Polylogarithmic Approximation Algorithm for Non-Uniform Multicommodity Buy-at-Bulk

MohammadTaghi Hajiaghayi * Guy Kortsarz ${ }^{\dagger}$ Mohammad R. Salavatipour ${ }^{\ddagger}$

November 23, 2005

Abstract

We consider the non-uniform multicommodity buy-at-bulk network design problem. In this problem we are given a graph $G(V, E)$ with two cost functions on the edges, a buy cost $b: E \longrightarrow$ \mathbb{R}^{+}and a rent cost $r: E \longrightarrow \mathbb{R}^{+}$, and a set of source-sink pairs $s_{i}, t_{i} \in V(1 \leq i \leq \alpha)$ with each pair i having a positive demand δ_{i}. Our goal is to design a minimum cost network $G\left(V, E^{\prime}\right)$ such that for every $1 \leq i \leq \alpha, s_{i}$ and t_{i} are in the same connected component in $G\left(V, E^{\prime}\right)$. The total cost of $G\left(V, E^{\prime}\right)$ is the sum of buy costs of the edges in E^{\prime} plus sum of total demand going through every edge in E^{\prime} times the rent cost of that edge. Since the costs of different edges can be different, we say that the problem is non-uniform. The first non-trivial approximation algorithm for this problem is due to Charikar and Karagiozova (STOC' 05) whose algorithm has an approximation guarantee of $\exp (O(\sqrt{\log n \log \log n}))$, when all $\delta_{i}=1$ and $\exp (O(\sqrt{\log N \log \log N}))$ for the general demand case where N is the sum of all demands. We improve upon this result, by presenting the first polylogarithmic (specifically, $O\left(\log ^{4} n\right)$ for unit demands and $O\left(\log ^{4} N\right)$ for the general demands) approximation for this problem. The algorithm relies on a recent result [12] for the buy-at-bulk k-Steiner tree problem.

[^0]
1 Introduction

The non-uniform multicommodity buy-at-bulk problem is defined as follows. An instance of the problem is an undirected graph $G(V, E)$ and a collection of source-sink pairs $\mathcal{T}=\left\{\left(s_{i}, t_{i}\right) \mid s_{i}, t_{i} \in\right.$ $V, 1 \leq i \leq \alpha\}$. We have two independent non-negative cost functions on the edges, a buy cost $b: E \longrightarrow \mathbb{R}^{+}$and a rent cost $r: E \longrightarrow \mathbb{R}^{+}$. Since $r(e)$ and $b(e)$ of different edges can be different we use the term non-uniform, otherwise we have the uniform version in which the costs along the edges are identical. There is a demand $\delta_{i} \in \mathbb{Z}^{+}$associated with every pair s_{i}, t_{i}. A feasible solution for the non-uniform multicommodity buy-at-bulk instance is a subset $E^{\prime} \subseteq E$ such that for every i, s_{i} and t_{i} belong to the same connected component in $G^{\prime}\left(V, E^{\prime}\right)$. Our goal is to find a feasible solution with minimum total cost, where the cost of a solution $G^{\prime}\left(V, E^{\prime}\right)$ is the sum of its buy cost, denoted by $B\left(E^{\prime}\right)$, and its rent cost, denoted by $R\left(E^{\prime}\right)$. Here $B\left(E^{\prime}\right)$ and $R\left(E^{\prime}\right)$ are defined as

$$
R\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} f(e) \cdot r(e)
$$

where $f(e)$ is the total amount of demands routed along edge e, and

$$
B\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} b(e) .
$$

The total cost of solution E^{\prime} is $\psi\left(E^{\prime}\right)=B\left(E^{\prime}\right)+R\left(E^{\prime}\right)$. Equivalently, $R\left(E^{\prime}\right)$ is equal to $\sum_{i} \delta_{i}$. $\operatorname{dist}_{G^{\prime}}\left(s_{i}, t_{i}\right)$ where the distance here is with respect to $r(e)$'s. We also use $R\left(G^{\prime}\right), B\left(G^{\prime}\right)$, and $\psi\left(G^{\prime}\right)$ for $R\left(E^{\prime}\right), B\left(E^{\prime}\right)$, and $\psi\left(E^{\prime}\right)$, respectively. This model of rent and buy was first introduced by Meyerson et al. [15] who called it the cost-distance model. There are two other models one can consider: in the unique-cost model, each edge is given with either a rent cost or a buy cost; in the rent or buy model each edge has both a rent cost and a buy cost, but it should be decided whether we buy the edge or rent it (but not both). In [12], it is shown that all these three models, rent and buy, unique cost, and rent or buy are equivalent. In the single-sink (single-source) version of the problem, all pairs of \mathcal{T} have the same sink (source). Usually the algorithms for the single-sink version and the single-source version are symmetric.

Meyerson et al. [15] obtained an $O(\log n)$-approximation algorithm for the non-uniform singlesink multicommodity buy-at-bulk problem. Charikar and Karagiozova [4] obtained an $\exp (O(\sqrt{\log n \log \log n}))$ approximation for the non-uniform multicommodity buy-at-bulk problem for the special case of unit demands (and $\exp (O(\sqrt{\log N \log \log N})$)-approximation factor for the general demands case where N is the sum of all demands). Both papers pose as one of the main open problems the question of existence of a polylogarithmic approximation algorithm for the non-uniform multicommodity case. In this paper we answer this open problem affirmatively. Based on a recent result [12] for the buy-at-bulk k-Steiner tree problem, we obtain the first polylogarithmic approximation algorithm for the non-uniform multicommodity buy-at-bulk problem. The approximation factor of our algorithm is $O\left(\log ^{4} n\right)$ for the unit demands case and $O\left(\log ^{4} N\right)$ for the general demands case.

1.1 Previous work

In the design of communication networks it is required to decide where one should buy and where one should rent bandwidth to satisfy the demands. The cost of the bandwidth exhibits significant economies of scale and thus is minimized if we aggregate traffic into large backbone links. Problems with rent and buy considerations are motivated by practical applications. They have been studied
for a long time now in both Operation Research and Computer Science. See Salman et al. [16] for some early work in this area.

The classic generalized Steiner tree or Steiner forest problem is a special case of the multicommodity buy-at-bulk problem when all rent costs are zero. The best approximation algorithm for this problem is a $2-\frac{1}{n-1}$ approximation algorithm (n is the number of vertices) due to Goemans and Williamson [8]. The best approximation ratio for the uniform multicommodity buy-at-bulk problem is in $O(\log n)$ due to Awerbuch and Azar [2], Bartal [3], and Fakcharoenphol et al. [7]. Various special cases of the problem admit constant factor approximation algorithms. Kumar et al. [14] and Gupta et al. [10] obtain constant factor approximation algorithms for the case in which one can either rent capacity on each edge at a per unit cost of μ or buy unlimited bandwidth at cost M. Also for the uniform single-sink case constant-factor approximations are known via randomized combinatorial algorithms $[9,11]$ and an LP rounding approach [17].

Meyerson et al. [15] were the first to consider the non-uniform version of the problem and presented a randomized $O(\log n)$-approximation algorithm for non-uniform single-sink multicommodity buy-at-bulk. The algorithm of Meyerson et al. [15] was later derandomized using an LP-based approach by Chekuri, Khanna, and Naor [5]. As mentioned earlier, the only non-trivial result for the general multicommodity buy-at-bulk problem is due to Charikar and Karagiozova [4]. It seems that most of the standard tools previously used for the uniform or rooted buy at bulk multicommodity version fail for the general multicommodity non-uniform buy at bulk problem. For example, for the uniform case, Awerbuch and Azar [2] used Bartal's result of embedding a metric into probabilistic trees [3]. As observed earlier [4, 15], the non-uniform version seems less amenable for using this tool because the rent function and the buy function are completely unrelated. In addition since we have multiple sources and sinks, the optimal solution can be quite complex. ${ }^{1}$

The hardness of buy-at-bulk network design problems is also studied in the literature. Andrews [1] showed that unless NP $\subseteq \operatorname{ZPTIME}\left(n^{\operatorname{polylog} n}\right)$ the non-uniform multicommodity buy at bulk problem has no $O\left(\log ^{1 / 2-\epsilon} n\right)$-approximation for any $\epsilon>0$. Under the same assumption, the uniform variant admits no $O\left(\log ^{1 / 4-\epsilon} n\right)$-approximation for any constant $\epsilon>0$. For the non-uniform singlesink case, Chuzhoy et al. [6] show that the problem cannot be approximated better than $\Omega(\log \log n)$ unless NP \subseteq DTIME $\left(n^{\log \log \log n}\right)$.

1.2 Our contribution and technique

We present an $O\left(\log ^{4} n\right)$-approximation for the unit demands non-uniform multicommodity buy at bulk problem. For general demands the ratio is $O\left(\log ^{4} N\right)$ where N is the total demands. ${ }^{2}$

This performance guarantee does not seem to be the best ratio achievable for this problem but is the first polylogarithmic approximation for this problem and is much closer to the current best lower bound $\Omega\left(\log ^{1 / 2-\epsilon} n\right)$.

Our techniques: The algorithm mainly uses a recent result [12] regarding shallow-light trees (described below) followed by an analysis that relies on clustering techniques. The shallow-light k-Steiner buy at bulk problem is defined as follows. We are given an undirected graph $G(V, E)$, a collection T of terminals containing a root s, a number k, and a diameter bound D. In addition two cost functions on the edges, called buy and rent, are also given. A k-Steiner tree is a tree that

[^1]contains at least k terminals. The goal is to find an s-rooted k-Steiner tree that has rent-diameter at most D, and among all such subtrees, find the one with minimum buy cost. A (ρ_{1}, ρ_{2})-approximation algorithm for the shallow-light k-Steiner buy at bulk problem finds an s-rooted k-Steiner tree with rent diameter at most $\rho_{1} \cdot D$ and buy cost at most $\rho_{2} \cdot B$ with B being the optimum buy cost for a k-Steiner tree of rent diameter D.

The organization of this paper is as follows. We start with some preliminary definitions and results in Section 2. Then we present some structural properties of an optimum solution in Section 3. These properties will be used in the analysis of our algorithm. The approximation algorithm and its analysis for non-uniform multicommodity buy-at-bulk are presented in Sections 4 and 5. Finally, we present extension of our algorithm for the general demand case and concave edge-cost functions in Section 6.

2 Preliminaries

Let \mathcal{I} denote the instance and \mathcal{T} the set of source-sink pairs. Throughout we denote by α be the number of source-sink pairs. The variable α^{\prime} is used to denote the number of uncovered pairs remaining at some stage of the algorithm.

We present the algorithm for the slightly simpler case that the source-sink pairs are all distinct by merging the demands of the pairs that have the same source and sink vertices. Hence we may assume that $\alpha<n^{2} / 2$. We further assume that the demands δ_{i} are 1 , i.e., every source needs to send a single unit of demand to its sink. We explain how to handle the general case after we present the unit-demand case.

Definition 2.1 Let E^{\prime} be a subset of the edges. The distance $\operatorname{dist}_{E^{\prime}}(u, v)$ is the rent distance between u, v in the graph induced by E^{\prime}.

Notation 2.1 Let OPT denote the solution of minimum total cost for the given instance \mathcal{I}. Its cost is denoted by opt.

We assume opt, opt ${ }_{R}$, and opt ${ }_{B}$, opt $=\mathrm{opt}_{B}+\mathrm{opt}_{R}$ are known to the algorithm with opt, opt ${ }_{R}$, and opt ${ }_{B}$ being the optimum total cost, rent cost, and buy cost, respectively. We can binary search for these values. Also, we can only search for opt and use it as a bound for both opt ${ }_{R}$ and opt_{B}. While the approximation ratio is not affected, the solution can be qualitatively worse.

If the graph $G^{\prime}\left(V, E^{\prime}\right)$ induced by a subset E^{\prime} of edges contains an s_{i} to t_{i} path, we say that E^{\prime} routes or covers the pair s_{i}, t_{i}. Let \mathcal{T}^{\prime} be a strict subset of \mathcal{T} not containing all source-sink pairs.

Definition 2.2 Suppose that $G\left(V, E^{\prime}\right)$ routes all the pairs of \mathcal{T}^{\prime} but no other pair. The internal cost of E^{\prime} is

$$
\psi_{\mathcal{T}^{\prime}}\left(E^{\prime}\right)=B\left(E^{\prime}\right)+R_{\mathcal{T}^{\prime}}\left(E^{\prime}\right),
$$

with $R_{\mathcal{T}^{\prime}}\left(E^{\prime}\right)$ being the sum of rent distances $\operatorname{dist}_{E^{\prime}}\left(s_{i}, t_{i}\right)$ restricted to source-sink pairs of \mathcal{T}^{\prime}
Pairs that E^{\prime} or G^{\prime} do not route (for example if $s_{i} \in G^{\prime}, t_{i} \notin G^{\prime}$) do not influence the internal cost.
We denote by $\alpha\left(G^{\prime}\right)$ (or $\alpha\left(E^{\prime}\right)$) the number of pairs routed in $G^{\prime}\left(V, E^{\prime}\right)$. These parameters depend on \mathcal{T}^{\prime} but the term \mathcal{T}^{\prime} is omitted for simplicity of the notation.

Definition 2.3 The density of a subset E^{\prime} (subgraph G^{\prime}) routing \mathcal{T}^{\prime} is:

$$
\operatorname{den}_{\mathcal{T}^{\prime}}\left(E^{\prime}\right)=\frac{\psi\left(E^{\prime}\right)}{\alpha\left(E^{\prime}\right)}
$$

The buy density and rent density are defined by $\operatorname{den}_{R}\left(E^{\prime}\right)=\sum_{s_{i} \in \mathcal{T}^{\prime}} \operatorname{dist}_{E^{\prime}}\left(s_{i}, t_{i}\right) / \alpha\left(E^{\prime}\right)$ and den $n_{B}\left(E^{\prime}\right)=$ $B\left(E^{\prime}\right) / \alpha\left(G^{\prime}\right)$ respectively.

Pairs s_{i}, t_{i} that are not routed by G^{\prime} do not affect the density.
We may drop some of the parameters in our notation if they can be deduced from the context. Unless specified differently all log's are in base 2 . We use the following basic theorem (see e.g., [13]).

Theorem 2.2 Suppose that an algorithm works in iterations and in iteration i it finds and adds to the partial (infeasible) solution a subset $E_{i} \subseteq E$ that covers a new subset $T_{i} \subseteq \mathcal{T}$ of pairs. Let u_{i} be the number of uncovered pairs at the time that E_{i} is found. If for every i

$$
\operatorname{den}_{T_{i}}\left(E_{i}\right) \leq f(n) \cdot \frac{\mathrm{opt}}{u_{i}}
$$

then the algorithm is an $f(n) \cdot(\ln n+1)$ ratio approximation algorithm.

3 Structural Properties of an Optimum Solution

Before we present the algorithm, we prove some central lemmas about the structure of the optimum solution. Consider an optimum solution OPT and let $\mathcal{T}^{\prime} \subseteq \mathcal{T}$ be the uncovered pairs and let $\alpha^{\prime}=\left|\mathcal{T}^{\prime}\right|$. Throughout, let P_{i} be the path between s_{i} and t_{i} in OPT.

We rely on the concept of spheres that is defined as follows. The sphere $S(v, d)$ (with center v and radius d) contains all vertices u so that $\operatorname{dist}_{\mathrm{OPT}}(v, u) \leq d$ (note that distance is always with respect to rent). Let $S=S(v, d)$ be a sphere. We say that the pair s_{i}, t_{i} belongs to S if every vertex in P_{i} belongs to S and write $\left(s_{i}, t_{i}\right) \in S$. We say that a pair s_{i}, t_{i} touches S if it does not belong to S but at least one vertex of P_{i} belongs to S. Let $T(v, d)$ be all the pairs that belong to S and let $\alpha(S)=\alpha(v, d)=|T(v, d)|$. Let $\rho(S)$ be the number of pairs that touch S. We say that $e=(u, w) \in S$ if both $u \in S$ and $w \in S$. Observe that if $P_{i} \in S$ then all the edges of P_{i} belong to S. The edges $E(S)$ of S are all the edges that belong to S. Similarly, $V(S)$ are the vertices that belong to S. The buy value $B(S)$ is defined by $B(S)=\sum_{e \in E(S)} b(e)$. If $P_{i} \in S$ then the distance $d i s t_{S, \mathrm{OPT}}\left(s_{j}, t_{j}\right)$ is the distance between s_{j}, t_{j} in the graph induced by $V(S)$ in OPT. The term $R(S)$ is the sum of rent distances $\operatorname{dist}_{S, \mathrm{OPT}}\left(s_{j}, t_{j}\right)$ over all pairs that belong to S.

Our goal in this section is to show that we can decompose the optimum solution into vertex disjoint spheres $\left\{S_{i}\right\}$ such that the following holds for the graphs induced by $V\left(S_{i}\right)$ in OPT:
(i) for every j so that $P_{j} \in S_{i}, \operatorname{dist}_{S_{i}, \mathrm{OPT}}\left(s_{j}, t_{j}\right)=O\left(\mathrm{opt}_{R} / \alpha^{\prime}\right)$,
(ii) the total number of pairs that are totally routed inside the spheres is $\Omega\left(\alpha^{\prime}\right)$. Namely, $\sum_{i} \alpha\left(S_{i}\right)=$ $\Omega\left(\alpha^{\prime}\right)$.
(iii) the diameter of sphere is $O\left(\log n \cdot \operatorname{opt}_{R} / \alpha^{\prime}\right)$,
(iv) the buy density of each sphere is $O\left(\operatorname{opt}_{B} / \alpha^{\prime}\right)$,

The following lemmas establish this goal step by step.
Lemma 3.1 There is a subset $\mathcal{T}^{\prime \prime} \subseteq \mathcal{T}^{\prime}$ of source-sink pairs such that for every pair $s_{i}, t_{i} \in \mathcal{T}^{\prime \prime}$ $\operatorname{dist}_{\mathrm{OPT}}\left(s_{i}, t_{i}\right) \leq 2 \mathrm{opt}_{R} / \alpha^{\prime}$, and the number of pairs in $\mathcal{T}^{\prime \prime}$ is $\alpha^{\prime \prime} \geq \alpha^{\prime} / 2$.

Proof: Initially, let $\mathcal{T}^{\prime \prime}=\mathcal{T}^{\prime}$. Iteratively, remove all pairs s_{i}, t_{i} with $\operatorname{dist}_{\mathrm{OPT}}\left(s_{i}, t_{i}\right) \geq 2 \mathrm{opt}_{R} / \alpha^{\prime}$ from $\mathcal{T}^{\prime \prime}$. Let x be the number of removed pairs. The total rent distance of pairs removed is at most opt_{R}. Thus, $x \cdot 2 \operatorname{opt}_{R} / \alpha^{\prime} \leq \operatorname{opt}_{R}$. Hence, at least $\alpha^{\prime \prime}=\alpha^{\prime}-x \geq \alpha^{\prime} / 2$ pairs remain.

The following procedure divides OPT into disjoint spheres. We cannot explicitly build or use these spheres but they are used in the proof of the algorithm we present later. Below, $d(j)=2 j \cdot \mathrm{opt}_{R} / \alpha^{\prime}$. The set $\mathcal{T}^{\prime \prime}$ is the one from Lemma 3.1.

Procedure DECOMPOSITION (OPT)

1. $i \leftarrow 1$
2. While $\mathcal{T}^{\prime \prime} \neq \emptyset$ Do
(a) Choose some source s_{i}
(b) $j \leftarrow 1$
(c) While $\rho\left(S\left(s_{i}, d(j)\right)\right)>\alpha\left(S\left(s_{i}, d(j)\right)\right)$ set $j \leftarrow j+1$
(d) Let q be the last index j in Line 2c.
(e) Set $S_{i} \leftarrow S\left(s_{i}, d(q)\right)$
(f) Discard from $\mathcal{T}^{\prime \prime}$ all pairs that belong to or touch $S\left(s_{i}, d(q)\right)$
(g) $i \leftarrow i+1$

Every sphere S_{i} computed above is called a close sphere. A sphere S_{i} is minimal if for any $e \in S_{i}$ there is at least one pair in S_{i} like s_{j}, t_{j} such that the path $P_{j} \in S_{i}$ contains the edge e; similarly every $v \in S_{i}$ is used by some P_{j} path, $P_{j} \in S_{i}$. The S_{i} 's are made minimal by discarding non-required edges and vertices. From now on, we assume that the spheres S_{i} computed above are all minimal. We prove some properties for close spheres.

Let $V\left(S_{i}\right)$ be all the vertices that belong to S_{i}. We say that S_{i}, S_{j} are vertex-disjoint if $V\left(S_{i}\right) \cap$ $V\left(S_{j}\right)=\emptyset$.

Lemma 3.2 For every two S_{i}, S_{j} close spheres where $i \neq j, V\left(S_{i}\right) \cap V\left(S_{j}\right)=\emptyset$.
Proof: For the sake of contradiction, assume $u \in S_{j} \cap S_{i}$. Then, (by minimality) there are two paths $P_{a} \in S_{i}$ and $P_{b} \in S_{j}$ both containing u. Without loss of generality, assume S_{i} was computed before S_{j}. As $u \in P_{a}$ and $P_{a} \in S_{i}$, the vertex u belongs to S_{i}. However, $u \in P_{b}$ as well. Hence, at least one vertex of P_{b} belongs to S_{i}. Thus by the definition pair s_{b}, t_{b} either belongs to S_{i} or touches S_{i}. But this is a contradiction, since pairs that either belong to S_{i} or touch S_{i} are discarded after the computation of S_{i} ends, and cannot belong to a new sphere (namely to S_{j}).

The following corollary is immediate from the above lemma.
Corollary 3.3 For any two close spheres S_{i}, S_{j} and paths $P_{i} \in S_{i}$ and $P_{j} \in S_{j}, P_{i}$ and P_{j} are edge-disjoint.

Let \mathcal{T}_{1} be the set of all pairs that belong to close spheres, that is:

$$
\mathcal{T}_{1}=\bigcup_{\text {close sphere } S_{i}} T\left(S_{i}\right)
$$

Let $d\left(S_{i}\right)$ be the radius of S_{i}. Namely, $d\left(S_{i}\right)$ is the radius stop point for S_{i} in the loop in Line 2c in Procedure DECOMPOSITION.

Lemma $3.4\left|\mathcal{T}_{1}\right| \geq \alpha^{\prime} / 4$.
Proof: By the inequality in Line 2c in Procedure DECOMPOSITION, when the sphere stops growing, the number of S_{i}-touching pairs is at most the number of pairs that belong to S_{i}. Hence among discarded sources, at least a $1 / 2$ fraction belong to some sphere. The lemma follows from Lemma 3.2 and because $\mathcal{T}^{\prime \prime} \geq \alpha / 2$ by Lemma 3.1.

Recall that $\alpha\left(S_{i}\right)=\left|T\left(S_{i}\right)\right|$, i.e., it is the number of pairs s_{j}, t_{j} so that all the edges and vertices of P_{j} belong to S_{i}.

Lemma 3.5 There exist a subset \mathcal{S}^{\prime} of close spheres such that each $S_{i} \in \mathcal{S}^{\prime}$ has $B\left(S_{i}\right) / \alpha\left(S_{i}\right) \leq$ $8 \mathrm{opt}_{B} / \alpha^{\prime}$ and for $\mathcal{T}_{2}=\bigcup_{S_{i} \in S^{\prime}} T\left(S_{i}\right)$ we have $\left|\mathcal{T}_{2}\right| \geq \alpha^{\prime} / 8$.
Proof: Start with \mathcal{S} which contains all the close spheres (so $\mathcal{T}_{2} \leftarrow \mathcal{T}_{1}$). Remove from \mathcal{S} every S_{i} such that

$$
\frac{B\left(S_{i}\right)}{\alpha\left(S_{i}\right)}>\frac{8 \mathrm{opt}_{B}}{\alpha^{\prime}} .
$$

Let \mathcal{S}^{\prime} be the remaining set and \mathcal{T}_{2} denote the set of pairs that belong to spheres in \mathcal{S}^{\prime}. Observe that:

$$
\sum_{S_{i} \notin \mathcal{S}^{\prime}} \frac{8 \cdot \mathrm{opt}_{B} \cdot \alpha\left(S_{i}\right)}{\alpha^{\prime}} \leq \sum_{S_{i} \notin \mathcal{S}^{\prime}} B\left(S_{i}\right) \leq \mathrm{opt}_{B}
$$

The last inequality follows as the S_{i} 's are edge-disjoint (Corollary 3.3). This implies that $\sum_{S_{i} \notin \mathcal{S}^{\prime}} \alpha\left(S_{i}\right) \leq$ $\alpha^{\prime} / 8$. By Lemma 3.4, $\left|\mathcal{T}_{1}\right| \geq \alpha^{\prime} / 4$, and hence the number of non-removed pairs is at least $\alpha^{\prime} / 4-\alpha^{\prime} / 8=$ $\alpha^{\prime} / 8$

Lemma 3.6 For every $i, d\left(S_{i}\right) \leq 4 \log n \cdot \mathrm{opt}_{R} / \alpha^{\prime}$; thus the diameter of S_{i} is at most $8 \log n \cdot \operatorname{opt}_{R} / \alpha^{\prime}$.
Proof: Every pair s_{j}, t_{j} that is touching S_{i} in one iteration of the while loop in Line 2c will become a pair included in S_{i} after the radius grows by additional $2 \operatorname{opt}_{R} / \alpha^{\prime}$ (i.e., j incremented by 1). This is because if $u \in S_{i}$ and $u \in P_{j}$, then $\operatorname{dist}_{\mathrm{OPT}}\left(u, s_{j}\right)+\operatorname{dist}_{\mathrm{OPT}}\left(u, t_{j}\right) \leq 2 \cdot \mathrm{opt}_{R} / \alpha^{\prime}$ by Lemma 3.1.

By the condition in Line 2c of DECOMPOSITION, the number of pairs in S_{i} at least doubles each time one iteration of the while loop in Line 2c is executed (there were at least as many touching pairs as pairs belonging to S_{i}). Recall that $\alpha^{\prime} \leq \alpha<n^{2} / 2$. Hence, j can not increase more than $\log \alpha^{\prime}+1<2 \log n$ times. Thus the radius is at most $4 \log n \cdot \operatorname{opt}_{R} / \alpha^{\prime}$. The bound for diameter follows too.

From Lemmas 3.1-3.6 we obtain:
Corollary 3.7 The following holds for \mathcal{S}^{\prime} and the pairs \mathcal{T}_{2} that belong to them:

1. The cardinality property: $\left|\mathcal{T}_{2}\right| \geq \alpha^{\prime} / 8$.
2. The diameter property: The diameter of every $S_{i} \in \mathcal{S}^{\prime}$ is at most $8 \log n \cdot \operatorname{opt}_{R} / \alpha^{\prime}$.
3. The rent-distance property: If $P_{i} \in S_{j}$ then $\operatorname{dist}_{E\left(S_{j}\right)}\left(s_{i}, t_{i}\right) \leq 2 \cdot \operatorname{opt}_{R} / \alpha^{\prime}$.
4. The disjointness property: For every pairs $i \neq j, S_{i}$ and S_{j} are vertex (and also edge) disjoint.
5. The density property: For every $S_{i}: B\left(S_{i}\right) / \alpha\left(S_{i}\right) \leq 8 \cdot \mathrm{opt}_{B} / \alpha^{\prime}$.

4 The approximation algorithm

Our algorithm relies on the bicriteria k-Steiner tree algorithm of [12]. The following theorem is immediate from [12]:

Theorem 4.1 [12] There exist two universal constants c_{1}, c_{2} and a polynomial time algorithm \mathcal{A} for which the following holds. Consider a graph $G(V, E)$ with two cost functions on the edges (buy $b: E \longrightarrow R^{+}$and rent $\left.r: E \longrightarrow R^{+}\right)$, a set $T \subseteq V$ of terminals, parameter $k \leq|T|$, a root $s \in T$, and a bound D (on the diameter). Then \mathcal{A} produces a Steiner tree rooted at s containing k other terminals with (buy) cost at most $c_{2} \log ^{4} n \cdot$ opt and diameter (w.r.t rent) at most $c_{1} \log ^{2} n \cdot D$, where $n=|V|$ and opt is the cost of an optimum k-Steiner tree with diameter bounded by D.

It is easy to see that we can modify this algorithm to approximate the slightly modified problem of finding an s-rooted Steiner tree (with given diameter bound D), with at least k other terminals and minimum buy density among all such trees. This is achieved by calling algorithm \mathcal{A} of Theorem 4.1 for all values $k^{\prime} \geq k$ and computing the buy density with respect to k^{\prime}, and taking minimum among them. Since we use this modified algorithm frequently, we refer to it in this paper by KMST algorithm.

We first present an algorithm with approximation ratio $O\left(\log ^{5} n\right)$. In the last subsection of this section we show how some small modification to the algorithm, together with a refined use of the results in [12] yields an $O\left(\log ^{4} n\right)$-approximation algorithm.

4.1 Overview of the algorithm

Our algorithm for non-uniform multicommodity buy-at-bulk relies on the KMST algorithm described above (which finds a low buy density and bounded diameter Steiner tree with at least k terminals). The main procedure in our algorithm is Procedure PARTIAL that tries to find a partial solution which routes some new pairs at low density (low buy cost and low rent cost with respect to the number of pairs that are routed). Once a partial solution is obtained, the pairs routed in this partial solution are removed from the set of all pairs and the algorithm calls PARTIAL on the remaining pairs until all the pairs are routed. At the end, the union of all these partial solutions covers all the pairs and using Theorem 2.2 we show that the total cost of this solution is bounded by a polylogarithmic factor of the optimum.

Procedure PARTIAL works in rounds. Every round is divided into two phases: the sources phase and the sinks phase. The sources phase gradually builds a tree F_{s} that grows in iterations. Any iteration can be a success or a failure. The sources phase continues as long as there was no failed iteration. Hence, there is only one failed iteration which ends the sources phase of a round.

After the sources phase ends a single iteration of the sinks phase takes place. This iteration can be a success, or a failure. If the single iteration in the sinks phase is a success then PARTIAL finds a partial solution of low density routing a subset of the pairs, and the entire round is successful. Otherwise the entire round is a failure.

If the round succeeds then the algorithm discards covered pairs and recurses. Otherwise, part of the pairs are temporarily discarded and a new round of PARTIAL is performed restricted to undiscarded pairs. A key point is that if all rounds are failures and pairs keep being discarded we risk discarding all pairs before we cover new pairs. A key claim we prove is that this scenario does not happen.

Below we describe each of these two phases (in each round of) PARTIAL in more details. Assume
that at the beginning of the first round we have α^{\prime} remaining pairs and all are undiscarded.

Phase 1: Sources phase

Take an arbitrary source s that belongs to one of the remaining pairs. For this phase, only the sources are terminals (ignore the sinks for now).

We start with growing a Steiner tree (with the sources being terminals) with root s by calling KMST repeatedly in several iterations. All trees found are contracted into s to create a compound node. The compound node after iteration j is denoted f_{s}^{j}. The total number of sources in the contracted node is denoted by k_{s}. Initially, $f_{s}^{1}=s$ and $k_{s}=1$. In iteration j, KMST is called with root f_{s}^{j-1} and diameter bound $D=16 \log n \cdot$ opt $_{R} / \alpha^{\prime}$ and required number of new terminals (sources) to be covered $\left\lceil k_{s} / 20\right\rceil$. If in iteration j we find a low buy density Steiner tree F_{s}^{j} the iteration is a success. The buy density is low if it is at most $16 c_{2} \cdot \log ^{4} n \cdot \mathrm{opt}_{B} / \alpha^{\prime}$. In such case we contract all the nodes of F_{s}^{j} into f_{s}^{j-1} to form f_{s}^{j} and update k_{s} (the total number of terminals in f_{s}^{j}). The union of all these Steiner trees found so far is kept in F_{s} (i.e., $F_{s}=\bigcup_{i=1}^{j-1} F_{s}^{i}$).

We repeat this process until the first failure. A failure occurs when the buy density of the new tree found is too large. Let q be the iteration of last success. Then $q+1$ is the unique failed iteration. Clearly the buy density of $F_{s}=\bigcup_{i=1}^{q} F_{s}^{i}$ is bounded by $16 c_{2} \cdot \log ^{4} n \cdot$ opt $_{B} / \alpha^{\prime}$. In other words, if k_{s} is the total number of sources in F_{s} then $B\left(F_{s}\right) / k_{s} \leq 16 c_{2} \cdot \log ^{4} n \cdot \operatorname{opt}_{B} / \alpha^{\prime}$.

Phase 2: Sinks phase

The sinks phase works as follows. Let X_{s} be all the sources in F_{s} (recall that all of X_{s} was contracted into f_{s}^{j}). Let Y_{s} be the sinks corresponding to X_{s}. Our goal in this phase is to route a constant fraction of the sources located at the root to their corresponding sinks. For this purpose we call KMST with the root f_{s}^{q}, Y_{s} as terminals, a number $k=\left\lceil\frac{k_{s}}{20}\right\rceil$ of required terminals to be covered (vertices in Y_{s}), and diameter bound $D=4 \mathrm{opt}_{R} / \alpha^{\prime}$. Let F_{t} be the resulting Steiner tree, $Y_{t} \subseteq Y_{s}$ the sinks in F_{t} and $k_{t}=\left|Y_{t}\right|$. This single iteration is a success if $B\left(F_{t}\right) / k_{t} \leq 16 c_{2} \cdot \log ^{4} n \cdot \mathrm{opt}_{B} / \alpha^{\prime}$. In such a case we have obtained a low cost way of routing a fraction of the sources (contracted to $\left.f_{s}^{j}\right)$ to their corresponding sinks. We show that $F_{s} \cup F_{t}$ has small rent diameter. This immediately leads to a small rent density cover of this fraction of the pairs.

Otherwise, we discard (temporarily) all the sources in F_{s} and their corresponding sinks and try to find a partial solution in the rest of the pairs (in the next round of PARTIAL).

4.2 The algorithm

The edges of the solution are maintained in the variable $S O L$. As long as $S O L$ is not a feasible solution, i.e., there is an unrouted pair we call procedure PARTIAL to find a partial solution routing some remaining pairs and then discard those pairs from \mathcal{T}. For a subtree $F, \alpha(F)$ is the number of source-sink pairs that are routed in F. Let \mathcal{T}^{\prime} be the set of remaining pairs.

Procedure PARTIAL (\mathcal{T}^{\prime})

1. Let $\mathcal{T}^{\prime \prime} \leftarrow \mathcal{T}^{\prime}$ and $\alpha^{\prime}=\left|\mathcal{T}^{\prime}\right|$
2. While $\mathcal{T}^{\prime \prime} \neq \emptyset$ Do
(a) let s be an arbitrary source of a pair in $\mathcal{T}^{\prime \prime}$. /* Phase 1: sources phase starts here*/
(b) lowdensity \leftarrow true
(c) $j \leftarrow 1, k^{1} \leftarrow 1, f_{s}^{1} \leftarrow s$,
(d) Let $F_{s} \leftarrow s$ and $k_{s} \leftarrow 1 \quad / * F_{s}$ is the Steiner tree found so far ${ }^{*} /$
(e) Let $D=16 \log n \cdot \mathrm{opt}_{R} / \alpha^{\prime}$
(f) repeat
i. $j \leftarrow j+1$
ii. Find a Steiner tree F_{s}^{j} rooted at f_{s}^{j-1} by calling KMST with parameter $k_{s}^{j}=\left\lceil k_{s} / 20\right\rceil$ and diameter bound D; (so cover k_{s}^{j} new sources)
iii. If $B\left(F_{s}^{j}\right) /\left(k_{s}^{j}\right) \leq 16 c_{2} \cdot \log ^{4} n \cdot \operatorname{opt}_{B} / \alpha^{\prime}$ then
/* A successful iteration */
$F_{s} \leftarrow F_{s} \cup F_{s}^{j}$
$k_{s} \leftarrow k_{s}+k_{s}^{j}$
Contract all of F_{s}^{j} into a node, call it f_{s}^{j}
iv. Else lowdensity \leftarrow False
/* A failed iteration */
(g) until lowdensity $=$ False
(h) Let $X\left(F_{s}\right)$ be the set of terminals (i.e., sources) in F_{s} (so $k_{s}=\left|X\left(F_{s}\right)\right|$), and let Y_{s} be their sinks and let q be the last successful iteration.
/* Phase 2: sinks phase starts here*/
(i) Call KMST with f_{s}^{q} as the root, Y_{s} as terminals, $k=\left\lceil k_{s} / 20\right\rceil$, and $D=4 \mathrm{opt}_{R} / \alpha^{\prime}$. Let F_{t} be the resulting Steiner tree and $k_{t}=k$ be the number of terminals in F_{t}.
(j) If $B\left(F_{t}\right) / k_{t} \leq 16 c_{2} \cdot \log ^{4} n \cdot \mathrm{opt}_{B} / \alpha^{\prime}$ then return $E\left(F_{s}\right) \cup E\left(F_{t}\right)$ and stop.
$/ *$ The round was successful */
(k) Else, discard from $\mathcal{T}^{\prime \prime}$ all the pairs whose sources are in $X\left(F_{s}\right)$. /* The entire round failed */

The main algorithm is as follows.
Algorithm APPROX

1. $S O L \leftarrow \emptyset$
2. $\mathcal{T}^{\prime} \leftarrow \mathcal{T}$, guess opt ${ }_{B}$ and opt $_{R}$ by doing binary search
3. While $\alpha^{\prime}=\left|\mathcal{T}^{\prime}\right|$ is non-zero do
(a) $X \leftarrow P A R T I A L\left(G, \mathcal{T}^{\prime}\right)$
(b) $S O L \leftarrow S O L \cup X$
(c) remove pairs routed in X from \mathcal{T}^{\prime}
4. Return $(\mathcal{S O} \mathcal{L})$

5 Analysis of the Algorithm

We show that every call to PARTIAL finds some partial solution. After that we analyze the density of the solution returned and also the total cost of the final solution returned by APPROX.

Consider one iteration of APPROX and suppose that PARTIAL is called with parameter \mathcal{T}^{\prime} (and $\left.\alpha^{\prime}=\left|\mathcal{T}^{\prime}\right|\right)$. Assume that opt_{B} and opt $_{R}$ are the buy cost and rent cost of the optimal solution to the original instance (so opt ${ }_{B}$ and opt ${ }_{R}$ are fixed during all rounds of APPROX). The closed spheres are defined based on α^{\prime} and opt_{R} and we focus only on the spheres in \mathcal{S}^{\prime} as stated in Corollary 3.7 under the same notation:

Notation 5.1 The pairs that \mathcal{S}^{\prime} included (i.e., those that remain in \mathcal{T}_{2}) are called good pairs. The rest of the pairs are called bad.

One round of PARTIAL is one iteration of the while loop. For every round of PARTIAL, trees F_{s} and F_{t} are the trees obtained at the end of the sources phase and sinks phases, respectively. Parameters k_{s} and k_{t} as defined in the algorithm are the number of sources in F_{s} and sinks in F_{t}, respectively. A source is good if it belongs to a good pair.

Definition 5.1 A round of PARTIAL is a bad round if the number of good sources in F_{s} is at most $\left\lfloor k_{s} / 10\right\rfloor$. The rest of the rounds are called good rounds.

For example, if $k_{s}<10$ then the round is bad if and only if Steiner tree F_{s} obtained in Phase 1 contains no good sources at all.

Definition 5.2 A closed sphere $S_{i} \in \mathcal{S}^{\prime}$ that intersects F_{s} is called sparse with respect to F_{s} if F_{s} contains at most half the sources of the pairs that belong to S_{i}.

Definition 5.3 A good round is a sparse round if among all good sources in F_{s}, at least half of them belong to spheres that are sparse with respect to F_{s}. Other good rounds are dense rounds.

By this definition, every round is either:

1. A bad round, or
2. A good sparse round, or
3. A good dense round.

We later show that there are no good sparse rounds at all. Only bad rounds or good dense rounds exist. We also show that if a round is good and dense, then the sinks phase cannot fail and so PARTIAL finds a partial solution. Thus, to show that PARTIAL does find a partial solution it remains to show that not all rounds of PARTIAL are bad. This is the first thing we prove below.

Note that as long as at least one source remains undiscarded, PARTIAL will start a new round. The only way for PARTIAL (and therefore Algorithm APPROX) to fail is if all sources are discarded before any new pair is covered.

Lemma 5.2 In every call to PARTIAL, either the procedure finds a partial solution and returns or there is at least one good round before all the pairs are discarded from $\mathcal{T}^{\prime \prime}$.

Proof: Suppose by contradiction that all the rounds are bad and the rounds continue until all the pairs are discarded from $\mathcal{T}^{\prime \prime}$. Let k_{i} denote the number of pairs discarded in round i, i.e., k_{i} is the value of k_{s} (number of terminals of F_{s}) in round i. This implies that:

$$
\sum_{i} k_{i}=\alpha^{\prime} .
$$

By cardinality property in Corollary 3.7 , the number of good sources is at least $\left\lceil\alpha^{\prime} / 8\right\rceil$. Since we assumed each round is bad, in round i at most $\left\lfloor k_{i} / 10\right\rfloor$ good sources are discarded among the total
of k_{i} discarded sources. But

$$
\left\lceil\alpha^{\prime} / 8\right\rceil=\left\lceil\sum k_{i} / 8\right\rceil \geq \sum_{i} k_{i} / 8>\sum_{i} k_{i} / 10
$$

Since the right hand side upper bounds the number of discarded good sources, the Procedure PARTIAL could not have removed all sources as some good sources remain. Therefore, there must be a good round.

Lemma 5.3 There are no good and sparse rounds.
Proof: We proceed by contradiction. Consider a good sparse round and let q be the last successful iteration at line 2 f before the single failed $(q+1)$ th iteration. Therefore $F_{s}=\bigcup_{i=1}^{q} F_{s}^{i}$. We derive a contradiction by showing that the $(q+1)$ th iteration should have been a success. This is shown by finding a new set F_{s}^{q+1} of sources and a Steiner tree with the appropriate diameter bound containing F_{s}^{q+1}, that could be added to F_{s}. Moreover, we show that this tree has buy density at most $16 c_{2}$. $\log ^{4} n \cdot$ opt $_{B} / \alpha^{\prime}$.

Let $\mathcal{S}^{\prime \prime} \subseteq \mathcal{S}^{\prime}$ be the collection of all the sparse (with respect to F_{s}) closed spheres that belong to \mathcal{S}^{\prime}. If some S_{i} has no intersection with F_{s} then it is not included in $\mathcal{S}^{\prime \prime}$. The following fact from the diameter properties of Corollary 3.7 and since each of $S_{i} \in \mathcal{S}^{\prime \prime}$ intersects F_{s}.

Fact 1: All the vertices of $V\left(\mathcal{S}^{\prime \prime}\right)=\bigcup_{S_{i} \in \mathcal{S}^{\prime \prime}} V\left(S_{i}\right)$ are within distance $8 \log n \cdot \operatorname{opt}_{R} / \alpha^{\prime}$ of some vertex $u \in F_{s}$.

Since all spheres in $\mathcal{S}^{\prime \prime}$ are sparse, at most half the sources of the pairs in each $S_{i} \in \mathcal{S}^{\prime \prime}$ are actually in F_{s} (by the definition of a sparse round). Therefore, at least

$$
C=\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} \frac{\alpha\left(S_{i}\right)}{2}
$$

sources do not belong to F_{s}. First we show that $C \geq\left\lceil k_{s} / 20\right\rceil$. By the definition of a good round, the number of good sources in F_{s} is at least $\left\lceil k_{s} / 10\right\rceil$. By the definition of a sparse good round at least $1 / 2$ of them are by sparse spheres. Hence, the number of good sources in F_{s} that come from sparse spheres (i.e., from spheres in $\mathcal{S}^{\prime \prime}$) is at least $\left\lceil k_{s} / 20\right\rceil$. Since for each $S_{i} \in \mathcal{S}^{\prime \prime}$, the number of sources of S_{i} that intersect F_{s} is no more than $\alpha\left(S_{i}\right) / 2$, it follows that

$$
\begin{equation*}
C \geq\left\lceil k_{s} / 20\right\rceil \tag{1}
\end{equation*}
$$

Consider the failed iteration $q+1$. Let $E\left(\mathcal{S}^{\prime \prime}\right)$ be the set of edges of the spheres in $\mathcal{S}^{\prime \prime}$ and compute the shortest path tree rooted at f_{s}^{q} which is obtained by taking the shortest path (with respect to rent) from f_{s}^{q} to every node in every $S_{i} \in \mathcal{S}^{\prime \prime}$. By Fact 1 , we obtain a tree with diameter at most $16 \log n \cdot \mathrm{opt}_{R} / \alpha^{\prime}$ (since every node in S_{i} is at distance at most $8 \log n \cdot \mathrm{opt}_{R} / \alpha^{\prime}$ from f_{s}^{q}) and by Inequality (1), it contains at least $\left\lceil\frac{k_{s}}{20}\right\rceil$ new sources. Let H_{s}^{q+1} denote this tree. Thus in iteration $j=q+1$ of the repeat loop in Phase 1 , there is a Steiner tree H_{s}^{q+1} (over $E\left(\mathcal{S}^{\prime \prime}\right)$) with $\left\lceil\frac{k_{s}}{20}\right\rceil$ sources with diameter at most $D=16 \log n \cdot \mathrm{opt}_{R} / \alpha^{\prime}$. By the density and disjointness property of Corollary 3.7 the density of H_{s}^{q+1} is at most

$$
\frac{\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} B\left(S_{i}\right)}{\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} \alpha\left(S_{i}\right) / 2} \leq 16 \cdot \frac{\mathrm{opt}_{B}}{\alpha^{\prime}}
$$

Since the buy density of the Steiner tree returned by KMST algorithm is at most a factor $c_{2} \log ^{4} n$ larger than buy density of H_{s}^{q+1}, the buy density of the tree F_{s}^{q+1} that the algorithm finds is at most
$16 c_{2} \cdot \log ^{4} n \cdot \frac{\mathrm{opt}_{B}}{\alpha^{\prime}}$. Therefore, the buy density of F_{s}^{q+1} is no larger than $16 \cdot c_{2} \cdot \log ^{4} n \cdot \frac{\mathrm{opt}_{B}}{\alpha^{\prime}}$ and thus we should have added F_{s}^{q+1} to F_{s} and the iteration should have not failed.

Lemma 5.4 If the round is good and dense, the sinks phase finds a low density tree and so PARTIAL finds a partial solution.

Proof: If a round is good, there are at least $\left\lceil k_{s} / 10\right\rceil$ good sources in F_{s}. If it is a good and dense round then at least $\left\lceil k_{s} / 20\right\rceil$ good sources of F_{s} belong to dense spheres S_{i}. Let H be the set of these good sources (good sources in dense spheres). Define $\mathcal{S}^{\prime \prime} \subseteq \mathcal{S}^{\prime}$ to be the set of dense spheres that intersect F_{s}. For every $s_{i} \in H$, its distance to t_{i} in $E\left(\mathcal{S}^{\prime \prime}\right)$ is at most 2 opt $_{R} / \alpha^{\prime}$ (by the rent-distance property of Corollary 3.7). Thus, this is also a bound on the distance from f_{s}^{q} to t_{i}. Hence, after $E\left(\mathcal{S}^{\prime \prime}\right)$ is added, the shortest path tree from f_{s}^{q} to all the sinks of $s_{i} \in H$ has radius $2 \cdot \mathrm{opt}_{R} / \alpha^{\prime}$. This gives a tree with diameter at most $4 \cdot \mathrm{opt}_{R} / \alpha^{\prime}$ which is the appropriate bound. The buy density of this tree is at most $\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} B\left(S_{i}\right) /|H|$. Since all $S_{i} \in \mathcal{S}^{\prime \prime}$ are dense, $\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} \alpha\left(S_{i}\right) / 2 \leq|H|$. This implies that

$$
\begin{equation*}
\frac{\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} B\left(S_{i}\right)}{|H|} \leq \frac{\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} B\left(S_{i}\right)}{\sum_{S_{i} \in \mathcal{S}^{\prime \prime}} \alpha\left(S_{i}\right) / 2} \leq 16 . \text { opt }_{B} / \alpha^{\prime} \tag{2}
\end{equation*}
$$

where the last inequality follows form the density property of Corollary 3.7. Therefore, there is a Steiner tree containing f_{s}^{q} and the sinks of H with diameter bound $4 \mathrm{opt}_{R} / \alpha^{\prime}$ and buy density at most 16 opt $_{B} / \alpha^{\prime}$. Since $|H| \geq\left\lceil k_{s} / 20\right\rceil$, it follows that the sinks phase must find a Steiner tree with the required bounds and thus PARTIAL finds a partial solution.

Corollary 5.5 Every call to PARTIAL covers some source-sink pairs.
Proof: By Lemma 5.2, before PARTIAL discards all sources, there must be at least one good round. By Lemma 5.3, there are no good and sparse rounds. Thus there exists at least one good dense round. By Lemma 5.4 such a round must succeed.

As we can always cover some uncovered pairs by calling PARTIAL, when Algorithm APPROX terminates $S O L$ is a feasible solution. It remains to analyze the density of partial solutions.

Lemma 5.6 In every call to PARTIAL, the buy density of the partial solution returned is at most $O\left(\log ^{4} \cdot \operatorname{opt}_{B} / \alpha^{\prime}\right)$ and the rent density is at most $O\left(\log ^{4} \cdot \mathrm{opt}_{R} / \alpha^{\prime}\right)$.

Proof: In Phase 1, the buy density of F_{s} is at most $O\left(\log ^{4} \cdot \operatorname{opt}_{B} / \alpha^{\prime}\right)$. This is explained as follows. Since every new tree added to F_{s} has density at most $O\left(\log ^{4} n \cdot \mathrm{opt}_{B} / \alpha^{\prime}\right)$, this bounds the density of F_{s} as well. But this is only with respect to the number of sources k_{s} in F_{s} which can be different from the number of pairs covered. However, the number of pairs covered is at least $\left\lceil k_{s} / 20\right\rceil$ and so the density with respect to covered pairs is only affected by a constant. In Phase 2 , the buy density of F_{t} is also at most $O\left(\log ^{4} n \cdot \mathrm{opt}_{B} / \alpha^{\prime}\right)$. Hence the total buy density is at most $O\left(\log ^{4} \cdot \mathrm{opt}_{B} / \alpha^{\prime}\right)$.

Now we bound the rent density. First consider Phase 1 (sources phase). By the property of Theorem 4.1, the rent diameter of each Steiner tree F_{s}^{i} found in each iteration i is at most c_{1}. $\log ^{2} n D=16 c_{1} \cdot \log ^{3} n \cdot \operatorname{opt}_{R} / \alpha^{\prime}$. Thus the total rent diameter of F_{s}, denoted by r_{s}, is at most $r_{s} \leq 16 \cdot c_{1} \cdot q \cdot \log ^{3} n \cdot$ opt $_{R} / \alpha^{\prime}$, where q is the last successful iteration. Since in every iteration of the repeat loop, the number of sources in F_{s} is multiplied at least by $21 / 20$, the number of iterations (and therefore q) is in $O(\log n)$. Thus $r_{s}=O\left(\log ^{4} n \cdot \operatorname{opt}_{R} / \alpha^{\prime}\right)$. The diameter of F_{t} is at most $O\left(\log ^{2} n \cdot \mathrm{opt}_{R} / \alpha^{\prime}\right)$ by the bound D passed to KMST in Phase 2. In total the diameter is $O\left(\log ^{4} n \cdot \mathrm{opt}_{R} / \alpha^{\prime}\right)$. Hence, if we cover q pairs using F_{s} and F_{t} then the total rent density is at most $q \cdot O\left(\log ^{4} n \cdot \mathrm{opt}_{R} / \alpha^{\prime}\right) / q$ which is $O\left(\log ^{4} \cdot \mathrm{opt}_{R} / \alpha^{\prime}\right)$.

Theorem 5.7 The approximation ratio of Algorithm Approx is $O\left(\log ^{5} n\right)$.
Proof: Follows from Lemma 5.6 and Theorem 2.2.

5.1 Improving the approximation ratio to $O\left(\log ^{4} n\right)$

In this section we describe how some simple modifications in Algorithm APPROX will reduce the approximation factor to $O\left(\log ^{4} n\right)$. The main source of this saving comes from using a refined version of the KMST algorithm described below.

The algorithm of [12] for bicriteria k-Steiner tree (Theorem 4.1) works by calling $O(\log n)$ times a subroutine which finds a $\frac{k}{8}$-Steiner tree. Let's call this subroutine sub-KMST. The $\frac{k}{8}$-Steiner tree found in each call to sub-KMST has diameter bound at most $d_{1} \cdot \log n \cdot D$ and the buy cost is at most $d_{2} \cdot \log ^{3} n \cdot$ opt, for some universal constants $d_{1}, d_{2}>0$. In APPROX, instead of calling KMST we call sub-KMST (which has better approximation ratio both for buy cost and rent diameter bound). We also have to make the following changes:

- Line 2(f)iii in the sources phase changes to:

Let q_{s}^{j} be the number of terminals in F_{s}^{j} (so $\left.q_{s}^{j} \geq k_{s}^{j} / 8\right)$;
If $B\left(F_{s}^{j}\right) /\left(q_{s}^{j}\right) \leq 16 \times 8 \cdot d_{2} \cdot \log ^{3} n \cdot \mathrm{opt}_{B} / \alpha^{\prime}$ then

$$
\begin{aligned}
& F_{s} \leftarrow F_{s} \cup F_{s}^{j} \\
& k_{s} \leftarrow k_{s}+q_{s}^{j} \\
& \text { Contract all of } F_{s}^{j} \text { into } f_{s}^{j-1} \text { to form } f_{s}^{j}
\end{aligned}
$$

- Line 2 j in the sinks phase changes to: If $B\left(F_{t}\right) / k_{t} \leq 16 \times 8 \cdot d_{2} \cdot \log ^{3} n \cdot \mathrm{opt}_{B} / \alpha^{\prime}$ then return $E\left(F_{s}\right) \cup E\left(F_{t}\right)$ and stop.

The analysis of the algorithm follows the same lemmas. In particular, we first show that there is at least one good round (as in Lemma 5.2). Then we prove that there are no good and sparse rounds. For that, in the proof of Lemma 5.3, Steiner tree F_{s}^{q+1} that we find has at least $\frac{1}{8} \cdot\left\lceil\frac{k_{s}}{20}\right\rceil$ terminals. So its buy density is at most $16 \cdot \frac{\mathrm{opt}_{B}}{\alpha^{\prime}} \times 8 d_{2} \cdot \log ^{3} n$. Similarly, in Lemma 5.4 the density of tree F_{t} is at most $16 \times 8 \cdot d_{2} \log ^{3} n \cdot \operatorname{opt}_{B} / \alpha^{\prime}$. Therefore, we save a factor $O(\log n)$ in the analysis of Lemma 5.6 and thus in the approximation ratio of APPROX.

6 Discussion and open problems

General demands: For the case of general demand case we can easily get an $O\left(\log ^{4} N\right)$-approximation as follows. For every pair s_{i}, t_{i} with demand $\delta_{i}>1$, replace it with δ_{i} new pairs, with sources $s_{i}^{1}, \ldots, s_{i}^{\delta_{i}}$ and sinks $t_{i}^{1}, \ldots, t_{i}^{\delta_{i}}$, where all s_{i}^{j} 's are connected to s_{i} and all t_{i}^{j} 's are connected to t_{i} with zero buy and rent cost edges (note that we can just simulate this without actually adding any new nodes). It is an interesting question we are still working on to devise an algorithm of ratio independent of N. We can actually get $O\left(\log ^{3} n \cdot \log N\right)$-approximation ratio with a slight modification of the KMST algorithm. Since in any case the ratio still depends on N, details are omitted. Moreover, it seems to us that the general demand case might admit a polylogarithmic in n approximation. Our results in this direction are preliminary and may be reported separately.

Concave functions: In another variant of the multicommodity buy-at-bulk network design problem that has been considered before (see e.g. [1, 4, 15]) instead of two buy and rent costs on each edge, we have a function $f_{e}: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}$on each edge e that gives the cost $f_{e}(x)$ of transporting demand x along e. In addition we also assume that f_{e} exhibits economies of scale, i.e., it is concave monotone and $f_{e}(0)=0$. Our aim is to route all the demands while minimizing $\sum_{e} f_{e}\left(x_{e}\right)$ where x_{e} is the amount routed along edge e. Note that x_{e} 's are non-negative integers. As it is known previously [15], we can compute a tight approximation of each concave function f_{e} by viewing it as the minimum (at any demand passing through an edge) of a series of lines of decreasing slope and increasing y-intercept. Now this model can be interpreted as our rent and buy model by viewing the y-intercept of a line as the buy cost and its slope the rent cost. Thus we can simulate concave function f_{e} for each edge e in the original graph by providing many parallel edges in replacement of e each with its (different) buy and rent costs.

An obvious problem left open is closing the gap between the upper and lower bound on approximability of non-uniform multicommodity buy-at-bulk. At the moment, neither of these bounds (our polylogarithmic approximation factor, nor the sublogarithmic hardness result of [1]) seem to be tight. As we pointed out above an open problem we hope to address in a subsequent report is designing a polylogarithmic in n approximation factor for the general demand case.

7 Acknowledgment

The first author would like to thank Kamal Jain and Kunal Talwar for some initial discussions on the multicommodity buy-at-bulk problem.

References

[1] M. Andrews, Hardness of buy-at-bulk network design., in Proceedings of the 45 th Symposium on Foundations of Computer Science (FOCS '04), 2004, pp. 115-124.
[2] B. Awerbuch and Y. Azar, Buy-at-bulk network design, in Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS '97), IEEE Computer Society, 1997, p. 542.
[3] Y. Bartal, On approximating arbitrary metrices by tree metrics, in Proceedings of the thirtieth annual ACM symposium on Theory of computing (STOC '98), New York, NY, USA, 1998, ACM Press, pp. 161168.
[4] M. Charikar and A. Karagiozova, On non-uniform multicommodity buy-at-bulk network design, in STOC '05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, New York, NY, USA, 2005, ACM Press, pp. 176-182.
[5] C. Chekuri, S. Khanna, and J. Naor, A deterministic algorithm for the cost-distance problem, in Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms (SODA '01), Philadelphia, PA, USA, 2001, Society for Industrial and Applied Mathematics, pp. 232-233.
[6] J. Chuzhoy, A. Gupta, J. S. Naor, and A. Sinha, On the approximability of some network design problems, in Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA '05), Philadelphia, PA, USA, 2005, Society for Industrial and Applied Mathematics, pp. 943-951.
[7] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485-497.
[8] M. X. Goemans and D. P. Williamson, A general approximation technique for constrained forest problems, SIAM J. Comput., 24 (1995), pp. 296-317.
[9] S. Guha, A. Meyerson, and K. Munagala, A constant factor approximation for the single sink edge installation problems, in Proceedings of the thirty-third annual ACM symposium on Theory of computing (STOC '01), New York, NY, USA, 2001, ACM Press, pp. 383-388.
[10] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden, Approximation via cost-sharing: a simple approximation algorithm for the multicommodity rent-or-buy problem, in Proceedings of the 44rd Symposium on Foundations of Computer Science (FOCS '03), IEEE Computer Society, 2003, p. 606.
[11] A. Gupta, A. Kumar, and T. Roughgarden, Simpler and better approximation algorithms for network design, in Proceedings of the thirty-fifth ACM symposium on Theory of computing (STOC '03), ACM Press, 2003, pp. 365-372.
[12] M. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour, Approximating buy-at-bulk k-steiner tree. Manuscript, 2005.
[13] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974), pp. 256-278. Fifth Annual ACM Symposium on the Theory of Computing (Austin, Tex., 1973).
[14] A. Kumar, A. Gupta, and T. Roughgarden, A constant-factor approximation algorithm for the multicommodity rent-or-buy problem, in Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS '02), Washington, DC, USA, 2002, IEEE Computer Society, p. 333.
[15] A. Meyerson, K. Munagala, and S. Plotkin, Cost-distance: two metric network design, in Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS '00), IEEE Computer Society, 2000, p. 624.
[16] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian, Approximating the single-sink linkinstallation problem in network design, SIAM J. on Optimization, 11 (2000), pp. 595-610.
[17] K. Talwar, The single-sink buy-at-bulk lp has constant integrality gap, in Proceedings of the 9th International IPCO Conference on Integer Programming and Combinatorial Optimization, London, UK, 2002, Springer-Verlag, pp. 475-486.

[^0]: *Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. E-mail: hajiagha@ mit.edu.
 ${ }^{\dagger}$ Department of Computer Science, Rutgers University-Camden. E-mail: guyk@crab.rutgers.edu.
 ${ }^{\ddagger}$ Department of Computing Science, University of Alberta. E-mail: mreza@cs.ualberta.ca. Supported by NSERC and a faculty start-up grant.

[^1]: ${ }^{1}$ The optimal solution can have cycles. Consider a triangle graph G where each edge has buy cost 1 and rent cost 2 and we have a source-sink pair for each edge.
 ${ }^{2}$ Using slight modifications of our algorithm and an adapted version of the result in [12] we can get an $O\left(\log { }^{3} n \cdot \log N\right)-$ approximation. As this factor is still dependent on N we only present the simpler $O\left(\log ^{4} N\right)$ ratio.

