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Abstract

We study the identity testing problem for depth 3 arithmetic circuits (ΣΠΣ circuit). We
give the first deterministic polynomial time identity test for ΣΠΣ circuits with bounded top
fanin. We also show that the rank of a minimal and simple ΣΠΣ circuit with bounded top
fanin, computing zero, can be unbounded. These results answer the open questions posed
by Klivans-Spielman [KS01] and Dvir-Shpilka [DS05].

1 Introduction

Polynomial Identity Testing (PIT) is the following problem: given an arithmetic circuit C com-
puting a polynomial p(x1, x2, · · · , xn) over a field F, determine if the polynomial is identically
zero. Besides being an interesting problem in itself, many other well-known problems such as
Primality Testing and Bipartite Matching also reduce to PIT. Moreover fundamental structural
results in complexity theory such as IP=PSPACE and the PCP theorem involve the use of
identity testing.

The first randomized algorithm for identity testing was discovered independently by Schwartz
[Sch80] and Zippel [Zip79] and it involves evaluating the polynomial at a random point and
accepting if and only if the polynomial evaluates to zero at that point. This was followed by
randomized algorithms that used fewer random bits [CK97, LV98, AB03] and a derandomization
of the polynomial involved in primality testing [AKS04] but a complete derandomization remains
distant.

Recently, a surprising development was by Impaggliazzo and Kabanets [IK03] who showed
that efficient deterministic algorithms for identity testing would also imply strong arithmetic
circuit lower bounds. More specifically, they showed that if identity testing has an efficient
deterministic polynomial time algorithm then NEXP does not have polynomial size arithmetic

circuits. This result gave further impetus to research on this problem and subsequently algo-
rithms were developed for some restricted models of arithmetic circuits.

Raz and Shpilka [RS04] gave a deterministic polynomial time algorithm for non-commutative
formulas. Klivans and Spielman [KS01] noted that even for depth 3 circuits where the fanin
of the topmost gate was bounded, deterministic identity testing was an open problem. Subse-
quently, Dvir and Shpilka [DS05] gave a deterministic quasipolynomial time algorithm for depth
3 arithmetic circuits (ΣΠΣ circuits) where the fanin of the topmost gate is bounded (note that
if the topmost gate is a Π gate than the polynomial is zero if and only if one of the factors is
zero and the problem is then easily solved). In this paper, we resolve this problem and give a
deterministic polynomial time algorithm for the identity testing of such ΣΠΣ circuits. Our main
theorem is:
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Theorem 1.1. There exists a deterministic algorithm that on input a circuit C of depth 3 and

degree d over a field F, determines if the polynomial computed by the circuit is identically zero

in time poly(n, dk), where k is the fanin of the topmost addition gate and n is the number of

inputs. In particular if k is bounded, then we get a deterministic polynomial time algorithm for

identity testing of depth 3 circuits.

Dvir and Shpilka [DS05] gave a structural result for ΣΠΣ circuits C with bounded top fanin
that compute zero. Let rank(C) be the rank of the linear functions that appear in C. Then
they showed that such simple and minimal C can have rank atmost polylog(d). They also asked
whether the upper bound of rank can be improved to O(k). We answer this in the negative by
giving an identity in k = 3 having rank O(log(d)).

Section 2 gives an overview of ΣΠΣ circuits and section 3 describes the identity test for ΣΠΣ
circuits of bounded top fanin.

2 ΣΠΣ Arithmetic Circuits

Proving lower bounds for general arithmetic circuits is one of the central problems of complexity
theory. Due to the difficulty of the problem research has focused on restricted models like
monotone circuits and bounded depth circuits. For monotone arithmetic circuits, exponential
lower bounds on the size [SS77, JS80] and linear lower bounds on the depth [SS80, TT94] have
been shown. However, only weak lower bounds are known for bounded depth arithmetic circuits
[Pud94, RS01]. Thus, a more restricted model was considered – the model of depth 3 arithmetic
circuits (also called ΣΠΣ circuits if we assume alternate addition and multipication gates with
addition gate at the top). A ΣΠΣ circuit computes a polynomial of the form:

C(x) =
k

∑

i=1

di
∏

j=1

Lij(x) (1)

where Lij ’s are homogeneous linear functions (or linear forms). Exponential lower bounds on
the size of ΣΠΣ arithmetic circuits has been shown over finite fields [GK98]. For general ΣΠΣ
circuits over infinite fields only the quadratic lower bound of [SW99] is known.

No efficient algorithm for identity testing of ΣΠΣ circuits is known. Here we are interested
in studying the identity testing problem for a restricted case of ΣΠΣ circuits – when the top
fanin is bounded. This case was posed as a challenge by Klivans and Spielman [KS01] and a
quasipolynomial time algorithm was given by Dvir and Shpilka [DS05].

2.1 Previous Approaches

Let C be a ΣΠΣ circuit, as in equation (1), computing the zero polynomial. We will call C
to be minimal if no proper subset of the multiplication gates of C sums to zero. We say that
C is simple if there is no linear function that appears in all the multiplication gates (up to a
multiplicative constant). Rank of C is the rank of the linear forms appearing in C.

The quasipolynomial time algorithm of [DS05] is based on the result – rank of a minimal
and simple ΣΠΣ circuit with bounded top fanin and computing zero is “small”. Formally, the
result says:

Theorem 2.1. (thm 1.4 of [DS05]). Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal

ΣΠΣ circuit of degree d with k multiplication gates and n inputs, then rank(C) ≤ 2O(k2) log(d)k−2.

Effectively, this means that if we have such a circuit C and k is a constant then we can
check whether it is zero or not in time O(drank(C)) = 2O(log(d)k−1). This gave hope of finding a
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polynomial time algorithm if we can improve the upper bound on the rank(C) to a constant (i.e.
independent of d). Infact, [DS05] conjectured that rank(C) = O(k). Here we give an identity
that contradicts this conjecture. Thus, methods of [DS05] are unlikely to give an efficient al-
gorithm and we give new techniques in section 3 that solve the problem. Before describing the
“large” rank identity we set the following notation:

x1, . . . , xm are the input variables. For i ∈ [m], define

Si = {xj1 + xj2 + . . . + xji
| 1 ≤ j1 < . . . < ji ≤ m}

Theorem 2.2. Over F2,

C(x1, . . . , xm, y) :=
∏

odd i∈[m]

∏

t∈Si

t + y ·
∏

even i∈[m]

∏

t∈Si

(y + t) +
∏

odd i∈[m]

∏

t∈Si

(y + t) = 0

Thus, this is a simple and minimal ΣΠΣ zero circuit of degree d = 2m−1 with k = 3 multiplication

gates and having “unbounded” rank i.e. rank(C) = log(d) + 2.

Proof. For brevity denote the output of the three multiplication gates by T1, T2, T3 in order.
Choose an odd i ∈ [m] and a t ∈ Si. Let t = xj1 + . . . + xji

. Consider C modulo t. Clearly,
T1 = 0 (mod xj1 + . . . + xji

). Pick a factor of T2: (y + xl1 + xl2 + . . . + xli′
), where i′ is even.

Define a set U as follows:

U := ({l1, . . . , li′} \ {j1, . . . , ji}) ∪ ({j1, . . . , ji} \ {l1, . . . , li′})

Note that
(y + xl1 + xl2 + . . . + xli′

) = (y +
∑

u∈U

xu) (mod t)

Since #U is odd we have that (y +
∑

u∈U xu) divides T3. This shows that every term of T2

divides T3 modulo t and vice versa (by a similar proof). Thus,

for every linear form t|T1, T2 ≡ T3 (mod t)

Also notice that T1 ≡ T3 (mod y). Combining all these observations we get:

T1 + T2 + T3 ≡ 0 (mod T1 · y)

Since deg(T1 · y)> d we get C = T1 + T2 + T3 = 0 over F2. It is easy to see that C is also simple
and minimal, and has degree 2m−1.

2.2 Overview of Our Algorithm

In this section we give an overview of our algorithm. The input is a circuit C computing a
polynomial in F[x1, x2, · · · , xn]. Let

C = T1 + T2 + · · · + Tk

where each Ti is a product of linear forms

Ti = Li1Li2 · · ·Lid

and where each lij is a linear form:

Lij = aij1x1 + aij2x2 + · · · + aijnxn , aij1, aij2, · · · , aijn ∈ F
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The case k = 2:

In this case we need to verify if
T1 = −T2

But now the ring F[x1, x2, · · · , xn] is a unique factorization domain and linear forms are irre-
ducible elements in F[x1, x2, · · · , xn] and therefore the two polynomials are equal if and only if
there is a one-one correspondence between the linear forms on the lhs and the linear forms on
the rhs and the coefficient of any one monomial occuring on the lhs equals the coefficient of that
monomial on the rhs. This can easily be checked in deterministic polynomial time. This solves
the case k = 2.

The case k = 3:

By discarding the linear forms common to all the terms we can assume that T1, T2 and T3 are
coprime. Let

L
def
= {Lij |1 ≤ i ≤ 3, 1 ≤ j ≤ d}

be the set of all distinct (upto constant multiples) linear forms occuring in the terms T1, T2 and
T3. We accept if and only if

∀l ∈ L, C = 0 (mod l)

Note that the ring F[x1, · · · , xn]/(l) is isomorphic to the polynomial ring in n− 1 variables over
F and hence is also a unique factorization domain. Moreover, assuming wlog that l occurs in T1

we have
C = T2 + T3 (mod l)

Thus verification of C = 0 (mod l) boils down to the case k = 2. Now

∀l ∈ L, C = 0 (mod l)

⇒ C = 0 (mod
∏

l∈L

l)

⇒ C = 0 (mod Radical(T1T2T3))

By the ABC theorem for polynomials [Sto81, Mas84] we deduce that deg(Radical(T1, T2, T3)) >
d and thereby we can deduce that C = 0 as an element of F[x1, x2, · · · , xn]. This gives a
deterministic polynomial time algorithm for k = 3.

Unfortunately, the ABC theorem for polynomials does not extend in the desired way to
sums of more than 3 terms (see [Pal93]). In order to get an algorithm for larger values of k we
generalize the above approach and go modulo products of linear forms.

3 The Algorithm

In this section we give a deterministic polynomial time algorithm that tests whether a given
ΣΠΣ arithmetic circuit of bounded top fanin computes the zero polynomial. The basic idea is
the same as used in the proof of theorem 2.2 – look at the values of C modulo product of linear
forms. Here, the polynomials that we get will be over some local ring R ⊃ F instead of being
over F but we can show that some of the “nice” properties of F[z1, . . . , zn] continue to hold in
R[z1, . . . , zn]. Specifically, we need that:

1) if coprime f(z1, . . . , zn), g(z1, . . . , zn) | p(z1, . . . , zn) then f · g | p in R.

2) if the total degree of f(z1, . . . , zn) is more than that of p(z1, . . . , zn) then
f(z1, . . . , zn)|p(z1, . . . , zn) ⇒ p(z1, . . . , zn) = 0 in R.
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3.1 Preliminaries

Local rings

In this article we shall be working with some special kinds of rings known as local rings. For the
sake of completeness we define local rings and mention their elementary properties. We refer
the interested reader to [McD74] for further properties of such rings.

Definition 3.1. A commutative ring R is said to be a local ring if every non-unit element r ∈ R
is nilpotent, i.e. there exists an integer t ≥ 1 such that rt = 0.

Indeed we shall be considering rings R which are finite dimensional commutative algebras
over some field F. In that case, a local ring R has a unique maximal ideal M consisting of all the
nilpotent elements. Moreover every element r ∈ R can be uniquely written as r = α + m, α ∈
F and m ∈ M. This implies that there is a unique ring homomorphism φ : R → F such that
φ(α +m) = α. Further, if the dimension of R over F is d then there is an integer 0 ≤ t < d such
that the product of any t (not necessarily distinct) elements of M is zero in R.

Properties of multivariate polynomials over local rings.

Throughout this section we will assume that R is a local ring over a field F and the unique
ring homomorphism from R to F is φ. The map φ can be extended in the natural way to a
homomorphism from R[z1, z2, · · · , zn] to F[z1, z2, · · · , zn]. The unique maximal ideal of R is
M and t is the least integer such that Mt = 0 in R. We want to show that (multivariate)
polynomials over local rings have some properties analogous to polynomials over fields.

Lemma 3.2. Let R be a local ring and p, f, g ∈ R[z1, z2, · · · zn] be multivariate polynomials such

that φ(f) and φ(g) are coprime. Moreover,

p ≡ 0 (mod f)

p ≡ 0 (mod g)

Then p ≡ 0 (mod fg)

Proof. Let the (total) degrees of φ(f) and φ(g) be df and dg respectively. Then by applying a
suitable invertible linear transformation on the variables z1, z2, · · · , zn if needed, we can assume

without loss of generality that the coefficients of z
df
n in f and that of z

dg
n in g are both units of

R. Consequently, in the product fg the coefficient of z
df+dg
n is also a unit.

Now think of f and g as polynomials in one variable zn with coefficients coming from the
ring of fractions – R(z1, z2, · · · , zn−1) – of R[z1, z2, · · · , zn−1]. Now since φ(f) and φ(g) are
coprime over F, they are also coprime as univariate polynomials in zn over the function field
F(z1, z2, · · · , zn−1). Consequently, there exists a, b ∈ F(z1, z2, · · · , zn−1) such that:

aφ(f) + bφ(g) = 1 over F(z1, z2, · · · , zn−1).

That is aφ(f)+ bφ(g) = 1 in (R/M)(z1, z2, · · · , zn−1). By the well known Hensel Lifting lemma
we get that there exist a∗, b∗ ∈ R(z1, z2, · · · , zn−1) such that

a∗f + b∗g = 1 over (R/Mt)(z1, z2, · · · , zn−1) which is R(z1, z2, · · · , zn−1).
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Now by the assumption of the lemma:

p ≡ 0 (mod f)

⇒ p = fq for some q in R[z1, z2, · · · , zn−1][zn]

also, p ≡ 0 (mod g)

⇒ fq ≡ 0 (mod g)

⇒ a∗fq ≡ 0 (mod g) in R(z1, z2, · · · , zn−1)[zn]

⇒ q ≡ 0 (mod g) in R(z1, z2, · · · , zn−1)[zn]

∴ p = fgh for some h in R(z1, z2, · · · , zn−1)[zn]

Since, the leading coefficient of zn in fg is in R∗ and p is in R[z1, z2, · · · , zn−1][zn], therefore
by Gauss Lemma we get that in fact h ∈ R[z1, z2, · · · , zn−1][zn] and so

p ≡ 0 (mod fg) in R[z1, z2, · · · , zn]

Lemma 3.3. Suppose that p, f ∈ R[z1, z2, · · · , zn] and p has total degree d. Moreover f has

total degree d′ > d and contains at least one monomial of degree d′ whose coefficient is a unit in

R. Then, p ≡ 0 (mod f) ⇒ p = 0 in R[z1, z2, · · · , zn].

Proof. Since p ≡ 0 (mod f) we have

p = fg for some g ∈ R[z1, z2, · · · , zn].

By applying a suitable linear transformation of the variables z1, z2, · · · , zn, if needed, we can
assume that the coefficient of zd′

n in f is a unit of R. Now view p, f, g as univariate polynomials
in zn over the ring R[z1, z2, · · · , zn−1] and let the degree of g with respect to zn be t. Then the
coefficient of zd′+t

n on the rhs is non-zero whereas all the terms on the lhs have degree at most
d < d′ + t, a contradiction.

3.2 Description of the Identity Test

Let the given circuit over field F be:

C(x1, . . . , xn) = T1 + T2 + · · · + Tk

where, for all i ∈ [k], Ti =
∏d

j=1 Lij . Further, Lij =
∑n

k=1 aijkxk where aijk ∈ F.
In this section we will say that polynomials a, b, c, d ∈ F[z1, . . . , zn] satisfy a ≡ b (mod c, d)

iff
(a(z1, . . . , zn) − b(z1, . . . , zn)) ∈ F[z1, . . . , zn]/(c(z1, . . . , zn), d(z1, . . . , zn)).

Input: The two inputs to the algorithm are:

• 〈T1, . . . , Tk〉, where k ≥ 1 and Ti’s are products of linear forms in F[x1, . . . , xn] and have
total degree d.

• 〈l11 · · · l1e1
, . . . , lm1 · · · lmem〉, where m ≥ 0, e1, . . . , em ∈ [d] and lij ’s are linear forms in

F[x1, . . . , xn] such that:
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l11 = . . . = l1e1
= x1

l21 = . . . = l2e2
= x2 (mod x1)

l31 = . . . = l3e3
= x3 (mod x1, x2)

...
...

lm1 = . . . = lmem = xm (mod x1, x2, . . . , xm−1)

Output: The output of the algorithm, ID(〈T1, . . . , Tk〉 , 〈l11 · · · l1e1
, . . . , lm1 · · · lmem〉), is

YES iff
T1 + · · · + Tk = 0 (mod l11 · · · l1e1

, . . . , lm1 · · · lmem).

ID( 〈T1, . . . , Tk〉 , 〈l11 · · · l1e1
, . . . , lm1 · · · lmem〉) ):

Step 1: (Defining a local ring) Let us define a local ring R as:

R
def
= F[x1, . . . , xm]/I, where I = (l11 · · · l1e1

, . . . , lm1 · · · lmem) .

Thus, each Ti can be viewed as a polynomial in R[xm+1, . . . , xn] and we want to check
whether

T1 + · · · + Tk = 0 in R.

We will say that two polynomials a(x1, . . . , an), b(x1, . . . , xn) ∈ F[x1, . . . , xn] are coprime

over R if a(x1, . . . , an)(mod x1, . . . , xm), b(x1, . . . , xn)(mod x1, . . . , xm) are coprime in the
standard sense over F.

Step 2: (Base case of one multiplication gate) If k = 1 then we need to check whether

T1 = 0 (mod I).

Let f(x1, . . . , xm) be the product of those linear factors of T1 that contain only the variables
x1, . . . , xm. Viewing T1 as a polynomial over the ring R, the above congruence holds iff

f(x1, . . . , xm) = 0 (mod I).

By simply expanding out f , the above condition can be checked in time poly(dm) and then
output the result.

Step 3: (When all the Ti’s are in R) Let d′ be the maximum degree of T1, . . . , Tk as polynomials
over R.

If d′ = 0 then each of T1, . . . , Tk is in the ring R and hence we can check

T1 + · · · + Tk = 0 (mod I)

in time poly(dm) and output the result.

Thus, in the subsequent steps k ≥ 2 and d′ ≥ 1.

Step 4: (Collecting “useful” linear forms) Form the largest set S = {s1, . . . , sB} of linear forms in
F[xm+1, . . . , xn] such that the elements of S satisfy:

– for each i ∈ [B] there is a j ∈ [k] such that (si + r) is a linear factor of Tj for some
r ∈ R.

– for every i 6= j ∈ [B], si, sj are coprime.
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Since d′ ≥ 1, S is not empty. For each i ∈ [B], let fi ∈ [d′] be the largest number such
that (si + r1), . . . , (si + rfi

) are linear factors (with repetition) of some Tj , say Tπi
, where

r1, . . . , rfi
∈ R. Furthermore, for an i ∈ [B], let si1, . . . , sifi

∈ F[x1, . . . , xn] be all the
linear forms (with repetition) that occur in Tπi

and are congruent to si(mod x1, . . . , xm).

The way we have defined fi’s we have that for any j ∈ [k], si can occur atmost fi times
among the linear factors of Tj taken (mod x1, . . . , xm). Thus, we get the following bound:

(f1 + . . . + fB) ≥ d′.

If (f1 + . . .+fB) = d′ then form the set U of Tj ’s that produce monomials (in the variables
xm+1, . . . , xn) of degree d′. Wlog let U = {T1, . . . , Tk′} and note that k′ ≥ 1. For i ∈ [k′],
let

Ti = gi(x1, . . . , xm) ·





f1
∏

j=1

(s1 + ri,1j)



 · · ·





fB
∏

j=1

(sB + ri,Bj)





where, for all i1 ∈ [k′], i2 ∈ [B], i3 ∈ [d′], ri1,i2i3 ∈ R and gi1 ∈ F[x1, . . . , xm].

Note that the coefficient of any degree d′ monomial (in the variables xm+1, . . . , xn) in
T1 + . . . + Tk′ is a multiple (in F) of:

∑

i∈[k′]

gi(x1, . . . , xm).

We can clearly check whether this is zero (mod I), in time poly(dm). If it is not zero then
output NO.

Step 5: (Going modulo various products of linear forms) For i ∈ [B], define a linear tranformation
σi acting on the variables x1, . . . , xn such that σi fixes x1, . . . , xm, sends si 7→ xm+1 and
transforms xm+2, . . . , xn such that it is an invertible linear map. Let B ′ ∈ [B] be such
that B′ = B if (f1 + . . . + fB) = d′ otherwise B′ is the smallest number such that
(f1 + . . . + fB′) > d′.

Output a YES iff each of the following recursive calls return a YES:

ID
(

〈σ1(Ti)〉i∈[k]\{π1}
, 〈l11 · · · l1e1

, . . . , lm1 · · · lmem , σ1(s11 . . . s1f1
)〉

)

...
...

ID
(

〈σB′(Ti)〉i∈[k]\{πB′} ,
〈

l11 · · · l1e1
, . . . , lm1 · · · lmem , σB′(sB′1 . . . sB′fB′

)
〉

)

3.3 Proof of Correctness

We continue using the notation set in the last subsection. The claim here is summarized as:

Theorem 3.4. ID(
〈

T1, . . . , Tk̃

〉

, 〈0〉 ) returns YES iff T1 + · · · + T
k̃

= 0 in F. Furthermore,

the time taken is poly(n, dk̃).

Proof. Note that in all the recursive calls that ID(
〈

T1, . . . , Tk̃

〉

, 〈0〉) makes to ID(·, ·) the size of

the first argument reduces by one and that of the second argument increases by one, thus m ≤ k̃.
Therefore, if h(k) denotes the time taken by ID( 〈T1, . . . , Tk〉 , 〈l11 · · · l1e1

, . . . , lm1 · · · lmem〉 ) then
we have the following recurrence:

h(k) ≤ B′ · h(k − 1) + poly(n, dm)

≤ (d + 1) · h(k − 1) + poly(n, dk̃)
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Thus, we get that h(k̃) = poly(n, dk̃).

To show that the output of ID(
〈

T1, . . . , Tk̃

〉

, 〈0〉) is correct we prove the correctness of
ID( 〈T1, . . . , Tk〉 , 〈l11 · · · l1e1

, . . . , lm1 · · · lmem〉 ) by induction on k:

Claim 3.4.1. ID( 〈T1, . . . , Tk〉 , 〈l11 · · · l1e1
, . . . , lm1 · · · lmem〉 ) returns YES iff

T1 + · · · + Tk = 0 (mod l11 · · · l1e1
, . . . , lm1 · · · lmem).

Proof of Claim 3.4.1. The base case of the induction is when k = 1, handled by Step
2. In this case T1 can be written as f(x1, . . . , xm) · F (xm+1, . . . , xn) such that f ∈ R while
F ∈ R[xm+1, · · · , xn] with coefficients of the highest degree monomials (in xm+1, . . . , xn) of F
coming from F. Clearly, T1 = 0 in R iff f = 0 (mod I). This can be checked by expanding
out f(x1, . . . , xm), since the expansion will have atmost dm terms we can do this in time poly(dm).

Now we assume that k ≥ 2 and that the claim is true for values smaller than k. If all the
linear forms occurring in T1, . . . , Tk are in R then in Step 3 we just expand out Ti’s and check
whether the sum is zero (mod I). Otherwise in Step 4 we collect the maximum number of linear
forms (possibly repeated) {s11, . . . , s1f1

, · · · , sB1, . . . , sBfB
} such that for all i ∈ [B], si1 · · · sifi

occurs in some Tj and the polynomials

{s11 · · · s1f1
, . . . , sB1 · · · sBfB

}

are mutually coprime over R.
Recall that d′ is the maximum degree of T1, . . . , Tk as polynomials in R[xm+1, . . . , xn]. In

Step 4 if we do not have “enough” linear forms i.e. f1 + . . .+ fB = d′ then observe that the sum
of the degree d′ terms in the expansion of (T1 + . . . + Tk) is:





∑

i∈[k′]

gi(x1, . . . , xm)



 · sf1

1 · · · sfB

B

Thus, for T1 + . . .+Tk to vanish (mod I) it is necessary that
∑

i∈[k′] gi vanishes (mod I), which
can be checked in time poly(dm). If it vanishes then we have:

degree of (T1 + . . . + Tk) as polynomials over R is < d′ ≤ (f1 + . . . + fB′)

With this assurance we move on to the most “expensive” step – Step 5. Firstly, note that
σi(si1) = . . . = σi(sifi

) = σi(si) = xm+1 (mod x1, . . . , xm) so the input of the B′ calls to ID
are well-formed. Observe that for any invertible linear transformation σi that is sending the
variables x1, . . . , xn to their linear combinations we have:

ID
(

〈σi(Tj)〉j∈[k]\{πi}
, 〈l11 · · · l1e1

, . . . , lm1 · · · lmem , σi(si1 . . . sifi
)〉

)

iff

ID
(

〈Tj〉j∈[k]\{πi}
, 〈l11 · · · l1e1

, . . . , lm1 · · · lmem , si1 . . . sifi
〉

)

Thus, induction hypothesis ensures that if the following two tests return YES:

ID
(

〈σ1(Tj)〉j∈[k]\{π1}
, 〈l11 · · · l1e1

, . . . , lm1 · · · lmem , σ1(s11 . . . s1f1
)〉

)

ID
(

〈σ2(Tj)〉j∈[k]\{π2}
, 〈l11 · · · l1e1

, . . . , lm1 · · · lmem , σ2(s21 . . . s2f2
)〉

)
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then we can deduce that:

(T1 + · · · + Tk) = 0 (mod I, s11 . . . s1f1
) and

(T1 + · · · + Tk) = 0 (mod I, s21 . . . s2f2
)

Since, s1, s2 were coprime over F we have that s11 . . . s1f1
, s21 . . . s2f2

are also coprime over R.
Thus, by lemma 3.2 we can combine the above two conditions to get:

(T1 + · · · + Tk) = 0 (mod I, s11 · · · s1f1
· s21 · · · s2f2

)

By extending this argument, we get that if all the B ′ calls to ID return YES then:

(T1 + · · · + Tk) = 0 (mod I, s11 · · · s1f1
. . . sB′1 · · · sB′fB′

)

Now since the degree of (s11 · · · s1f1
. . . sB′1 · · · sB′fB′

) is more than the degree of (T1 + · · ·+ Tk)
as polynomials over R, by lemma 3.3 we conclude that:

T1 + · · · + Tk = 0 (mod I).

Thus, when the algorithm returns YES it is right. When the algorithm returns NO it is easy to
see that (T1 + · · · + Tk) is indeed not zero in R. �

4 Conclusion

We give an efficient algorithm for the identity testing of ΣΠΣ circuits with bounded top fanin.
The problem of identity testing for general ΣΠΣ arithmetic circuits remains open. Also, it would
be interesting to see if this method can be generalized for ΣΠΣΠ circuits where the fanin of the
topmost addition gate is bounded.
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