
A Randomized Polynomial-Time Simplex Algorithm for Linear

Programming (Preliminary Version)

Jonathan A. Kelner∗

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Daniel A. Spielman†

Department of Computer Science

Yale University

December 13, 2005

Abstract

We present the first randomized polynomial-time simplex algorithm for linear programming.
Like the other known polynomial-time algorithms for linear programming, its running time
depends polynomially on the number of bits used to represent its input.

We begin by reducing the input linear program to a special form in which we merely need
to certify boundedness. As boundedness does not depend upon the right-hand-side vector, we
run the shadow-vertex simplex method with a random right-hand-side vector. Thus, we do not
need to bound the diameter of the original polytope.

Our analysis rests on a geometric statement of independent interest: given a polytope Ax ≤ b

in isotropic position, if one makes a polynomially small perturbation to b then the number of
edges of the projection of the perturbed polytope onto a random 2-dimensional subspace is
expected to be polynomial.

∗Partially supported by an NSF Graduate Fellowship and NSF grant CCR-0324914.
†Partially supported by NSF grant CCR-0324914.

Electronic Colloquium on Computational Complexity, Report No. 156 (2005)

ISSN 1433-8092

1 Introduction

Linear programming is one of the fundamental problems of optimization. Since Dantzig [Dan51]
introduced the simplex method for solving linear programs, linear programming has been applied in
a diverse range of fields including economics, operations research, and combinatorial optimization.
From a theoretical standpoint, the study of linear programming has motivated major advances in
the study of polytopes, convex geometry, combinatorics, and complexity theory.

While the simplex method was the first practically useful approach to solving linear programs
and is still one of the most popular, it was unknown whether any variant of the simplex method
could be shown to run in polynomial time in the worst case. In fact, most common variants have
been shown to have exponential worst-case complexity. In contrast, algorithms have been developed
for solving linear programs that do have polynomial worst-case complexity [Kha79, Kar84, DV04,
BV04]. Most notable among these have been the ellipsoid method [Kha79] and various interior-
point methods [Kar84]. All previous polynomial-time algorithms for linear programming of which
we are aware differ from simplex methods in that they are fundamentally geometric algorithms:
they work either by moving points inside the feasible set, or by enclosing the feasible set in an
ellipse. Simplex methods, on the other hand, walk along the vertices and edges defined by the
constraints. The question of whether such an algorithm can be designed to run in polynomial time
has been open for over fifty years.

We recall that a linear program is a constrained optimization problem of the form:

maximize c · x (1)

subject to Ax ≤ b, x ∈ R
d,

where c ∈ R
d and b ∈ R

n are column vectors, and A is an n × d matrix. The vector c is the
objective function, and the set P := {x | Ax ≤ b} is the set of feasible points. If it is non-empty,
P is a convex polyhedron, and each of its extreme vertices will be determined by d constraints of
the form aaa i · x = bi, where {aaa1, . . . ,aaan} are the rows of A.

In this paper, we present the first randomized polynomial-time simplex method. Like the other
known polynomial-time algorithms for linear programming, the running time of our algorithm de-
pends polynomially on the bit-length of the input. We do not prove an upper bound on the diameter
of polytopes. Rather we reduce the linear programming problem to the problem of determining
whether a set of linear constraints defines an unbounded polyhedron. We then randomly perturb
the right-hand sides of these constraints, observing that this does not change the answer, and use
a shadow-vertex simplex method to try solve the perturbed problem. When the shadow-vertex
method fails, it suggests a way to alter the distributions of the perturbations, after which we apply
the method again. We prove that the number of iterations of this loop is polynomial with high
probability.

It is important to note that the vertices considered during the course of the algorithm may not
all appear on a single polytope. Rather, they may be viewed as appearing on the convex hulls
of polytopes with different b-vectors. It is well-known that the graph of all of these “potential”
vertices has small diameter. However, there was previously no way to guide a walk among these
potential vertices to one optimizing any particular objective function.

Perhaps the message to take away from this is that instead of worrying about the combinatorics
of the natural polytope P , one can reduce the linear programming problem to one whose polytope
is more tractable. The first result of our paper, and the inspiration for the algorithm, captures this
idea by showing that if one slightly perturbs the b-vector of a polytope in near-isotropic position,

1

then there will be a polynomial-step path from the vertex minimizing to the vertex maximizing
a random objective function. Moreover, this path may be found by the shadow-vertex simplex
method.

We stress that while our algorithm involves a perturbation, it is intrinsically different from
previous papers that have provided average-case or smoothed analyses of linear programming. In
those papers, one shows that, given some linear program, one can probably use the simplex method
to solve a nearby but different linear program; the perturbation actually modified the input. In
the present paper, our perturbation is used to inform the walk that we take on the (feasible or
infeasible) vertices of our linear program; however, we actually solve the exact instance that we
are given. We believe that ours is the first simplex algorithm to achieve this, and we hope that
our results will be a useful step on the path to a strongly polynomial-time algorithm for linear
programming.

We note that no effort has been made to optimize our bounds; we shall include more precise
bounds in a later version of this paper.

2 The Shadow-Vertex Method

Let P be a convex polyhedron, and let S be a two-dimensional subspace. The shadow of P onto
S is simply the projection of P onto S. The shadow is a polygon, and every vertex (edge) of
the polygon is the image of some vertex (edge) of P . One can show that the set of vertices of P
that project onto the boundary of the shadow polygon are exactly the vertices of P that optimize
objective functions in S [Bor80, GS55].

These observations are the inspiration for the shadow-vertex simplex method, which lifts the
simplicity of linear programming in two dimensions to the general case [Bor80, GS55]. To start,
the shadow-vertex method requires as input a vertex v 0 of P . It then chooses some objective
function optimized at v 0, say f , sets S = span(c, f), and considers the shadow of P onto S. If no
degeneracies occur, then for each vertex y of P that projects onto the boundary of the shadow, there
is a unique neighbor of y on P that projects onto the next vertex of the shadow in clockwise-order.
Thus, by tracing the vertices of P that map to the boundary of the shadow, the shadow-vertex
method can move from the vertex it knows that optimizes f to the vertex that optimizes c. The
number of steps that the method takes will be bounded by the number of edges of the shadow
polygon. For future reference, we call the shadow-vertex simplex method by

ShadowVertex(aaa1, . . . ,aaan, b , c, S, v 0, s),

where aaa1, . . . ,aaan, b , and c specify a linear program of form (1), S is a two-dimensional subspace
containing c, and v 0 is the start vertex, which must optimize some objective function in S. We
allow the method to run for at most s steps. If it has not found the vertex optimizing c within that
time, it should return (fail,y), where y is its current vertex. If it has solved the linear program, it
either returns (opt,x), where x is the solution, or unbounded if it was unbounded.

In the next section, we will show that if the polytope is in isotropic position and the distances of
the facets from the origin are randomly perturbed, then the number of edges of the shadow onto a
random S is expected to be polynomial. The one geometric fact that we will require in our analysis
is that if an edge of P is tight for inequalities aaai · x = bi, for i ∈ I, then the edge projects to an
edge in the shadow if and only if S intersects the convex hull of {aaa i}i∈I . Below, we will often abuse
notation by identifying an edge with the set of constraints I for which it is tight.

2

While the theorem that we prove is very different from the smoothed analysis of the shadow
vertex method in [ST04, DS05] in that we do not perturb the entries of A, we note that our analysis
uses many tools from these smoothed analyses.

3 The Shadow Size in the Near-Isotropic Case

Definition 3.1. We say that a polytope P is in k-near-isotropic position if

B(0 , 1) ⊆ P ⊆ B(0 , k),

where B(0 , r) is the ball of radius r centered at the origin.

In this section, we will consider a polytope P defined by

{

x |∀i, aaaT
i x ≤ 1

}

,

in the case that P is in k-near-isotropic position. Note that the condition B(0 , 1) ⊆ P implies
‖aaa i‖ ≤ 1.

We will then consider the polytope we get by perturbing the right-hand sides,

Q =
{

x |∀i, aaaT
i x ≤ 1 + ri

}

,

where each ri is an independent exponentially distributed random variable with expectation λ.
That is,

Pr [ri ≥ t] = e−t/λ

for all t ≥ 0.
We will prove that the expected number of edges of the projection of Q onto a random 2-plane

is polynomial in n, k and 1/λ. In particular, this will imply that for a random objective function,
the shortest path from the minimum vertex to the maximum vertex is expected to have a number
of steps polynomial in n, k and 1/λ.

Our proof will proceed by analyzing the expected length of edges that appear on the boundary
of the projection. We shall show that the total length of all such edges is expected to be bounded
above. However, we shall also show that our perturbation will cause the expected length of each
edge to be reasonably large. Combining these two statements will provide a bound on the expected
number of edges that appear.

Theorem 3.2. Let v and w be uniformly random unit vectors, and let V be their span. Then, the
expectation over v , w , and the ris of the number of facets of the projection of Q onto V is at most

12πk(1 + λ ln(ne))
√

dn

λ
.

Proof. We first observe that the perimeter of the shadow of P onto V is at most 2πk. Let r =
maxi ri. Then, as

Q ⊆
{

x |∀i, aaaT
i x ≤ 1 + r

}

= (1 + r)P,

the perimeter of the shadow of Q onto V is at most 2πk(1+r). As we shall show in Proposition 3.3,
the expectation of r is at most λ ln(ne), so the expected perimeter of the shadow of Q on V is at
most 2πk(1 + λ ln(ne)).

3

Now, each edge of Q is determined by the subset of d − 1 of the constraints that are tight on
that edge. For each I ∈

([n]
d−1

)

, let SI(V) be the event that edge I appears in the shadow, and let
`(I) denote the length of that edge in the shadow. We now know

2πk(1 + λ ln(ne)) ≥
∑

I∈([n]
d−1)

E [`(I)] =
∑

I∈([n]
d−1)

E [`(I)|SI(V)] Pr [SI(V)] .

Below, in Lemma 3.9, we will prove that

E [`(I)|SI(V)] ≥ λ

6
√

dn
.

From this, we conclude that

E [number of edges] =
∑

I∈([n]
d−1)

Pr [SI(V)] ≤ 12πk(1 + λ ln(ne))
√

dn

λ
,

as desired.

We now prove the various lemmas used in the proof of Theorem 3.2. Our first is a straightforward
statement about exponential random variables.

Proposition 3.3. Let r1, . . . , rn be independent exponentially distributed random variables of ex-
pectation λ. Then,

E [max ri] ≤ λ ln(ne).

Proof. This follows by a simple calculation, in which the first inequality follows from a union bound:

E [max ri] =

∫ ∞

t=0
Pr [max ri ≥ t]

≤
∫ ∞

t=0
Pr
[

min(1, ne−t/λ)
]

=

∫ λ lnn

t=0
1 +

∫ ∞

λ ln n
ne−t/λ

= (λ lnn) + λ

= λ ln(ne),

as desired.

We shall now prove the lemmas necessary for Lemma 3.9, which bounds the expected length
of an edge, given that it appears in the shadow. Our proof of Lemma 3.9 will have two parts.
In Lemma 3.7, we will show that it is unlikely that the edge indexed by I is short, given that it
appears on the convex hull of Q. We will then use Lemma 3.8 to show that, given that it appears
in the shadow, it is unlikely that its projection onto the shadow plane is much shorter. To facilitate
the proofs of these lemmas, we shall prove some auxiliary lemmas about shifted exponential random
variables.

Definition 3.4. We say that r is a shifted exponential random variable with parameter λ if there
exists a t ∈ R such that r = s − t, where s is an exponential random variable with expectation λ.

4

Proposition 3.5. Let r be a shifted exponential random variable of parameter λ. Then, for all
q ∈ R and ε ≥ 0,

Pr
[

r ≤ q + ε
∣

∣r ≥ q
]

≤ ε/λ.

Proof. As r − q is a shifted exponential random variable, it suffices to consider the case in which
q = 0. So, assume q = 0 and r = s − t, where s is an exponential random variable of expectation
λ. We now need to compute

Pr
[

s ≤ t + ε
∣

∣s ≥ t
]

. (2)

We only need to consider the case ε < λ, as the proposition is trivially true otherwise. We first
consider the case in which t ≥ 0. In this case, we have

Pr
[

s ≤ t + ε
∣

∣s ≥ t
]

=
1
λ

∫ t+ε
s=t e−s/λds

1
λ

∫∞
s=t(1/λ)e−s/λds

=
e−t/λ − e−t/λ+ε/λ

e−t/λ
= 1 − eε/λ ≤ ε/λ,

for ε/λ ≤ 1.
Finally, the case when t ≤ 0 follows from the analysis in the case t = 0.

Lemma 3.6. For N and P disjoint subsets of {1, . . . , n}, let {ri}i∈P and {rj}j∈N be independent
random variables, each of which is a shifted exponential random variable with parameter at least λ.
Then

Pr

[

min
i∈P

(ri) + min
j∈N

(rj) < ε
∣

∣min
i∈P

(ri) + min
j∈N

(rj) ≥ 0

]

≤ nε/2λ.

Proof of Lemma 3.6. Assume without loss of generality that |P | ≤ |N |, so |P | ≤ n/2.
Set r+ = mini∈P ri and r− = minj∈N rj . Sample r− according to the distribution induced by

the requirement that r+ + r− ≥ 0. Given the sampled value for r−, the induced distribution on r+

is simply the base distribution restricted to the space where r+ ≥ −r−. So, it suffices to bound

max
r−

Pr
r+

[

r+ < ε − r−
∣

∣r+ ≥ −r−
]

= max
r−

Pr
r+

[

min
i∈P

(ri) < ε − r−
∣

∣min
i∈P

(ri) ≥ −r−
]

≤ max
r−

∑

i∈P

Pr
r+

[

ri < ε − r−
∣

∣min
i∈P

(ri) ≥ −r−
]

=
∑

i∈P

max
r−

Pr
r+

[

ri < ε − r−
∣

∣min
i∈P

(ri) ≥ −r−
]

=
∑

i∈P

max
r−

Pr
r+

[

ri < ε − r−
∣

∣ri ≥ −r−
]

≤ |P | (ε/λ),

where the last equality follows from the independence of the ri’s, and the last inequality follows
from Proposition 3.5.

Lemma 3.7. Let I ∈
([n]
d−1

)

, and let A(I) be the event that I appears on the convex hull of Q. Let
δ(I) denote the length of the edge I on Q. Then,

Pr [δ(I) < ε|A(I)] ≤ nε

2λ
.

5

Proof. Without loss of generality, we set I = {1, . . . , d − 1}. As our proof will not depend upon
the values of r1, . . . , rd−1, assume that they have been set arbitrarily. Now, parameterize the line
of points satisfying

aaaT
i x = 1 + ri, for i ∈ I,

by
l(t) := p + tq ,

where p is the point on the line closest to the origin, and q is a unit vector orthogonal to p. For
each i ≥ d, let ti index the point where the ith constraint intersects the line, i.e.,

aaaT
i l(ti) = 1 + ri. (3)

Now, divide the constraints indexed by i 6∈ I into a positive set, P =
{

i ≥ d|aaaT
i q ≥ 0

}

, and
a negative set N =

{

i ≥ d|aaaT
i q < 0

}

. Note that each constraint in the positive set is satisfied by
l(−∞) and each constraint in the negative set is satisfied by l(∞). The edge I appears in the
convex hull if and only if for each i ∈ P and j ∈ N , tj < ti. When the edge I appears, its length is

min
i∈P, j∈N

ti − tj.

Solving (3) for i ∈ P , we find ti = 1
aaa

T
i q

(

1 − aaaT
i p + ri

)

. Similarly, for j ∈ N , we find tj =

1

|aaaT
j q|
(

−1 + aaaT
j p − rj

)

. Thus, ti for i ∈ P and −tj for j ∈ N are both shifted exponential random

variables with parameter at least λ. So, by Lemma 3.6,

Pr
{ri|i6∈I}

[

min
i∈P, j∈N

ti − tj < ε|A(I)

]

< nε/2λ.

Lemma 3.8. Let Q be an arbitrary polytope, and let I index an edge of Q. Let v and w be random
unit vectors, and let V be their span. Let SI(V) be the event that the edge I appears on the convex
hull of the projection of Q onto V . Let θI(V) denote the angle of the edge I to V . Then

Pr
v ,w

[cos(θI(V)) < ε|SI(V)] ≤ dε2.

Proof. As in the proof of Lemma 3.7, parameterize the edge by

l(t) := p + tq ,

where q is a unit vector. Observe that SI(V) holds if and only if V non-trivially intersects the
cone

{
∑

i∈I αiaaai|αi ≥ 0
}

, which we denote C. Let W be the span of {aaa i|i ∈ I}, let x be the unit
vector where V intersects W , and let y be the unit vector in V orthogonal to x having positive
inner product with q . So that we can bound θI(V), we represent y by θ, its angle with q , and a
point z on the surface of the d − 2 dimensional sphere of points orthogonal to x having angle θ to
q . Finally, we introduce two more variables, α and β, so that we can express v and w in terms of
x and y , by

v = x cos α + y sinα, and

w = x cos β + y sinβ.

6

Deshpande and Spielman [DS05, Full version] prove that the Jacobian of this change of variables
from α, β, x , θ, z to v and w is

c(cos θ)(sin θ)d−3 sin(α − β)d−2,

where c is a constant depending only on the dimension.
Now, to compute the probability, we will fix α and β arbitrarily and integrate over x ∈ C.

Pr
V

[cos(θI(V)) < ε|SI(V)] =

∫

x∈C,z

∫

θ>arccos(ε) c(cos θ)(sin θ)d−3

∫

x∈C,z ,θ c(cos θ)(sin θ)d−3
=

∫ π/2
θ=arccos(ε)(cos θ)(sin θ)d−3

∫ π/2
θ=0(cos θ)(sin θ)d−3

=
(sin θ)d−2

∣

∣

π/2

arccos(ε)

(sin θ)d−2
∣

∣

π/2

0

≤ 1 − (sin(arccos(ε))d−2 ≤ 1 − (1 − ε2)d−2 ≤ (d − 2)ε2.

Lemma 3.9. For all I ∈
([n]
d−1

)

, EV,r1,...,rn [`(I)|SI(V)] ≥ λ
6
√

dn
.

Proof. For each edge I, `(I) = δ(I) cos(θI(V)). By Lemma 3.7,

Pr

[

δ(I) ≥ λ

n

∣

∣

∣
A(I)

]

≥ 1/2.

By Lemma 3.8,

Pr
V

[

cos(θI(V)) ≥ 1/
√

2d
∣

∣

∣
SI(V)

]

≥ 1/2.

So, given that edge I appears on the shadow, `(I) > (1/
√

2d)
(

λ
n

)

with probability at least 1/4.

Thus, its expected length when it appears is at least λ
6
√

dn
.

4 The Shadow Size in the General Case

In this section, we present an extension of Theorem 3.2 that we will require in the analysis of our
simplex algorithm. We extend the theorem in two ways. First of all, we examine what happens
when P is not near isotropic position. In this case, we just show that the shadow of the convex
hull of the vertices of bounded norm probably has few edges. As such, if we take a polynomial
number of steps around the shadow, we should either come back to where we started or find a
vertex far from the origin. Secondly, we consider the shadow onto random planes that come close
to a particular vector, rather than just onto uniformly random planes.

Definition 4.1. For a unit vector u and a ρ > 0, we define the ρ-perturbation of u to be the
random unit vector v chosen by

1. choosing a θ ∈ [0, π] according to the restriction of the exponential distribution of expectation
ρ to the range [0, π], and

2. setting v to be a uniformly chosen unit vector of angle θ to u .

Theorem 4.2. Let aaa1, . . . ,aaan be vectors of norm at most 1. Let r1, . . . , rn be independent expo-
nentially distributed random variables with expectation λ. Let Q be the polytope given by

Q =
{

x |∀i, aaaT
i x ≤ 1 + ri

}

.

7

Let u be an arbitrary unit vector, ρ < 1/
√

d, and let v be a random ρ perturbation of u . Let w be
a uniformly chosen random unit vector. Then, for all t > 1,

Er1,...,rn,v ,w

[

ShadowSizespan(v ,w)(Q ∩ B(0 , t))
]

≤ 42πt(1 + λ log n)
√

dn

λρ
.

Proof of Theorem 4.2. The proof of Theorem 4.2 is almost identical to that of Theorem 3.2, except
that we substitute Lemma 4.3 for Lemma 3.7, and we substitute Lemma 4.4 for Lemma 3.8.

Lemma 4.3. For I ⊆
([n]
d−1

)

and t > 0,

Pr
[

δ(I) < ε
∣

∣A(I) and I ∩ B(0 , t) 6= ∅
]

≤ nε

2λ
.

Proof. The proof is identical to the proof of Lemma 3.7, except that in the proof of Lemma 3.6 we
must condition upon the events that

r+ ≥ −
√

t − ‖p‖ and r− ≤
√

t − ‖p‖.
These conditions have no impact on any part of the proof.

Lemma 4.4. Let Q be an arbitrary polytope, and let I index an edge of Q. Let u be any unit
vector, let ρ < 1/

√
d, and let v be a random ρ perturbation of u . Let w be a uniformly chosen

random unit vector, and let V = span(u , v). Then

Pr
v ,w

[cos(θI(V)) < ε|SI(V)] ≤ 3.5ε2/ρ2.

Proof. We perform the same change of variables as in Lemma 3.8.
To bound the probability that cos θ < ε, we will allow the variables x , z , α and β to be

fixed arbitrarily, and just consider what happens as we vary θ. To facilitate writing the resulting
probability, let µ denote the density function on v . Once we have fixed all variables but θ, we can
write v as a function of θ. Moreover, as we vary θ by φ, v moves through an angle of at most φ.
So, for all φ < ρ and θ, µ(x (θ)) < µ(x (θ + φ))/e. With this fact in mind, we compute the bound

∫ π/2
θ=arccos(ε)(cos θ)(sin θ)d−3µ(θ)
∫ π/2
θ=0 (cos θ)(sin θ)d−3µ(θ)

≤
∫ π/2
θ=arccos(ε)(cos θ)(sin θ)d−3µ(θ)
∫ π/2
θ=π/2−ρ(cos θ)(sin θ)d−3µ(θ)

≤
e
∫ π/2
θ=arccos(ε)

(cos θ)(sin θ)d−3

∫ π/2
θ=π/2−ρ(cos θ)(sin θ)d−3

= e
(sin θ)d−2

∣

∣

π/2

arccos(ε)

(sin θ)d−2
∣

∣

π/2

π/2−ρ

= e
1 − (sin(arccos(ε))d−2

1 − (sin(ρ)d−2

≤ e
1 − (1 − ε2)d−2

1 − (1 − ρ2/2)d−2

≤ e
(d − 2)ε2

(d − 2)2(1 − 1/
√

e)ρ2
, as ρ < 1/

√
d,

≤ 3.5(ε/ρ)2.

8

5 Reduction of Linear Programming to Certifying Boundedness

We now recall an old trick [Sch86, p. 125] for reducing the problem of solving a linear program in
form (1) to a different form that will be more useful for our purposes. We recall that the dual of
such a linear program is given by

minimize b · y (4)

subject to ATy = c, y ≥ 0,

and that when the programs are both feasible and bounded, they have the same solution. Thus,
any feasible solution to the system of constraints

Ax ≤ b, x ∈ R
d, (5)

ATy = c, y ≥ 0 ,

c · x = b · y
provides a solution to both the linear program and its dual. Using standard techniques, one can
reduce the solution of a feasibility problem in this form to a feasibility problem of the form

AT
1 z = 0 (6)

z ≥ 0 , z 6= 0 ,

where A1 is a matrix constructed from A, b and c. When the system (6) is non-degenerate, a
solution to the system is equivalent to a certificate that a system of form

A1w ≤ b1 (7)

is bounded, where the choice of the vector b1 does not matter as it does not affect bounded-
ness. However, our reduction produces a system that is degenerate. This is easily remedied by
applying the ε-perturbation technique of Megiddo and Chandrasekaran [MC89], which produces a
non-degenerate system that is solvable if and only if the original is, and from whose solution one
can obtain the solution to the original1. By solving this system with a randomly chosen right-hand
side vector we can solve system (1) while avoiding the combinatorial complications of the feasible
set of (1).

In our algorithm, we will certify boundedness of (1) by finding the vertices minimizing and
maximizing some objective function. Provided that the system is non-degenerate, which it is with
high probability under our choice of right-hand sides, this can be converted into a solution to (6).

6 Our Algorithm

Our bound from Theorem 3.2 suggests a natural algorithm for certifying the boundedness of a
linear program of the form given in (7): set each bi to be 1 + ri, where ri is an exponential random
variable, pick a random objective function c and a random two-dimensional subspace containing it,
and then use the shadow-vertex method with the given subspace to maximize and minimize c.

In order to make this approach into a polynomial-time algorithm, there are two difficulties that
we must surmount:

1If one views the problem as asking if the origin is contained inside the convex hull of the rows of A1, then

the perturbation pushes the origin slightly towards the average of the rows. The magnitude of the perturbation is

small enough that it cannot make an infeasible system feasible, but only increases the bit-length of the input by a

polynomial factor in n and d

9

1. To use the shadow-vertex method, we need to start with some vertex that appears on the
boundary of the shadow. If we just pick an arbitrary shadow plane, there is no obvious way
to find such a vertex.

2. Theorem 3.2 bounds the expected shadow size of the vertices of bounded norm in polytopes
with perturbed right-hand sides, whereas the polytope that we are given may have vertices
of exponentially large norm. If we naively choose our perturbations, objective function, and
shadow plane as if we were in a coordinate system in which all of our vertices had bounded
norm, the distribution of vertices that appear on the shadow may be very different, and we
have no guarantees about the expected shadow size.

We address the first difficulty by constructing an artificial vertex at which to start our simplex
algorithm. To address the second difficulty, we start out by choosing our random variables from
the naive distributions. If this doesn’t work, we iteratively use information about how it failed to
improve the probability distributions from which we sample and try again.

6.1 Constructing a Starting Vertex

In order to use the shadow-vertex method on a polytope P , we need a shadow plane S and a vertex
v that appears on the boundary of the shadow. One way to obtain such a pair is to pick any vertex
v , randomly choose (from some probability distribution) an objective function c optimized by v ,
let u be a uniformly random unit vector, and set S = span(c,u).

However, to apply the bound on the shadow size given by Theorem 4.2, we need to choose c to
be a ρ-perturbation of some vector. For such a c to be likely to be optimized by v , we need v to
optimize a reasonably large ball of objective functions. To guarantee that we can find such a v , we
create one. That is, we add constraints to our polytope to explicitly construct an artificial vertex
with the desired properties. (This is similar to the “Phase I” approaches that have appeared in
some other simplex algorithms.)

Suppose for now that the polytope {x |Ax ≤ 1} is in k-near-isotropic position. Construct a
modified polytope P ′ by adding d new constraints,

{

wT
i x ≤ 1, i = 1, . . . , d

}

, where

w i = −
(

∑

j

ej

)

+
√

de i/3k
2,

and w i = w i/(2 ||w i||). Let x 0 be the vertex at which w 1, . . . ,w d are all tight. Furthermore, let
c be a ρ-perturbation of the vector 1/

√
d, with ρ = 1/6dk2, and let x 1 be the vertex at which c is

maximized. We can prove:

Lemma 6.1. The following three properties hold with high probability. Furthermore, they remain
true with probability 1− (d + 2)e−n if we perturb all of the right-hand sides of the constraints in P ′

by an exponential random variable of expectation λ = 1/n.

1. The vertex x 0 appears on P ′,

2. −c is maximized at x 0, and

3. None of the constraints w 1, . . . ,wd is tight at x 1.

Proof. Follows from Lemma 7.1 and bounds on tails of exponential random variables.

10

Set
k := 16d + 1 and s := 4 · 107 d9/2n.

Let S = span(c,u), where u is a uniform random unit vector. If P is in k-near-isotropic position,
then by Lemma 6.1 and Theorem 3.2 we can run the shadow vertex method on P ′ with shadow
plane S and starting at vertex x 0, and we will find the vertex x 1 that maximizes c within s steps,
with probability at least 1/2. Since none of the w i are tight at x 1, x 1 will also be the vertex of
the original polytope P that maximizes c.

This gives us the vertex x 1 of P that maximizes c. We can now run the shadow vertex method
again on P using the same shadow plane. This time, we start at x 1 and find the vertex that
maximizes −c. We are again guaranteed to have an expected polynomial-sized shadow, so this will
again succeed with high probability. This will give us a pair of vertices that optimize c and −c,
from which we can compute our desired certificate of boundedness. It just remains to deal with
polytopes that are not near isotropic position.

6.2 Polytopes Far from Isotropic Position

We first observe that for every polytope there exists an affine change of coordinates (i.e., a transla-
tion composed with a change of basis) that puts it into k-near-isotropic position. An affine change
of coordinates does not change the combinatorial structure of a polytope, so this means that there
exists some probability distribution on b and S for which the shadow has polynomial expected size.
We would like to sample b and S from these probability distributions, and then pull the result back
along the change of coordinates. Unfortunately, we don’t know an affine transformation that puts
our polytope into k-near-isotropic position, so we are unable to sample from these distributions.

Instead, we shall start out as we would in the k-near-isotropic case, adding in artificial con-
straints w1, . . . ,wd, and choosing an objective function and shadow plane as in Section 6.1. By
Theorem 4.2, running the shadow-vertex method for s steps will yield one of two results with
probability at least 1/2:

1. It will find the optimal vertex x 1, or

2. It will find a vertex y of norm at least 2k.

In the first case, we can proceed just as in the k-near-isotropic case and run the shadow-vertex
method a second time to optimize −c, for which we will have the same two cases.

In the second case, we have not found the optimal vertex, but we have with high probability
learned a point of large norm inside our polytope. We can use this point to change the probability
distributions from which we draw our random variables and then start over. We shall show that
we need only repeat this process a polynomial number of times before we find a right-hand side
and shadow plane for which the shadow-vertex method finds the optimum with high probability.
Our analysis rest upon the following geometric lemma, proved in Section 7, which is similar to
statements used in the analysis of the ellipsoid algorithm.

Lemma 6.2. Let B ⊆ R
d be the unit ball, let P be a point at distance S from the origin, and let

C = conv(B,P) be their convex hull. If S ≥ 16d + 1, then C contains an ellipse of volume at least
twice that of B, having d − 1 semi-axes2 of length 1 − 1/d and one semi-axis of length at least 8
centered at the point of distance 7 from the origin in the direction of P .

2If an ellipsoid E is given as the set E =
˘

x |xT Q−1x ≤ 1
¯

, where Q is a symmetric, positive definite matrix,

then the semi-axes of E have lengths equal to the the eigenvalues of Q. For example, the semi-axes of the sphere are

all of length 1.

11

Algorithm 6.1: CheckBoundedness(aaa1, . . . ,aaan)

Require each aaai has norm at most 1.

Set k = 16d + 1, λ = 1/n, ρ = 1/6dk2, s = 4 · 107 d9/2n, and w i as described in text;
Initialize Q := Idn, r := 0;
Repeat until you return an answer

Construct constraints for starting corner: aaan+i := QTw i/(1 −w i · (Qr)) for i = 1, . . . , d;
bi := (1 + βi)(1 + aaaT

i r) for i = 1, . . . n + d, βi exponential random vars with expectation λ; (1)
Set starting corner x 0 := point where aaaT

i x 0 = bi for i = n + 1, . . . , n + d;
If x 0 violates aaaT

i x 0 ≤ bi for any i, go back to (1) and generate new random variables;

c := QT γ, with γ a ρ-perturbation of 1/
√

d;

Shadow plane S := span(c,QTu), with u a uniformly random unit vector;
Run ShadowVertex((aaa1, . . . ,aaan+d), b , c,S ,x 0, s) :

If returns unbounded then return (unbounded);
If returns (fail, y 0) then set y := y 0 and go to (3);
If returns (opt, v 0) then set v := v 0 and continue to (2);

Run ShadowVertex((aaa1, . . . ,aaan), b , c,S , v , s) : (2)

If returns unbounded then return (unbounded);
If returns (fail, y 0) then set y := y 0 and go to (3);
If returns (opt, v 0) then set v ′ := v 0 and return (v , v ′);

Update Q and r : (3)

If ||Q(y + r)|| ≤ 2k then don’t change Q or r

else

Set M := the matrix that scales down Q(y + r) by factor of 8 and scales
vectors in orthogonal complement up by factor of 1 − 1/d;

Q := MQ ;
r := r + 7Q(y + r)/||Q(y + r)||;

We remark that the number of times that we have to change probability distributions depends
on the bit-length of the inputs, and that this is the only part of our algorithm in which this is a
factor. Otherwise, the execution of our algorithm is totally independent of the bit-length of the
inputs.

Theorem 6.3. If each entry of the vectors aaai are specified using L bits, then CheckBoundedness()
either produces a certificate that its input is bounded or that it is unbounded within O(n3L) itera-
tions, with high probability.

Proof. It will be helpful to think of the input to CheckBoundedness() as being the polytope
{

x |aaaT
i x ≤ 1∀i

}

instead of just the vectors aaa1, . . . ,aaan. We can then talk about running this algo-
rithm on an arbitrary polytope

{

x |αT
i x ≤ τi ∀i

}

by rewriting this polytope as
{

x | (αi/τi)
T x ≤ 1∀i

}

.
With this notation, it is easy to check that running an iteration of the Repeat loop on a

polytope P with Q = Q0 and r = r 0 is equivalent to running the same code on the polytope
Q0(P + r0) with Q = Id and r = 0. The update step at the end of the algorithm can therefore
be thought of as applying an affine change of coordinates to the input and then restarting the
algorithm.

12

If Q = Idn and r = 0, the argument from Section 6.1 proves that the first iteration of the
Repeat loop will either prove boundedness, prove unboundedness, or find a point with norm at
least k with probability at least 1/2. In either of the first two cases, the algorithm will have
succeeded, so it suffices to consider the third.

If a point y is in the polytope P ′ = {x |Ax ≤ b}, the point y/2 will be in the polytope
P = {x |Ax ≤ 1} with probability at least 1 − ne−n. This guarantees that P contains a point of
norm at least k. Since P contains the unit ball, Lemma 6.2 implies that P contains an ellipse of
volume at least twice that of the unit ball. The update step of our algorithm identifies such an
ellipse and scales and translates so that it becomes the unit ball, and it then restarts with this new
polytope as its input. This new polytope has at most half the volume of the original polytope.

All the vertices of the original polyhedron are contained in a ball of radius 2O(n2L), where L is
the maximum bit-length of any number in the input, and so their convex hull has volume at most
2O(n3L) times that of the unit ball [GLS91]. Each iteration of the algorithm that finds a point of
norm at least k decreases the volume of P by a factor of at least 2. All of the polytopes that we
construct contain the unit ball, so this can occur at most O(n3L) times. This guarantees that the
Repeat loop finds an answer after a O(n3L) iterations with high probability, as desired.

While the algorithm requires samples from the exponential distribution and uniform random
points on the unit sphere, it is not difficult to show that it suffices to use standard discretizations
of these distributions of bit-length polynomial in n and d.

7 Geometric Lemmas for Algorithm’s Correctness

Lemma 7.1. Let P be a polytope in k-near-isotropic position, let c and q be unit vectors, and let

v = argmax
x∈P

c · x

be the vertex of P at which c · x is maximized. If c · q ≤ −(2k2 − 1)/2k2, then v · q ≤ 0.

Proof. We first note that

||q + c||2 = ||q||2 + ||c||2 + 2(c · q) ≤ 2 − 2k2 − 1

k2
=

1

k2
,

so ||q + c|| ≤ 1/k. The fact that P is contained in B(0, k) implies that ||v|| ≤ k, and the fact that
P contains the unit ball implies that

v · c = max
x∈P

c · x ≥ 1.

We therefore have
q · v = −c · v + (q + c) · v ≤ −1 + ||q + c||||v|| ≤ 0,

as desired.

We now prove some geometric facts that will be necessary for the analysis of our algorithm. We
first prove a two-dimensional geometric lemma. We then use this to prove a higher-dimensional
analogue, which is the version that we shall actually use to analyze our algorithm.

13

7.1 2-Dimensional Geometry Lemma

In this section, we prove a lemma about the two-dimensional objects shown in Figure 1. In this
picture, C is the center of a circle C of radius 1. P is a point somewhere along the positive x-axis,
and we have drawn the two lines tangent to the circle through P , the top one of which we have
labeled L. E is the center of an axis-parallel ellipse E with horizontal semi-axis M ≥ 1 and vertical
semi-axis m ≤ 1. The ellipse is chosen to be a maximal ellipse contained in the convex hull of the
circle and P . Furthermore, let S be the distance from C to P , and let Q = (1 − m2)/2.

C E

P

1 m
S

M

Q=(1-m)/2
2

L

Figure 1: The geometric objects considered in Lemma 7.2

Lemma 7.2. With the definitions above,

M = Q(S − 1) + 1.

Proof. Without loss of generality, let E be the origin. The circle and ellipse are mutually tangent
at their leftmost points on the x-axis, so C is at (−M + 1, 0), and P is therefore at (S −M + 1, 0).
Let

` =

(

1

S
,

√

1 − 1

S2

)

,

and let L be the line given by

L =

{

(x, y) | ` · (x, y) =
S − M + 1

S

}

.

We claim that L has the following three properties, as shown in Figure 1:

1. L passes through P .

2. L is tangent to C.

3. If we take the major semi-axis M of the ellipse E to be Q(S − 1) + 1, then L is tangent to E.

Establishing these properties would immediately imply Lemma 7.2, so it suffices to check them one
by one.

14

Property 1. This follows by direct computation—we simply note that the point P = (S−M+1, 0)
satisfies the equation for L.

Property 2. It suffices to show that the distance from the point C to the line L is exactly 1.
Since L is the unit normal to L, it suffices to check that

` · C =

(

S − M + 1

S

)

− 1 =
−M + 1

S
,

which again follows by direct computation.

Property 3. Let

L = (Lx,Ly) =
S

S − M + 1
` =

(

1

S − M + 1
,

√
S2 − 1

S − M + 1

)

,

so that L = {(x, y) | L · (x, y) = 1}. When expressed in this form, L will be tangent to E if and only
if L2

xM2 + L2
ym

2 = 1. This can be verified by plugging in M = Q(S − 1) + 1 and Q = (1 − m2)/2,
and then expanding the left-hand side of the equation.

7.2 High-Dimensional Geometry Lemma

Lemma 7.3. Let B ⊆ R
d be the unit ball, let P be a point at distance S from the origin, and let

C = conv(B,P) be their convex hull. For any m ≤ 1, C contains an ellipsoid with (d−1) semi-axes
of length m and one semi-axis of length

(

1 − m2
)

(S − 1)/2 + 1.

Proof. Without loss of generality, take P = (S, 0, . . . , 0). Consider an axis-parallel ellipsoid E with
the axes described in the above theorem, with its distinct axis parallel to e1, and translated so that
it is tangent to B at (−1, 0, . . . , 0).

We assert that E is contained in C. It suffices to check the containment when we intersect with
an arbitrary 2-dimensional subspace containing 0 and P . In this case, we have exactly the setup
of Lemma 7.2, and our result follows immediately.

Proof of Lemma 6.2. If we set m = 1 − 1/d, then Lemma 7.3 guarantees that the length of the
longer semi-axis of the ellipse will be at least

(

1 −
(

1 − 1

d

)2
)

16d

2
≥ 8.

So, the ratio of the volume of the unit ball to the ellipse is at least

V/vol(B) ≥
(

1 − 1

d

)d−1

8 (8)

≥ 8

4
= 2.

(9)

15

References

[Bor80] Karl Heinz Borgwardt. The Simplex Method: a probabilistic analysis. Number 1 in Algo-
rithms and Combinatorics. Springer-Verlag, 1980.

[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. J.
ACM, 51(4):540–556, 2004.

[Dan51] G. B. Dantzig. Maximization of linear function of variables subject to linear inequalities.
In T. C. Koopmans, editor, Activity Analysis of Production and Allocation, pages 339–347.
1951.

[DS05] Amit Deshpande and Daniel A. Spielman. Improved smoothed analysis of the shadow
vertex simplex method. preliminary version appeared in FOCS ’05, 2005.

[DV04] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm for
solving linear programs. In Proceedings of the thirty-sixth annual ACM Symposium on
Theory of Computing (STOC-04), pages 315–320, New York, June 13–15 2004. ACM
Press.

[GLS91] Martin Grotschel, Laszlo Lovasz, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1991.

[GS55] S. Gass and Th. Saaty. The computational algorithm for the parametric objective function.
Naval Research Logistics Quarterly, 2:39–45, 1955.

[Kar84] N. Karmarkar. A new polynomial time algorithm for linear programming. Combinatorica,
4:373–395, 1984.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademia
Nauk SSSR, pages 1093–1096, 1979.

[MC89] N. Megiddo and R. Chandrasekaran. On the epsilon-perturbation method for avoiding
degeneracy. Operations Research Letters, 8:305–308, 1989.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[ST04] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. JACM: Journal of the ACM, 51:385 – 463,
2004.

16

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

