P2 if it chooses (w, 1) − payoff to P2 if it chooses (w, 0) = p[v1] + p[v2] − p[v3]

payoff to P1 if it chooses (v3, 1) − payoff to P1 if it chooses (v3, 0) = p[w] − (pC [w] − p[w])

7

If p[v3] − (p[v1] + p[v2]) > ε, then the first equation shows that p[w] = 0 and the second one
shows p[v3] = 0 which contradicts with our assumption that p[v3] > p[v1] + p[v2] + ε > 0.
If p[v3] − (p[v1] + p[v2]) < −ε, then the first equation shows p[w] = pC [w] and the second
one shows that p[v3] = pC [v3]. As pC [v3] = p[v3] < p[v1] + p[v2], we have p[v3] = pC [v3] >
pC [v3] − ε = min(p[v1] + p[v2],pC [v3]) − ε, and the proposition is proven.

Proposition 2 (Gadget Gζ where ζ ≤ 1/K − ε). Let G ′ (with payoffs u′) be a game in L
and node v ∈ N1, w ∈ N2. Let pure strategy profile s1 = ((v, 1), (w, 1)), s2 = ((v, 1), (w, 0))
and s3 = ((v, 0), (w, 1)). If the following conditions are satisfied

1). u
′2
s1

= u∗2
s1

+ 1 and for any other s which contains (w, 1), u
′2
s = u∗2

s ;

2). for any s which contains (w, 0), u
′2
s = u∗2

s + ζ;

3). u
′1
s2

= u∗1
s2

+ 1 and for any other s which contains (v, 1), u
′1
s = u∗1

s ;

4). u
′1
s3

= u∗1
s3

+ 1 and for any other s which contains (v, 0), u
′1
s = u∗1

s ,

then in any ε-Nash equilibrium p of game G ′, we have p[v] = ζ ± ε.

Proposition 3 (Gadget G×ζ where 0 ≤ ζ ≤ 1/2). Let G ′ (with payoffs u′) be a 2-player
game in L and nodes v1, v2 ∈ N1, w ∈ N2. Let pure strategy profile s1 = ((v1, 1), (w, 1)),
s2 = ((v2, 1), (w, 0)), s3 = ((v2, 1), (w, 1)) and s4 = ((v2, 0), (w, 0)). If u′ satisfies

1). u
′2
s1

= u∗2
s1

+ ζ and for any other s which contains (w, 1), u
′2
s = u∗2

s ;

2). u
′2
s2

= u∗2
s2

+ 1 and for any other s which contains (w, 0), u
′2
s = u∗2

s ;

3). u
′1
s3

= u∗1
s3

+ 1 and for any other s which contains (v2, 1), u
′1
s = u∗1

s ;

4). u
′1
s4

= u∗1
s4

+ 1 and for any other s which contains (v2, 0), u
′1
s = u∗1

s ,

then in any ε-Nash equilibrium p of game G ′, we have p[v2] = ζp[v1] ± ε.

Proposition 4 (Gadget G=). Gadget G= is similar as G×ζ . We just set the constant ζ to

be 1, then in any ε-Nash equilibrium p of game G ′, we have p[v2] = min(p[v1],pC [v2]) ± ε.

Proposition 5 (Gadget G−). Let G′ (with payoffs u′) be a 2-player game in L and nodes

v1, v2, v3 ∈ N1, w ∈ N2. Let pure strategy profile s1 = ((v1, 1), (w, 1)), s2 = ((v2, 1), (w, 0)),
s3 = ((v3, 1), (w, 0)), s4 = ((v3, 1), (w, 1)) and s5 = ((v3, 0), (w, 0)). If game G ′ satisfies

1). u
′2
s1

= u∗2
s1

+ 1 and for any other s which contains (w, 1), u
′2
s = u∗2

s ;

2). u
′2
s2

= u∗2
s2

+ 1, u
′2
s3

= u∗2
s3

+ 1 and for any other s which contains (w, 0), u
′2
s = u∗2

s ;

3). u
′1
s4

= u∗1
s4

+ 1 and for any other s which contains (v3, 1), u
′1
s = u∗1

s ;

4). u
′1
s5

= u∗1
s5

+ 1 and for any other s which contains (v3, 0), u
′1
s = u∗1

s ,

8

then in any ε-Nash equilibrium p of game G ′, we have

min(p[v1] − p[v2],pC [v3]) − ε ≤ p[v3] ≤ max(p[v1] − p[v2], 0) + ε .

Proposition 6 (Gadget G<). Let G′ (with payoffs u′) be a 2-player game in L and nodes

v1, v2, v3 ∈ N1, w ∈ N2. Let pure strategy profile s1 = ((v1, 1), (w, 1)), s2 = ((v2, 1), (w, 0)),
s3 = ((v3, 1), (w, 0)) and s4 = ((v3, 0), (w, 1)). If game G ′ satisfies

1). u
′2
s1

= u∗2
s1

+ 1 and for any other s which contains (w, 1), u
′2
s = u∗2

s ;

2). u
′2
s2

= u∗2
s2

+ 1 and for any other s which contains (w, 0), u
′2
s = u∗2

s ;

3). u
′1
s3

= u∗1
s3

+ 1 and for any other s which contains (v3, 1), u
′1
s = u∗1

s ;

4). u
′1
s4

= u∗1
s4

+ 1 and for any other s which contains (v3, 0), u
′1
s = u∗1

s ,

then in any ε-Nash equilibrium p of game G ′, we have p[v3] = pC [v3] if p[v1] < p[v2] − ε and

p[v3] = 0 if p[v1] > p[v2] + ε.

Proposition 7 (Gadget G∨). Let G′ (with payoffs u′) be a 2-player game in L and nodes

v1, v2, v3 ∈ N1, w ∈ N2. Let pure strategy profile s1 = ((v1, 1), (w, 1)), s2 = ((v2, 1), (w, 1)),
s3 = ((v3, 1), (w, 1)) and s4 = ((v3, 0), (w, 0)). If payoffs u′ of game G′ satisfy

1). u
′2
s1

= u∗2
s1

+ 1, u
′2
s2

= u∗2
s2

+ 1 and for any other s which contains (w, 1), u
′2
s = u∗2

s ;

2). for any s which contains (w, 0), u
′2
s = u∗2

s + 1/(2K);

3). u
′1
s3

= u∗1
s3

+ 1 and for any other s which contains (v3, 1), u
′1
s = u∗1

s ;

4). u
′1
s4

= u∗1
s4

+ 1 and for any other s which contains (v3, 0), u
′1
s = u∗1

s ,

then in any ε-Nash equilibrium p, we have p[v3] = pC [v3] if p[v1] = pC [v1] or p[v2] = pC [v2]
and p[v3] = 0 if p[v1] = p[v2] = 0.

Proposition 8 (Gadget G∧). Gadget G∧ is similar as G∨. We only change the constant in

2) of Proposition 7 from 1/(2K) to 3/(2K).

Proposition 9 (Gadget G¬). Let G′ (with payoffs u′) be a 2-player game in L and nodes

v1, v2 ∈ N1, w ∈ N2. Let pure strategy profile s1 = ((v1, 1), (w, 1)), s2 = ((v2, 0), (w, 0)),
s3 = ((v2, 1), (w, 0)) and s4 = ((v2, 0), (w, 1)). If the payoffs of game G ′ satisfies

1). u
′2
s1

= u∗2
s1

+ 1 and for any other s which contains (w, 1), u
′2
s = u∗2

s ;

2). u
′2
s2

= u∗2
s2

+ 1 and for any other s which contains (w, 0), u
′2
s = u∗2

s ;

3). u
′1
s3

= u∗1
s3

+ 1 and for any other s which contains (v2, 1), u
′1
s = u∗1

s ;

4). u
′1
s4

= u∗1
s4

+ 1 and for any other s which contains (v2, 0), u
′1
s = u∗1

s ,

then in any ε-Nash equilibrium p, p[v2] = 0 if p[v1] = pC [v1] and p[v2] = pC [v2] if p[v1] = 0.

9

4.3 Construction of Game G

Now we are ready to use the gadgets designed so far to build the game G. We use Gζ(v, w)
to denote the insertion of a Gζ gadget into game G∗ with v as its output node and w as its
interior node. For gadgets with one input node (G×ζ , G¬ and G=), we use G(v1, v2, w) to
denote the insertion of such a gadget into game G∗ with v1, v2, w as its input node, output
node and interior node respectively. For gadgets with two input nodes, we use G(v1, v2, v3, w)
to denote the insertion of such a gadget into game G∗ with v1 and v2 as its first and second
input node respectively, v3 as its output node and w as its interior node.

The structure of the gadget network in G is similar to the one in [6]. There are 3 distin-
guished nodes vx, vy, vz in N1, and real numbers p[vx], p[vy], p[vz] encode a point t = (x, y, z)
in the unit cube [0, 1]3 where x = Kp[vx], y = Kp[vy], z = Kp[vz]. (Strictly speaking, it may
happen that Kp[vx] > 1 according to Lemma 1, but we will prove that this is impossible in
any ε-Nash equilibrium later.). Let Kijk be the cubelet that contains point t. Starting from
nodes vx ,vy and vz, we extract the 3n bits which encode integer i, j, k (from the (m +1)th bit
to the (m + n)th bit of p[vx], p[vy] and p[vz]), and use logic gadgets to simulate C.

But only getting the increment of φ at cijk is not enough, we need to repeat the above
computation for 413 points of the form (x + p · α, y + q · α, z + r · α) for −20 ≤ p, q, r ≤ 20,
and finally calculate the average of all these increments. After adding the displacement to
p[vx],p[vy] and p[vz], we insert gadgets G= to make sure that, in any ε-Nash equilibrium, the
average increment at t is very close to zero, which guarantees the existence of a panchromatic
vertex near t. The averaging maneuver used in the interpolation here resolves the problem
caused by the brittle comparator G< at the same time.

The construction of game G is divided into 5 parts:

Part 1. Starting from the three distinguished nodes vx, vy, vz ∈ N1, for any −20 ≤ i ≤ 20,
there are three nodes vxi

, vyi
and vzi

in N1. By adding gadgets Gζ , G− and G+, we make
sure that in any ε-Nash equilibrium p of G, p[vxi

] = min(p[vx] + iα′,pC [vxi
]) ± 4ε if i ≥ 0

and p[vxi
] = max(p[vx] + iα′, 0) ± 4ε if i < 0 where α′ = α2−m. Similar results also stand for

nodes vyi
and vzi

.

Part 2. For any −20 ≤ p ≤ 20, we extract 3n bits (from the (m + 1)th to the (m + n)th) of
p[vxp], p[vyp] and p[vzp] and store them in nodes vi

xp
, vi

yp
and vi

zp
where 1 ≤ i ≤ n. Figure 2

shows how to extract the these bits from vxp . Although we hope p[vi
xp

] = 0 if the (m + i)th

bit of p[vxp] is 0 and p[vi
xp

] = pC [vi
xp

] if it is 1, this may not be true as the comparator G< is

brittle. The following lemma is easy to check. Similar results also stand for v i
yp

and vi
zp

.

Lemma 2. If p[vxp] ≥ 1/K − 61α′, then p[vi
xp

] = pC [vi
xp

] for any 1 ≤ i ≤ n. If p[vxp] ≤ 61α′,

then p[vi
xp

] = 0 for any 1 ≤ i ≤ n. Otherwise, if p[vxp] satisfies

∣

∣

∣
p[vxp] −

⌊

2n+m
p[vxp]

⌋

2n+m

∣

∣

∣
> n2ε ,

10

Implementation of Part 2

1: pick unused nodes v1, v2 ... vn+1 ∈ N1 and w ∈ N2

2: G=(vxp , v1, w),

3: for any 1 ≤ i ≤ n do

3: pick unused nodes v1, v2, v3 ∈ N1 and w1, w2, w3, w4 ∈ N2

4: G2−(m+i)(v1, w1), G<(v1, vi, v
2, w2), G×2−(m+i)(v2, v3, w3), G−(vi, v

3, vi+1, w
4)

Figure 2: Implementation of Part 2

then p[vi
xp

] = 0 if the (m + i)th bit of real number p[vxp] is 0 and p[vi
xp

] = pC [vi
xp

] if it is 1,
for any integer 1 ≤ i ≤ n.

Part 3. For any −20 ≤ p, q, r ≤ 20, we recognize the 3n nodes v i
xp

vi
yq

vi
zr

where 1 ≤ i ≤ n
as the input bits of circuit C and use logic gadgets G∧, G∨, G¬ to simulate it. The outputs
(6 bits) are stored in 6 nodes, ∆x+

pqr, ∆x−
pqr, ∆y+

pqr, ∆y−pqr, ∆z+
pqr and ∆z−pqr in N1.

Part 4. Pick 6 unused nodes ∆x+, ∆x−, ∆y+, ∆y−, ∆z+ and ∆z− in N1. By using gadgets
G×ζ and G+, we make sure that in any ε-Nash equilibrium p of game G,

p[∆x+] =
(

∑

p,q,r

α′

413
p[∆x+

pqr]
)

± 3 · 413ε p[∆x−] =
(

∑

p,q,r

α′

413
p[∆x−

pqr]
)

± 3 · 413ε

where α′ = α2−m. Similar results also stand for nodes ∆y+, ∆y−, ∆z+ and ∆z−.

Part 5. Pick unused nodes v1, v2, v3, v′x, v′y, v′z ∈ N1 and w1, w2, w3, w4, w5, w6 ∈ N2. Add
the following nine gadgets into game G∗ :

G+(vx,∆x+, v1, w1) G−(v1,∆x−, v′x, w2) G+(vy,∆y+, v2, w3)

G−(v2,∆y−, v′y, w4) G+(vz,∆z+, v3, w5) G−(v3,∆z−, v′z, w6)

G=(v′x, vx) G=(v′y, vy) G=(v′z, vz)

4.4 Correctness of the Reduction

Obviously, game G belongs to class L and all the gadgets inserted work well in it. The size
of game G is polynomial of |(C, 0n) |, as both the number of strategies and the number of bits
required to represent a payoff ui

s are polynomial of |(C, 0n) |, and game G can be computed
from (C, 0n) in polynomial time. Furthermore, the following theorem shows that, given any
ε-Nash equilibrium of game G where ε = 2−(m+4n), a panchromatic vertex of (C, 0n) can be
identified very efficiently.

11

Theorem 2. Let p be any ε-Nash equilibrium of the game G constructed above. x = Kp[vx],
y = Kp[vy] and z = Kp[vz] where K = 2m. Let p, q, r be three integers satisfying

(p − 1)2−n < x − 30α < x + 30α < (p + 1)2−n ;

(q − 1)2−n < y − 30α < y + 30α < (q + 1)2−n ;

(r − 1)2−n < z − 30α < z + 30α < (r + 1)2−n ,

then vertex (p2−n, q2−n, r2−n) must be a panchromatic vertex of (C, 0n).

Similarly as the proof in [6], we need the following property of the four increments.

Lemma 3. Suppose that for nonnegative integers k1 ... k4, all three coordinates of
∑4

i=1 kiδi

are smaller in absolute value than αk/5 where k =
∑4

i=1 ki. Then all four ki are positive.

Proof of Theorem 2. First, we prove that t = (x, y, z) cannot be close to the boundary of
the unit cube. If p[vx] ≤ 40α′, then Lemma 2 shows for any −20 ≤ i, j, k ≤ 20, we have
p[∆+

ijk] = pC [∆x+
ijk]. Thus p[∆x+] is very close to α′, while p[∆x−] is close to zero. As α′ is

much larger than ε, we get a contradiction in the following gadget: G=(v′x, vx). Similarly, we
can prove that p[vx] < 1/K − 40α′, which can be easily generalized to p[vy] and p[vz].

Now we see the existence of integers p, q, r which satisfy the three conditions above. Let
T be the set of eight centers around (p2−n, q2−n, r2−n), V =

{

(i, j, k), −20 ≤ i, j, k ≤ 20
}

and V1 be the subset of V such that, triple (i, j, k) ∈ V1 if
∣

∣p[vxi
] − p2−(n+m)

∣

∣ ≤ n2ε or
∣

∣p[vyj
] − q2−(n+m)

∣

∣ ≤ n2ε or
∣

∣p[vzk
] − r2−(n+m)

∣

∣ ≤ n2ε .

As α′ is much larger than ε, we have |V1 | ≤ 3 · 412. For any triple (i, j, k) ∈ V − V1, Lemma 2
shows that all the 3n bits of p[vxi

], p[vyj
] and p[vzk

] are extracted successfully, and ∆x+
ijk

etc. values should imply an increment which is same as one of those at centers in T . Let
kt, where 1 ≤ t ≤ 4, be the number of triples in V − V1 whose ∆x+

ijk etc. values imply the
increment vector δt, then all four ki must be positive according to Lemma 3 (otherwise, we
could find a contradiction in one of the three G= gadgets in Part 5), which shows that vertex
(p2−n, q2−n, r2−n) is a panchromatic vertex of (C, 2n), and the theorem is proven.

5 Concluding Remarks

Even though many thought the problem of finding a Nash-equilibrium is hard in general, and
has been proven so for three or more players recently, it is not clear whether the 2-player case
can be shown in the same class of PPAD-complete problems. Our work settles this issue
and a long standing open problem that has attracted Mathematicians, Economists, Operations
Researchers, and most recently Computer Scientists. The result shows the richness of the
PPAD-complete class introduced by Papadimitriou fifteen years ago [14]. The new proof
techniques which made inclusion of r-Nash into this class possible, started in Goldberg and
Papadimitriou [8], have shown a variety of structures, as exhibited in the hardness proofs of
problem 4-Nash, 2D-SPERNER [2], 3-Nash, and finally 2-Nash, may find their use in other
related problems and complexity classes.

12

References

[1] L.E.J. Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische Annalen, 71:97–
115, 1910.

[2] X. Chen and X. Deng. 2D-SPERNER is PPAD-complete. submitted to STOC 2006.

[3] X. Chen and X. Deng. On Algorithms for Discrete and Approximate Brouwer Fixed Points.
In STOC 2005, pages 323–330.

[4] X. Chen and X. Deng. 3-Nash is PPAD-complete. ECCC, TR05-134, 2005.

[5] G.B. Danzig. Linear Programming and Extensions. Princeton University Press, 1963.

[6] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The Complexity of Computing a
Nash Equilibrium. ECCC, TR05-115, 2005.

[7] C. Daskalakis and C.H. Papadimitriou. Three-player games are hard. ECCC, TR05-139.

[8] P.W. Goldberg and C.H. Papadimitriou. Reducibility Among Equilibrium Problems.
ECCC, TR05-90, 2005.

[9] M.D. Hirsch, C.H. Papadimitriou, and S. Vavasis. Exponential lower bounds for finding
Brouwer fixed points. J.Complexity, 5:379–416, 1989.

[10] M. Kearns, M. Littman, and S. Singh. Graphical Models for Game Theory. In Proceedings

of UAI, 2001.

[11] L.G. Khachian. A Polynomial Algorithm in Linear Programming. Dokl. Akad. Nauk,
SSSR 244:1093–1096, English translation in Soviet Math. Dokl. 20, 191–194, 1979.

[12] N. Megiddo and C. Papadimitriou. On total functions, existence theorems and computa-
tional complexity. Theoret. Comput. Sci., 81:317–324, 1991.

[13] O. Morgenstern and J. von Neumann. The Theory of Games and Economic Behavior.
Princeton University Press, 1947.

[14] C.H. Papadimitriou. On inefficient proofs of existence and complexity classes. In Proceed-

ings of the 4th Czechoslovakian Symposium on Combinatorics, 1991.

[15] C.H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, pages 498–532, 1994.

[16] A.C-C. Yao. Probabilistic computations: Towards a unified measure of complexity. In
Proceedings of FOCS 1997, pages 222–227.

13

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

