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Abstract

In this work we give two new constructions of ε-biased generators. Our first construc-
tion answers an open question of Dodis and Smith [DS05], and our second construction
significantly extends a result of Mossel et al. [MST03]. In particular we obtain the
following results:

1. We construct a family of asymptotically good binary codes such that the codes in
our family are also ε-biased sets for an exponentially small ε. Our encoding and
decoding algorithms run in polynomial time in the block length of the code. This
answers an open question of Dodis and Smith [DS05].

2. We construct a degree k ε-biased generator, G : {0, 1}m → {0, 1}n, for every
k = o(log n). For k constant we get that n = Ω(m/log(1/ε))k , which is nearly
optimal. Our result also separates degree k generators from generators in NC

0
k,

showing that the stretch of the former can be much larger than the stretch of the
latter. This problem of constructing degree k generators was introduced by Mossel
et al. [MST03] who gave a construction only for the case of degree 2 generators.

1 Introduction

A subset S ⊂ {0, 1}n is called an ε-biased set if its bias with respect to any linear test is at most
ε. Namely, for every non-zero vector w ∈ {0, 1}n we have that |Prs∈S [〈w, s〉 = 1] − 1/2| ≤ ε.

In other words, for every hyperplane H ⊂ {0, 1}n it holds that
∣∣∣|S ∩ H| − |S|

2

∣∣∣ ≤ ε|S|. An

ε-biased generator is a mapping G : {0, 1}m → {0, 1}n whose image is an ε-biased set. A
subset C ⊂ {0, 1}n is called a good error correcting code1 if it has an exponential size and the
Hamming distance between any two of its elements is linear.

In this paper we give two constructions of ε-biased sets. The first is a construction of an
ε-biased generator such that each of its output bits is a low degree polynomial. Our second
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1To be completely accurate we have to speak about family of codes, and we do it in a later section.
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result is a construction of a family of (efficiently encodable and decodable) error correcting
codes that are also ε-biased sets for an exponentially small ε.

Background. The notion of ε-biased sets (or more accurately of an ε-biased distribution)
was first defined by Naor and Naor [NN93] who also gave the first constructions of such distri-
butions and demonstrated the power of ε-biased sets for several applications. The construc-
tion of Naor and Naor was later improved in a series of papers [AGHP92, AIK+90, RSW93,
EGL+92, AM95]. Since their first appearance ε-biased sets have found many applications in
different areas of theoretical computer science including: derandomization of algorithms such
as fast verification of matrix multiplication [NN93]; construction of almost k-wise independent
distributions [NN93, MNN94]; inapproximability results for quadratic equations over GF(2)
[HPS93]; learning theory [AM95]; explicit constructions of Ramsey graphs [Nao92]; explicit
constructions of Cayley expanders [AR94, MW02]; construction of efficient low degree tests
and short PCPs [BSSVW03]; and construction of two-source extractors [Raz05].

In several recent works ε-biased sets were studied from a different perspective. In [CM01]
Cryan and Miltersen ask whether there exist an NC0 construction of an ε-biased generator
for which n is super-linear in m. This question was answered affirmatively by Mossel et al.

[MST03] who gave a construction of a generator in NC0
k with n = mΩ(

√
k). Mossel et al.

also raised the question of constructing degree k ε-biased generators - i.e. generators that
each of their output bits is a degree k polynomial in the input bits. They were also able to
give a construction of a degree 2 generator with a near optimal stretch (i.e. n = Ω(m2) and
ε = exp(−O(n))).

In [DS05] Dodis and Smith ask ”Does there exist an explicitly-constructible ensemble of
good codes with small bias and polytime encoding and decoding algorithms (ideally, codes with
linear rate and minimum distance, and negligible bias)?”. Namely, Dodis and Smith raise the
question of constructing a family of good codes that are also ε-biased sets for an exponentially
(in the block length of the code) small ε. Such a family of codes was needed for the construction
of a cryptographic scheme that will enable two parties to securely correct errors in a shared
secret string. Dodis and Smith managed to give a protocol for correcting errors without
leaking information without constructing a family of ε-biased good codes, however such a
construction can simplify their scheme.

Our results. Our first result is a construction of degree k ε-biased generators of maximal
stretch (up to a constant). Namely we give a construction of a degree k generator from m
bits to n = Ω((m/ log(1/ε))k) bits, for any fixed k. Thus, for every fixed ε the output length
is Ω(mk), and clearly the output length cannot exceed mk (as there are only O(mk) linearly
independent polynomials of degree k in m variables).

Theorem 1 For every integer 0 < k and every large enough2 integer m and every ε >

2More precisely, there exists m0, independent of k, such that for every m ≥ m0...
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exp(−O(m1− 1
k

k2k )), there is a mapping G : {0, 1}m → {0, 1}n, where n = Ω(( m
k2k log(1/ε)

)k), such
that G is a degree k generator with bias at most ε.

We note that as k is constant the output is of length Ω((m/ log(1/ε))k). In particular this
gives a separation between ε-biased generators in NC0

k and degree k generators: Theorem 6
of [MST03] shows that the stretch (i.e. n−m) of any ε-biased generator in NC0

k , for ε < 2−2k,
is at most O

(
2kmdk/2e). In contrast we can get a stretch of Ω(( m

k2k log(1/ε)
)k) that for a fixed k

and a not too small ε (say ε = 2−mo(1)
) is at least mk−o(1).

Our second result is a construction of a family of ε-biassed good codes. Namely, we give a
construction of a family of good codes (constant relative rate, constant relative distance, effi-
cient encoding and decoding algorithms) such that the codes in the family have an exponential
small bias. Thus our construction answers affirmatively the open question of [DS05].

Theorem 2 Let a = 0.0595/2. Then for every large enough integers 0 ≤ t, n where n = 189·8t

there is a polynomial time constructible generator G : {0, 1}m → {0, 1}n, where m ≥ an/48,
such that its image C = G({0, 1}m) is a code with the following properties. C has relative rate
≥ a/48; relative distance ≥ a2/24; a polynomial time decoding algorithm that can fix a2/48
fraction of errors; and the bias of C (and hence of G) is ε = exp(−O(n)).

Motivation. One prosaic motivation for studying these questions is that they were studied
before and remained open. However, we feel that there is a stronger argument in favor of
studying these problems: both problems are very natural and combine notions that were
found to have many applications in theoretical computer science.

It is very desirable to give explicit constructions of low complexity for combinatorial ob-
jects. For example, in [H̊as87, Gol00a, CM01, KL01, MST03, AIK04] questions regarding
the existence of objects such as ε-biased generators, one-way functions and pseudo-random
generators in NC0 were studied. As low degree polynomial are a natural ”low complexity”
class we feel that constructing low degree ε-biased generators is a natural question.

Error correcting codes (ECCs) have many applications in theoretical computer science
(cf. [Fei95, Gur01, Tre04]). Finding explicit constructions of ECCs is an extensively studied
question (cf. [MS77, Tre04]). In recent years the focus in the theoretical computer science
community is on giving explicit constructions of ECCs that have additional properties, for
example: codes that have efficient list-decoding algorithms (cf. survey of Trevisan [Tre04]),
quantum codes (cf. [NC00, KSV02]), codes that are locally testable and codes that are locally
decodable (cf. survey of Goldreich [Gol00b]). We believe that as error correcting codes and
ε-biased sets are such important objects it is natural to combine them and to construct an
ε-biased error correcting codes. We expect that our constructions will find new applications.

Methods. Our constructions are similar in spirit to the constructions of ε-biased generators
of Mossel et al. [MST03]. In the proofs of both Theorem 1 and Theorem 2 we first construct
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a generator G(h) that is (almost) unbiased w.r.t. heavy tests3, i.e. the bias of G(h) w.r.t. any
test w of large weight is small. Then we construct a generator G(l) that is (almost) unbi-
ased w.r.t. light tests and then we take their XOR, on two independent inputs, to get the
final generator G(x, y) = G(h)(x) ⊕ G(l)(y). A significant difference from [MST03] is in the
way that we construct G(l). Previously G(l) was constructed ”from scratch”, i.e. there was
no connection between the construction of G(l) and of G(h). We show a novel use of error
correcting codes that enables us to transform any generator that is (almost) unbiased with
respect to heavy tests to a generator that is (almost) unbiased w.r.t. light tests. In the heart
of this transformation lies the observation that from the generating matrix of a linear error
correcting code of relative rate 1/2 one can construct a linear transformation, from {0, 1}n to
itself, that sends ”light” vectors to ”heavy” vectors (where ”light” and ”heavy” depend on
the properties of the code).

Organization. In Section 2 we give the basic notations and definitions. In particular in
subsection 2.1 we give the basic definitions of error correcting codes and recall a construction
of self-dual error correcting codes, and in subsection 2.2 we give the basic definitions regarding
ε-biased sets and ε-biased generators and give the proofs of some well known facts. In section 3
we prove Theorem 1, and in section 4 we prove Theorem 2.

2 Preliminaries

We shall denote with log(x) the natural logarithm of x, i.e. log(x) = loge(x). We denote
exp(x) = ex. We use the notation of |I| to denote the size of the set I. For a random variable
X that is distributed according to a distribution D we denote with ED[X] the expectation of
X. For a matrix A we denote with At the transpose of A.

For a vector v ∈ {0, 1}n we denote with vi the i’th coordinate of v. Namely, v = (v1, . . . , vn).
For two vectors u, v ∈ {0, 1}n we denote with dist(u, v) the hamming distance between u
and v, i.e. dist(u, v) = |{i : ui 6= vi}|. We also denote with wt(v) (the weight of v) the
number of non-zero coordinates of v. In other words, wt(v) = dist(v,~0), where ~0 is the
zero vector. For v, u ∈ {0, 1}n we denote with 〈v, u〉 their inner product modulo 2, i.e.
〈v, u〉 = v1 · u1 ⊕ . . . ⊕ vn · un.

For two vectors v, u ∈ {0, 1}n we denote v ⊕ u = (v1 ⊕ u1, . . . , vn ⊕ un), i.e. it is the
coordinate-wise XOR of v and u. For two multisets S1, S2 ⊆ {0, 1}n we denote S1 ⊕S2 = {v⊕
u|v ∈ S1 and u ∈ S2}. For two functions G1 : {0, 1}m1 → {0, 1}n and G2 : {0, 1}m2 → {0, 1}n

we denote with G = G1 ⊕ G2 the function G(x, y) : {0, 1}m1 × {0, 1}m2 → {0, 1}n satisfying
G(x, y) = G1(x) ⊕ G2(y). Usually we write {0, 1}m1+m2 instead of {0, 1}m1 × {0, 1}m2.

3As mentioned earlier, every test can be identified with a binary vector of length n. The weight of the test
is the number of non zero coordinates of this vector.
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2.1 Error correcting codes

Let E : {0, 1}k → {0, 1}n. Denote with C = E({0, 1}n) the image of E. Then C is called
an [n, k, d]-code if for any two codewords E(v), E(u) ∈ C, where u 6= v, we have that
dist(E(u), E(v)) ≥ d. We denote with R = k/n the relative rate of C and with δ = d/n
the relative minimal distance of C, and say that C is an [R, δ]-code. When E is a linear map-
ping we say that C is a linear code. A map D : {0, 1}n → {0, 1}k can correct t errors if for any
v ∈ {0, 1}k and any w ∈ {0, 1}n such that dist(E(v), w) ≤ t we have that D(w) = v. Such a
D is called a decoding algorithm for C. A family of codes {Ci}, where Ci is an [Ri, δi]-code of
block length ni, has constant rate if there exists a constant 0 < R such that for all codes in the
family it holds that Ri ≥ R. The family has a linear distance if there exists a constant 0 < δ
such that for all codes in the family we have δi ≥ δ. In such a case we say that the family
is a family of [R, δ] codes. If a family of codes as above has limi→∞ ni = ∞, a constant rate
and a linear minimal distance then we say that the family is a family of good codes and that
the codes in the family are good. Similarly, we say that the family of codes has a decoding
algorithm for a fraction τ of errors if for each Ci there is a decoding algorithm Di that can
decode from τ · ni errors.

When C is a linear code we define the dual of C in the following way:

C⊥ ∆
= {y ∈ {0, 1}n : ∀x ∈ C 〈y, x〉 = 0}.

A family of codes is said to have good dual codes if the family of the dual codes is good.

In our constructions we will need to use a family of good error correcting codes with
good dual codes. The following result of Matsumoto[Mat02] (after a result of Ashikhmin et
al. [ALT01]) gives an explicit construction of such a family. As this result is implicit in [Mat02]
we give a sketch of the proof.

Theorem 3 (Matsumoto) For an integer t let nt = 189
4

8t. Then, for a large enough t,
there is a polynomial time constructible self-dual [ 1

2
, 0.0595]-code of block length nt. Moreover,

the code has a polynomial time (in the block length) decoding algorithm that can correct from
> 0.0595/2 fraction of errors.

Proof In the proof we use the notations of [Mat02]. Consider proposition 2 of [Mat02]. Let
m = 3 then nt = 63

8
8t. Now let j = 0 and t large enough so that gt

nt
≤ 1

7
+ 0.0001. Then the

code Ct = C(G0 + 0 · P∞) is an [nt, nt/2, nt/2 − nt/7 − 0.0001nt] self-dual code over the field
GF(26). By expanding this code w.r.t. a self dual basis of GF(26) over GF(2) (see section
III of [ALT01]), we get a [6nt, 3nt, nt/2 − nt/7 − 0.0001nt] binary code Dt. The block length
is thus 189

4
8t, the relative rate of this code is 1/2 and its relative minimum distance is larger

than 0.0595. As Ct was self-dual then so is Dt. The fact regarding the decoding algorithm
follows from the work of Feng and Rao [FR93]. �
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2.2 ε-biased sets

Definition 4 Let S ⊆ {0, 1}n be a set (or a multi-set). For a non zero vector w ∈ {0, 1}n we
denote with biasw(S) the bias of S w.r.t. w. That is,

biasw(S)
∆
=

∣∣∣∣
1

2
− Pr

s∈S
[〈w, s〉 = 1]

∣∣∣∣ =

∣∣∣∣∣
1

2
−

1

|S|

∑

s∈S

〈w, s〉

∣∣∣∣∣ .

The bias of S is equal to the maximal bias w.r.t. any non-zero test:

bias(S) = max
~06=w∈{0,1}n

biasw(S).

In particular, S is ε-biased if for every ~0 6= w ∈ {0, 1}n it holds that biasw(S) ≤ ε.

In order to define ε-biased generator it will be convenient to speak about ε-biased distrib-
utions. In the following we identify vectors w ∈ {0, 1}n with a subset W ⊆ [n] in the usual
manner (i ∈ W if and only if wi = 1).

Definition 5 Let G = (G1, . . . , Gn) be a random variable ranging over {0, 1}n. The bias of
G w.r.t. a non-zero vector w ∈ {0, 1}n is defined to be

biasw(G)
∆
=

∣∣∣∣
1

2
− Pr

x∈{0,1}n
[⊕i∈W Gi(x) = 1]

∣∣∣∣ =

∣∣∣∣
1

2
− Ex∈{0,1}n〈G(x), w〉

∣∣∣∣ .

The bias of G is equal to the maximal bias w.r.t. any non-zero test:

bias(G) = max
~06=w∈{0,1}n

biasw(G).

In particular, G is ε-biased if for every non-zero w it holds that biasw(G) ≤ ε.

When G : {0, 1}m → {0, 1}n is a map we define the bias of G to be the bias of the random
variable G = (G1, . . . , Gn), where Gi is the i’th output bit of G. Notice that the bias of G is
equal to the bias of the multi-set G({0, 1}m).

The following well known lemma gives information about the bias of the XOR of two
independent random variables (or the XOR of two different sets).

Lemma 6 Let G1, G2 be two independent random variables taking values in {0, 1}n. Then
bias(G1 ⊕ G2) ≤ 2bias(G1)bias(G2) ≤ mini bias(Gi). Similarly, if S1, S2 ⊆ {0, 1}n we have
that bias(S1 ⊕ S2) ≤ 2bias(S1)bias(S2) ≤ mini bias(Si).

Proof We give the proof only for the case of two random variables as the proof for two sets
is basically the same. Fix ~0 6= w ∈ {0, 1}n. As G1 and G2 are independent it follows that

Pr[⊕i∈Sw(G1 ⊕ G2)i = 1] =

Pr[(⊕i∈Sw(G1)i) = 1] + Pr[(⊕i∈Sw(G2)i) = 1] − 2 Pr[(⊕i∈Sw(G1)i) = 1] · Pr[(⊕i∈Sw(G2)i) = 1].
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In particular we get that

biasw(G1 ⊕ G2) =

∣∣∣∣
1

2
− Pr[⊕i∈Sw(G1 ⊕ G2)i = 1]

∣∣∣∣

=

∣∣∣∣2
(

1

2
− Pr[⊕i∈Sw(G1)i = 1]

)(
1

2
− Pr[⊕i∈Sw(G2)i = 1]

)∣∣∣∣
= 2biasw(G1)biasw(G2).

As it is always the case that biasw(Gi) ≤ 1/2, it follows that for every ~0 6= w ∈ {0, 1}n we
have that biasw(G1 ⊕ G2) ≤ min(biasw(G1), biasw(G2)), and the claim easily follows. �

The following lemma is an immediate corollary of Lemma 6.

Lemma 7 Let (Gi)i∈I be independent random variables taking values in {0, 1}n. Then

bias(⊕i∈IGi) ≤ 2|I|−1
∏

i∈I

bias(Gi).

Similarly, if (Si)i∈I is a family of subsets of {0, 1}n we have that

bias(⊕i∈ISi) ≤ 2|I|−1
∏

i∈I

bias(Si).

As a special case of this lemma we get the well known estimate for the bias of a sum of
independent random coins.

Lemma 8 Let X1, . . . , Xt be independent 0/1 random variables. Assume that for some 0 <
δ < 1/2 and for every i we have that δ ≤ Pr[Xi = 1] ≤ 1 − δ, then

bias
(
⊕t

i=1Xi

)
≤

1

2
(1 − 2δ)t .

Another basic fact that we shall need is an estimate on the bias of a degree k polynomial,
which follows immediately from the famous Schwartz-Zippel theorem [Sch80, Zip79].

Lemma 9 (Schwartz-Zippel) Let f : {0, 1}m → {0, 1} be a non-constant degree k polyno-
mial, then

1

2k
≤ Pr[f(x) = 1] ≤ 1 −

1

2k
.

Equivalently,

bias (f(x)) ≤
1

2
−

1

2k
.
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3 Low degree ε-biased generator

In this section we construct an ε-bias generator where each of its output bits is a low degree
polynomial. Similarly to the construction in the paper of Mossel et al. [MST03] our generator
is the combination of two other generators. One generator has a low bias w.r.t. ”heavy” tests
(tests that involve a large number of output bits) and the other has a low bias against ”light”
tests (i.e. tests that involve a small number of output bits). The final generator is obtained
by XOR-ing the output of the two generators on independent seeds.

We first construct a generator that is unbiased against heavy tests, and then show a
general method for transforming generators that are unbiased with respect to heavy tests into
generators that are unbiased with respect to light tests.

3.1 Construction for heavy tests

The following theorem gives a construction of a generator that is unbiased w.r.t. heavy tests.
We try to give the most general statement so it is a bit cumbersome. The reader should have
the following ”relaxed” statement in mind: For every k, m and every 0 < ε (such that ε is not
too small as a function of m, say ε > 2−√

m), we can construct a degree k ε-biased generator
(that is unbiased w.r.t. heavy tests) from m bits to n bits where n = Ω((m/k log(1/ε))k).
The difference of the relaxed statement from the formal one, is that we need to make all the
parameters involved in the construction integers, and we aim to make the bound on ε as small
as possible. We now give the formal statement of the theorem.

Theorem 10 For every two integers k, m and 0 < a, ε such that ε ≥ exp(−O( am1− 1
k

k2k )), we
define γ = γk,ε,a = 2a

2k log(1/2ε)+4a
, s0 = bγmc, i0 = bm/s0c. Assume that n is such that

1
8
i0
(

s0

k

)
≤ n ≤ i0

(
s0

k

)
. Then there is an explicit map G(h) : {0, 1}m → {0, 1}n with the following

properties:

• For every w ∈ {0, 1}n such that wt(w) ≥ an we have that biasw

(
G(h)

)
≤ ε.

• Each output bit of G(h) is a degree k polynomial in the input bits.

Proof We first give a sketch of the proof. Partition the m input bits to k sets of roughly equal
sizes. For each subset of inputs B we define a set of output bits that depend only on the input
bits in B. Thus, output bits that correspond to different sets are independent (as random
variables when the input is chosen uniformly at random from {0, 1}n). The output bits that
depend on a given set of inputs are in 1 − 1 correspondence with multilinear monomials of
degree k. Namely, every output bit is the evaluation of a degree k monomial on the input
bits of the relevant set. Now, given a ”heavy” linear combination of the output bits, we can
present it as a linear combination of ”many” degree k polynomials, where each polynomial is
defined on a different subset of inputs. As these polynomials are defined on distinct sets of
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variables, they are independent random variables, and by Lemma 8 the bias of their sum is
small. We now give the more formal proof.

Denote with Mk[y1, . . . , ys0] the set of all degree k monomials in s0 variables. The size of
Mk is

(
s0

k

)
. Partition the input bits {x1, . . . , xm} to i0 sets of size s0, and to a leftover set

of size m − i0 · s0 < s0. The i-th set is Bi = {xs0·(i−1)+1, . . . , xs0·i}. We first deal with the
case that n = i0

(
s0

k

)
: For every one of the first i0 sets of the partition we define

(
s0

k

)
output

bits. Each of the output bits corresponds to a different monomial from Mk evaluated on the
variables of Bi. We denote with Gi the set of output bits corresponding to Bi and with gi,M

the output bit corresponding to the monomial M . With these notations we have that

gi,M(x1, . . . , xm) = M(Bi) = M(xs0·(i−1)+1, . . . , xs0·i),

Gi = (gi,M)M∈Mk
,

G(h) = (G1, . . . , Gi0) = (gi,M)i=1,...,i0,M∈Mk
.

The length of the output of G(h) is clearly i0
(

s0

k

)
= n. Note that we ignore the input bits that

fell in the leftover set.

For example, let m = 7, γ = 1/2 and k = 2. Then s0 = 3, i0 = 2, M3 = {y1y2, y1y3, y2y3},
B1 = {x1, x2, x3} and B2 = {x4, x5, x6}. We get that G1 = (x1x2, x1x3, x2x3), G2 =
(x4x5, x4x6, x5x6), and G(h) = (x1x2, x1x3, x2x3, x4x5, x4x6, x5x6).

We now show that for every w ∈ {0, 1}n such that wt(w) ≥ an we have that biasw (Gh) ≤ ε.
Indeed let w be such that wt(w) ≥ an. For convenience we enumerate the coordinates of w in
the same way as the coordinates of G(h), that is w = (wi,M)i=1,...,i0,M∈Mk

. We also partition
w to i0 disjoint sets w = (w1, . . . , wi0), where wi = (wi,M)M∈Mk

. We note that as wt(w) ≥ δn
then the supports of at least da · n

(s0
i0
)
e = da · i0e of the wi’s are not empty. We now have that,

〈w, G(h)〉 =

i0⊕

i=1

〈wi, Gi〉 =

i0⊕

i=1

(
∑

M∈Mk

wi,Mgi,M

)
=

i0⊕

i=1

pi(Bi),

where each pi(Bi) is a degree k polynomial, over GF(2), in the variables of Bi. Denote with
I the set of indices for which pi 6= 0. As each pi is a sum of different degree k monomials we
have that the size of I is equal to the number of non empty wi-s. Thus,

|I| ≥ da · i0e ≥ a · i0 = a

⌊
m

bγmc

⌋
≥ a

(
m

bγmc
− 1

)
≥ a

(
1

γ
− 1

)
> 2k−1 log (1/2ε) .

As the sets Bi are disjoint the polynomials pi(Bi) for i ∈ I, viewed as random variables in the
input bits, are independent random variables. By the Schwartz-Zippel lemma (Lemma 9), we
get that the bias of each pi, for i ∈ I is at most 1

2
− 1

2k , and so by Lemma 7 we get that

biasw (Gh) ≤
1

2

(
1 −

2

2k

)|I|
<

1

2

(
1 −

1

2k−1

)2k−1 log(1/2ε)

≤ ε.
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When n < i0
(

s0

k

)
we make a small modification to the construction. Let t0 = b n

i0
c. Let

i1 = n − i0 · t0. Clearly i1 < i0. For every set in the partition we shall define t0 output bits,
and for the first i1 sets we shall define an additional output bit. The total number of output
bits is i0 · t0 + i1 = n as required. Instead of computing the value of every monomial of Mk on
every set of the partition, we only output the value of the first t0 +1 monomials (according to,
say, the lexicographical ordering of their exponent vector) on the first i1 sets of the partition,
and the value of the first t0 monomials on the rest of the sets of the partition (i.e. on the
remaining i0− i1 sets). In this way the output length is i1(t0 +1)+(i0 − i1)t0 = i0 · t0 + i1 = n.
The analysis of the bias also requires a small modification. As before we consider the partition
of w to disjoint sets, where the first i1 sets are of size t0 +1 and the last i0 − i1 sets are of size
t0. We define pi and I as before. We have that

|I| ≥

⌈
an

t0 + 1

⌉
≥

an

b n
i0
c + 1

≥(∗) a(i0 − 1) ≥ a(
1

γ
− 2) = 2k−1 log (1/2ε), (1)

where inequality (∗) follows from the lower bounds on ε, and n (for completeness we give the
proof of (∗) in Appendix A). We get that

biasw (Gh) ≤
1

2

(
1 −

2

2k

)|I|
≤

1

2

(
1 −

1

2k−1

)2k−1 log(1/2ε)

≤ ε.

It is clear that the complexity of computing this encoding is polynomial in n. This com-
pletes the proof of the Theorem. �

3.2 From heavy to light

In this section we prove a theorem that shows that in order to construct an ε-biased generator
it is sufficient to construct a generator whose output is almost unbiased w.r.t. ”heavy” tests.
The basic tool in proving this theorem is a linear transformation from {0, 1}n to itself, that
sends all the non-zero vectors in the Hamming ball of radius an (light vectors) to vectors
of weight at least bn (heavy vectors). Stated differently, this linear transformation has the
property that it takes any two vectors that are at distance at most an and sends them to
vectors at distance at least bn. This definition immediately brings to mind error correcting
codes, and indeed the construction of such transformations is based on the generating matrix
of a suitable error correcting code.

Definition 11 A linear transformation A : {0, 1}n → {0, 1}n is (a, b)-expanding if for every
v ∈ {0, 1}n such that wt(v) ≤ an we have that wt(vtA) = wt (Atv) ≥ bn. We say that A is
symmetric (a, b)-expanding if in addition for every u ∈ {0, 1}n such that wt(u) ≤ an we have
that wt (Au) ≥ bn.

We now show how to construct symmetric expanding linear transformations.

10



Theorem 12 (Expanding transformations) Assume that there exists an explicit construction
of a linear (self-dual) [ 1

2
, δ]-code of block length 2n over GF(2). Then there is an explicit

(symmetric) (a, δ−a)-expanding transformation A : {0, 1}n → {0, 1}n that can be constructed
in the same time (up to an additive O(n3) term) as the generating matrix of the underlying
code.

Proof Let C be a [ 1
2
, δ] code of block length 2n (in particular the rate of C is n). Let

G : {0, 1}n → {0, 1}2n be the generating matrix of C. As the rate is 1/2 we can assume

w.l.o.g. that G has the following form G =

(
I
A

)
where I is the n × n identity matrix and A

is an n × n matrix. Let ~0 6= w ∈ {0, 1}n be a vector of weight ≤ an. Then δn ≤ wt(Gw) =
wt(w) + wt(Aw) ≤ an + wt(Aw). In particular wt(Aw) ≥ δn − an. Thus the matrix At is
(a, δ − a)-expanding.

Let us now assume that C is also self-dual. It is easy to see that the matrix H =

(
At

I

)
is a

generating matrix for the dual code, and as C is self-dual we have that H is also a generating
matrix for C. As before we get that δn ≤ wt(Hw) = wt(Atw) + wt(w) ≤ an + wt(Atw).
Hence, wt(Atw) ≥ δn − an. Together with the above observation that wt(Aw) ≥ δn − an we
get that A is symmetric (a, δ − a)-expanding. �

By applying Theorem 12 on the codes obtained from Theorem 3 we get the following
corollary.

Corollary 13 For every 0 < a < 0.0595 and every large enough (independent of a) integer t
there is an explicit symmetric (a, 0.0595 − a)-expanding transformation of dimension 189 · 8t

that can be constructed in time polynomial in its dimension.

We now show that using expanding linear transformations we can transform any generator
that is ε-biased w.r.t. heavy tests to an ε-biased generator.

Theorem 14 Let A be an (a, a)-expanding transformation of dimension n.
Let G(h) : {0, 1}m → {0, 1}n satisfy that there exists an 0 < ε such that for every w ∈ {0, 1}n

with wt(w) ≥ an, biasw(G(h)) ≤ ε. Define G(l) : {0, 1}m → {0, 1}n in the following way
G(l)(x) = A(G(h)(x)). Then for every w ∈ {0, 1}n with wt(w) ≤ an, biasw

(
G(l)

)
≤ ε. In

particular, if we define G : {0, 1}2m → {0, 1}n as

G(x, y) = G(h)(x) ⊕ G(l)(y)

we get that bias(G) ≤ ε. The map G(l) can be constructed in time polynomial in the construc-
tion time of G(h) and of A, and hence so can G.

Proof Let w ∈ {0, 1}n be such that wt(w) ≤ an. It is clear that

biasw

(
G(l)

)
= biasw

(
A(G(h)(x))

)
=

∣∣∣∣
1

2
− Ex∈{0,1}m〈A

(
G(h)

)
, w〉

∣∣∣∣

11



=

∣∣∣∣
1

2
− Ex∈{0,1}m〈G(h), Atw〉

∣∣∣∣ = biasAtw

(
G(h)

)
.

As A is (a, a)-expanding we have that wt(Atw) ≥ an. By the assumption on G(h) we get that
biasAtw(G(h)) ≤ ε and so biasw

(
G(l)

)
≤ ε. The claim regarding the bias of G is an immediate

corollary of Lemma 6. The claim regarding the construction time of G is obvious. �

We note that as A is a linear transformation then the degree of G (i.e. the maximal degree
of its output bits viewed as polynomials, over GF(2)), in the input variables is at most the
degree of G(h).

3.3 Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 10, Corollary 13 and Theorem 14. Indeed, let

a = 0.0595/2. Given two integers 0 < k, m and ε ≥ exp(−O( am1− 1
k

2kk
)), let t be defined as the

largest integer such that 189 · 8t ≤ i0
(

s0

k

)
, where s0, i0 are as in Theorem 10. We want m to

be large enough so that Theorem 3 will ensure the existence of [ 1
2
, 2a]-codes of block length

189
4
· 8t+1. Let n = 189 · 8t. Clearly i0

8

(
s0

k

)
< n ≤ i0

(
s0

k

)
. Using the notations of Theorem 10 we

bound n from below by

n >
1

8
i0

(
s0

k

)
>
(γm

k

)k

= Ω

((
m

2kk log(1/ε)

)k
)

.

By Corollary 13 we can construct in polynomial time an (a, a)-expanding transformation of
dimension n. For our k, m, n, a, ε let G(h) be the generator obtained from theorem 10. Clearly
G(h) satisfies the conditions of Theorem 14. Let G be the generator obtained from Theorem 14.
It is easy to verify that G is the desired generator. �

4 Construction of ε-biased good codes

The construction of ε-biased good codes follows the same lines as the construction of low-
degree ε-biased generators. The main difference is that we don’t have to keep the degree low
but rather make sure that the generator outputs a good code. Thus, we will need a generator
for heavy tests that outputs a good code and a way of transforming this generator in to a
truly unbiased generator that also outputs a good code. The difference from the proof of
Theorem 1 is in two points. First we will need a different construction of a generator G(h)

for heavy tests (compare to Theorem 10). Then we will need a construction of a symmetric
expanding transformation (see Definition 11) that will enable us to transform this generator
to an ε-biased good code (compare to Theorem 14).

12



As before we start by giving a construction of a good code that is also unbiased w.r.t.
heavy tests. We then show a general way of transforming codes that are unbiased w.r.t.
heavy tests to ε-biased codes.

4.1 Construction of codes that are unbiased w.r.t. heavy tests

Theorem 15 Let 0 < a < 1 be a constant. Let n be an integer. For an/48 ≤ M < an/6
let Ĉ be an [M, m, d] binary linear error correcting code that has a polynomial time encoding
algorithm (i.e. its generating matrix can be computed in polynomial time) and a polynomial
time decoding algorithm that can correct α̂ > 0 fraction of errors. Denote R̂ = m/M and
δ̂ = d/M . Then there is a polynomial time constructible map G(h) : {0, 1}m → {0, 1}n such
that its image, C = G(h) ({0, 1}m) has the following properties.

• C is an [R, δ]-code of block length n for R ≥ a
48

R̂ and δ ≥ a
48

δ̂.

• The weight of every v ∈ C is bounded from above by wt(v) ≤ an/3.

• C has a polynomial time encoding algorithm and a polynomial time decoding algorithm
that can correct from α ≥ a

48
α̂ fraction of errors.

• For every w ∈ {0, 1}n such that wt(w) ≥ an we have that biasw (C) ≤ exp (−O(n)).

Proof We start with a sketch of the proof. The proof is similar in nature to the proof of
Theorem 10. As before we partition the input string to roughly m/k subsets of size k, for some
k. For each of the subsets we define 2k−2 distinct output bits that correspond to the values of
2k−2 linearly independent polynomials, in k variables, evaluated on the input bits that belong
to the subset. In this way we get roughly 2k−2m/k output bits. We then concatenate (in the
sense of string concatenation) to these output bits the encoding of the input bits w.r.t. the
code Ĉ. This defines the map G(h). It remains to show that G(h) has the required properties.
Indeed, the first 2k−2m/k output bits will assure us that the weight of each output word is
not too large and that (as in the proof of Theorem 10) the output has a small bias. The
concatenation of Ĉ ensures that the distance between any two output words is linearly large
which gives us the required decoding property. As before, in order to be completely accurate
we have to handle the case that for our k (that will be later specified) m/k is not an integer,
and the case where 2k−2m/k > n − M . We now give the formal proof.

Let k be the smallest integer satisfying bm/kc2k−2 ≥ n−M . It is clear that k is a constant
depending only on a and R̂. Let i0 = bm/kc, t0 = b(n − M)/i0c and i1 = n − M − i0 · t0.
Clearly i1 < i0. Let x = (x1, . . . , xm) be our input. Partition the first kbm/kc = ki0 bits to i0
sets of size k. The i-th set in the partition is Bi = {x(i−1)k+1, . . . , xik}. For each of the Bi’s we
define t0 output bits, and for the first i1 sets we define an additional output bit. This gives a
total of i0t0 + i1 = n − M output bits.

13



Denote with {χ0, . . . , χ2k−2−1} the following characteristic functions in k variables:

χj(y1, . . . , yk) = 1 ⇔ (y1 = 1) ∧ (y2 = 1) ∧

(
k∑

i=3

yi2
i−1 = j

)
.

Equivalently, let j0, . . . , jk−3 be the binary representation of j when j0 is the LSB and jk−3 is
the MSB (i.e. j =

∑k−3
i=0 ji2

i). We have that

χj(y1, . . . , yk) = y1 · y2 ·
k∏

i=3

(yi − ji−3 + 1) mod 2.

It is easy to see that the χj-s are linearly independent, and that on every input at most one of
the χj-s is non-zero. Note that the degree of every monomial of χj is at least 2 and at most k.
We denote with Gi the set of output bits corresponding to Bi and with gi,j ∈ Gi the output
bit corresponding to χj. Namely,

gi,j(x1, . . . , xm) = χj(xk·(i−1)+1, . . . , xk·i).

With these notations we have that

∀1 ≤ i ≤ i1 Gi = (gi,j)j=0,...,t0 ,

∀i1 < i ≤ i0 Gi = (gi,j)j=0,...,t0−1.

The length of the output is clearly i1(t0 + 1) + (i0 − i1)t0 = n − M . Denote with GĈ :

{0, 1}m → {0, 1}M the generating matrix of the code Ĉ. In particular, the encoding of the
vector x = (x1, . . . , xm) is GĈ · x. We now define the map G(h):

G(h) = (G1, . . . , Gi0 , GĈ),

that is, on an input x we first have n − M output bits that come from G1, . . . , Gi0, and the
last M bits are the encoding of x w.r.t. to the code Ĉ. Clearly the output length is n. Let
C = G(h) ({0, 1}m) be the image of G(h). We show that C has the required properties.

The rate of C is m and thus its relative rate R is

R = m/n ≥ m/(48M/a) =
a

48
R̂.

It is clear that C contains Ĉ as its last M bits and so the minimal distance of C is at least
δ̂M . Thus the relative minimal distance of C is:

δ ≥ δ̂M/n ≥
a

48
δ̂.

In order to bound the weight of every v ∈ C, we recall that in every Gi at most one of the
output bits is non-zero. Thus the total weight of v ∈ C is bounded from above by i0 + M .
We get that

∀v ∈ C, wt(v) ≤ i0 + M = bm/kc + M ≤ M/k + M ≤ 2M ≤ an/3.
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To show the error correcting property we note that if the total number of errors is α̂M , then in
particular the last M bits of C contain at most α̂M errors. As the last M bits of C correspond
to a codeword in Ĉ we can use the decoding algorithm of Ĉ to obtain the original message.
Thus we can fix at least α̂M ≥ a

48
α̂n errors.

It remains to show that C is ε-biased w.r.t. words of weight ≥ an. Indeed let wt(w) ≥ an.
As in the proof of Theorem 10 we partition w to i0 + 1 disjoint sets w = (w1, . . . , wi0, wĈ),
where the number of bits in wi is the same as the number of output bits in Gi. We also write
wi = (wi,0, . . . , wi,|Gi|−1). Since wt(w) ≥ an we have that the supports of at least

⌈
an − M

2k−2

⌉
≥

⌈
a − a/6

2k−2
n

⌉

of w1, . . . , wi0 are not empty. As in Theorem 10 we get that

〈w, G(h)〉 =

(
i0⊕

i=1

〈wi, Gi〉

)
⊕ 〈wĈ, GĈ〉 =




i0⊕

i=1


 ∑

gi,j∈Gi

wi,jχi,j(Bi)




⊕ 〈wĈ , GĈ〉

=

(
i0⊕

i=1

pi(Bi)

)
⊕ 〈wĈ , GĈ〉,

where pi(Bi) is a polynomial over GF(2) in the variables of Bi. As GĈ is a linear function in
{x1, . . . , xm} we have that

〈wĈ, GĈ〉 =

i0∑

i=1

`i(Bi),

where the `i’s are linear functions. We thus have that

〈w, G(h)〉 =

(
i0⊕

i=1

pi(Bi)

)
⊕

(
i0∑

i=1

`i(Bi)

)
=

(
i0⊕

i=1

p̃i(Bi)

)
,

where each p̃i is a polynomial over GF(2) in the variables of Bi.

Denote with I the set of indices for which pi 6= 0. As each pi is a sum of linearly independent
polynomials we have that the size of I is equal to the number of non empty wi-s. Since
p̃i = pi + `i and each monomial of pi has degree at least 2 we get that if pi 6= 0 then p̃i 6= 0

(because pi and `i cannot cancel each other). We conclude that at least
⌈

a−a/6
2k−2 n

⌉
of the pi’s are

non-zero polynomials (of degree at most k). As the sets Bi are disjoint the polynomials p̃i(Bi)
for i ∈ I, viewed as random variables in the input bits, are independent random variables. By
the Schwartz-Zippel lemma (Lemma 9), we get that the bias of each pi, for i ∈ I is at most
1
2
− 1

2k , and so by Lemma 7 we get that

biasw (Gh) ≤
1

2

(
1 −

2

2k

)|I|
≤

1

2

(
1 −

1

2k−1

)da−a/6

2k−2 ne
= exp

(
−O

( a

22k
n
))

= exp (−O (n)) .

�
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4.2 From heavy to light: keeping the distance large

For the purpose of constructing ε-biased codes we shall need the more powerful notion of a
symmetric expanding transformation. We will also require that the transformation has an
efficient decoding algorithm (in some special sense).

Definition 16 An (a, b)-expanding transformation A of dimension n can decode from α frac-
tion of errors if there exists a decoding algorithm D such that for any two vectors v, err ∈ Bn,
satisfying wt(v) ≤ an and wt(err) ≤ αn, we have that D(Av + err) = v.

Theorem 17 (Symmetric expanding transformations) For any [ 1
2
, δ] self-dual code C of block

length 2n, that has a polynomial time decoding algorithm that can handle α fraction of errors,
and for every 0 < a < δ, there is an explicit symmetric (a, δ − a)-expanding transformation
A of dimension n, that has a polynomial time algorithm for decoding from 2α − a fraction
of errors. Moreover, the constructing time of A is the same (up to ±O(n3)) as the time for
constructing the generating matrix of the code, and the running time of the decoding algorithm
is the same (up to ±O(n)) as the running time of the decoding algorithm of C.

Proof Let G be the generating matrix of C. W.l.o.g we can assume that G =

(
I
A

)
. The

proof of Theorem 12 shows that A is symmetric (a, δ − a)-expanding. Thus, it remains to
prove the decoding property. Given a vector of the form A(v) + err, where wt(v) ≤ an,
and wt(err) ≤ (2α − a)n, consider the 2n dimensional vector (~0, A(v) + err), where ~0 is the
n-th dimensional zero vector. The distance of this vector from the vector (v, A(v)) is at most
an + (2α − a)n = 2αn. As (v, Av) belongs to the image of G (and hence belongs to C) we
can apply the given decoding algorithm for C (that can correct α · 2n errors) on the word
(~0, A(v)+ err) to get the word (v, Av) from which we get v. The claim regarding the running
time is obvious. �

Applying Theorem 17 on the codes obtained from Theorem 3 we get the following corollary.

Corollary 18 For every 0 < a < 0.0595 and every large enough integer t there is an explicit
symmetric (a, 0.0595− a)-expanding transformation A, of dimension n = 189 · 8t, that can be
constructed in polynomial time (in n), and that has a polynomial time decoding algorithm that
can correct 0.0595 − a fraction of errors.

We now show that by using symmetric expanding transformations we can transform a
good code that is ε-biased w.r.t. heavy tests to a good code that is ε-biased.

Theorem 19 Let A be a symmetric (a, a)-expanding transformation of dimension n that can
correct β fraction of errors. Let G(h) : {0, 1}m → {0, 1}n be a mapping whose image is a code
C ⊂ {0, 1}n with the following properties.

• C is an [R, δ] code of block length n.

• For every word v ∈ C we have that wt(v) ≤ ∆n < an/2.
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• C has a polynomial time decoding algorithm that can correct α fraction of errors.

• For every w ∈ {0, 1}n such that wt(w) ≥ an, biasw (C) ≤ ε.

Let G(l)(x) = A(G(h)(x)). Finally let G : {0, 1}2m → {0, 1}n be the following generator
G(x, y) = G(h)(x)⊕G(l)(y). Let C̃ ⊂ {0, 1}n be the image of G (note that as sets we have that
C̃ = C ⊕ A(C)). Then C̃ has the following properties.

• C̃ has relative rate 2R and relative minimal distance at least min(δ, a − 2∆).

• C̃ has a polynomial time decoding algorithm that can correct min(β − ∆, α) fraction of
errors.

• bias
(
C̃
)
≤ ε (and hence bias (G) ≤ ε).

Proof We prove the properties of C̃ one by one. It is clear that the relative rate of C̃
is 2R. Let v, u be two different code words in C̃. Then we can write v = v1 + Av2 and
u = u1 + Au2 for v1, v2, u1, u2 ∈ C. It is clear that dist(u, v) = dist (u1 + Au2, v1 + Av2) =
dist (u1 − v1, A(v2 − u2)). As u1, v1, u2, v2 ∈ C we have that wt(u1 − v1) ≤ wt(u1) + wt(v1) ≤
2∆n < an and similarly that wt(v2 − u2) ≤ 2∆n < an. We analyze two cases.
Case v2 6= u2: As A is symmetric (a, a)-expanding we have that wt (A(v2 − u2)) ≥ an. Thus,
dist (u1 − v1, A(v2 − u2)) ≥ (a − 2∆)n (this is a trivial bound on the distance of a vector of
weight at most 2∆ and a vector of weight at least a). It follows that dist(u, v) ≥ (a − 2∆)n.
Case v2 = u2: In this case dist(u, v) = dist(u1, v1) ≥ δn, as C has minimal distance ≥ δn
(note that we must have that v1 6= u1).
Combining the two cases we get that the relative distance of C̃ is at least min(a − 2∆, δ).

We now show a decoding algorithm for C̃. Let u be a codeword in C̃, and let err ∈ {0, 1}n

be an error vector of weight wt(err) ≤ min(α, β − ∆) · n. Let v1, v2 ∈ C be such that
u = v1 + Av2. We now show how to recover v1, v2 from the corrupted word u + err. Let
ẽrr = err + v1. As wt(err) ≤ (β − ∆)n and wt(v1) ≤ ∆n we have that wt(ẽrr) ≤ βn. By
our assumption A can decode from β fraction of errors, thus A can recover the value of v2

from the input Av2 + ẽrr. As u + err = Av2 + (v1 + err) = Av2 + ẽrr, we can recover v2

from the input u + err. Given v2 and the word u + err we can get the vector v1 + err as
v1 + err = u + err −Av2. Since wt(err) ≤ αn we can use the decoding algorithm of C to get
v1 from the input v1 + err. Clearly the running time of this decoding algorithm is polynomial
whenever the running time of the decoding algorithms for A and C are polynomial. This
shows the decoding property.

Finally we notice that as a direct consequence of Theorem 14 we get that G is an ε-biased
generator (equivalently, that C̃ is an ε-biased set).

�
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4.3 Proof of Theorem 2

In order to prove Theorem 2, we apply Theorem 15 on the codes promised by Theorem 3, to
get a good code that is unbiased w.r.t. heavy tests. Then we apply Theorem 19 on this code
to obtain a good code that is ε-biased. Details follow.

Let a = 0.0595/2. Given a positive integer n = 189 · 8t, let s be the largest integer such
that 189

4
8s+1 ≤ an/6. Let m = 189 · 8s, then clearly m > an/96. We want t (and so n) to be

large enough so that Theorem 3 will guarantee the existence of a [ 1
2
, 2a]-code of block length

189
4

8s+1, that we denote Ĉ. In other words, Ĉ is a self-dual [1
2
, 2a]-code of rate m and block

length 2m. Recall that Ĉ has a decoding algorithm that can correct at least α̂
∆
= a fraction of

errors. By applying Theorem 15 on the code Ĉ we obtain a generator G(h) : {0, 1}m → {0, 1}n

that is (almost) unbiased against tests of weight at least an and whose image is a code C
with the following parameters: The relative rate of C is m/n ≥ a

96
; the relative distance of C

is at least a
48

· 2a = a2

24
; the weight of every codeword of C is at most a

3
n; C has a decoding

algorithm that can fix a fraction a2

48
of errors; and the bias of C against words of weight at

least an is at most ε = exp (−O (n)).

Now we apply Theorem 19 on the generator G(h), where A be the symmetric (a, a)-
expanding transformation of dimension n guaranteed by Corollary 18. Recall that A has
a decoding algorithm that can fix a fraction of a errors. We obtain a generator G : {0, 1}2m →
{0, 1}n whose image is a code C̃ with the following parameters. The relative rate of C̃ is
2m/n > a

48
; the relative minimal distance of C̃ is at least min[a2/24, a/3] = a2/24; C̃ has a

decoding algorithm that can fix a min(2a/3, a2/48) = a2/48 fraction of errors; and the bias of
C̃ (and hence of G) is at most ε = exp (−O (n/a)). As the constructions of A and of Ĉ, as
well as their decoding algorithms, run in polynomial time, we get that C and hence C̃ have
polynomial time encoding and decoding algorithms. This completes the proof of Theorem 2. �
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A Missing details from the proof of Equation (1)

We first notice that from the definition of γ, ε it follows (after a short calculation) that

2k < γm. (2)

Turning back to inequality (∗) from Equation 1, we see that it is enough to show that

n ≥

(⌊
n

i0

⌋
+ 1

)
(i0 − 1) . (3)

We have that
(⌊

n

i0

⌋
+ 1

)
(i0 − 1) ≤

(
n

i0
+ 1

)
(i0 − 1) = n −

n

i0
+ i0 − 1.

Thus, Equation (3) will follow if we prove that

n

i0
≥

1

8

(
bγmc

k

)
> i0. (4)

From equation (2) we get that

1

8

(
bγmc

k

)
>

1

8

(γm

k

)k

(5)

and

i0 =

⌊
m

bγmc

⌋
≤

m

bγmc
≤

m

γm − 1
≤

2

γ
. (6)

Thus, Equation (4) follow if we show that

1

8

(γm

k

)k

>
2

γ

which follows immediately from the definition of γ and ε.
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