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Abstract

The generalized knapsack problem is the following: given m random elements a1, . . . , am ∈ R for
some ring R, and a target t ∈ R, find elements z1, . . . , zm ∈ D such that

�
aizi = t where D is some

given subset of R. In (Micciancio, FOCS 2002), it was proved that for appropriate choices of R and D,
solving the generalized compact knapsack problem on the average is as hard as solving certain worst-case

problems for cyclic lattices even for almost constant values of m. This immediately yields very efficient
one-way functions whose security is based on worst-case hardness assumptions. A problem left open in
(Micciancio, FOCS 2002) is whether these functions satisfy stronger security guarantees, such as collision
resistance.

We show that the function proposed in (Micciancio, 2002) is not collision resistant, but it can be eas-
ily modified to achieve collision resistance under essentially the same complexity assumptions on cyclic
lattices. Our modified function is obtained as a special case of a more general result, which yields effi-
cient collision resistant hash functions that are at least hard to break as solving the worst case instance
of various new problems. These include new problems from algebraic number theory, as well as classic
lattice problems (e.g., the shortest vector problem) over ideal lattices, a new class of lattices that includes
cyclic lattices as a special case.

Keywords: hash functions, lattices, worst-case to average-case reductions, knapsacks

1 Introduction

Ever since Ajtai’s discovery of a function whose average-case hardness can be proved based on a worst-
case complexity assumptions about lattices [2], the possibility of building cryptographic functions whose
security is based on worst-case problems has been very alluring. Ajtai’s initial discovery [2] and subsequent
developments [5, 12, 14] are very interesting from a theoretical point of view because they are essentially
the only problems for which such a worst-case / average-case connection is known. Unfortunately, the
cryptographic functions proposed in these works are not efficient enough to be practical. The source of
impracticality is the use of lattices, geometric arrangements of points that can be described as an n × n
integer matrix. This results in cryptographic functions with key size and computation time at least quadratic
in the security parameter n.

A step in the direction of creating cryptographic functions based on worst-case hardness that are efficient
in practice was taken by Micciancio in [11]. In that paper, the author showed how to create a family of
efficiently computable one-way functions (namely, the generalized compact knapsack functions described in
the abstract) whose security is based on a certain problem for a particular class of lattices, called cyclic
lattices. These lattices admit a much more compact representation than general ones, and the resulting
functions can be described and evaluated in time almost linear in n. However, one-wayness is a rather weak
security property, interesting mostly from a theoretical point of view, because it is sufficient to prove the ex-
istence (via polynomial time, but rather impractical, constructions) of many other important cryptographic
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primitives, like commitment schemes, digital signatures, and private key encryption. By contrast, the (inef-
ficient) functions based on general lattices considered in [2, 5, 12, 14] are collision resistant hash functions,
a considerably stronger and much more useful cryptographic primitive.

In this work, we take the next step in creating efficient cryptographic functions based on worst-case
assumptions. We show how to create efficient, collision resistant hash functions whose security is based on
standard lattice problems problems for ideal lattices (i.e. lattices that can be described as ideals of certain
polynomial rings). With current hash functions that are not based on any hardness assumptions, but used
in practice, being broken [19], [20], [4], we believe that it may be a good time to consider using efficient hash
functions which do have an underlying hardness assumption, especially one based on worst-case instances of
problems.

Our contributions and comparison with related work In [11], it was shown how to create an efficient
one-way function based on worst case hardness of problems for lattices which can be represented as ideals in
the ring Z[x]/〈xn−1〉. In our work, we show how to construct collision-resistant hash functions based on the
hardness of problems for lattices that can be represented as ideals of the ring Z[x]/〈f〉 where f can be one of
infinitely many other polynomials (including xn − 1). Thus our result has two desirable features: it weakens
the complexity assumption while strengthening the cryptographic primitive. As in [11], our functions are
an instance of the generalized compact knapsack problem described in the abstract, but with the ring R
and subset D instantiated in a different way. The way we change the ring R and subset D is simple, but
essential, as we can show that the generalized compact knapsack instances considered in [11] are not collision
resistant.

Concurrently with, and independently from our work, Peikert and Rosen [15] have shown that the one-way
function in [11] is not collision resistant and showed how to construct collision resistant hash functions based
on the hardness of finding the shortest vector for lattices which correspond to ideals in the ring Z[x]/〈xn−1〉.
While our more general result is interesting from a purely theoretical standpoint, it turns out that choices
of certain f other than xn − 1 result in somewhat better hash function, making our generalization also of
practical use. Also, our hardness assumptions are formulated in a way that leads to natural connections
with algebraic number theory, and we are able to relate our complexity assumptions to problems from that
area. We believe that this will further our understanding of the hardness of problems about ideal lattices.

The hash function. We now give an informal description of the hash function families that we will be
proving collision resistant. Given a ring R = Zp[x]/〈f〉 (with the usual polynomial addition and multiplica-
tion operations) where f ∈ Z[x] is some monic, irreducible polynomial of degree n (for an algebra refresher,
the reader may refer to subsection 2.1) and p is an integer of size roughly n2, generate m random elements
a1, . . . , am ∈ R where m is some constant. The ordered m-tuple h = (a1, . . . , am) ∈ Rm is our hash func-
tion. It will map elements from Dm, where D is a strategically chosen subset of R, to R. For an element

b = (b1, . . . , bm) ∈ Dm, the hash is h(b) =
m∑

i=1

ai · bi. Notice that the size of the key (the hash function) is

O(mn log p) = O(n log n), and the operation ai · bi can be done in time O(n log n log log n) by using the fast
Fourier transform (for appropriate choice of the polynomial f). Since m is a constant, we can hash a message
in time O(n log n log log n). Then to prove that our hash function family is collision resistant, we will show
that if there is a polynomial time algorithm that (for a randomly chosen hash function h ∈ Rm,) succeeds
with non-negligible probability in finding b 6= b′ ∈ Dm such that h(b) = h(b′), then a certain problem that we
call the “shortest polynomial problem” is solvable in polynomial time for every ideal of the ring Z[x]/〈f〉. We
then show that the shortest polynomial problem is equivalent to some lattice and algebraic number theory
problems.

Paper outline. In section 2, we recall definitions and results from previous papers that will be used in
our work, and prove a new bound on Gaussian distribution on lattices. Our main result and techniques rely
on a connection between lattices and ideals of certain rings, which we describe in section 3. In section 4, we
define the worst case problem on which we will be basing the security of our hash function. We then show
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the equivalence of this problem to standard lattice problems as well as a problem from algebraic number
theory.

Having established this equivalence between instances of problems for lattices, ideals, and number fields,
we proceed to the construction of collision resistant hash functions that are at least as hard to break (on
the average) as the worst instance of any of those problems. We formally define the hash function families
in section 5.1 and show the worst-case to average case reduction in section 5.2.

2 Preliminaries

In this section we review some basic notions about algebra, lattices, and Gaussian distributions that will be
used in the rest of the paper.

2.1 Algebra

Let Z[x] and R[x] be the sets of polynomials (in an indeterminate variable x) with integer and real coefficients
respectively. A polynomial is monic if the coefficient of the highest power of x is one. A polynomial (in
Z[x]) is irreducible if it cannot be represented as a product of lower degree polynomials (in Z[x]). In this
paper we identify polynomials (of degree less than n) with the corresponding n-dimensional vectors having
the coefficients of the polynomial as coordinates. This allows to translate notation and definitions from one
setting to the other. E.g., we define the `p norm ‖g(x)‖p of a polynomial g(x) ∈ Z[x] as the norm of the
corresponding vector, and the product of two n-dimensional vectors x · y as the (2n− 1)-dimensional vector
associated to the product of the corresponding polynomials.

Let R be a ring. An ideal I of R is an additive subgroup of R closed under multiplication by arbitrary
ring elements. The smallest ideal of R containing a subset S ⊆ R is denoted 〈S〉. In particular, for any ring
element f ∈ R, 〈f〉 denotes the set of all multiples of f . Two ring elements g, h ∈ R are equivalent modulo
an ideal I ⊆ R if g − h ∈ I . When I = 〈f〉 is the ideal generated by a single ring element f , then we say
that g and h are equivalent modulo f . The quotient R/I is the set of all equivalence classes (g + I) of R
modulo I .

Much of our work deals with the rings Z[x]/〈f〉 where f is monic and irreducible. When f is a monic
polynomial of degree n, then every equivalence class (g + 〈f〉) ∈ (Z[x]/〈f〉) has a unique representative
g′ ∈ (g+〈f〉) of degree less than n. This representative is denoted (g mod f) and can be efficiently computed
using the standard division algorithm. We endow the ring Z[x]/〈f〉 with the (infinity) norm ‖(g + 〈f〉)‖f =
‖g mod f‖∞. Notice that the function ‖ · ‖f is well defined (i.e., it does not depend on the choice of
representative g) and it is indeed a norm (i.e., it satisfies the positivity and triangle inequality properties).
As shorthand, we will sometimes write ‖g‖f instead of ‖g+〈f〉‖f . Another shorthand that we use is denoting
the quotient ring Z[x]/〈p, f〉 for some positive integer p and polynomial f as Zp[x]/〈f〉. Also, whenever there
is no confusion from context, instead of writing g + 〈f〉 for elements of Z[x]/〈f〉, we just write g.

2.2 Lattices

An n-dimensional lattice is the set of all integer combinations {∑n
i=1 xibi : xi ∈ Z} of n linearly independent

vectors b1, . . . ,bn in Rn. The set of vectors b1, . . . ,bn is called a basis for the lattice, and can be compactly
represented by the matrix B = [b1| . . . |bn] ∈ Rn×n having the basis vectors as columns. The lattice generated
by B is denoted L(B). For any basis B, we define the fundamental parallelepiped P(B) = {Bx : ∀i.0 ≤ xi <
1}. The following lemma shows how to sample lattice points uniformly at random from the fundamental
parallelepiped associated to a given sublattice.

Lemma 2.1 ([13, Proposition 8.2]). There is a probabilistic polynomial time algorithm that on input a lattice
basis B and a full rank sublattice S ⊂ L(B), outputs a lattice point x ∈ L(B) ∩ P(S) chosen uniformly at
random.
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The lattices that are most relevant to us are integer lattices, i.e., lattices L(B) ⊆ Zn all of whose vectors
have integer coordinates. The dual of a lattice L(B) (denoted L(B)∗) is the lattice generated by the matrix
B−T , and consists of all vectors that have integer scalar product with all lattice vectors. For any vector
x = (x1, . . . , xn)T , define the cyclic rotation rot(x) = (xn, x1, . . . , xn−1)

T . A lattice L(B) is cyclic if it is
closed under the rotation operation, i.e., if x ∈ L(B) implies rot(x) ∈ L(B).

The minimum distance of a lattice L(B) is the minimum distance between any two (distinct) lattice
points and equals the length of the shortest nonzero lattice vector. The minimum distance can be defined
with respect to any norm. For any p ≥ 1, the `p norm of a vector x is defined by ‖x‖p = p

√∑
i |xi|p and the

corresponding minimum distance is denoted

λp
1(L(B)) = min{‖x− y‖p : x 6= y ∈ L(B)} = min{‖x‖p : x ∈ L(B) \ {0}}.

Each norm gives rise to a corresponding computational problem SV P p
γ (the γ-approximate Shortest Vector

Problem in the `p norm): given a lattice L(B), find a nonzero vector v ∈ L(B) such that ‖v‖p ≤ γλp
1(L(B)).

We also consider the restriction of SV P to specific classes of lattices. The restriction of SV P to a class of
lattices Λ is denoted Λ-SV P . (E.g, [11] considers Cyclic-SV P ).

The notion of minimum distance can be generalized to define the ith successive minimum (in the `p norm)
λp

i (L(B)) as the smallest radius r such that the closed sphere B̄p(r) = {x : ‖x‖p ≤ r} contains i linearly
independent lattice points: λp

i (L(B)) = min{r : dim(span(L(B) ∩ B̄p(r))) ≥ i}.
In this work, we focus on the infinity norm ‖x‖∞ = limp→∞ ‖x‖p = maxi |xi| since it is the most natural

and convenient norm when dealing with polynomials, but most of our results are easily translated to other
norms as well. The shortest vector problem in the infinity norm SV P∞

γ was proved to be NP -hard by van

Emde Boas for γ = 1 [18] and shown to be NP -hard for factor up to γ(n) = n1/ log log n by Dinur [7], where
n is the dimension of the lattice. The asymptotically fastest algorithm for computing the shortest vector
exactly takes time 2O(n) [3] and the best polynomial time algorithm approximates the shortest vector to

within a factor of 2O( n log log n
log n ) [3],[17],[10]. It is conjectured that approximating the shortest vector to within

a polynomial factor is a hard problem, although it is shown that (under standard complexity assumptions)
for small polynomial factors it is not NP -hard [1], [9].

2.3 Gaussian distribution

In this paper we use techniques from [14] that involve Gaussian distributions over lattices. In this subsection
we recall all the relevant definitions and results from [14]. Let X and Y be random variables over a set A with
probability density functions δX and δY respectively. The statistical distance between X and Y, denoted
∆(X, Y ), is

∆(X, Y ) =
1

2

∫

a∈A

|δX(a) − δY (a)|da.

The statistical distance satisfies the following useful properties:

∆(f(X), f(Y )) ≤ ∆(X, Y ) (1)

∆((X1, . . . , Xk), (Y1, . . . , Yk)) ≤
k∑

i=1

∆(Xi, Yi) (2)

(3)

for any function f and independent random variables X1, . . . , Xk and Y1, . . . , Yk.
For any vectors c,x and any s > 0, let ρs,c(x) = e−π‖(x−c)/s‖2

be a Gaussian function centered in c scaled
by a factor of s. The total measure associated to ρs,c is

∫
x∈Rn ρs,c(x)dx = sn. So,

∫
x∈Rn(ρs,c(x)/sn)dx = 1

and ρs,c/sn is a probability density function. The distribution ρs,c/sn can be efficiently approximated using
standard techniques (see [14]), so in the rest of the paper we make the simplifying assumption that we can
sample from ρs,c/sn exactly and work with real numbers.
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Functions are extended to sets in the usual way; e.g., ρs,c(A) =
∑

x∈A ρs,c(x) for any countable set A.

For any s, c and lattice Λ, define the discrete probability distribution (over the lattice Λ) DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ) ,

where x ∈ Λ. Intuitively, DΛ,s,c is the conditional probability1 that (ρs,c/sn) = x given (ρs,c/sn) ∈ Λ. For
brevity, we sometimes omit s or c from the notation ρs,c and DΛ,s,c. When c or s are not specified, we
assume that they are the origin and 1 respectively.

In [14] Gaussian distributions are used to define a new lattice invariant (called the smoothing parameter)
defined below, and many important properties of this parameter are established. The following properties
will be used in this paper.

Definition 2.2. For an n-dimensional lattice Λ, and positive real ε > 0, the smoothing parameter ηε(Λ) is
the smallest s such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

Lemma 2.3 ([14, Lemma 4.1]). Let ρs/sn mod B be the distribution obtained by sampling a point according
to the probability density function ρs/sn and reducing the result modulo B. For any lattice L(B), the
statistical distance between ρs/sn mod B and the uniform distribution over P(B) is at most 1

2ρ1/s(L(B)∗ \
{0}). In particular, if s ≥ ηε(L(B)), then the distance ∆(ρs/sn mod B, U(P(B))) is at most ε/2.

Lemma 2.4 ([14, Lemma 3.3]). For any n-dimensional lattice Λ and positive real ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λ2

n(Λ) ≤
√

n ln(2n(1 + 1/ε))

π
· λ∞

n (Λ).

Lemma 2.5 ([14]). Let Λ be any n-dimensional lattice and let s be such that s > 2ηε(Λ) for ε ≤ 1/100, and
let c ∈ Rn be any point. Then for all x′ ∈ Λ, Prx∼DΛ,s,c [x = x′] ≤ 99/100.

2.4 New lemmas for the Gaussian distribution over lattices

In this subsection, we state a new result for Gaussian distributions over lattices which strengthens a result
from [14], and thus might be of independent interest. In [14], the authors showed that for any c and a large
enough s, the first few moments of the distribution DΛ,s,c behave essentially the same as the moments of
the continuous Gaussian distribution ρs/sn. In this work, though, we need much higher moments of DΛ,s,c.
In appendix D we prove that all the moments of DΛ,s,c behave like the moments of ρs/sn plus a little error.
The precise statement of this is given in lemma D.6. This result allows us to prove the following lemma,
whose proof can also be found in appendix D.

Lemma 2.6. For any n-dimensional lattice Λ, point c ∈ Rn, a vector u such that ‖u‖ = 1, positive real
s > 2ηε(Λ) where ε < (log n)−2 log n,

Prx∼DΛ,s,c [|〈x− c,u〉| ≥ s log n] = n−ω(1)

Lemma 2.7. For any n-dimensional lattice Λ, positive reals ε < (log n)−2 log n, s > 2ηε(Λ), and polynomials
c, z ∈ R[x] of degree less than n,

Prd∼DΛ,s,c [||(d − c)z||∞ ≥ ||z||s logn] = n−ω(1)

Proof. Consider the vector d−c = (d0−c0, . . . , dn−1−cn−1) corresponding to the coefficients of the difference
of d − c. Also, define the vectors z(i) as follows:

z(i) =

{
(zi, zi−1, . . . , z0, 0, . . . , 0) for 0 ≤ i ≤ n − 1

(0, . . . , 0, zn−1, . . . , zi+2−n, zi+1−n) for n ≤ i ≤ 2n − 2

With the above notation, the polynomial product of (d-c)z can be written as

(d − c)z =

2n−2∑

i=0

〈d − c, z(i)〉xi

1We are conditioning on an event that has probability 0; this can be made rigorous by standard techniques.
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Thus,

||(d − c)z||∞ = max
i

|〈d − c, z(i)〉| = max
i

∣∣∣∣||z(i)||
〈
d− c,

z(i)

||z(i)||

〉∣∣∣∣ ≤ ||z||max
i

∣∣∣∣
〈
d− c,

z(i)

||z(i)||

〉∣∣∣∣

By lemma 2.6 and the union bound, we get

Prd∼DΛ,s,c

[
max

i

∣∣∣∣
〈
d− c,

z(i)

||z(i)||

〉∣∣∣∣ ≥ s log n

]
≤ 2n · n−ω(1) = n−ω(1)

and so the claim in the lemma follows.

3 Generalized compact knapsacks and ideal lattices

In [11], Micciancio introduced the following generalization of the compact knapsack problem. Let R be a
ring, D ⊂ R a subset, and m ≥ 1 a positive integer. The generalized knapsack function family H(R, D, m) is
the collection of all functions ha : Dm → R indexed by a ∈ Rm mapping b ∈ Dm to ha(b) =

∑m
i=1 bi ·ai ∈ R.

For any function family H, define the problem CollisionH as follows: given a function h ∈ H, find a
collision, i.e., a pair of inputs b, c ∈ Dm such that b 6= c and h(b) = h(c). If there is no polynomial time
algorithm that can solve CollisionH with non-negligible probability when given an h which is distributed
uniformly at random in H, then we say that H is a collision resistant family of hash functions.

[11] considers the instantiation of the generalized compact knapsack where R = Zp[x]/〈xn − 1〉 (for some
integers p and n), and proves that the resulting function family is one-way (a weaker security property than
collision resistance) under a worst-case complexity assumption on cyclic lattices.

In this paper we show that the generalized compact knapsack function proposed in [11] is not collision
resistant (see appendix A), and consider a more general class of rings that allows us to build provably collision
resistant generalized compact knapsack functions based on worst-case computational assumptions on ideal
lattices, a new class of lattices that includes cyclic lattices as a special case.

Let f ∈ Z[x] be a monic polynomial of degree n, and consider the quotient ring Z[x]/〈f〉. Using the
standard set of representatives {(g mod f) : g ∈ Z[x]}, and our identification of polynomials with vectors,
the quotient ring Z[x]/〈f〉 is isomorphic (as an additive group) to the integer lattice Zn, and any ideal
I ⊆ Z[x]/〈f〉 defines a corresponding integer sublattice L(I) ⊆ Zn. Notice that not every integer lattice
L(B) ⊆ Zn can be represented this way.2 We define ideal lattices as lattices that admit such a representation.

Definition 3.1. An ideal lattice is an integer lattice L(B) ⊆ Zn such that L(B) = {g mod f : g ∈ I} for
some monic polynomial f of degree n and ideal I ⊆ Z[x]/〈f〉.

It is easy to see that cyclic lattices, as considered in [11], are a special case of ideal lattices where
f = xn − 1. Here we study ideal lattices for other choices of the polynomial f . It turns out that the relevant
properties of f for the resulting function to be collision resistant are:

• f should be irreducible.

• the ring norm ‖g‖f is not much bigger than ‖g‖∞ for any polynomial g, in a quantitative sense to be
explained later.

The first property implies that every ideal of the ring Z[x]/〈f〉 defines a full-rank lattice in Zn, ( Lemma 3.2
below) and plays a fundamental role in our proofs. The second property affects the strength of our security
proofs: the smaller the ratio ‖g‖f/‖g‖∞ is, the harder to break our functions seem to be. After the lemma, we
elaborate on the second property by defining a quantitative parameter (the expansion factor) that captures
the relation between ‖ · ‖∞ and ‖ · ‖f , and proving bounds on this parameter for a wide class of polynomials
f .

2Take, for example, the 2-dimensional lattice generated by the vectors (2, 0) and (0, 1) (or in terms of polynomials, by 2x and
1). This lattice cannot be represented by an ideal, because any ideal containing 1 must necessarily contain also the polynomial
1 · x, but the vector (1, 0) (corresponding to the polynomial x) does not belong to the lattice.
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Lemma 3.2. Every ideal I of Z[x]/〈f〉, where f is a monic, irreducible integer polynomial of degree n, is
isomorphic to a full-rank lattice in Zn.

Proof. Let I = 〈g1, . . . , gm〉. One of the gi’s must be non-zero, so assume it’s g1. We will show that the
g1, g1x, . . . , g1x

n−1 are linearly independent over Z. This will show that the lattice corresponding to I
contains n linearly independent vectors, and thus must have dimension n.

Without loss of generality, assume that deg(g1) is less than n. If g1, g1x, . . . , g1x
n−1 are linearly depen-

dent, then g1(a0 + a1x + . . . + an−1x
n−1) ∈ 〈f〉 = fh for some polynomial h. Since f is irreducible and Z[x]

is a unique factorization domain, f is then also prime. Thus either f |g1 or f |a0 +a1x+ . . . +an−1x
n−1. But

both of those polynomials have degree less than f , and since f is irreducible, this cannot be unless either g1

or a0 + a1x + . . . + an−1x
n−1 is 0.

3.1 The expansion factor

Notice that when we reduce a polynomial g modulo f , the maximum coefficient of g can increase by quite a
bit, and thus ||g||f could be a lot bigger than ||g||∞ . For example if f = xn − 2xn−1, then x2n ≡ 2n+1xn−1

modulo f . On the other hand, if f = xn − 1, we can never have such an exponential growth of coefficients.
We capture this property of f by defining the expansion factor of f as

EF (f, k) = max
g∈Z[x],deg(g)≤k(deg(f)−1)

||g||f/||g||∞

The below theorem gives tight bounds for the expansion factor of certain polynomials.

Theorem 3.3.

(1)EF (xn − 1, k) ≤ k (2)EF (xn−1 + xn−2 + . . . + 1, k) ≤ 2k (3)EF (xn + 1, k) ≤ k

Proof. (1) Let g =
k(n−1)∑

i=0

gix
i be a polynomial. Then it is in the same coset of Z[x]/〈xn − 1〉 as h =

n−1∑
i=0

hix
i

where hi =
bk(n−1)/nc∑

j=0

gi+jn. Thus

||g||f = ||h||∞ ≤ ||g||∞(bk(n − 1)/nc+ 1) ≤ k||g||∞.

Thus, we have EF (xn − 1, k) ≤ k.
(2) Let g be a polynomial of degree at most k(n−1) and let h be the polynomial such that deg(g−h(xn−1)) <
n. By the proof of (1), we know that ||g − h(xn − 1)||∞ ≤ k||g||∞. Let α be the coefficient of the xn−1

term of g − h(xn − 1). The polynomial g − h(xn − 1)− α(xn−1 + xn−2 + . . . + 1) has degree less than n− 1
and infinity norm at most 2k||g||∞ and is in the same coset of Z[x]/〈xn−1 + xn−2 + . . . + 1〉 as g. Thus
EF (xn−1 + xn−2 + . . . + 1, k) ≤ 2k.
(3) The proof for this part is almost identical to the proof of part (1)

Now, we will bound the expansion factor of arbitrary polynomials. For this, we will first need to define
another property of polynomials, we call the gap.

Definition 3.4. We will say that a polynomial f of the form f = xn +
n−m∑
i=0

αix
i for 0 < m ≤ n where

αi ∈ Z and αn−m 6= 0 has gap m. So we write gap(f)=m.

We do not define the gap of a polynomial that has only one term because such polynomials are incon-
sequential for our purposes. Also, we do not define gap for polynomials that are not monic. The following
two theorems are proved in appendix C.
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Theorem 3.5. If f is a polynomial in Z[x], then

EF (f, k) ≤ minf ′∈Z[x]2||f ||1||f ′||1(2||ff ′||1)
�
(k−1)deg(f)−k

gap(ff′) �
In certain cases, the next theorem is a bit tighter than the previous one.

Theorem 3.6. If f is a polynomial in Z[x], then

EF (f, k) ≤ minf ′∈Z[x](2||ff ′||1)
�
(k−1)deg(f)−k−deg(f ′ )

gap(ff′) � +1
(2||f ||∞)deg(f ′)

Intuitively, in order for f to have a “small” expansion factor, f needs to be a factor of some polynomial h
with a large gap, and the quotient h/f should not have large coefficients. So for example, xn +xn−1 + . . .+1
is such a polynomial because it is a factor of xn+1 − 1. It’s an interesting problem whether it’s possible, in
polynomial time, to find the expansion factor (or even bound it) of an arbitrary polynomial f . We do not
know how to do this. But the above two theorems do allow us to verify in polynomial time that a certain
polynomial has a small expansion factor. We will be only concerned with values of EF (f, k) when k = 2, 3,
so the fact that k appears in the exponent in the above two theorems is not cause for concern.

4 Worst case problems

In this section we define the worst case problems and provide reductions among them.
Because of the correspondence between ideals and integer lattices, we can use the successive minima

notation used for lattices for ideals as well. So for any ideal I of Z[x]/〈f〉, where f is a monic integer
polynomial, we’ll define λp

i (I) to be λp
i (L(I)).

Definition 4.1. In the approximate Shortest Polynomial Problem (SPPγ(I)), we are given an ideal I ⊆
Z[x]/〈f〉 where f is a monic polynomial of degree n, and we are asked to find a g ∈ I such that g 6= 0 and
||g||f ≤ γλ∞

1 (I).

As for the shortest vector problem, we can consider the restriction of SPP to specific classes of ideals.
We will write f -SPP for SPP restricted to ideals of the ring Z[x]/〈f〉. The f -SPP problem for any monic,
irreducible f is the main worst-case problem of this work, as it is the problem upon which the security of
our hash functions will be based. Since SPP is a new problem whose hardness has not been explored, we
show that other better-known problems can be reduced to it. If we denote by I(f) the set of lattices that
are isomorphic (as additive groups) to ideals of Z[x]/〈f〉 where f is monic, then there’s a straightforward
reduction from I(f)-SV Pγ to f -SPPγ (and also the other way around).

Lattices in the class I(xn −1) (cyclic lattices) do not fall into the category of lattices that are isomorphic
to ideals of Z[x]/〈f〉 for an irreducible f (since xn − 1 is not irreducible). But in appendix B, we give a
reduction from (xn−1)-SPP2γ to (xn−1+xn−2+. . .+1)-SPPγ . Thus we will be able to establish the security
of hash functions based on the hardness of the shortest vector problem for cyclic lattices of prime dimension,
which is essentially the complexity assumption used by Micciancio in [11] for his one-way functions.

Another problem that we reduce to SPP is the problem of finding complex numbers with small conjugates
in ideals of subrings of a number field. This problem and the reduction is described in detail in appendix B
as well.

Now we state a lemma which shows that if I is an ideal of Z[x]/〈f〉 where f is a monic and irreducible,
then λ∞

n (I) cannot be much bigger than λ∞
1 (I). For ideals of arbitrary rings, there is no reason why there

should be such a connection between these two quantities. The reason that we have a connection here, is
that f is irreducible.

Lemma 4.2. For all ideals I of Z[x]/〈f〉 where f is a monic, irreducible polynomial of degree n, we have
λ∞

n (I) ≤ EF (f, 2)λ∞
1 (I)
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Proof. Let g be a polynomial in I of degree less than n such that ||g||∞ = λ∞
1 (I). Then consider the polyno-

mials g, gx, . . . , gxn−1. By lemma 3.2, the polynomials g, gx, . . . , gxn−1 are linearly independent. And since
the maximum degree of any of these polynomials is 2n − 2, ||gxi||f ≤ EF (f, 2)||gxi||∞ ≤ EF (f, 2)||g||∞ =
EF (f, 2)λ∞

1 (I) for all 0 ≤ i ≤ n − 1.

Now we define the incremental version of SPP . In this version, we are not looking for the shortest
polynomial, but just for a polynomial that is smaller than one that is given to us. We will be reducing this
problem to the average-case problem.

Definition 4.3. In the approximate Incremental Shortest Polynomial Problem (IncSPPγ(I, g)), we are
given I and a g ∈ I such that ||g||f > γλ∞

1 (I) and are asked to return an h ∈ I such that ||h||f 6= 0 and
||h||f ≤ ||g||f/2.

We define the restricted version of IncSPP in the same was as the restricted version for SPP .

Lemma 4.4. There is a polynomial time reduction from f -SPPγ to f -IncSPPγ.

5 Collision resistant hash function families

In this section, we will define families of hash functions which are instances of generalized compact knapsacks
and prove that finding collisions in these hash functions is at least as hard as solving the approximate shortest
polynomial problem.

5.1 The hash function families

The hash function family H(R, D, m) we will be considering in this paper will be instances of generalized
knapsacks instantiated as follows. Let f ∈ Z[x] be an irreducible, monic polynomial of degree n with
expansion factor EF (f, 3) ≤ E . Such an upper bound for the expansion factor may be obtained using
theorems 3.3, 3.5, or 3.6. Let the ring R be Zp[x]/〈f〉 for some integer p, and let D = {g ∈ R : ||g||f ≤ d}
for some positive integer d. The family of functions H is mapping elements from Dm to R where |Dm| =
(2d + 1)nm and |R| = pn. So if m > log p

log 2d , then H will be a family of functions that have collisions. We will
only be interested in such families.

We will now state the main theorem.

Theorem 5.1. Let H be a hash function family as above with m > log p
log 2d and p > 2Edmn1.5 log n. Then, for

γ = 8E2dmn log2 n, there is a polynomial time reduction from f -SPPγ(I) for any I to CollisionH(h) where
h is chosen uniformly at random from H.

The proof of the theorem is given in the next subsection. To achieve the best approximation factor for
f -SPPγ(I), we can set m = Θ(log n, log E) and d = Θ(log n). This makes γ = Õ(n)E2. For purposes of being
able to compute the function faster, though, it is useful to have m be smaller than Θ(log n). It is possible to
make m constant at the expense of being able to approximate f -SPP only to a factor of γ = Õ(n1+δ)E2. To

be able to set m to a constant, we can set d = nδ for some δ > 0. Then we can set m = log (E)
δ log n + 2+δ

δ + o(1).
In order to get the “tightest” reduction, we should pick an f such that the bound E on f ’s expansion

factor is small. In theorem 3.3, we show that we can set E to be 3 and 6 for polynomials of the form xn + 1
and xn−1 + xn−2 + . . . + 1 respectively. The polynomial xn + 1 is irreducible whenever n is a power of 2 and
xn−1+xn−2+. . .+1 is irreducible for prime n, so those are good choices for f . Among other possible f ’s with
constant bounds for EF (f, 3) are polynomials of the form xn ± x ± 1 (see [16, Chapter 2.3.2] for sufficient
conditions for the irreducibility of polynomials of this form). So one has many choices for which f to use in
defining the hash function family and ending up with a “good” worst-case to average case connection.
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Some sample instantiations of the hash function. If we let f = x126 + . . .+x+1, n = 126, d = 8, m =
8, and p ≈ 223, then our hash function is mapping |2d|mn = 4032 bits to |Rp| = pn ≈ 2900 bits. If we want
to base our hardness assumption on lattices of higher dimension, we can instantiate f = x256+ . . .+x+1, n =
126, p ≈ 225, d = 8, m = 8, and our hash function will be mapping 8192 bits to pn ≈ 6400 bits. If we instead
let f = x256 +1, we can let p be half as small (because the expansion factor for xn +1 is half of the expansion
factor of xn + . . . + x + 1) and thus we will be mapping 8192 bits to around 6150 bits.

5.2 Finding collisions is hard

In this section, we will provide the proof of theorem 5.1. Let H be the family of hash functions described
in the last subsection with p > 2Edmn1.5 log n. We will show that if one can solve in polynomial time,
with non-negligible probability, the problem CollisionH(h) where h is chosen uniformly at random from H,
then one can also solve f -IncSPPγ(I, g) for any ideal I for γ = 8E2dmn log2 n. And since by lemma 4.4,
f -SPPγ(I) ≤ f -IncSPPγ(I, g), we will have a reduction from f -SPPγ(I) for any I to CollisionH(h) for a
random h. Let C be an oracle such that when given a uniformly random h ∈ H, C(h) returns a solution to
CollisionH(h) with non-negligible probability in polynomial time. Now we proceed with giving an algorithm
for f -IncSPPγ when given access to oracle C.

Given: I , g ∈ I such that g 6= 0 and ||g||f > 8E2dmn log2 nλ∞
1 (I)

Find: h ∈ I , such that h 6= 0 and ||h||f ≤ ||g||f/2.

Without loss of generality, assume that g has degree less than n and thus ||g||∞ = ||g||f . So we are
looking for an h such that ||h||f ≤ ||g||∞/2. In this section, it will be helpful to think of ideals I and 〈g〉 as
subgroups of Zn (or equivalently, as sublattices of Zn). Define a number s as

s =
||g||∞

8E√n log ndm
≥ E

√
n(log n)λ∞

1 (I) ≥
√

n(log n)λ∞
n (I) ≥ ηε(I)

for ε = (log n)−2 log n, where the last inequality follows by lemma 2.4, and the inequality before that is
due to lemma 4.2. By lemma 2.3, it follows that if y ∈ Rn where y ∼ ρs/sn, then ∆(y + I, U(Rn/I)) ≤
(log n)−2 log n/2. (That is, y is in an almost uniformly random coset of Rn/I). By our definition of s, we
have that ||g||∞ = 8Edms

√
n log n. Now we will try to create an h ∈ I which is smaller than g using the

procedure below. In the procedure, it may not be obvious how each step is performed, and the reader is
referred to lemma 5.2 for a detailed explanation of each step.
(1) for i = 1 to m

(2) generate a uniformly random coset of I/〈g〉 and let vi be a polynomial in that coset
(3) generate yi ∈ Rn such that yi has distribution ρs/sn and consider yi as a polynomial in R[x]
(4) let wi be the unique polynomial in R[x] of degree less than n with

coefficients in the range [0, p) such that p(vi + yi) ≡ gwi in Rn/〈pg〉
(5) ai = [wi] mod p (where [wi] means round each coefficient of wi to the nearest integer)

(6) call oracle C(a1, . . . , am), and using its output, find polynomials z1, . . . , zm such that ||zi||f ≤ 2d and∑
ziai ≡ 0 in the ring Zp[x]/〈f〉.

(7) output h =
∑ (

g(wi−[wi])
p − yi

)
zi.

To complete the proof, we will have to show five things: first, we have to prove that the above procedure
runs in polynomial time, this is done in lemma 5.2. Then, in lemma 5.3, we show that in step (6) we are
feeding the oracle C with an h ∈ H where the distribution of h is statistically close to uniform over H. In
lemma 5.4, we show that the resulting polynomial h is in the ideal I . We then show that if C outputted a
collision, then with non-negligible probability, ||h||f ≤ ||g||∞/2 and that h 6= 0. This is done in lemmas 5.5
and 5.6 respectively. These five things prove that with non-negligible probability, we will obtain a solution
to IncSPPγ . If we happen to fail, we can just repeat the procedure again. Since each run of the procedure
is independent, we will obtain a solution to IncSPPγ in polynomial time.
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Lemma 5.2. The above procedure runs in polynomial time.

Proof. We will show that each step in the algorithm takes polynomial time. In step (2), we need to generate a
random element of I/〈g〉. By lemma 3.2, the ideals I and 〈g〉 can be thought of as Z-modules of dimension n.
Since 〈g〉 ⊆ I , the group I/〈g〉 is finite. Thus by lemma 2.1, we can efficiently generate a random element of
I/〈g〉. Step (4) of the algorithm will be justified in lemma 5.3. In step (5), we are just rounding each coefficient
of wi to the nearest integer and then reducing modulo p. Now each ai can be thought of as an element of
Zp[x]/〈f〉, so in step (6) we can feed (a1, . . . , am) to the algorithm that solves CollisionH(a1, . . . , am). The
algorithm will return (α1, . . . , αm), (β1, . . . , βm) where αi, βi ∈ Z[x]/〈f〉 such that ||αi||f , ||βi||f ≤ d and∑

aiαi ≡
∑

aiβi in the ring Zp[x]/〈f〉. Thus if we set zi = αi − βi, we will have ||zi||f ≤ 2d and
∑

ziai ≡ 0
in the ring Zp[x]/〈f〉.

Lemma 5.3. Consider the polynomials ai as elements in Zn
p . Then,

∆((a1, . . . , am), U(Zn×m
p )) ≤ mε/2.

Proof. We know that vi is in a uniformly random coset of I/〈g〉 and let’s assume for now that yi is in a
uniformly random coset of Rn/I . This means that vi + yi is in a uniformly random coset of Rn/〈g〉 and
thus the distribution of p(vi + yi) is in a uniformly random coset of Rn/〈pg〉. A basis for the additive
group 〈pg〉 is pg, pgx, . . . , pgxn−1, thus every element of Rn/〈pg〉 has a unique representative of the form
α0pg + α1pgx + . . . + αn−1pgxn−1 = g(pα0 + pα1x + . . . + pαn−1x

n−1) for αi ∈ [0, 1). So step (4) of the
algorithm is justified, and since p(vi + yi) is in a uniformly random coset of Rn/〈pg〉, the coefficients of the
polynomial wi = pα0 + pα1x + . . . + pαn−1x

n−1 are uniform over the interval [0, p), and thus the coefficients
of [wi] are uniform over the integers modulo p. The caveat is that yi is not really in a uniformly random coset
of Rn/I , but is very close to it. By our choice of s, we have that ∆(ρs/sn + I, U(Rn/I)) ≤ ε/2, and since ai

is a function of yi, by equation 1 we have that ∆(ai, U(Zn
p )) ≤ ε/2. Since all the ai’s are independent, by

equation 2, we have that ∆((a1, . . . , am), U(Zn×m
p )) ≤ mε/2.

Lemma 5.4. h ∈ I

Proof. In step (4) of the algorithm, assume that p(vi + yi) + kigp = gwi for some ki ∈ Z[x]/〈f〉. Then,

h =

m∑

i=1

(
g(wi − [wi])

p
− yi

)
zi =

m∑

i=1

(vi + yi + gki − gai/p− yi)zi =

m∑

i=1

(vi + gki)zi −
g

∑
aizi

p

Since vi ∈ I and g ∈ I , we have that vi + gki ∈ I and therefore
∑

(vi + gki)zi ∈ I . Also, since
∑

aizi ≡
0(mod p), we have that � aizi

p ∈ Z[x], and since g ∈ I , we have that g � aizi

p ∈ I .

Lemma 5.5. With probability negligibly close to 1, ||h||f ≤ ||g||∞
2 .

Proof. We are interested in bounding ||h||f . To do this, we will first bound ||h||∞.

||h||∞ =

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
g(wi − [wi])

p
− yi

)
zi

∣∣∣∣∣

∣∣∣∣∣
∞

≤
m∑

i=1

∣∣∣∣
∣∣∣∣
(

g(wi − [wi])

p

)
zi

∣∣∣∣
∣∣∣∣
∞

+

m∑

i=1

||yizi||∞

We will first bound the term on the left.
∣∣∣∣
∣∣∣∣
(

g(wi − [wi])

p

)
zi

∣∣∣∣
∣∣∣∣
∞

≤ 1

p
||g(wi − [wi])||∞||zi||1
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Assume for a moment that the coefficients of wi are independently, uniformly distributed in the range [0, p).
Thus the coefficients of wi − [wi] are independently, uniformly distributed in the range [−1/2, 1/2]. We
also notice that wi is completely independent from g. Thus we can apply lemma E.2 and conclude that
||g(wi − [wi])||∞ ≤ ω(

√
n log n)||g||∞ with probability negligibly close to 1. The preceding is all based on the

assumption that the distribution of the coefficients of wi is uniform, and the coefficients are independent, but
in lemma 5.3, we showed that the distribution of the n coefficients of wi is statistically close to uniform over
[0, p)n. So, the preceding inequality still holds with probability negligibly close to 1. Thus, with probability
negligibly close to 1,

m∑

i=1

∣∣∣∣
∣∣∣∣
(

g(wi − [wi])

p

)
zi

∣∣∣∣
∣∣∣∣
∞

≤ ||g||∞n1.5ω(
√

log n)dm

p
<

||g||∞
4E

where the last inequality follows because of our choice of p.
Now we will bound

∑ ||yizi||∞. We will show

Pryi∼ρs/sn [||yizi||∞ > ||zi||∞s
√

n log n|(a1, . . . , am), (z1, . . . , zm)] = n−ω(1) (4)

for each i. First, we will make the following observation. For any fixed coset of Rn/I , call it y′
i + I , the

distribution of ai given yi is the same for all yi ∈ y′
i + I . Thus, given that yi ∈ y′

i + I , the distribution of yi is
independent of (a1, . . . , am) because ai is a randomized function of y′

i + I and aj 6=i is independent of yi. And
thus given that yi ∈ y′

i + I , the distribution of yi is also independent of (z1, . . . , zm) because (z1, . . . , zm) is
a (randomized) function of (a1, . . . , am). So we have

Pr[yi|yi ∈ y′
i + I ] =

ρs(yi)

ρs(y′
i + I)

=
ρs,−y′

i
(yi − y′

i)

ρs,−y′

i
(I)

and so the conditional distribution of (yi − y′
i) ∈ I is DI,s,−y′

i
. Thus, we have

Pryi∼ρs/sn [||yizi||∞ > ||zi||∞s
√

n log n|yi ∈ y′
i+I ] = Pr(yi−y′

i)∼DI,s,−y′

i

[||((yi−y′
i)−(−y′

i))zi||∞ ≥ ||zi||∞s
√

n log n]

and by lemma 2.7, we have

Pr(yi−y′

i)∼DI,s,−y′

i

[||((yi − y′
i) − (−y′

i))zi||∞ ≥ ||zi||∞s
√

n log n] = n−ω(1)

The bound on equation 4 follows by averaging over all possible y′
i + I . Summing for all i, we get

Pr

[
m∑

i=1

||yizi||∞ ≥ 2dms
√

n log n

]
= n−ω(1)

And since ||g||∞ = 8Edms
√

n log n, we get that with probability negligibly close to 1, ||h||∞ < ||g||∞
2E . And

since by observing how the polynomial h was constructed, we see that the degree of h is less than 3(n − 1),

we get that ||h||f ≤ EF (f, 3)||h||∞ ≤ ||g||∞
2 .

Lemma 5.6. Pr[h = 0|(a1, . . . , am), (z1, . . . , zm)] = Ω(1)

Proof. Since some zi has to be non-zero, assume without loss of generality that z1 is a non-zero polynomial.
Then h = 0 if and only if

y1z1 =
m∑

i=1

g(wi − [wi])zi

p
−

m∑

i=2

yizi

Notice that as in lemma 5.5, if we are given the coset of Rn/I that y1 belongs to (call it y′
1 + I), then y1 is

independent of all ai and zi and all yi>1. So we want to bound

Pry1∼ρs/sn

[
y1z1 =

m∑

i=1

g(wi − [wi])zi

p
−

m∑

i=2

yizi

∣∣∣∣y1 ∈ y′
1 + I

]
(5)
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and averaging over all y′
1 +I will give us the final result. Notice that if y1z1 = c, then for each given z1, there

is only one value that y1 can have. This is because the vectors z1, z1x, . . . , z1x
n−1 are linearly independent

(by lemma 3.2 since we assumed that z1 6= 0). Thus equation 5 is equivalent to

Pry1∼ρs/sn [y1|y1 ∈ y′
1 + I ] =

ρs(y1)

ρs(y′
1 + I)

=
ρs,−y′

i
(yi − y′

i)

ρs,−y′

i
(I)

which is the probability that x = y1 − y′
1 given that x ∼ DI,s,−y′

1
. By lemma 2.5, this probability is at most

99/100. Thus with probability Ω(1), h 6= 0.

6 Conclusions and open problems

We gave constructions of efficient collision resistant hash functions that can be proven secure based on the
conjectured worst case hardness of the shortest vector problem for ideal lattices, i.e., lattices that can be
represented as an ideal of Z[x]/〈f〉 for some monic, irreducible polynomial f . Moreover, our results can be
extended to certain polynomials f that are not irreducible, e.g., the polynomial f = xn − 1 corresponding
to the class of cyclic lattices previously considered in [11]. A number of questions are raised by our work.

One question is the hardness of I(f)-SV P , or equivalently, the hardness of f -SPP for different f ’s. It is
known that SV P is hard in the general case, and it was conjectured in [11] that I(xn − 1)-SV P is hard as
well. In our work we show worst case to average case reductions that work for many other f ’s, so in essence,
we are giving more “targets” that can be proved hard.

Since different choices of f lead to different hash function families, understanding the relationship between
the worst case complexity of f -SPPγ for different values of f is an important problem as well. We showed
a reduction from (xn − 1)-SPP2γ to (xn−1 + xn−2 + . . . + 1)-SPPγ , but we heavily relied on the fact that
xn−1 + xn−2 + . . . + 1 is a factor of xn − 1. It is an interesting open problem whether there is a reduction
between f -SPP and f ′-SPP when f and f ′ are irreducible, monic polynomials.

Determining the hardness of the SCP problem introduced in appendix B is also an interesting problem.
It’s conceivable that finding complex numbers with small conjugates is an easier problem than SPP . And
since we could only establish connections between f -SPP and f -SCP for certain f , it’s possible that f -SPP
could be easier for those f .

Very little is currently known about the complexity of problems for ideal lattices. We hope that our
constructions of efficient collision-resistant hash functions based on the worst case hardness of these problems
provides motivation for their further study.
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A Finding collisions in Zp[x]/〈xn − 1〉
In this subsection we show how to find collisions if the family of hash functions H is instantiated as in section
5 (which is the same as in [11]) with f = xn − 1. This answers an open problem posed in [11] as well as
illustrates a weakness of using an f that is not irreducible. The intuitive reason we can find collisions is
that the ring Zp[x]/〈f〉 has an ideal that is small and consists of elements with small norms. That ideal is
J = 〈xn−1 + xn−2 + . . . + 1〉+ 〈f〉. It’s not hard to see that |J | = p and that all elements of J have the form
α(xn−1 +xn−2 + . . .+1)+ 〈f〉 for integers 0 ≤ α ≤ p−1. So the idea for solving CollisionH(h) for a random
h ∈ H is to choose (y1, . . . , ym) 6= (z1, . . . , zm) such that yi, zi ∈ J and ||yi||f ≤ d, ||zi||f ≤ d. This would
force both h(y1, . . . , ym) and h(z1, . . . , zm) to be in J . There are 2d possibilities for each yi, thus there are a
total of (2d + 1)m possibilities for (y1, . . . , ym). Thus if (2d + 1)m ≥ p, then a collision is guaranteed to exist
and will take time on the order of p to find. But in order for h to be a hash function, we needed (2d + 1)nm

to be greater than pn, and thus (2d + 1)m > p, which is exactly the condition we need to find a collision in
J .
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B Other worst case problems

B.1 Cyclic lattices

A cyclic lattice of dimension n is isomorphic to an ideal I in the ring Z[x]/〈xn−1〉. We will show that finding
the approximate shortest polynomial in an ideal of the ring Z[x]/〈xn − 1〉 for prime n reduces to finding the
approximate shortest polynomial in an ideal of the ring Z[x]/〈Φ(n)〉 where Φ(n) = xn−1 + . . . + 1. (Since n
is prime, Φ(n) is irreducible.) This shows that if we can solve the approximate shortest polynomial problem
in ideals of the ring Z[x]/〈f〉 for monic, irreducible f , then we can solve the approximate shortest vector
problem in cyclic lattices of prime dimension.

First, we will recall a standard lemma about finding the basis for the additive group of an ideal. It states
that if I is an ideal of Z[x]/〈f〉, where f is a monic polynomial of degree n, then a basis for the lattice L(I)
can be found in polynomial time.

Lemma B.1. Let I be an ideal of Z[x]/〈f〉 where f ∈ Z[x] is a monic polynomial of degree n. Given the
generators for I, there is a polynomial time algorithm that finds a basis for L(I).

Proof. I is given to us as a set of generators g1, . . . , gm. Consider the set G = {g1, g1x, . . . , g1x
n−1, g2, g2x,

. . . , g2x
n−1, . . . , gm, gmx, . . . , gmxn−1} Every element of I can be written as an integer combination of the

elements of G. Thus I is a Z-module. By using the Hermite Normal Form algorithm [6, Chapter 2.4], we
can find the basis for I as an additive group.

Theorem B.2. There is a polynomial time reduction from the problem of approximating the shortest vector
in a cyclic lattice of dimension n within a factor of 2γ to approximating the shortest polynomial in an ideal
of the ring Z[x]/〈Φ(n)〉 within factor γ.

Proof. A cyclic lattice of dimension n is an ideal I of the ring Z[x]/〈xn − 1〉. Let v be the polynomial in I
of degree less than n with the smallest infinity norm. There are two cases that will be handled separately.
Case 1: Φ(n) 6 |v
In this case v is a polynomial in I in the ring Z[x]/〈Φ(n)〉 that does not equal 0 + 〈Φ(n)〉. Since v is of
degree at most n− 1 and Φ(n) is a degree n− 1 polynomial, ||v||Φ(n) ≤ 2||v||∞. So in this case, there exists
a polynomial in I which is not 0 modulo Φ(n) whose infinity norm is at most 2||v||∞, thus the algorithm for
approximating the shortest polynomial problem to within γ in the ring Z[x]/〈Φ(n)〉 should find a non-zero
polynomial of infinity norm at most 2γ||v||∞. And since every non-zero polynomial in Z[x]/〈Φ(n)〉 is also
non-zero in Z[x]/〈xn − 1〉, we are done.
Case 2: Φ(n)|v
In this case, we can just find v directly. Since v ∈ 〈Φ(n)〉 ∩ I , the only possibilities for v are polynomials
of the form cΦ(n) for some integer c. By lemma B.1, we can find the basis for 〈Φ(n)〉 ∩ I as an additive
group (Z-module). And since this module has dimension 1, its generator will be the shortest polynomial in
〈Φ(n)〉 ∩ I .

B.2 Algebraic number theory

In this subsection, we equate the problem of finding the shortest polynomial in an ideal to a certain problem
from algebraic number theory. The connection between algebraic number theory and the ring Z[x]/〈f〉 comes
from the following lemma.

Lemma B.3. If f ∈ Z[x] is monic and is the minimum polynomial of θ, then Z[x]/〈f〉 ∼= Z[θ].

Proof. Let the degree of f be n and assume α ∈ Z[θ] is represented as an integer combination of powers
of θ. That is, α = α0 + α1θ + . . . + αn−1θ

n−1. Then the function σ : Z[θ] → Z[x]/〈f〉 which maps α to
α0 + α1x + . . . + αn−1x

n−1 + 〈f〉 is an isomorphism. We will not prove this, but it is not hard to show using
basic algebraic number theory.

15



Definition B.4. Let θ be an algebraic integer of degree n. Then for any α ∈ Q(θ) where α = α0 + α1θ +
. . . + αn−1θ

n−1, define the function maxCoeffθ(α) to be max(|α0|, . . . , |αn−1|).
From lemma B.3, we can see that finding an element with the smallest norm in an ideal I of Z[x]/〈f〉

is equivalent to finding the element α in the ideal σ−1(I) of Z[θ] (where θ is a zero of f) such that
maxCoeffQ(θ)(α) is the smallest of all the α′ ∈ σ−1(I). This is not too interesting of a problem because
it is exactly SPP with the indeterminate x replaced by θ. A more interesting result is relating the norm of
elements in Z[x]/〈f〉 to the conjugates of elements in Z[θ].

Definition B.5. For any α ∈ C, define the function maxConj(α) to be max(|φ1|, . . . , |φn|) where φi are
the zeros of the minimum polynomial of α over Q.

Notice that maxCoeffθ(α) depends on the particular representation of α, while maxConj(α) does not.
Now we define the smallest conjugate problem.

Definition B.6. Let θ be an algebraic integer of degree n. Let K = Q(θ) be a number field, and let Z[θ] be
a subring of K. Let I be any ideal of Z[θ]. In the approximate Smallest Conjugate Problem SCPγ(I), we
are asked to find an element α ∈ I such that maxConj(α) ≤ γ · maxConj(α′) for all α′ ∈ I.

The problem of finding elements with small conjugates is somewhat related to the “Polynomial Reduction
Problem” in [6, Section 4.4.2] for which no polynomial time algorithm seems to be known.

As we did for SV P and SPP , we can consider the restriction of SCP to certain classes of ideals. Let f
be an irreducible integer polynomial. We will write f -SCP to mean the problem SCP restricted to ideals
of the ring Z[θ] where θ is a zero of f .

Now we will prove a theorem relating f -SCP to f -SPP when f = xn + xn−1 + . . . + 1. The key reason
that we are able to get such a relationship is that when θ is a zero of such an f , then for any α ∈ Q(θ),
maxConj(α) and maxCoeffθ(α) differ by at most a factor of n. This is proved by lemmas B.8,B.9, and
B.10. Lemmas B.8,B.9 give us the sufficient conditions under which there is such a close relationship, and
lemma B.10 shows that when the minimum polynomial of θ is xn + xn−1 + . . .+ 1, then those conditions are
satisfied.

Theorem B.7. Let f = xn + xn−1 + . . . + 1 be irreducible, and let σ : Z[θ] → Z[x]/〈f〉 be an isomorphism
as in lemma B.3. Then f -SPPγn2 ≤ f -SCPγ(σ−1(I)) and f -SCPγn2 ≤ f -SPPγ(I).

Proof. Let θ be a zero of f . First, we will show f -SCPγn2 ≤ f -SPPγ . Consider an ideal I of Z[θ] given
to us by its generators g1, . . . , gk represented as a linear combination of powers of θ. That is gi = gi,0 +
gi,1θ + . . . + gi,n−1θ

n−1. We use the oracle for f -SPPγ to find the element h ∈ σ(I) whose norm is less than
γλ∞

1 (σ(I)) and let α = σ−1(h). Thus maxCoeffθ(α) ≤ γ · maxCoeffθ(α
′) for all α′ ∈ I . And so applying

lemma B.10 twice, we get

maxConj(α) ≤ n · maxCoeffθ(α)

≤ nγ · maxCoeffθ(α
′) for all α′ ∈ I

≤ n2γ · maxConj(α′) for all α′ ∈ I

and so we have a γn2 approximation for SCP .
Now we show f -SPPγn2 ≤ f -SCPγ . Consider an ideal I of Z[x]/〈xn + xn−1 + . . . + 1〉 given to us by its
generators g1, . . . , gk. We use the oracle for f -SCPγ to find the element α ∈ σ−1(I) such that maxConj(α) ≤
γ · maxConj(α′) for all α′ ∈ σ−1(I). And by applying lemma B.10 twice, we get

maxCoeffθ(α) ≤ n · maxConj(α)

≤ nγ · maxConj(α′) for all α′ ∈ σ−1(I)

≤ n2γ · maxCoeffθ(α
′) for all α′ ∈ σ−1(I)

This means that the infinity norm of σ(α) is at most γn2λ∞
1 (I), and thus we have a γn2 approximation of

f -SPP .
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We mention that xn + xn−1 + . . . + 1 is not the only polynomial for which we can get the connection in
the above theorem. For example, similar connections can be shown for irreducible polynomials of the form
xn + β for β ∈ Z by applying lemma B.11 analogously to the way lemma B.10 was used in theorem B.7.
We think that it would be very interesting to explore this further and see whether techniques from algebraic
number theory can yield better algorithms for the shortest polynomial problem.

Lemma B.8. Let f ∈ Z[x] be a monic irreducible polynomial of degree n with zeros θ1, . . . , θn ∈ C such
that for all i, |θn−1

i | ≤ t. Let K = Q(θ1) and α = α0 + α1θ1 + . . . + αn−1θ
n−1
1 ∈ K. Then maxConj(α) ≤

nt · maxCoeffθ1
(α).

Proof. Let σ1, . . . , σn : K → C be the n distinct embeddings of K into C. Then the field polynomial of α

is fldα(x) =
n∏

i=1

(x − σi(α)). Since the field polynomial is a power of the minimum polynomial of α, the

set of zeros of the minimal polynomial of α is exactly the set {σi(α)}. Since σi(θ1) = θi, we have that
σi(α) = α0 + α1θi + . . . + αn−1θ

n−1
i . Since |θn−1

i | ≤ t, we have the claim in the lemma.

Lemma B.9. Let f ∈ Z[x] be a monic, irreducible polynomial of degree n with zeros θ1, . . . , θn ∈ C. Let
K = Q(θ1) be a number field. If there exists an integer m ≥ n such that for all 1 ≤ i ≤ n and j ≤ m− 1 we

have 1 ≤ |θj
i | ≤ t, and

∣∣∣∣
n∑

i=1

θm
i

∣∣∣∣ ≥ n and for all j 6= 0(mod m), we have

∣∣∣∣
n∑

i=1

θj
i

∣∣∣∣ ≤ s ≤ 1, then for all α ∈ K,

we have maxCoeffθ1
(α) ≤ nt

n(1−s)+smaxConj(α).

Proof. Let σ1, . . . , σn : K → C be the n distinct embeddings of K into C. Then the set of zeros of the
minimum polynomial of α is {σi(α)}. Let k = maxi(|σi(α)|). For each 0 ≤ j ≤ n − 1, we can set up
the following system of n inequalities: for 1 ≤ i ≤ n, |σi(α)θm−n+j

i | ≤ tk. The preceding is true because

|σi(α)| ≤ k and |θm−n+j
i | ≤ t. Now we take a closer look at the system of inequalities for a particular j. Let

α = α0 + α1θ1 + . . . + αn−1θ
n−1
1 .

|σ1(α)θm−n+j
1 | = |α0θ

m−n+j
1 + . . . + αn−jθ

m
1 + . . . + αn−1θ

m+j−1
1 | ≤ kt

|σ2(α)θm−n+j
2 | = |α0θ

m−n+j
2 + . . . + αn−jθ

m
2 + . . . + αn−1θ

m+j−1
2 | ≤ kt

. . . = . . .

|σn(α)θm−n+j
n | = |α0θ

m−n+j
n + . . . + αn−jθ

m
n + . . . + αn−1θ

m+j−1
n | ≤ kt

If we let A =
n∑

i=1

|αi| and Sj =
n∑

i=1

θm−n+j
i then

n|αn−j | − s(A − |αn−j |) =

n|αn−j | − s(|α0| + . . . + |αn−j−1| + |αn−j+1| + . . . + |αn−1|) ≤
|αn−jSn| − (|α0Sj | + . . . + |αn−j−1Sn−1| + |αn−j+1Sn+1| + . . . + |αn−1Sn−1+j |) ≤
|αn−jSn| − |α0Sj + . . . + αn−j−1Sn−1 + αn−j+1Sn+1 + . . . + αn−1Sn−1+j | ≤
|α0Sj + . . . + αn−j−1Sn−1 + αn−jSn + αn−j+1Sn+1 + . . . + αn−1Sn−1+j | ≤
|σ1(α)θm−n+j

1 | + . . . + |σn(α)θm−n+j
n | ≤ nkt

So for all αi, we have the inequality

|αi| ≤
nkt + sA

n + s

Setting B = nkt+sA
n+s , we get that A ≤ nB, and thus B ≤ nkt

n(1−s)+s and since |αi| ≤ B, we get the claim in

the lemma.

Lemma B.10. Let f = xn + xn−1 + . . . + 1 be an irreducible polynomial and θ ∈ C be one of its zeros.
Let K = Q(θ) and let α be an element of K. Then maxCoeffθ(α) ≤ n · maxConj(α) and maxConj(α) ≤
n · maxCoeffθ(α).
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Proof. To prove that maxConj(α) ≤ n · maxCoeffθ(α), we will apply lemma B.8. Since f is the cyclotomic
polynomial, all of its zeros have norm 1 and so we apply lemma B.8 with t = 1 and we obtain the desired
inequality.
To show that maxCoeffθ(α) ≤ n · maxConj(α), we will need to apply lemma B.9. In that lemma, we will
set t = 1 and m = n + 1. If θ is a zero of xn + xn−1 + . . . + 1, then θn+1 = (θn + . . . + 1)(θ − 1) + 1 = 1,

and so

∣∣∣∣
n∑

i=1

θm
i

∣∣∣∣ = n. Since f is a cyclotomic polynomial, it has a zero, call it θ1, such that θi = θi
1 for all

i. And since we already showed that θn+1
i = 1, we know that θj

i = θ
j mod (n+1)
i . Thus for all j such that

j mod (n + 1) 6= 0, we have

∣∣∣∣∣
n∑

i=1

θj
i

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

θ
j mod (n+1)
i

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

θ
i(j mod (n+1))
1

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

θi
j mod (n+1)

∣∣∣∣∣ = | − 1| = 1

Thus lemma B.9 applies with s = 1. And so we have maxCoeffθ(α) ≤ n · maxConj(α) as claimed.

Lemma B.11. Let f = xn + β ∈ Z[x] be an irreducible polynomial and θ ∈ C be one of its zeros. Let
K = Q(θ) and let α be an element of K. Then maxCoeffθ(α) ≤ |β| · maxConj(α) and maxConj(α) ≤
|β|n · maxCoeffθ(α).

Proof. Let θ1 = θ, θ2, . . . , θn be the zeros of f . To prove that maxConj(α) ≤ n|β| · maxCoeffθ(α), we will
apply lemma B.8. For any θi, we have |θi|n = |θn

i | = |β|. Therefore, |θn−1
i | = |θi|n−1 ≤ |β|, and we apply

lemma B.8 with t = |β|. To show that maxCoeffθ(α) ≤ |β| · maxConj(α), we will need to apply lemma
B.9. We will apply that lemma with t = |β|, s = 0, and m = n. We already showed that |θj

i | ≤ |β| for

0 ≤ j ≤ n − 1, and it’s easy to see that

∣∣∣∣
n∑

i=1

θn
i

∣∣∣∣ = |βn| ≥ n (because θn
i = −β). Now we will show that for

all j 6= 0(mod n),
n∑

i=1

θj
i = 0. (6)

First, assume that 1 ≤ j < n. Then equation 6 follows by applying Newton’s formulas for symmetric
polynomials [6, Proposition 4.3.3]. If j > n and j 6= 0(mod n), then there exists an integer k such that
1 ≤ j − kn ≤ n − 1 and we have

n∑

i=1

θj
i =

n∑

i=1

(θkn
i θj

i − kn) =

n∑

i=1

(θkn
i θj−kn

i ) = −β

n∑

i=1

θj−kn
i = 0

Thus lemma B.9 applies with t = |β|, s = 0, and m = n and we have the claimed result.
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C Bounding the expansion factor (Non-essential technical appen-
dix)

This appendix is dedicated to proving theorems 3.5 and 3.6. Before proving the theorems, we will prove two
auxiliary lemmas.

Proposition C.1. If f and g are polynomials in Z[x], then ||fg||∞ ≤ ||f ||1||g||∞.

Lemma C.2. If g is a polynomial in Z[x] and f is a monic polynomial in Z[x] such that deg(g) ≥ deg(f),
then ||g||f ≤ ||g||∞(2||f ||∞)deg(g)−deg(f)+1.

Proof. Suppose that g = g0 =
deg(g0)∑

i=0

αix
i where αi ∈ Z. Let g1 = g0 − fαdeg(g0). Since f is monic, we have

that deg(g1) < deg(g0) and ||g1||∞ ≤ ||g0||∞ + ||g0||∞||f ||∞ ≤ 2||g0||∞||f ||∞. If we continue in the same
fashion by constructing gi = gi−1 − fαdeg(gi−1), we see that the polynomial gdeg(g)−deg(f)+1 has degree less
than deg(f), and also since ||gi||∞ ≤ ||g||∞(2||f ||∞)i, we have the claim in the lemma.

Lemma C.3. If f ∈ Z[x] is a monic polynomial, then for every polynomial g ∈ Z[x] such that deg(g) ≥
deg(f), there exists a polynomial h such that deg(g− fh) < deg(f) and ||h||∞ ≤ ||g||∞(2||f ||1)d

deg(g)−deg(f)
gap(f) e.

Proof. For convenience, let k = deg(g),n = deg(f), and m = gap(f). Suppose that g = g0 =
k∑

i=0

αix
i where

αi ∈ Z. Let g1 = g0 − fh1 where h1 =
m−1∑
i=0

αk−ix
k−n−i. We see that since ||fh1||∞ ≤ ||f ||1||g0||∞, we have

||g1||∞ ≤ ||g0||∞ + ||f ||1||g0||∞ ≤ 2||f ||1||g0||∞. Because gap(f) = m, the coefficients of g0 and fh1 for the
terms xk, . . . , xk−m+1 match exactly, thus the subtraction of the two polynomials causes those higher power
terms to disappear. So now g1 is a polynomial whose degree is at most k − m and ||g1||∞ ≤ 2||f ||1||g0||∞.

We proceed in the same fashion (i.e. keep constructing gi = gi−1−fhi such that deg(gi) ≤ deg(gi−1)−m)
until we end up with a polynomial of degree less than n. It will take at most d(k − n)/me + 1 such
subtractions. Notice that the infinity norm of gi goes up by a factor of at most 2||f ||1 with every subtraction,
so ||gi||∞ ≤ ||g||∞(2||f ||1)i. Also notice that ||hi||∞ ≤ ||gi−1||∞. So at the end, we will get gd(k−n)/me+1 =
g − fh1 − fh2 − . . . − fhd(k−n)/me+1. Since none of the hi’s have any powers of x in common, the ||h1 +

. . . + hd(k−n)/me+1||∞ = max{||h1||∞, . . . , ||hd(k−n)/me+1||∞} ≤ ||g||∞(2||f ||1)d(k−n)/me.

Theorem C.4. If f is a monic polynomial in Z[x], then for all polynomials g ∈ Z[x], we have

||g||f ≤ minf ′∈Z[x]2||g||∞||f ||1||f ′||1 (2||ff ′||1)
�

deg(g)−deg(f)

gap(ff′) �
Proof. Consider the polynomial gf ′. By Lemma C.3, there exists a polynomial h such that deg(gf ′−hff ′) <
deg(ff ′) and

||h||∞ ≤ ||gf ′||∞(2||ff ′||1)
�

deg(gf′)−deg(ff′ )

gap(ff′) �
= ||gf ′||∞(2||ff ′||1)

�
deg(g)−deg(f)

gap(ff′) �
Now notice that the polynomial gf ′−hff ′

f ′
= g − hf has degree less than deg(f), and is congruent to g in the

ring Z[x]/〈f〉. Thus ||g||f = ||g − hf ||∞.

||g||f = ||g − hf ||∞
≤ ||g||∞ + ||f ||1||h||∞

≤ ||g||∞ + ||f ||1||gf ′||∞(2||ff ′||1)
�

deg(g)−deg(f)

gap(ff′) �
≤ 2||g||∞||f ||1||f ′||1(2||ff ′||1)

�
deg(g)−deg(f)

gap(ff′) �
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In some cases, it may be possible to give a tighter bound for ||g||f than the one given in the above
theorem. The below bound is useful if deg(f ′) and ||ff ′||1 are small constants and ||f ||1 is much bigger than
||f ||∞.

Theorem C.5. If f is a monic polynomial in Z[x], then for all polynomials g ∈ Z[x], we have

||g||f ≤ ||g||∞(2||ff ′||1)
�

deg(g)−deg(ff′ )
m � +1

(2||f ||∞)deg(f ′)

Proof. By Lemma C.3, there exists a polynomial h such that deg(g − hff ′) < deg(ff ′) and

||h||∞ ≤ ||g||∞(2||ff ′||1)
�

deg(g)−deg(ff′ )

deg(ff′) �
If we let r = g − hff ′, then

||r||∞ ≤ ||g||∞ + ||hff ′||∞
≤ ||g||∞ + ||h||∞||ff ′||1

≤ ||g||∞ + ||g||∞(2||ff ′||1)
�

deg(g)−deg(ff′ )

gap(ff′) � ||ff ′||1

≤ 2||g||∞(2||ff ′||1)
�

deg(g)−deg(ff′ )

gap(ff′) � ||ff ′||1

= ||g||∞(2||ff ′||1)
�

deg(g)−deg(ff′ )

gap(ff′) � +1

Since r ≡ g in Z[x]/〈f〉, we have ||g||f = ||r||f . By Lemma C.2,

||r||f ≤ ||r||∞(2||f ||∞)deg(r)−deg(f)+1

Since deg(r) ≤ deg(ff ′) − 1, we have that

||r||f ≤ ||r||∞(2||f ||∞)deg(f ′)

≤ ||g||∞(2||ff ′||1)
�

deg(g)−deg(ff′ )

gap(ff′) � +1
(2||f ||∞)deg(f ′)

We see that Theorem C.5 is tighter than Theorem C.4 whenever ||f ||1||f ′||1 > (2||f ||∞)deg(f ′)||ff ′||1. An
example of when this occurs is if f = xn−1 + xn−2 + . . . + 1 and f ′ = x − 1 and thus ff ′ = xn − 1. We see
that ||f ||1||f ′||1 = 2n while (2||f ||∞)deg(f ′)||ff ′||1 = 4. We also see that theorem 3.5 is a direct consequence
of theorem C.4, and theorem 3.6 is a direct consequence of theorem C.5.

D Proof of lemma 2.6 (Non-essential technical appendix)

In this appendix, we will provide a proof of lemma 2.6. In all that follows, let ρ be defined the same
way as in subsection 2.3, and let ρ̂ be the fourier transform of ρ. That is, for vectors x and y, ρ̂(y) =
∞∫

−∞

ρ(x)e−2πi〈x,y〉dx. Next, we state some general properties of the fourier transform. If h is defined by

h(x) = g(x + v) for some function g and vector v then

ĥ(w) = e2πi〈v,w〉ĝ(w). (7)

Another important fact is that the Gaussian is its own Fourier transform, i.e., ρ̂ = ρ. More generally, for
any s > 0 it holds that ρ̂s = snρ1/s. We use the following formulation of the Poisson summation formula.
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Lemma D.1. For any lattice Λ and any3 function f : Rn → C, f(Λ) = det(Λ∗)f̂(Λ∗) where f̂ denotes the
Fourier transform of f .

The below proposition is just the value of the mth moment of a standard normal gaussian. We do not
provide a proof for it, although it is easily proved by integrating by parts.

Proposition D.2. ∫ ∞

−∞

xme−πx2

dx =

{
m!

(m/2)!(4π)m/2 if m is even,

0 if m is odd.

In the next lemma, we state the closed form of the fourier transform of the mth moment of the standard
normal gaussian.

Lemma D.3. For all values of y and integers m ≥ 0, we have

∫ ∞

−∞

xme−πx2

e−2πixydx =


(−i)mm!

bm
2 c∑

j=0

(−1)jym−2j

j!(m − 2j)!(4π)j


 ρ̂(y)

(Note that when y = 0 and m is even, the term 00 will appear in the sum. But since when y = 0 proposition
D.2 applies, in order to make this lemma include proposition D.2, we’ll assume that 00 = 1.)

Proof. The proof is by induction. We will need to establish base cases for m = 0 and m = 1. For m = 0,
the equality clearly holds. For m = 1, we need to show that

∫ ∞

−∞

xe−πx2

e−2πixydx = −iyρ̂(y) (8)

It’s not difficult to show the above by integrating by parts.
Now we assume that the lemma is true for all values of y and all k < m + 2. We will prove that

∫ ∞

−∞

xk+2e−πx2

e−2πixydx =


(−i)k+2(k + 2)!

b k+2
2 c∑

j=0

(−1)jyk+2−2j

j!(k + 2 − 2j)!(4π)j


 ρ̂(y) (9)

Integrating the the above by parts and using the induction hypothesis, we get

∫ ∞

−∞

xk+2e−πx2

e−2πixydx =
k + 1

2π

∫ ∞

−∞

xke−πx2

e−2πixydx − iy

∫ ∞

−∞

xk+1e−πx2

e−2πixydx (10)

=
k + 1

2π


(−i)kk!

b k
2 c∑

j=0

(−1)jyk−2j

j!(k − 2j)!(4π)j


 ρ̂(y) − iy


(−i)k+1(k + 1)!

b k+1
2 c∑

j=0

(−1)jyk+1−2j

j!(k + 1 − 2j)!(4π)j


 ρ̂(y) (11)

= (−i)k+2(k + 2)!


 −1

2π(k + 2)

b k
2 c∑

j=0

(−1)jyk−2j

j!(k − 2j)!(4π)j
+

1

k + 2

b k+1
2 c∑

j=0

(−1)jyk+2−2j

j!(k + 1 − 2j)!(4π)j


 ρ̂(y) (12)

We will show that equation (12) is equivalent to the right side of equation (9) by showing that the coefficients
of like powers of y are equivalent. The (−i)k+2(k + 2)!ρ̂(y) part is the same in both equations, so we’ll be
ignoring it. Notice that to get the coefficient of the term yk+2−2l, we need to look at the coefficient of the
term we get for j = l − 1 in the first sum of equation (12) and for j = l in the second sum. Some special
cases occur when l = 0 or l = b k+2

2 c (then j = l− 1 and j = l may not exist as terms in both sums) but let’s

3For this formula to hold, f needs to satisfy certain niceness assumptions. These assumptions always hold in our applications.
See [8] for more details.
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first handle the general case first (i.e. the coefficient of yk+2−2l comes from both terms of equation (12)).
We need to show that

−1

2π(k + 2)
· (−1)l−1yk−2(l−1)

(k − 2(l − 1))!(l − 1)!(4π)l−1
+

1

k + 2
· (−1)lyk+2−2l

(k + 1 − 2l)!l!(4π)l
=

(−1)lyk−2l+2

(k + 2 − 2l)!l!(4π)l
(13)

The above equality is not too hard to show with a little algebra manipulation. Now we come to the special
cases. If l = 0, then the coefficient of yk+2−2l comes entirely from the second sum of equation (12). Plugging
in, we get

1

k + 2
· (−1)0yk+2−2·0

0!(k + 1 − 2 · 0)!(4π)0
=

yk+2

(k + 2)!

and thus the coefficients of the yk+2 term are the same in equations (12) and (9). Now we consider the case
when l = bk+2

2 c. Here, two subcases arise. The simple one is if k is odd. In this subcase, b k+2
2 c = bk+1

2 c, and
thus the coefficient of yk+2−2l comes from both sums of equation (12) and this case has been already handled
by equation (13). In the other subcase, b k+2

2 c 6= bk+1
2 c, and so k must be even, and thus l = k

2 + 1. In this
subcase, the coefficient of yk+2−2l = y0 comes from only the first sum of equation (12). That coefficient is
what we get when j = k

2 , and it’s

−1

2π(k + 2)
· (−1)

k
2

(k
2 )!(4π)

k
2

=
(−1)

k
2 +1

4π(k
2 + 1)(k

2 )!(4π)
k
2

=
(−1)

k
2 +1

(k
2 + 1)!(4π)

k
2 +1

which is exactly the term in equation (9) when j = k
2 + 1.

In the next two lemmas, we define the function gm(x) = (x1 − c1)
mρc(x) (where x1 and c1 are the first

coordinates of x and c respectively) and will bound the absolute value of its fourier transform. The reason
for doing this will become clear in lemma D.6

Lemma D.4. If gm(x) = (x1 − c1)
mρc(x), then

ĝm(y) =


(−i)mm!

bm
2 c∑

j=0

(−1)jym−2j
1

j!(m − 2j)!(4π)j


 ρ̂c(y)

(The same caveat applies here as in Lemma D.3, i.e. if y1 = 0 and m is even, then 00 will appear in the
sum. And again for notational convenience, let 00 = 1 in this case.)

Proof. Define the function
fm(x) = gm(x + c) = xm

1 ρc(x + c) = xm
1 ρ(x)

This means that the fourier transform of gm(x) is

ĝm(y) = f̂m(y)e−2πi〈c,y〉 (14)

Define x′ to be the vector x with the first coordinate removed, and similarly let y′ be the vector y with
the first coordinate removed So,

fm(x) = xm
1 ρ(x) = xm

1 ρ(x1)ρ(x′) (15)

and

f̂m(y) =

(∫ ∞

−∞

xm
1 e−πx2

1e−2πix1y1dx1

)
ρ̂(y′) (16)

=


(−i)mm!

b m
2 c∑

j=0

(−1)jym−2j
1

j!(m − 2j)!(4π)j


 ρ̂(y1)ρ̂(y′) (17)

=


(−i)mm!

b m
2 c∑

j=0

(−1)jym−2j
1

j!(m − 2j)!(4π)j


 ρ̂(y) (18)
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where the second equality follows from lemma D.3. And since

ρ̂c(y) = ρ̂(y)e−2πi〈c,y〉

we combine equations (14) and (18) to obtain the claim in the lemma.

Lemma D.5.

|ĝm(y)| ≤





m!
(m/2)!(4π)m/2 if m is even and y = 0,

0 if m is odd and y = 0,

m2mρ2(y) in all other cases.

Proof. Since |ρ̂c(y)| = ρ(y), we have by lemma D.4,

|ĝm(y)| =

∣∣∣∣∣∣
(−i)mm!

b m
2 c∑

j=0

(−1)jym−2j
1

j!(m − 2j)!(4π)j

∣∣∣∣∣∣
ρ(y) (19)

Now we will quickly dispatch of the case where y = 0. In this case ρ(y) = 1 and all the terms in the sum in

equation (19) will cancel out except possibly y
m−2bm

2 c
1 (because remember that we assumed that 00 = 1). If

m is odd, then the exponent will not be 0, thus the sum will be 0, and if m is even, then the exponent will
be 0. Thus, the sum will have the value of the term when j = m

2 , which is what is claimed in the lemma.
Now we will handle an easy subcase of the “all other cases.” The subcase is when y 6= 0 but y1 = 0. In this
subcase, the sum in equation (19) is equal to 0 when m is odd and is equal to m!

(m/2)!(4π)m/2 when m is even.

Either way, the product of this sum with ρ(y) is less than m2mρ2(y). Now we will handle all the remaining
cases (i.e. when y1 6= 0).

|ĝm(y)| =

∣∣∣∣∣∣
(−i)mm!

b m
2 c∑

j=0

(−1)jym−2j
1

j!(m − 2j)!(4π)j

∣∣∣∣∣∣
ρ(y) (20)

≤ m!

bm
2 c∑

j=0

∣∣∣∣∣
(−1)jym−2j

1

j!(m − 2j)!(4π)j

∣∣∣∣∣ ρ(y) (21)

Note that if |y1| ≤ 1, then
∣∣∣ (−1)jym−2j

1

j!(m−2j)!(4π)j

∣∣∣ ≤ 1 and thus equation (21) is at most (bm
2 c + 1)m!ρ(y) which is

less than m2mρ2(y). So let’s now assume that |y1| ≥ 1. Then we have

|ĝm(y)| ≤ m!

b m
2 c∑

j=0

∣∣∣∣∣
(−1)jym−2j

1

j!(m − 2j)!(4π)j

∣∣∣∣∣ ρ(y)

≤
(m

2
+ 1

)
m!ym

1 ρ(y)

=
(m

2
+ 1

)
m!m2m/3 ym

1

m2m/3
ρ(y1)ρ(y′)

≤ m2m ym
1

m2m/3
ρ(y1)ρ2(y

′)

where we recall that y′ is defined as the vector y with the first component removed. So all that is left to
complete the proof of the lemma is to show that

ym
1

m2m/3
ρ(y1) ≤ ρ2(y1) (22)

Consider the case where y1 ≤ m2/3. Then equation (22) is clearly true. In the case where y1 > m2/3, we
need to show that

ym
1 e−πy2

1 ≤ e−π(
y1
2 )2
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or equivalently that

m log y1 ≤ 3

4
πy2

1

Since y1 > m2/3, we have
3

4
πy2

1 =
3

4
πy

1
2
1 y

3
2
1 >

3

4
πy

1
2
1 m > m log y1

This proves equation (22) and thus the lemma.

The next lemma is a generalization and closely follows the outline of lemma 4.2 of [14]. The main
difference is the technique for bounding the function ĝm, which was done in lemmas D.4 and D.5.

Lemma D.6. For any n-dimensional lattice Λ, point c ∈ Rn, unit vector u, positive real s > 2ηε(Λ), and
all positive integers m,

∣∣Expx∼DΛ,s,c [〈x− c,u〉m]
∣∣ ≤





sm

(
m!

(m/2)!(4π)m/2
+m2mε

1−ε

)
if m is even

sm
(

m2mε
1−ε

)
if m is odd

Proof. For any positive real s > 0, define Λ′ = Λ/s, c′ = c/s. Notice that, for any x,

Pr{DΛ,s,c = sx} =
ρs,c(sx)

ρs,c(Λ)
=

ρc′(x)

ρc′(Λ′)
= Pr{DΛ′,c′ = x},

i.e., the distribution DΛ,s,c is equal to DΛ′,c′ scaled by a factor of s. Therefore, it is enough to prove the
lemma for s = 1. The general case follows by scaling the lattice by a factor s.

In the rest of the proof, we assume s = 1. We want to estimate the quantity Expx∼DΛ,c
[〈x − c,u〉m].

Without loss of generality, assume that u is the vector (1, 0, . . . , 0) We will show the lemma true for s = 1
and the general case will follow by scaling the lattice by a factor s.

Notice that

Exp
x∼DΛ,c

[〈x − c,u〉m] = Exp
x∼DΛ,c

[(x1 − c1)
m] =

gj(Λ)

ρc(Λ)
.

Applying Poisson’s summation formula (Lemma D.1) to the numerator and denominator, the above fraction
can be rewritten as

Exp
x∼DΛ,c

[〈x − c,u〉m] =
det(Λ∗) · ĝm(Λ∗)

det(Λ∗) · ρ̂c(Λ∗)
=

ĝm(Λ∗)

ρ̂c(Λ∗)
. (23)

The Fourier transform ρ̂c is easily computed using Equation 7: ρ̂c(y) = ρ(y)e−2πi〈y,c〉. In particular,
ρ̂c(0) = 1, |ρ̂c(y)| = ρ(y), and

|ρ̂c(Λ
∗)| =

∣∣∣∣∣∣
1 +

∑

y∈Λ∗\{0}

ρ̂c(y)

∣∣∣∣∣∣
≥ 1 − ρ(Λ∗ \ {0}). (24)

Thus, we get the equation

Expx∼DΛ,s,c [〈x − c,u〉m] =
ĝm(Λ∗)

ρ̂c(Λ∗)
≤ ĝm(Λ∗)

1 − ε
=

∑
y∈Λ∗

ĝm(y)

1 − ε
=

ĝm(0) +
∑

y∈Λ∗\{0}

ĝm(y)

1 − ε
(25)

Now we apply lemma D.5 to get

∣∣Expx∼DΛ,s,c [〈x − c,u〉m]
∣∣ ≤

|ĝm(0)| +
∑

y∈Λ∗\{0}

m2mρ2(y)

1 − ε
=

|ĝm(0)| + m2mρ2(Λ
∗ \ {0})

1 − ε

which gives us the claim in the lemma.
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The below lemma is a restatement and proof of lemma 2.6

Lemma D.7. For any n-dimensional lattice Λ, point c ∈ Rn, unit vector u, positive real s > 2ηε(Λ) where
ε < (log n)−2 log n,

Prx∼DΛ,s,c [|〈x − c,u〉| ≥ s logn] = n−ω(1)

Proof. For simplicity, assume that blog nc is an even integer. Then by lemma D.6 we have

∣∣∣Expx∼DΛ,s,c

[
〈x − c,u〉blog nc

]∣∣∣ ≤ sblog nc




(log n)!

((log n)/2)!(4π)(log n)/2 + (log n)2 log nε

1 − ε


 ≤ 2sblog nc(log n)

log n
2

(26)
Using the above equation, we obtain

Prx∼DΛ,s,c [|〈x − c,u〉| ≥ s log n] = Prx∼DΛ,s,c

[
〈x − c,u〉blog nc ≥ (s log n)blog nc

]

≤
∣∣Expx∼DΛ,s,c

[
〈x − c,u〉blog nc

]∣∣
(s log n)blog nc

≤ 2sblog nc(log n)
log n

2

(s log n)blog nc

≤ n
− log log n

3 = n−ω(1)

where the first inequality follows by Markov’s inequality.

E Random polynomial lemma (Non-essential technical appendix)

Proposition E.1 (Hoeffding Bound). Let X1, . . . , Xn be independent random variables with mean µ taking
values in the real interval [a, b] and let X = X1 + . . . + Xn. Then for any k, we have

Pr[|X − µn| ≥ k] ≤ 2e
−2k2

n(b−a)2

Lemma E.2. Let g be any polynomial of degree n. Let r be a polynomial of degree n where every coefficient
of r is independently distributed in the range [−a, a] with mean 0. Then

Pr[||gr||∞ ≥ ω(
√

n log n)||g||∞2a] ≤ 4ne−ω(log n)

Proof. Since every coefficient of r is an independent random variable in the range [−a, a] with mean 0,
every coefficient of gr is a sum of at most n independent variables in the range [−a||g||∞, a||g||∞]. Applying
proposition E.1, we get that the probability that the absolute value of any particular coefficient of gr is greater
than ω(

√
n logn)||g||∞2a is less than 2e−ω(log n). By applying the union bound over all the coefficients of

gr, we get the claim in the lemma.
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