
Computing Nash Equilibria :

Approximation and Smoothed Complexity

Xi Chen ∗ Xiaotie Deng † Shang-Hua Teng ‡

Abstract

By proving that the problem of computing a 1/nΘ(1)-approximate Nash equilibrium
remains PPAD-complete, we show that the BIMATRIX game is not likely to have a fully
polynomial-time approximation scheme. In other words, no algorithm with time polynomial
in n and 1/ε can compute an ε-approximate Nash equilibrium of an n×n bimatrix game, un-
less PPAD ⊆ P. Instrumental to our proof, we introduce a new discrete fixed-point prob-
lem on a high-dimensional cube with a constant side-length, such as on an n-dimensional
cube with side-length 7, and show that they are PPAD-complete. Furthermore, we prove
that it is unlikely, unless PPAD ⊆ RP, that the smoothed complexity of the Lemke-
Howson algorithm or any algorithm for computing a Nash equilibrium of a bimatrix game
is polynomial in n and 1/σ under perturbations with magnitude σ. Our result answers a
major open question in the smoothed analysis of algorithms and the approximation of Nash
equilibria.

∗Department of Computer Science, Tsinghua University, Beijing, P.R.China. xichen00@mails.tsinghua.edu.cn. Sup-
ported by National Natural Science Foundation of China (60135010, 60321002) and Chinese National Key Foundation
Research and Development Plan (2004CB318108).

†Department of Computer Science, City University of Hong Kong, Hong Kong, P.R.China. deng@cs.cityu.edu.hk.
‡Department of Computer Science, Boston University, Boston, USA. steng@cs.bu.edu. Partially supported by the

NSF grants CCR-0311430 and ITR CCR-0325630. Part of the work was done while the author was visiting the City
University of Hong Kong, Tsinghua University, and Microsoft Beijing Research Lab.

1

Electronic Colloquium on Computational Complexity, Report No. 23 (2006)

ISSN 1433-8092

1 Introduction

The two-person game or the bimatrix game [12, 13] is perhaps the simplest form of non-
cooperative games [18]. It is specified by two m × n matrices A = (ai,j) and B = (bi,j),
where the m rows represent the pure strategies for the first player, and the n columns repre-
sent the pure strategies for the second player. In other words, if the first player chooses strategy
i and the second player chooses strategy j, then the payoffs to the first and the second players
are ai,j and bi,j, respectively.

Nash’s theorem [18, 17] on non-cooperative games when specialized to bimatrix games
states that there exists a profile of possibly mixed strategies so that neither player can gain
by changing his/her (mixed) strategy, while the other player maintains her mixed strategies.
Such a profile of strategies is called a Nash equilibrium.

Mathematically, a mixed strategy for the first player can be expressed by a column proba-
bility vector x ∈ R

m, that is, a vector with non-negative entries that sum to 1, while a mixed
strategy for the second player is a probability vector y ∈ R

n. A Nash equilibrium is then a
pair of probability vectors (x∗,y∗) such that for all pairs of probability vectors x ∈ R

m and
y ∈ R

n,
(x∗)TAy∗ ≥ xTAy∗ and (x∗)T By∗ ≥ (x∗)T By.

Note that the Nash equilibria of a bimatrix game (A,B) are invariant under positive scal-
ings, that is, the bimatrix game (c1A, c2B) has the same set of Nash equilibria as the bimatrix
game (A,B), as long as c1, c2 > 0. In addition, Nash equilibria are invariant under shifting,
that is, for any constants c1 and c2, the bimatrix game (c1 + A, c2 + B) has the same set of
Nash equilibria as the bimatrix game (A,B). Thus, we often normalize1 the matrices A and
B so that all their entries are between 0 and 1, or between -1 and 1.

The zero-sum two-person game [16] is a special case of the bimatrix game that satisfies
B = −A. Moreover, an instance of the zero-sum game can be formulated as a linear program
and hence can be solved in (weakly) polynomial time using, for example, the interior-point
method [9]. However, the computational problem of the general two-person games and the
existence proof of a Nash equilibrium have required different approaches from their zero-sum
specializations.

One of the most popular methods to find a Nash equilibrium of a bimatrix game is the
classic Lemke-Howson algorithm [13]. But recently, Savani and von Stengel [20] show that
it needs an exponential number of steps in the worst case for the Lemke-Howson algorithm
to reach an equilibrium solution. As the Lemke-Howson algorithm is somewhat connected
with the simplex method for linear programming, this exponential worst-case lower bound
did not completely damage the hope for an efficient solution of bimatrix games. After all,
the exponential worst-case lower bound against almost all known simplex algorithms did not
eliminate the possibility that linear programming can be solved in polynomial time [11, 9].

The following three optimistic conjectures summarize of our hope for the possible existence
of an efficient method for computing an exact or an approximate Nash equilibrium of a bimatrix
game.

1Normalization is needed in the definition of approximate Nash equilibrium to be discussed below.

2

1. Polynomial 2-NASH Conjecture: there exists a (weakly) polynomial-time algorithm
for computing a Nash equilibrium of a bimatrix game.

2. Fully Polynomial Approximate 2-NASH Conjecture: One can relax the Nash
condition and define an ε-approximate Nash equilibrium to be a profile of mixed strategies
such that no player can gain more than ε amount by changing his/her own strategy
unilaterally. The conjecture2 then states: There exists an algorithm for computing an
ε-approximate Nash equilibrium in time polynomial in n, m, and 1/ε for every 0 < ε < 1
and for every normalized game (A,B) with maxi,j

{
|ai,j |, |bi,j |

}
≤ 1, where ai,j is the

(i, j)th entry of A and bi,j is the (i, j)th entry of B.

3. Smoothed 2-NASH Conjecture [21]: The problem of finding a Nash equilibrium of a
bimatrix game is in smoothed polynomial time under σ-perturbations.

That is, for any pair of m × n matrices Ā = (āi,j) and B̄ =
(
b̄i,j

)
with | āi,j | ≤ 1 and

| b̄i,j | ≤ 1, let A = (ai,j) and B = (bi,j) be matrices where ai,j = āi,j + rA
i,j and bi,j =

b̄i,j +rB
i,j, with rA

i,j and rB
i,j being chosen independently and uniformly from [−σ, σ]. Then,

a Nash equilibrium of the bimatrix game (A,B) can be solved in expected polynomial
time in m, n, and 1/σ.

Ever since Spielman and Teng [22] established a polynomial upper bound on the smoothed
complexity of the simplex algorithm with the shadow vertex pivoting rule, it has been
frequently asked whether the smoothed complexity of another classic algorithm, the Lemke-
Howson algorithm for bimatrix games, is polynomial.

In the final installment of a series of exciting developments initiated by Daskalakis, Goldberg
and Papadimitriou [6], Chen and Deng [2] show that the first conjecture is unlikely to be true.
More specifically, they prove that the problem of computing a Nash equilibrium is PPAD-
complete for bimatrix games in which each player has n pure strategies.

In this paper, we show that it is unlikely that the second and third conjectures above are
true — we show that it remains PPAD-complete to compute a 1/nΘ(1)-approximate Nash
equilibrium of an n× n normalized bimatrix game. Consequently, we show that it is unlikely
that there is an algorithm for computing an ε-approximate Nash equilibrium with complexity
polynomial in n and 1/ε. Thus, it is unlikely that the nO(log n/ε2)-time ε-approximate result of
Lipton, Markakis, and Mehta [14] can be dramatically improved to poly(n, 1/ε).

By exploiting the connection between the complexity of approximate Nash equilibria and
the smoothed complexity of Nash equilibria, we show that, unless PPAD ⊆ RP, it is unlikely

2Because the notion of the ε-approximate Nash equilibria is defined in the additive fashion, to study its
complexity, it is important to consider bimatrix games with normalized matrices. That is, the absolute value of
each entry in the matrices is bounded, for example by 1. Earlier work on this subject by Lipton, Markakis, and
Mehta [14] used a similar normalization. Although, exact Nash equilibria of (A,B) are invariant under positive
scalings, each ε-approximate Nash equilibrium (x,y) of (A,B), becomes a c · ε-approximate Nash equilibrium of
the bimatrix game (cA, cB) for c > 0. It is worthwhile noticing that ε-approximate Nash equilibria are invariant
under shifting, that is, for any constants c1 and c2, the bimatrix game (c1 + A, c2 + B) has the same set ε-Nash
equilibria as the bimatrix game (A,B). To properly define the perturbation magnitudes in the next conjecture,
we also consider normalized bimatrix games.

3

that the smoothed complexity of the classic Lemke-Howson algorithm or any algorithm for
bimatrix games is polynomial in n and 1/σ under perturbations with magnitude σ. Thus, the
average-case polynomial time result of Barany, Vempala, and Vetta [1] is not likely extendible
to the smoothed model.

Our approach depends on a new discrete version of the Brouwer’s fixed point. Iimura intro-
duced a concept of direction-preserving functions to derive a discrete fixed point theorem [8].
The concept was applied by Chen and Deng [3] to derive a matching upper and lower bound
for finding an approximate fixed point for any fixed dimension higher than two. A notion
of the “bad” cube was utilized in the analysis. Until this point, the fixed point for discrete
functions exists only for restricted classes of discrete functions. Later, Daskalakis, Goldberg
and Papadimitriou introduced a discrete concept of fixed points in term of the values of the
function at the eight vertices of a three dimensional unit cube and proved that the problem
for computing this type of 3D discrete Brouwer’s fixed points is PPAD-complete [6]. This
invention allowed a discrete fixed point to exist once a boundary condition is satisfied by the
function without any further restriction on the function itself otherwise. Using an improve-
ment on the SPERNER problem, Chen and Deng improved the result to the two dimensional
case [2]. The new discrete version of the fixed-point problem has been helpful in proving
the PPAD-completeness of 4-NASH3 [6], and the extension to 3-NASH [4, 7], as well as the
PPAD-complete proof of the exact Nash equilibrium of two-person games [5].

However, those previous hardness proofs apply only to the computation of an approximate
Nash equilibrium within an exponentially small approximation parameter.

For example, the result of Chen and Deng states that finding a 2−Θ(n)-approximate Nash
equilibrium of a bimatrix game, in which each player has n pure strategies, is PPAD-complete.
Their proof does not apply to the computation of 1/nΘ(1)-approximate Nash equilibria, because
the approximation ratio decreases geometrically in the number of bits under consideration for
the fixed point problem. In order to extend these hardness results to the computation of
a 1/nΘ(1)-approximate Nash equilibrium, we need a reduction from a PPAD-complete fixed
point problem with a constant or O(log n) number of bits, which seems inconceivable in previous
approaches.

As an instrumental step in achieving our result, we introduce a family of high-dimensional
discrete fixed-point problems. The high-dimensional spaces provide an effecitve trade-off be-
tween the dimension and the side length of the hypergrid inside the cube that defines the
search space. In particular, we consider a discrete fixed-point problem associated with the
integer lattice points of the (8× 8× ...× 8

︸ ︷︷ ︸

n

) n-dimensional cube.

Fortunately and somewhat suprisingly, the discrete fixed-point problem is still PPAD-
complete on this seemly small cube. A cube with a constant side-length in high dimension
still contains an exponential number of integer lattice vertices. We show that as long as its
side-length is reasonably large (e.g., is equal to eight) the cube has enough space and flexibility
to fit a complex proof structure of a PPAD-complete problem.

3Note that entries of a Nash equilibrium of a four-person game may not be rational, even with rational payoff
entries. So, in general, one can only hope to compute an approximate Nash equilibrium of a four-person games.
Formally, the hardness result of Daskalakis, Goldberg, and Papadimitriou states: finding a 2−Θ(n)-approximate
Nash equilibrium of a normalized four-person game in which each players has n strategies is PPAD-complete.

4

However, discrete fixed-point problems in high dimensions come with their own challenges.
In particular, the exponential number of vertices in a unit cube create new difficulties to the
efficiency of the reduction techniques. Our definition of the family of high-dimensional discrete
fixed-point problems itself reflects a simple example of the necessity of handling that hurdle. We
develop several new techniques that enable us to carry through the reduction. A particularly
important one is a new averaging method to overcome the curse of high dimensionality in the
closing loop of the reduction that connects the computation of Nash equilibria in a bimatrix
game with the high-dimensional fixed-point problem.

As the fixed-points and Nash equilibria are fundamental to many other search and opti-
mization problems, our results and techniques may have a broader scope of applications and
implications. For example, our hardness results on bimatrix games can be naturally extended
to r-person matrix games and r-graphical games for any fixed r.

1.1 Notations

We will use bold lower-case Roman letters such as x, a, bj to denote vectors. Whenever a
vector, say a ∈ R

n is present, its components will be denoted by lower-case Roman letters with
subscripts, such as a1, . . . , an. Matrices are denoted by bold upper-case Roman letters such as
A and scalars are usually denoted by lower-case roman letters, but sometime by upper-case
Roman letters such as M , N , and K. The (i, j)th entry of a matrix A is denoted by ai,j.
Depending on the context, we may use ai to denote the ith row or the ith column of A.

We now enumerate some other notations that are used in this paper.

• Z
d
+: the set of d-dimensional vectors with positive integer entries;

• Z
d
[a,b]: the set

{
p ∈ Z

d | a ≤ pi ≤ b,∀1 ≤ i ≤ d
}
, for integers a ≤ b.

• R
m×n
[a:b] : the set of all m × n matrices with real entries between a and b. For example,

R
m×n
[−1:1] is the set of the m× n matrices with entries whose absolute values are at most 1.

• P
n: the set of all probability vectors in n dimensions. For example, x ∈ P

n means
∑n

i=1 xi = 1 and xi ≥ 0 for all 1 ≤ i ≤ n.

• 〈a|b〉: the dot-product of two vectors in the same dimension.

• ei: the unit vector whose ith entry is equal to 1 and all other entries are zeros.

1.2 Organization of the Paper

In Section 2, we review some complexity classes that will be used in this paper. We also intro-
duce a family of high-dimensional discrete fixed-point problems. In Section 3, we prove that
this family of high-dimensional discrete-fixed point problems is PPAD-complete, independent
of the dimension of the search space. In Section 4, we show that the problem of computing
a 1/nΘ(1)-approximate Nash equilibrium is PPAD-complete. In Section 5, we consider the
smoothed complexity of the bimatrix game. Finally, in Section 6, we conclude the paper with
some open questions inspired by our study.

5

2 PPAD and High-Dimensional Brouwer’s Fixed Points

In this section, we review the complexity class PPAD introduced by Papadimitriou [19] and
define a family of search problems about the computation of a Brouwer’s fixed point in a
high dimensional space. In particular, we allow the value of the dimension to be included in
the input size. The consideration of high-dimensional fixed point problem is instrumental to
establish our main result.

2.1 TFNP and PPAD

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation over {0, 1}∗. R is polynomially balanced if there
exists a polynomial p such that for all pairs (x, y) ∈ R, |y| ≤ p(|x|). In addition, R is a
polynomial-time relation if for each pair (x, y), one can decide whether or not (x, y) ∈ R in
time polynomial in |x|+ |y|.

One can define the NP search problem QR specified by R as: Given an input string
x ∈ {0, 1}∗, decide whether there exists a y ∈ {0, 1}∗ such that (x, y) ∈ R, and if such y exists,
return y, otherwise, return a special string called “no”.

A relation R is total if for every string x ∈ {0, 1}∗, there exists a y such that (x, y) ∈ R.
Following Megiddo and Papadimitriou [15], TFNP denotes the class of all NP search problems
defined by total relations.

Definition 1 (Polynomial Reduction). A search problem QR1 ∈ TFNP is polynomial-
time reducible to another QR2 ∈ TFNP if there exists a pair of polynomial-time computable
functions (f, g) such that, for every input x of R1, if y satisfies (f(x), y) ∈ R2, then (x, g(y)) ∈
R1. QR1 and QR2 are then polynomial-time equivalent (or simply, equivalent) if QR2 is also
reducible to QR1.

An important and interesting sub-class of TFNP is the complexity class PPAD [19]. It
is the set of total search problems that are polynomial-time reducible to the following search
problem, LEAFD.

Definition 2 (LEAFD). The input instance of LEAFD is a pair (M, 0n) where M is the de-
scription of a polynomial-time Turing machine satisfying the following two conditions:

1. for every v ∈ {0, 1}n, M(v) is an ordered pair (u1, u2) where u1, u2 ∈ {0, 1}n ∪ {“no”}.

2. M(0n) = (“no”, 1n) and the first component of M(1n) is 0n.

This instance defines a directed graph G = (V,E) where V = {0, 1}n and a pair (u, v) ∈ E if
and only if v is the second component of M(u) and u is the first component of M(v).

The output of this problem is a directed leaf of G other than 0n, where a vertex of V is a
directed leaf if its out-degree plus in-degree equals one.

In other words, a PPAD instance is defined by a directed graph (of exponential size)
G = (V,E), where both the in-degree and the out-degree of every node are at most 1, together
with a pair of polynomial-time functions, P : V → V ∩ {“no”} and S : V → V ∩ {“no”} that
compute the predecessor and successor of each vertex, respectively. A pair (u, v) appears in E

6

only if P (v) = u and S(u) = v. In addition, a starting source vertex 0n with in-degree 0 and
out-degree 1 is given. The required output is another vertex with in-degree 1 and out-degree 0
(a sink) or with in-degree 0 and out-degree 1 (another source).

Many important problems, such as the search versions of Brouwer’s fixed-point theorem,
Kakutani’s fixed-point theorem, Smith’s theorem and Borsuk-Ulam theorem, have been iden-
tified to be in the class PPAD [19].

The totality of PPAD is guaranteed by the following fact: in a directed graph where the
in-degree and out-degree of every vertex are at most one, if there exists a source, there must
be a sink or another source4. Simply from its definition, LEAFD is complete for PPAD.

2.2 Problem Brouwerf

One of the most important PPAD problems concerns the task of search for a discrete Brouwer’s
fixed point. In this subsection, we define this class of search problems in various dimensions. A
discrete version of the Brouwer’s fixed point theorem provides key to obtain our main results.
In order to handle the exponential exploration of vertices in high dimensional cube, we need to
define an efficient discrete version. We will introduce some notations — some elementary and
some geometric — to facilitate our discussion.

To define our high dimensional Brouwer’s fixed point problems, we need a notion of well-
behaved functions (please note that this is not the function for the fixed point problem) to
parameterize the shape of the search space. We say an integer function f(n) is well-behaved if
it is polynomial-time computable and there exists a constant n0 such that 3 ≤ f(n) ≤ n/2 for
every integer n ≥ n0.

For example, f1(n) = 3, f2(n) = bn/2c, f3(n) = bn/3c and f4(n) = blog nc are all well-
behaved functions.

For each p ∈ Z
d, let Kp denote the following unit hypercube incident to p, that is,

Kp =
{

q ∈ Z
d

∣
∣
∣ qi = pi or pi + 1, ∀ 1 ≤ i ≤ d.

}

.

For a positive integer d and a vector r ∈ Z
d
+, let

Ad
r =

{

p ∈ Z
d

∣
∣
∣ 0 ≤ pi ≤ ri − 1,∀ 1 ≤ i ≤ d.

}

be the hyper-grid with side length given by r. The boundary of Ad
r, ∂

(
Ad

r

)
, is then the set of

integer lattice points p ∈ Ad
r with pi ∈ {0, ri − 1} for some i : 1 ≤ i ≤ d.

For each r ∈ Z
d
+, let Size [r] =

∑

1≤i≤d d log(ri + 1) e denote the number of bits necessary
and sufficient to represent r.

4PPAD is the directed version of class PPA, also introduced by Papadimitriou [19]. PPA is a class of
search problems defined based on the Polynomial Parity Argument: Given a finite graph consisting of lines and
cycles, there must be an even number of vertices with degree 1. A PPA instance specifies an exponentially-sized
undirected graph in which each vertex has degree no more than 2, a polynomial-time computable neighboring
function, and a vertex, say 0n, with degree 1. The goal of its search problem is to find another degree 1 vertex.

7

Definition 3 (Brouwer-Mapping Circuit). For a positive integer d and r ∈ Z
d
+, a Boolean

circuit C is a Brouwer-mapping circuit with parameters d and r if it has exactly Size [r] input
bits and 2d output bits ∆+

1 , ∆−1 ...∆+
d , ∆−d .

Moreover, C is a valid Brouwer-mapping circuit if

• for every p ∈ Ad
r, the set of 2d output bits evaluated at p falls into one of the following

cases:

– case 1: ∆+
1 = 1 and all other bits are 0;

– ...

– case d: ∆+
d = 1 and all other bits are 0;

– case d+ 1: for every i : 1 ≤ i ≤ d, ∆+
i = 0 and ∆−i = 1.

• for every p ∈ ∂
(
Ad

r

)
, if there exists an i : 1 ≤ i ≤ d such that pi = 0, letting imax =

max { i | pi = 0 }, then the output bits satisfy the ithmax case, otherwise, (when none of the
pi is 0 and some are ri − 1), the output bits satisfy the d+ 1st case.

Definition 4 (Brouwer Color Assignment and Panchromatic Simplex). Suppose C is
a valid Brouwer-mapping circuit with parameter d and r. Circuit C defines a color assignment:
ColorC : Ad

r → {1, 2, ... d, “red” }, where “red” is a special color, according to the following
rule: For each point p ∈ Ad

r, if the set of output bits of C evaluated at p satisfies the ith case
where 1 ≤ i ≤ d, then ColorC [p] = i; otherwise, the output bits of C satisfy the d + 1th case
and ColorC [p] = “red”.

A subset P ⊂ Ad
r is accommodated if there exists a point p ∈ Ad

r such that P ⊂ Kp. A set
P ⊂ Ad

r is a panchromatic set or a panchromatic simplex of C if it is an accommodated set of
d+ 1 points assigned with all d+ 1 colors.

For each well-behaved function f , we define a discrete Brouwer fixed point problem as
following.

Definition 5 (Brouwerf). For a well-behaved function f and a parameter n, let m = f(n)
and d = dn/f(n)e. An input instance of Brouwerf is a pair (C, 0n) where C is a valid
Brouwer-mapping circuit5 with parameter d and r where ri = 2m, ∀ i : 1 ≤ i ≤ d. The output
of this search problem is then a panchromatic simplex of C.

The following property will be useful for the next section.

5Formally, a polynomially balanced and polynomial-time relation R is necessary in order to define a search
problem in TFNP. As the input is an arbitrary string x, it may happen that its C component is not a description
of a valid Brouwer-mapping circuit. It is even possible that x cannot be decoded into a boolean circuit following
by a sequence of 0’s. We can embed valid Brouwer-mapping circuits into a polynomially balanced and polynomial-
time computable relation as following: In advance, we choose a “standard” valid Brouwer-mapping circuit C∗

with parameters d and r and size polynomial in n. If a string x of {0, 1}∗ can not be decoded into a Brouwer-
mapping circuit, followed by a sequence of 0’s, then we include (x, 01) in R. Otherwise, assume x is decoded
into (C, 0n). We couple C with C∗, in case C is not a valid Brouwer-mapping circuit, to define a possibly new
circuit C′. If the output bits of C evaluated at p ∈ Ad

r
is invalid, then C′ invokes C∗ and output according to

C∗. We include (x,y) in R if y can be decoded into a panchromatic simplex of C ′. One can verify that R is
indeed polynomially balanced and polynomial-time computable. In addition, C ′ = C for all valid C.

8

Property 1 (Boundary Continuity). Let C be a valid Brouwer-mapping circuit with pa-
rameters d and r, and p,p′ ∈ ∂

(
Ad

r

)
. If p′ = p + et for some 1 ≤ t ≤ d and 1 ≤ pt ≤ rt − 2,

then ColorC [p] = ColorC [p′].

Proof. By the definition, if C is a valid Brouwer-mapping circuit C with parameters d and r,
then for each p ∈ ∂

(
Ad

r

)
, ColorC [p] satisfies

• if there exists an i : 1 ≤ i ≤ d such that pi = 0, then ColorC [p] = max { i | pi = 0 };
otherwise, when none of pi is 0 and some of them are ri − 1, ColorC [p] = “red”.

Thus, if 1 ≤ pt ≤ rt − 2, then ColorC [p] = ColorC [p′].

Lemma 1. For any well-behaved function f , search problem Brouwerf is in PPAD.

Proof. See appendix.

3 PPAD-Completeness of Brouwerf

In this section, we show that for any well-behaved function f , Brouwerf is PPAD-complete.
The hardness result essentially states that the complexity of finding a Brouwer’s fixed point is
independent of the shape or dimension of the domain. Instead, it is dominated by the number
of points and hence the number of unit hypercubes in the domain.

Recall f1(n) = 3, f2(n) = bn/2c, f3(n) = bn/3c are all well-behaved functions. It was
recently shown that both Brouwerf2 [2] and Brouwerf3 [6] are PPAD-complete. Our
reduction is from the two-dimensional Brouwerf2. In section 4, we reduce Brouwerf1,
where f1(n) = 3, to the computation of a 1/nΘ(n)-approximate Nash equilibrium of bimatrix
games.

3.1 Reductions among Coloring Triples

The basic idea of our reduction is to iteratively embed an instance of Brouwerf2 into higher
dimension space. We will use the following concept to describe such embedding processes.

Definition 6 (Coloring Triples). A triple T = (C, d, r) is said to be a coloring triple if
r ∈ Z

d with ri ≥ 7 for all i : 1 ≤ i ≤ d and C is a valid Brouwer-mapping circuit with
parameters d and r.

We start with three lemmas that are important for reduction. In each lemma, we introduce
a transformation that embeds a given coloring triple T into a somewhat larger coloring triple
T ′ such that from a panchromatic simplex of T ′, we can compute a panchromatic simplex of
T efficiently.

We will use Size [C] to denote the number of gates plus the number input and output
variables in a Boolean circuit C.

Lemma 2 (L1(T, t, u): Padding a Dimension). Given a coloring triple T = (C, d, r) and
integers 1 ≤ t ≤ d and u > rt, we can construct a new coloring triple T ′ = (C ′, d, r′) that
satisfies the following two conditions.

9

ColorC′ [p] of a point p ∈ Ad
r′ assigned by L1(T, t, u)

1: if p ∈ ∂
(
Ad

r′

)
then

2: if there exists i such that pi = 0 then

3: ColorC′ [p] = imax = max{ i
∣
∣ pi = 0 }

4: else

5: ColorC′ [p] = red

6: else if pt ≤ rt then

7: ColorC′ [p] = ColorC [p]

8: else

9: ColorC′ [p] = red

Figure 1: How L1(T, t, u) extends the color assignment

A. For all i : 1 ≤ i 6= t ≤ d, r′i = ri, and r′t = u. In addition, there exists a polynomial g1(n)
such that Size [C ′] = Size [C]+O(g1(Size [r′])) and T ′ can be computed in time polynomial
in Size [C ′]. We write T ′ = L1(T, t, u).

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.

Proof. We define circuit C ′ by its color assignment in Figure 1. Property A is true according
to this definition.

To show Property B, let P ′ ⊂ Kp be a panchromatic simplex of T ′. We first note that
pt ≤ rt − 1, because had pt > rt − 1, Kp would not contain color t according to the color
assignment, Thus, it follows from ColorC′ [q] = ColorC [q] for each q ∈ Ad

r that P ′ is also be a
panchromatic simplex of the coloring triple T .

Lemma 3 (L2(T, u): Adding a Dimension). Given a coloring triple T = (C, d, r) and an
integer u ≥ 7, we can construct a new coloring triple T ′ = (C ′, d + 1, r′) that satisfies the
following conditions.

A. For all i : 1 ≤ i ≤ d, r′i = ri, and r′d+1 = u. Moreover, there exists a polynomial g2(n)
such that Size [C ′] = Size [C]+O(g2(Size [r′])) and T ′ can be computed in time polynomial
in Size [C ′]. We write T ′ = L2(T, u).

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.

Proof. For each point p ∈ Ad+1
r′

, we use p̄ to denote the point q ∈ Ad
r with qi = pi, ∀i : 1 ≤

i ≤ d. The color assignment of circuit C ′ is given in Figure 2. Clearly, Property A is true.
To prove property B, let P ′ ⊂ Kp be a panchromatic simplex of T ′. We note that

pd+1 = 0, for otherwise, Kp does not contain color d + 1. Note also ColorC′ [q′] = d + 1
for every q ∈ Ad+1

r′ with qd+1 = 0. Thus, for every q ∈ P ′ with ColorC′ [q] 6= d + 1, we

10

ColorC′ [p] of a point p ∈ Ad+1
r′

assigned L2(T, u)

1: if p ∈ ∂
(
Ad

r′

)
then

2: if there exists i such that pi = 0 then

3: ColorC′ [p] = imax = max{ i
∣
∣ pi = 0 }

4: else

5: ColorC′ [p] = red

6: else if pd+1 = 1 then

7: ColorC′ [p] = ColorC [p̄]

8: else

9: ColorC′ [p] = red

Figure 2: How L2(T, u) extends the color assignment

have qd+1 = 1. So, because ColorC′ [q] = ColorC [q̄] for each q ∈ Ad+1
r′

with qd+1 = 1,
P =

{
q̄

∣
∣ q ∈ P ′ and ColorC′ [p] 6= d+ 1

}
is a panchromatic simplex of coloring triple T .

Lemma 4 (L3(T, t, a, b): Snake Embedding). Given a coloring triple T = (C, d, r) and
integer 1 ≤ t ≤ d, if rt = a(2b+ 1) + 5 for some integers a, b ≥ 1, then we can construct a new
triple T ′ = (C ′, d+ 1, r′) that satisfies the following conditions.

A. For i : 1 ≤ i 6= t ≤ d, r′i = ri and r′t = a+ 5 and r′d+1 = 4b+ 3. Moreover, there exists a
polynomial g3(n) such that Size [C ′] = Size [C] +O(g3(Size [r′])) and T ′ can be computed
in time polynomial in Size [C ′]. We write T ′ = L3(T, t, a, b).

B. From each panchromatic simplex P ′ of coloring triple T ′, we can computer a panchromatic
simplex P of T in polynomial time.

Proof. Consider the domain of Ad
r ⊂ Z

d and Ad+1
r′
⊂ Z

d+1 of our coloring triples. We form the

reduction L3(T, t, a, b) in three steps. First, we define a d-dimensional set W ⊂ Ad+1
r′

that is
large enough to contain Ad

r. Second, we define a map ψ that (implicitly) specifies an embedding
of Ad

r into W . Finally, we build a circuit C ′ for Ad+1
r′

and show that from each panchromatic
simplex of C ′, we can in polynomial time compute a pancrhomatic simplex of C.

A two dimensional view of W is illustrated in Figure 3. We use a snake-pattern to realizes
the longer tth dimension of Ad

r in the two-dimensional space defined by the shorter tth and d+1st

dimensions of Ad+1
r′

. Formally, W consists the set of points p ∈ Ad+1
r′

satisfying 1 ≤ pd+1 ≤ 4b+1
and

if pd+1 = 1, then 2 ≤ pt ≤ a+ 4 and if pd+1 = 4b+ 1, then 0 ≤ pt ≤ a+ 2;

if pd+1 = 4(b− i)− 1 where 0 ≤ i ≤ b− 1, then 2 ≤ pt ≤ a+ 2;

if pd+1 = 4(b− i)− 3 where 0 ≤ i ≤ b− 2, then 2 ≤ pt ≤ a+ 2;

11

4b+2

4b+1

4b

0

1

2

1

0 2 a+4a+3a+2et

ed+1

Figure 3: The two dimensional view of set W ⊂ Ad+1
r′

if pd+1 = 4(b− i)− 2 where 0 ≤ i ≤ b− 1, then pt = 2;

if pd+1 = 4(b− i) where 0 ≤ i ≤ b− 1, then pt = a+ 2.

To build T ′, we embed the coloring triple T into W . This embedding is implicitly given by
a natural surjective map ψ from W to Ad

r, a map that will plays a vital role in our construction
and analysis. For each p ∈ W , we use p[m] to denote the point q in Z

d such that qt = m and
qi = pi, ∀i : 1 ≤ i 6= t ≤ d. We define ψ(p) according to the following cases:

if pd+1 = 1, then ψ(p) = p[2ab+ pt] and if pd+1 = 4b+ 1, then ψ(p) = p[pt];

if pd+1 = 4(b− i)− 1 where 0 ≤ i ≤ b− 1, then ψ(p) = p[(2i+ 2)a+ 4− pt];

if pd+1 = 4(b− i)− 3 where 0 ≤ i ≤ b− 2, then ψ(p) = p[(2i+ 2)a+ pt];

if pd+1 = 4(b− i)− 2 where 0 ≤ i ≤ b− 1, then ψ(p) = p[(2i+ 2)a+ 2];

if pd+1 = 4(b− i) where 0 ≤ i ≤ b− 1, then ψ(p) = p[(2i + 1)a+ 2].

Essentially, we map W bijectively to Ad
r along its tth dimension with exception that when

the snake pattern of W is making a turn, we stop the advance in Ad
r, and continue the advance

after it completes the turn. Let ψi(p) denote the ith component of ψ(p). Our embedding
scheme guarantees the following important property of ψ.

12

ColorC′ [p] of a point p ∈ Ad+1
r′

assigned L3(T, t, a, b)

1: if p ∈W then

2: ColorC′ [p] = ColorC [ψ(p)]

3: else if p ∈ ∂
(

Ad+1
r′

)

then

4: if there exists i such that pi = 0 then

5: ColorC′ [p] = imax = max{ i
∣
∣ pi = 0 }

6: else

7: ColorC′ [p] = red

8: else if pd+1 = 4i where 1 ≤ i ≤ b and 1 ≤ pt ≤ a+ 1 then

9: ColorC′ [p] = d+ 1

10: else if pd+1 = 4i+ 1, 4i+ 2 or 4i+ 3 where 0 ≤ i ≤ b− 1 and pt = 1 then

11: ColorC′ [p] = d+ 1

12: else

13: ColorC′ [p] = red

Figure 4: The color assignment of L3(T, t, a, b)

Property 2 (Boundary Preserving). Let p be a point in W ∩ ∂
(

Ad+1
r′

)

. If there exists i

such that pi = 0, then max{ i
∣
∣ pi = 0 } = max{ i

∣
∣ ψi(p) = 0 }. Otherwise, all entries of p are

non-zero and there exists l such that pl = r′l−1, in which case, all entries of ψi(p) are nonzero
and ψl(p) = rl − 1.

Circuit C ′ specifies a color assignment of Ad+1
r′

according to Figure 4. This circuit is derived
from circuit C and map ψ. By Property 2, we can verify that C ′ is a valid Brouwer-mapping
circuit with parameters d+ 1 and r′.

Property A of the lemma follows directly from our construction. In order to establish
Property B of the lemma, we prove the following collection of statements to cover all possible
cases of the given panchromatic simplex of T ′. In the following statements, P ′ is a panchromatic
simplex of T ′ in Ad+1

r′
and let p∗ ∈ Ad+1

r′
be the point such that P ′ ⊂ Kp∗ . We will also use

the following notation: For each p ∈ Ad+1
r′

, we will use p[m1,m2] to denote the point q ⊂ Z
d+1

such that qt = m1, qd+1 = m2 and qi = pi, ∀i : 1 ≤ i 6= t ≤ d.
Statement 1. If p∗t = 0, then p∗d+1 = 4b and furthermore, for each p ∈ P ′ such that
ColorC′ [p] 6= d+ 1, ColorC [ψ(p[pt, 4b+ 1])] = ColorC′ [p].

Proof. Note first p∗d+1 6= 4b + 1, for otherwise, Kp∗ does not contain color d + 1. Second, if
p∗d+1 < 4b, then each point in q ∈ Kp∗ is colored according one of the conditions in line 3, 8
or 10 of figure 4. Let q∗ ∈ Kp∗ be the “red” point in P ′. Then q∗ must satisfy the condition
in line 6 and hence there exists l such that q∗l = r′l − 1. By our assumption, p∗t = 0. Thus if
p∗d+1 < 4b, then l 6∈ {t, d+ 1}, implying for each q ∈ Kp∗ , ql > 0 (as ql ≥ q∗l − 1 > 0) and

13

ColorC′ [q] 6= l. So Kp∗ does not contain color l, contradicting with the assumption of the
statement. Putting these two cases together, we have p∗d+1 = 4b.

We now prove the second part of the statement. If pd+1 = 4b+1, then we are done, because
ColorC [ψ(p)] = ColorC′ [p] according to line 1 of Figure 4. So, let us assume pd+1 = 4b.
Because the statement assumes ColorC′ [p] 6= d+1, p satisfies the condition in line 3 and hence

p ∈ ∂
(

Ad+1
r′

)

. By Property 1, we have ColorC′ [p[pt, 4b+ 1]] = ColorC′ [p], completing the

proof of the statement.

Statement 2. If p∗t = a + 2 or a + 3, then p∗d+1 = 0, and in addition, for each p ∈ P ′ such
that ColorC′ [p] 6= d+ 1, ColorC [ψ(p[pt, 1])] = ColorC′ [p].

Proof. If p∗d+1 > 0, then Kp∗ does not contain color d+1. So p∗d+1 = 0. In this case, pd+1 must

be 1, since ColorC′ [q] = d + 1 for any q ∈ Ad+1
r′

with qd+1 = 0. Thus, ColorC [ψ(p[pt, 1])] =
ColorC′ [p[pt, 1])] = ColorC′ [p].

Statement 3. If p∗d+1 = 4b, then 0 ≤ p∗t ≤ a + 1, and moreover, for each p ∈ P ′ such that
ColorC′ [p] 6= d+ 1, ColorC [ψ(p[pt, 4b+ 1])] = ColorC′ [p].

Proof. The first part of the statement is straightforward. Similar to the proof of Statement 1,
we can prove the second part of the statement for the case that 0 ≤ pt ≤ a + 1. When
pt = a+ 2, we have ψ(p) = ψ(p[pt, 4b+ 1]). Thus, ColorC [ψ(p[pt, 4b+ 1])] = ColorC [ψ(p)] =
ColorC′ [p].

We can similarly prove the following statements.

Statement 4. If p∗d+1 = 4i+1 or 4i+2 for some 0 ≤ i ≤ b− 1, then p∗t = 1 and furthermore,
for each p ∈ P ′ such that ColorC′ [p] 6= d+ 1, ColorC [ψ(p[2, pd+1])] = ColorC′ [p].

Statement 5. If p∗d+1 = 4i for some 1 ≤ i ≤ b− 1, then 1 ≤ p∗t ≤ a+ 1, and in addition, for
each p ∈ P ′ such that ColorC′ [p] 6= d + 1, if 2 ≤ pt ≤ a + 1, then ColorC [ψ(p[pt, 4i+ 1])] =
ColorC′ [p], and if pt = 1, then ColorC [ψ(p[2, 4i + 1])] = ColorC′ [p].

Statement 6. If p∗d+1 = 4i − 1 for some 1 ≤ i ≤ b, then 1 ≤ p∗t ≤ a + 1, and moreover, for
each p ∈ P ′ such that ColorC′ [p] 6= d + 1, if 2 ≤ pt ≤ a + 1, then ColorC [ψ(p[pt, 4i− 1])] =
ColorC′ [p], and if pt = 1, then ColorC [ψ(p[2, 4i − 1])] = ColorC′ [p].

Statement 7. If p∗d+1 = 0, then 1 ≤ p∗t ≤ a + 3, and in addition, for each p ∈ P ′ such that
ColorC′ [p] 6= d + 1, if 2 ≤ p∗t ≤ a + 1, then ColorC [ψ(p[pt, 1])] = ColorC′ [p], and if p∗t = 1,
then ColorC [ψ(p[2, 1])] = ColorC′ [p].

In addition,

Statement 8. p∗d+1 6= 4b+ 1.

Proof. This statement is true if p∗d+1 = 4b+ 1 then Kp∗ does not contain color d+ 1.

14

Now suppose that P ′ is a panchromatic simplex of T ′. Let p∗ be the point such that
P ′ ⊂ Kp∗ . Then P ′ and p∗ must satisfy the conditions of one of the the statements. By that
statement, we can transform every point p ∈ P ′, except for the one that has color d+ 1, back
to a point q in Ad

r to obtain a set P from P ′. This transformation maintains the coloring. As
P consists of the d+ 1 points and is accommodated, it is a panchromatic simplex of C. Thus,
with all the statements above, we specify an efficient algorithm to compute a panchromatic
simplex P of T given a panchromatic simplex P ′ of T ′.

3.2 PPAD-Completeness of Problem Brouwerf

We are now ready to prove the main result of this section.

Theorem 1 (High Dimensional Brouwer’s Fixed Points). For any well-behaved function
f , search problem Brouwerf is PPAD-complete.

Proof. We reduce Brouwerf2 to Brouwerf in order to prove the latter is PPAD-complete.
Recall, f2(n) = bn/2c. Suppose (C, 02n) is an input instance of Brouwerf2. Let

l = f(11n) ≥ 3, m′ =

⌈
n

l − 2

⌉

and m =

⌈
11n

l

⌉

.

We iteratively construct a sequence of coloring triples T = { T 0, T 1, ... Tw−1, Tw } for some
w = O(m), starting with T 0 = (C, 2, (2n, 2n)) and ending with Tw = (Cw,m, rw) where
rw ∈ Z

m and rw
i = 2l, ∀i : 1 ≤ i ≤ m. At the tth, we apply either L1,L2 or L3 with properly

chosen parameters to build T t+1 from T t.

Below we give the details of our construction. In the first step, we call L1
(

T 0, 1, 2m′(l−2)
)

to get T 1 =
(

C1, 2,
(

2m′(l−2), 2n
))

. This step is possible because m′(l−2) ≥ n. We then invoke

the procedure in Figure 5. In each for-loop, the first component of r decreases by a factor of

2l−2, while the dimension of the space increases by 1. After running the for-loop (m ′−5) times,

we obtain a coloring triple T 3m′−14 =
(

C3m′−14, d3m′−14, r3m′−14
)

that satisfies6

d3m′−14 = m′ − 3, r3m′−14
1 = 25(l−2), r3m′−14

2 = 2n and r3m′−14
i = 2l, ∀ i : 3 ≤ i ≤ m′ − 3.

Next, we call the procedure given in Figure 6. Note that the while-loop must terminate in
at most 8 iterations because we start with r3m′−14

1 = 25(l−2). The procedure returns a coloring

triple Tw′
=

(

Cw′
, dw′

, rw′
)

that satisfies

w′ ≤ 3m′ + 11, dw′ ≤ m′ + 5, rw′

1 = 2l, rw′

2 = 2n and rw′

i = 2l, ∀ i : 3 ≤ i ≤ dw′

.

Then we repeat the whole process above on the second coordinate and obtain a coloring

triple Tw′′
=

(

Cw′′
, dw′′

, rw′′
)

that satisfies

w′′ ≤ 6m′ + 21, dw′′ ≤ 2m′ + 8 and rw′′

i = 2l,∀ i : 1 ≤ i ≤ dw′′

.

6Remark: the superscript of C, d, ri, denotes the index of the iterative step, it is not an

exponent!.

15

The Construction of T 3m′−14 from T 1

1: for any t from 0 to m′ − 6 do

2: It can be proved inductively that T 3t+1 = (C3t+1, d3t+1, r3t+1) satisfies

d3t+1 = t+ 2, r3t+1
1 = 2(m′−t)(l−2), r3t+1

2 = 2n and r3t+1
i = 2l for any 3 ≤ i ≤ t+ 2

3: let u = (2(m′−t−1)(l−2) − 5)(2l−1 − 1) + 5

4: [u ≥ r3t+1
1 = 2(m′−t)(l−2) under the assumption that t ≤ m′ − 6 and l ≥ 3]

5: T 3t+2 = L1 (T 3t+1, 1, u)

6: T 3t+3 = L3 (T 3t+2, 1, 2(m′−t−1)(l−2), 2l−2 − 1)

7: T 3t+4 = L1 (T 3t+3, t+ 3, 2l)

Figure 5: The Construction of T 3m′−14 from T 1

The Construction of Tw′
from T 3m′−14

1: let t = 0

2: while T 3(m′+t)−14 = (C3(m′+t)−14,m′ + t− 3, r3(m′+t)−14) satisfies r
3(m′+t)−14
1 > 2l do

3: let k =
⌈
(r

3(m′+t)−14
1 − 5)/(2l−1 − 1)

⌉
+ 5

4: T 3(m′+t)−13 = L1 (T 3(m′+t)−14, 1, (k − 5)(2l−1 − 1) + 5)

5: T 3(m′+t)−12 = L3 (T 3(m′+t)−13, 1, k, 2l−2 − 1)

6: T 3(m′+t)−11 = L1 (T 3(m′+t)−12, m′ + t− 2, 2l), set t = t+ 1

8: let w′ = 3(m′ + t)− 13 and Tw′
= L1(T 3(m′+t)−14, 1, 2l)

Figure 6: The Construction of T w′
from T 3m′−14

The way we define m and m′ guarantees

dw′′ ≤ 2m′ + 8 ≤ 2

(
n

l − 2
+ 1

)

+ 8 ≤ 2

(
n

l/3

)

+ 10 =
6n

l
+ 10 ≤ 11n

l
≤ m.

Finally, by applying L2 for m − dw′′
times with parameter u = 2l, we obtain Tw =

(Cw,m, rw) with rw
i = 2l, ∀1 ≤ i ≤ m. It follows from our construction, w = O(m).

To see why the sequence T gives a reduction from Brouwerf2 to Brouwerf , let T i =
(
Ci, di, ri

)
(again the superscript of C, d, ri, denotes the index of the iteration). As sequence

{Size
[
ri

]
}0≤i≤w is nondecreasing and w = O(m) = O(n), by Property A of Lemma 2, 3 and 4,

there exists a polynomial g(n) such that

Size [Cw] = Size [C] +O
(
g (n)

)
.

16

By these Properties A again, we can construct the whole sequence T and in particularly,
Tw =

(
Cw,m, r2

)
, in time polynomial in Size [C].

(
Cw, 011n

)
is an input instance of Brouwerf . Given a panchromatic simplex P of

(
Cw, 011n

)
,

using the algorithm in Property B of Lemma 2, 3 and 4, we can compute a sequence of panchro-
matic simplex Pw = P, Pw−1..., P 0 iteratively in polynomial time, where P t is a panchromatic
simplex of T t and is computed from the panchromatic simplex P t+1 of T t+1. In the end, we
obtain P 0, which is a panchromatic set of

(
C, 02n

)
.

4 Hardness of Approximating Nash Equilibria

In this section, we show it is unlikely that the bimatrix game has a fully polynomial-time ap-
proximation scheme. More precisely, we reduce Brouwerf1, for f1(n) = 3, to the computation
of a 1/nΘ(1)-approximate Nash equilibrium of a bimatrix game (A,B) where A,B ∈ R

n×n
[0,1]

.
Thus, the latter problem is also PPAD-complete.

4.1 Basic Notations and the Main Results

We start with some notations that are useful for our reduction and analysis.

4.1.1 ε-Well-Supported Nash Equilibria

A key concept in the reduction of Daskalakis, Goldberg and Papadimitriou [6] and Chen and
Deng [5] is an alternative notion of approximate Nash equilibria. To distinguish it from the
more commonly used notion of approximate Nash equilibria, we will refer to this alternative
approximation as an ε-well-supported Nash equilibrium.

Let G = (A,B) be a bimatrix game where A and B are two n× n matrices. We use ai to
denote the ith row of A and bi to denote the ith column of B. In a profile of mixed strategies
(x,y), the payoff of the first player if he/she chooses the ith strategy is 〈ai|y〉, and the payoff
of the second player if he/she chooses the ith strategy is 〈bi|x〉.

Definition 7 (ε-well-supported Nash Equilibria). An ε-well-supported Nash equilibrium
of a bimatrix game (A,B) is a profile of mixed strategies (x∗,y∗), such that for all 1 ≤ i, j ≤ n,

〈bi|x∗〉 > 〈bj|x∗〉+ ε ⇒ y∗j = 0 and 〈ai|y∗〉 > 〈aj|y∗〉+ ε ⇒ x∗j = 0.

Recall that the commonly used notion of approximation is defined as:

Definition 8 (ε-approximate Nash equilibria). An ε-approximate Nash equilibrium of
game (A,B) is a profile of mixed strategies (x∗,y∗), such that for all probability vectors x,y ∈
P

n,
(x∗)TAy∗ ≥ xTAy∗ − ε and (x∗)TBy∗ ≥ (x∗)TBy − ε.

We now show that these two notions are polynomially related. This polynomial relation
allows us to prove the PPAD result with a pair-wise approximation condition. Thus, we
can locally argue certain properties of the bimatrix game that we build from the fixed-point
problem.

17

Lemma 5 (Polynomially equivalence of the two notions of approximate Nash Equi-
libria).

1. From any ε2/(8n)-approximate Nash equilibrium (u,v) of game (A,B), we can compute
in polynomial time an ε-well-supported Nash equilibrium (x,y) of (A,B).

2. For any 0 ≤ ε ≤ 1 and for any bimatrix game (A,B) where A,B ∈ R
n×n
[0:1] , if (x,y) is an

ε-well-supported Nash equilibrium of (A,B), then (x,y) is also an ε-approximate Nash
equilibrium of (A,B).

Proof. By the definition of approximate Nash equilibria, we have

∀ u′ ∈ P
n, (u′)TAv ≤ uTAv + ε2/(8n),

∀ v′ ∈ P
n, uT Bv′ ≤ uTBv + ε2/(8n).

Consider some j with some i such that 〈ai|v〉 ≥ 〈aj|v〉 + ε/2, where ai is the ith row of
matrix A. By changing uj to 0 and ui to ui + uj we can increase the first-player’s profit by
uj(ε/2), implying uj < ε/(4n). Similarly, all such j have vj < ε/(4n).

We now set all these uj and vj to 0 and uniformly increase the probability of other strategies
to obtain a new pair of mixed strategies, (x,y).

Note for all i, | 〈ai|x〉 − 〈ai|u〉 | ≤ ε/4, because we assume the absolute value of each entry
in ai is less then 1. Thus, the relative change between 〈ai|x〉 and 〈aj|x〉 is no more than ε/2.
Thus, any j that is beaten some i by a gap of ε is set to zero in (x,y).

Part 2 follows directly from the definitions.

4.1.2 Problem Brouwer

To simplify the presentation of our reduction, we introduce a problem called Brouwer that
is equivalent to Brouwerf1 for f1(n) = 3.

For any n ∈ Z
+, let Bn = Z

n
[0,7].

Definition 9 (Brouwer). The input instance of Brouwer is a pair (C, 0n) where C is a
valid Brouwer-mapping circuit with parameters n and r where ri = 8 for any i : 1 ≤ i ≤ n.
C specifies a coloring assignment ColorC : Bn → { 1, 2, ... n + 1 } in the same way as in
definition 5. The only difference is that we use color d+ 1 to encode the special color “red”.

Recall that a set P ⊂ Bn is panchromatic set of a panchromatic simplex if it is accommo-
dated, has all (n+ 1) colors, and |P | = n+ 1.

The output of the this search problem is a panchromatic simplex P .

Clearly, Brouwer is equivalent to Brouwerf1 , and thus is PPAD-complete.

4.1.3 The main result

In this section, we consider a bimatrix game (A,B) where A,B ∈ R
n
[0,1]. We call such a game

(A,B) a positively normalized bimatrix game. Although we model the entries of the bimatrix

18

games as real numbers, our results extend to the case when all entries are between 0 and 1,
and are given in binary representations.

Our main result of this section can be stated as:

Theorem 2 (Main). The problem of computing a 1/n6-well-supported Nash equilibrium of a
positively normalized n× n bimatrix game is PPAD-complete.

The constant 6 in the theorem is not crucial. In fact, we can replace it by any positive
constant. Together with Lemma 5, we can prove the following theorem which implies that the
second conjecture of the Introduction is not likely to be true, unless PPAD ⊂ FP.

Theorem 3 (Unlikely Fully Polynomial-Time Approximation). The problem of com-
puting a 1/nΘ(1)-approximate Nash equilibrium of a positively normalized n×n bimatrix game
is PPAD-complete.

4.2 Outline of the Reduction

Our reduction is built upon the earlier work of Daskalakis, Goldberg and Papadimitriou [6]
and Chen and Deng [5]. In particular, we extend the construction of Chen and Deng [5]
to Brouwer’s fixed-point problem in high dimensions. The consideration of high dimensional
discrete fixed point problems is crucial to our improvement of the approximation ratio from
2−Θ(n) to 1/nΘ(1). Naturally, the reduction from high dimensional problems introduces new
technical challenges, and we cannot just naively extend the earlier construction. For example,
we develop a new averaging-maneuvering scheme to overcome the curse of high dimensionality.

We would like to point our that we are not optimizing the size of the bimatrix game in our
reduction at the expense of the simplicity of the presentation. The only objective here is to
construct a bimatrix game whose size is polynomial in Size [C]. Recall Size [C] is the number
of gates plus the number of input and output variables in C. Note that n < Size [C], as C has
2n output bits.

The Bimatrix Games

Let (C, 0n) be an input instance of problem Brouwer. We first construct a bimatrix game
G = (A,B) in polynomial time. Both players in the game have N = 26m+1 = 2K strategies
where m is the smallest integer such that 2m ≥ Size [C]. Our construction will ensure that:

• Property A1: |ai,j |, |bi,j | ≤ N3 for all i, j: 1 ≤ i, j ≤ N ;

• Property A2: From each ε-well-supported Nash equilibrium of G, where ε = 2−18m =
1/K3, we can compute a panchromatic simplex P of circuit C in polynomial time.

We then transform G into a positively normalized bimatrix game Ḡ = (Ā, B̄) by setting

ai,j =
ai,j +N3

2N3
and bi,j =

bi,j +N3

2N3

19

for all i, j : 1 ≤ i, j ≤ N . Using property A2, we can compute a panchromatic simplex P of C
in polynomial time from any N−6-well-supported Nash equilibrium7 of game Ḡ.

In the remainder of this section, we set ε = 2−18m = 1/K3 and recall K = 26m and N = 2K.

The Strategies and Arithmetic Networks

Let us denote the two players by P1 and P2. In the reduction, we will build an arithmetic
network to model the circuit C and the condition of a Brouwer’s fixed point. In this network,
there are two sets of nodes:

VA : the set of K = 26m arithmetic nodes, and VI : the set of K = 26m internal nodes.

We always use v to refer to a node in VA and w to refer to a node in VI . Each arithmetic
node or internal node contributes two pure strategies, a boolean 0-strategy and a boolean 1-
strategy, to the bimatrix game G. Arbitrarily, we pick a one-to-one correspondence CA from
VA to {1, 2, ..., n}, and a one-to-one correspondence CI from VI to {1, 2, ..., n}. Every v ∈ VA

contributes to the 2CA(v)− 1st and 2CA(v)th row strategies of G. Similarly, w ∈ NI contributes
to the 2CI(w) − 1st and 2CI(w)th column strategies of G. Recall that each player has N = 2K
strategies.

Suppose we have somehow assembled game G = (A,B). Let (x,y) be a mixed-strategy
profile of G. We will let x[v] = x2CA(v)−1 to denote the probability that the first player P1

chooses row 2CA(v) − 1 and let xC [v] = x2CA(v)−1 + x2CA(v) to denote the probability that P1

chooses either row 2CA(v) − 1 or row 2CA(v). Similarly, we let y[w] to denote the probability
that the second player P2 chooses column 2CI(w) − 1 and yC [w] to denote the probability P2

chooses either column 2CI(w)− 1 or column 2CI(w). We refer to x[v] and y[w] as the values of
these nodes, and xC [v] and yC [w] as the capacities of these nodes.

Following [6, 5], given an ε-well-supported Nash equilibrium (x,y) of G, we view x[v] as a
meaningful real number. We use the same set of nine arithmetic and logic gadgets designed in
[5] to build the game G that models Brouwer with instance (C, 0n). Every gadget contains
exactly one interior node in VI to mediate between arithmetic nodes in the gadget in order to
ensure that the values of the latter ones obey the intended arithmetic or logic relationship.

Building from the Zero-Sum Penny Matching Game

To construct G we start with a bimatrix game G∗ = (A∗,B∗) called Matching Pennies with
payoff parameter M = 218m+1 = 2K3. Each player in G∗ has same intended number of
strategies as those in G, thus, A∗ and B∗ are N ×N matrices, where recall N = 26m+1. Their
entries are chosen from {0,M,−M} and are specified according to Figure 7.

To construct G, we add a polynomial number of gadgets into the prototype game G ∗ to form
a network over arithmetic nodes VA that models problem Brouwer with instance (C, 0n) in
order to guarantee Property A2. Each gadget contains exactly one interior node in VI and no
more than three arithmetic nodes in VA. One of the arithmetic nodes is refer to as the output
node of the gadget and others are the input nodes.

7Actually, a 4N−6-well-supported Nash equilibrium would be sufficient.

20

Matching Pennies with Payoff M

1: for any i, j : 1 ≤ i, j ≤ K = 26m do

2: if i = j then

3: set a∗2i−1,2j−1 = a∗2i−1,2j = a∗2i,2j−1 = a∗2i,2j = M

4: set b∗2i−1,2j−1 = b∗2i−1,2j = b∗2i,2j−1 = b∗2i,2j = −M
5: else

6: set a∗2i−1,2j−1 = a∗2i−1,2j = a∗2i,2j−1 = a∗2i,2j = 0

7: set b∗2i−1,2j−1 = b∗2i−1,2j = b∗2i,2j−1 = b∗2i,2j = 0

Figure 7: Matrices A∗ and B∗ of Game G∗

Suppose w is the interior node and v is the output arithmetic node of a gadget G. By
saying inserting G into the network and hence the game G∗, we modify the following payoff
entries of G∗ related to nodes v and w :

the 2CA(v)− 1st and 2CA(v)th rows of A∗;

the 2CI(w)− 1st and 2CI(w)th columns of B∗.

To insert G, we add constants in [0 : 1] to these two rows of A∗ and these two columns
of B∗. Each type of gadgets has its own constants. During the construction of the arithmetic
network and the game G, as each arithmetic node in VA is used as an output node in at most
one gadget (although it is allowed to be used as an input node in arbitrarily many gadgets) and
each interior node in VI is used in at most one gadget, every entry in A∗ and B∗ is modified
at most once.

In the remainder of this section, we give the details of G and prove the correctness of our
reduction.

4.3 Properties of the Prototype Game G∗

We start with an important property of the prototype game G∗. As we have discussed in the
previous subsection, in our reduction, we modify each entry of G∗ at most once with a constant
between 0 and 1. Let us define a class L containing all these intermediate games.

Definition 10 (Class L). A bimatrix game G ′ = (A′,B′) belongs to class L if A′ and B′ are
two N ×N matrices satisfying

a∗i,j ≤ a′i,j ≤ a∗i,j + 1 and b∗i,j ≤ b′i,j ≤ b∗i,j + 1,

for all i, j : 1 ≤ i, j ≤ N .

A well-known fact about the game G∗ is that, letting (x∗,y∗) be a Nash equilibrium of G∗,
x∗C [v] = y∗C [w] = 1/K, for any v ∈ VA and w ∈ VI . We now prove that, for any bimatrix
game G′ ∈ L, both players choose nodes (nearly) uniformly, in every t-well-supported Nash
equilibrium for t ≤ 1.

21

Lemma 6 (Nearly Uniform Capacities). For any t ≤ 1, let (x,y) be a t-well-supported
Nash equilibrium of game (A,B) ∈ L. Then for all v ∈ VA and w ∈ VI , their capacities satisfy

∣
∣xC [v]− 1/K

∣
∣ < ε = 2−18m and

∣
∣yC [w] − 1/K

∣
∣ < ε = 2−18m.

Proof. By the definition of Class L, for each k, the 2k− 1st and 2kth entries of rows a2k−1 and
a2k in A are within [M : M + 1] and all other entries in them are within [0 : 1]. Thus, for any
probability vector y ∈ P

n, if the node w ∈ VI has CI(w) = k, then

MyC [w] ≤ 〈a2k−1|y〉 ≤MyC [w] + 1 and MyC [w] ≤ 〈a2k|y〉 ≤MyC [w] + 1 (1)

Similarly, for each l, the 2l− 1st and 2lth entries of columns b2k−1 and b2k in B are within
[−M : −M+1] and all other entries in them are within [0 : 1]. Thus, for any probability vector
x ∈ P, if node v ∈ VA has CA(v) = l, then

−MxC [v] ≤ 〈b2l−1|x〉 ≤ −MxC [v] + 1 and −MxC [v] ≤ 〈b2l|x〉 ≤ −MxC [v] + 1. (2)

Now suppose (x,y) be a t-well-supported Nash equilibrium of (A,B) for t ≤ 1. To warm
up, we first prove that for each pair of v and w with CA(v) = CI(w), say they are equal to l, if
yC [w] = 0 then xC [v] = 0. First not that yC [w] = 0 implies that there exists a node w′ ∈ VI

with capacity yC [w′] ≥ 1/K. Suppose CI(w) = k. By Inequality (1),

〈a2k|y〉 −max (〈a2l|y〉 , 〈a2l−1|y〉) ≥MyC [w′]− (MyC [w] + 1) ≥M/K − 1 > 1

In other words, the payoff of P1 with the choice of the 2kth strategy is more than 1 plus the
the payoff if P1 chooses the 2lth or the 2l − 1st strategy. Because (x,y) is a t-well-supported
Nash equilibrium with t ≤ 1, we have xC [v] = 0.

Next, we prove
∣
∣xC [v]−1/K

∣
∣ < ε for all v ∈ VA. To derive a contradiction, we assume this

statement is not true. Then there exist v, v ′ ∈ N1 such that xC [v] − xC [v′] > ε. Let l = CA(v)
and k = CA(v′). By Inequality (2),

〈b2k|x〉 −max (〈b2l|x〉 , 〈b2l−1|x〉) ≥ −MxC [v′]− (−MxC [v] + 1) > 1,

as M = 218m+1 = 2/ε. Thus this assumption would imply yC [w] = 0 for the node w ∈ VI

with CI(w) = l, and in turn imply xC [v] = 0, which contradicts with our assumption that
xC [v] > xC [v′] + ε > 0.

We can similarly show
∣
∣yC [w]− 1/K

∣
∣ < ε for all w ∈ VI .

4.4 Arithmetic and Logic Gadgets

We will use the nine Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨ and G¬ designed by Chen and Deng
[5] in our reduction. To be self-contained, we restate the definitions and the properties of these
gadgets.

Among these nine gadgets, G∧, G∨ and G¬ the logic gadgets. They will be used to simulate
the gates in Boolean circuit C. As mentioned in [5], these gadgets perform properly only when
the values of their input nodes are representations of binary bits.

22

Formally, associated with a mixed strategy profile (x,y), the value of node v ∈ N1 represents
boolean 1 if x[v] = xC [v]; it encodes boolean 0 if xC [v] = 0.

Other gadgets will be used to perform necessary arithmetic and comparison operations.
Below, we include the proof of the property of gadget G+ to illustrate how such properties are
established. Properties of others gadget can be established similarly.

For convenience, we abuse v and w to also denote integers CA(v) and CI(w). For example,
by saying 2v, we actually mean 2CA(v). This should be clear from the context. For any pure
strategy profile s = (i, j) ∈ {1, 2, ..., N}2, we let as = ai,j and bs = bi,j. Moreover, by x = y± ε,
we mean y − ε ≤ x ≤ y + ε.

Proposition 1 (Gadget G+). Let G′ = (A,B) be a bimatrix game in L and nodes v1, v2, v3 ∈
VA, w ∈ VI . Let pure strategy profiles s1 = (2v1 − 1, 2w − 1), s2 = (2v2 − 1, 2w − 1), s3 =
(2v3 − 1, 2w), s4 = (2v3 − 1, 2w − 1) and s5 = (2v3, 2w). If G ′ satisfies

1). bs1 = b∗s1
+ 1, bs2 = b∗s2

+ 1 and bi,2w−1 = b∗i,2w−1, for any other i : 1 ≤ i ≤ N ;

2). bs3 = b∗s3
+ 1 and bi,2w = b∗i,2w, for any other i : 1 ≤ i ≤ N ;

3). as4 = a∗s4
+ 1 and a2v3−1,i = a∗2v3−1,i, for any other i : 1 ≤ i ≤ N ;

4). as5 = a∗s5
+ 1 and a2v3,i = a∗2v3 ,i, for any other i : 1 ≤ i ≤ N ,

then in any ε-well-supported Nash equilibrium (x,y), x[v3] = min(x[v1] + x[v2],xC [v3])± ε.

Proof. Properties 1)– 4) show that, in any mixed strategy profile (x,y), we have

〈b2w−1|x〉 − 〈b2w|x〉 = x[v1] + x[v2]− x[v3]

〈a2v3−1|y〉 − 〈a2v3 |y〉 = y[w] − (yC [w]− y[w])

If x[v3] > min(x[v1] + x[v2],xC [v3]) + ε, then x[v3] > x[v1] + x[v2] + ε as x[v3] ≤ xC [v3].
The first equation shows that y[w] = 0 and then the second one implies x[v3] = 0, according
to the definition of well-supported Nash equilibriums. This contradicts with the assumption
that x[v3] > x[v1] + x[v2] + ε > 0.

If x[v3] < min(x[v1] + x[v2],xC [v3]) − ε ≤ x[v1] + x[v2] − ε, then the first equation shows
y[w] = yC [w] and the second one implies x[v3] = xC [v3]. As xC [v3] = x[v3] < x[v1] + x[v2], we
have x[v3] = xC [v3] > xC [v3] − ε = min(x[v1] + x[v2],xC [v3]) − ε, which contradicts with our
assumption.

Proposition 2 (Gadget Gζ where ζ ≤ 1/K − ε). Let G ′ = (A,B) be a bimatrix game in L
and nodes v ∈ VA, w ∈ VI . Let pure strategy profiles s1 = (2v − 1, 2w − 1), s2 = (2v − 1, 2w)
and s3 = (2v, 2w − 1). If G ′ satisfies

1). bs1 = b∗s1
+ 1 and bi,2w−1 = b∗i,2w−1, for any other i : 1 ≤ i ≤ N ;

2). bi,2w = b∗i,2w + ζ, for any i : 1 ≤ i ≤ N ;

3). as2 = a∗s2
+ 1 and a2v−1,i = a∗2v−1,i, for any other i : 1 ≤ i ≤ N ;

4). as3 = a∗s3
+ 1 and a2v,i = a∗2v,i, for any other i : 1 ≤ i ≤ N ,

23

then in any ε-well-supported Nash equilibrium (x,y), we have x[v] = ζ ± ε.

Proposition 3 (Gadget G×ζ , where ζ ≤ 1). Let G ′ = (A,B) be a bimatrix game in class
L and v1, v2 ∈ VA, w ∈ VI . Let pure strategy profiles s1 = (2v1− 1, 2w− 1), s2 = (2v2− 1, 2w),
s3 = (2v2 − 1, 2w − 1) and s4 = (2v2, 2w). If G ′ satisfies

1). bs1 = b∗s1
+ ζ and bi,2w−1 = b∗i,2w−1, for any other i : 1 ≤ i ≤ N ;

2). bs2 = b∗s2
+ 1 and bi,2w = b∗i,2w, for any other i : 1 ≤ i ≤ N ;

3). as3 = a∗s3
+ 1 and a2v2−1,i = a∗2v2−1,i, for any other i : 1 ≤ i ≤ N ;

4). as4 = a∗s4
+ 1 and a2v2,i = a∗2v2 ,i, for any other i : 1 ≤ i ≤ N ,

then in any ε-well-supported Nash equilibrium (x,y), x[v2] = min(ζx[v1],xC [v2])± ε.

Proposition 4 (Gadget G=). Gadget G= is a special case of gadget G×ζ . We just set ζ to
be 1, then in any ε-well-supported Nash equilibrium (x,y), x[v2] = min(x[v1],xC [v2])± ε.

Proposition 5 (Gadget G−). Let G′ = (A,B) be a bimatrix game in L and nodes v1, v2, v3 ∈
VA, w ∈ VI . Let pure strategy profiles s1 = (2v1 − 1, 2w− 1), s2 = (2v2 − 1, 2w), s3 = (2v3 − 1,
2w), s4 = (2v3 − 1, 2w − 1) and s5 = (2v3, 2w). If G ′ satisfies

1). bs1 = b∗s1
+ 1 and bi,2w−1 = b∗i,2w−1, for any other i : 1 ≤ i ≤ N ;

2). bs2 = b∗s2
+ 1, bs3 = b∗s3

+ 1 and bi,2w = b∗i,2w, for any other i : 1 ≤ i ≤ N ;

3). as4 = a∗s4
+ 1 and a2v3−1,i = a∗2v3−1,i, for any other i : 1 ≤ i ≤ N ;

4). as5 = a∗s5
+ 1 and a2v3,i = a∗2v3 ,i, for any other i : 1 ≤ i ≤ N ,

then in any ε-well-supported Nash equilibrium (x,y) of game G ′, we have

min(x[v1]− x[v2],xC [v3])− ε ≤ x[v3] ≤ max(x[v1]− x[v2], 0) + ε .

Proposition 6 (Gadget G<). Let G′ = (A,B) be a bimatrix game in L and nodes v1, v2, v3 ∈
VA, w ∈ VI . Let pure strategy profiles s1 = (2v1 − 1, 2w− 1), s2 = (2v2 − 1, 2w), s3 = (2v3 − 1,
2w) and s4 = (2v3, 2w − 1). If G ′ satisfies

1). bs1 = b∗s1
+ 1 and bi,2w−1 = b∗i,2w−1, for any other i : 1 ≤ i ≤ N ;

2). bs2 = b∗s2
+ 1 and bi,2w = b∗i,2w, for any other i : 1 ≤ i ≤ N ;

3). as3 = a∗s3
+ 1 and a2v3−1,i = a∗2v3−1,i, for any other i : 1 ≤ i ≤ N ;

4). as4 = a∗s4
+ 1 and a2v3,i = a∗2v3 ,i, for any other i : 1 ≤ i ≤ N ,

then in any ε-well-supported Nash equilibrium (x,y) of game G ′, we have x[v3] = xC [v3] if
x[v1] < x[v2]− ε, and x[v3] = 0 if x[v1] > x[v2] + ε.

Proposition 7 (Gadget G∨). Let G′ = (A,B) be a bimatrix game in L and nodes v1, v2, v3 ∈
VA, w ∈ VI . Let pure strategy profiles s1 = (2v1 − 1, 2w − 1), s2 = (2v2 − 1, 2w − 1), s3 =
(2v3 − 1, 2w − 1) and s4 = (2v3, 2w). If G ′ satisfies

24

1). bs1 = b∗s1
+ 1, bs2 = b∗s2

+ 1 and bi,2w−1 = b∗i,2w−1, for any other i : 1 ≤ i ≤ N ;

2). bi,2w = b∗i,2w + 1/(2K), for any i : 1 ≤ i ≤ N ;

3). as3 = a∗s3
+ 1 and a2v3−1,i = a∗2v3−1,i, for any other i : 1 ≤ i ≤ N ;

4). as4 = a∗s4
+ 1 and a2v3,i = a∗2v3 ,i, for any other i : 1 ≤ i ≤ N ,

then in any ε-well-supported Nash equilibrium (x,y), we have x[v3] = xC [v3] if x[v1] = xC [v1]
or x[v2] = xC [v2], and x[v3] = 0 if x[v1] = x[v2] = 0.

Proposition 8 (Gadget G∧). The construction of G∧ is similar as G∨. We only change
the constant in 2) of Proposition 7 from 1/(2K) to 3/(2K). In any ε-well-supported Nash
equilibrium (x,y), x[v3] = 0 if x[v1] = 0 or x[v2] = 0, and x[v3] = xC [v3] if x[v1] = xC [v1] and
x[v2] = xC [v2].

Proposition 9 (Gadget G¬). Let G′ = (A,B) be a game in class L and v1, v2 ∈ VA, w ∈ VI .
Let pure strategy profiles s1 = (2v1 − 1, 2w − 1), s2 = (2v1, 2w), s3 = (2v2 − 1, 2w) and s4 =
(2v2, 2w − 1). If G ′ satisfies

1). bs1 = b∗s1
+ 1 and bi,2w−1 = b∗i,2w−1, for any other i : 1 ≤ i ≤ N ;

2). bs2 = b∗s2
+ 1 and bi,2w = b∗i,2w, for any other i : 1 ≤ i ≤ N ;

3). as3 = a∗s3
+ 1 and a2v2−1,i = a∗2v2−1,i, for any other i : 1 ≤ i ≤ N ;

4). as4 = a∗s4
+ 1 and a2v2,i = a∗2v2 ,i, for any other i : 1 ≤ i ≤ N ,

then in any ε-well-supported Nash equilibrium (x,y), x[v2] = 0 if x[v1] = xC [v1] and x[v2] =
xC [v2] if x[v1] = 0.

4.5 A Network of Gadgets

In this subsection, we discuss the basic components and methods in building a network of
gadgets. Our objective is to encode points in Bn and to simulate the input Boolean circuit
C with a bimatrix game G. We will prove a lemma that gives a sufficient condition on the
approximate equilibria of G for a successful encoding and simulation. This lemma enables us to
understand the limitations of the gadgets discussed in the last subsection and to work around
them in our reduction.

We start with some notations. Let Gζ(v, w) denote the insertion of a Gζ gadget into G∗
with v as its output node and w as its interior node. For G×ζ , G¬ and G=, the gadgets with
one input node, let G(v1, v2, w) denote the insertion of such a gadget into game G∗ with v1, v2,
w, respectively, as its input node, output node and interior node. For the rest of gadgets with
two input nodes, let G(v1, v2, v3, w) denote the insertion of such a gadget into game G∗ with
v1 and v2 as its first and second input node, v3 as its output node and w as its interior node.

Recall Bn = Z
n
[0,7]. For an integer lattice point q ∈ Bn, we will use ∆+

i [q] and ∆−i [q] to

denote the output bits ∆+
i and ∆−i of circuit C evaluated at q.

For a probability vector x ∈ P
N and a Boolean b, we use x[v] =B b to denote x[v] = xC [v]

if b is boolean 1 and x[v] = 0 if b is boolean 0.

25

Definition 11 (Well-Positioned Points). A real number a ∈ R
+ is poorly-positioned if

there exists an integer 0 ≤ t ≤ 7 such that |a − t | ≤ 80Kε = 80/K 2. A point p ∈ R
n
+ is

well-positioned if none of its components is poorly-positioned. If p is not well-positioned, we
refer to it as a poorly-positioned point.

For each a ∈ R
+, let π(a) be the largest integer in [0 : 7] that is smaller than a, that is

π(a) = max{ i
∣
∣ 0 ≤ i ≤ 7 and i < a }.

As we have discussed earlier, we use each node of VA as an output in at most one gadget
and use each node of VI in at most one gadget. In addition, the insertion of a gadget only
modifies the two rows and the two columns associated with its output node and its internal
node. Because the notion of ε-well-supported Nash equilibria is defined by a pairwise condition,
it allows us to argue about the structure of an ε-well-supported Nash equilibrium locally, even
without the full knowledge of the rest of the game. So, consider an ε-well-supported Nash
equilibrium (x,y) of our ultimate game. Suppose v, v1, v2, v3 are four arithmetic nodes in VA.
Let a = 8Kx[v]. By lemma 6, 0 ≤ a ≤ 8K(1

K + ε) = 8 + 1/K2. Figure 8 presents a small
network to compute π(a) with the help of some additional nodes in the network. The following
lemma states that the values of v1, v2, v3 are exactly the binary representation of π(a) as long
as a is not poorly-positioned.

Lemma 7 (Encoding Binary with Games). In any ε-well-supported Nash equilibrium
(x,y), if a = 8Kx[v] ∈ R

+ is not poorly-positioned, then we have x[vi] =B bi, where b1b2b3 is
the binary representation of integer π(a).

Proof. First, we consider the case when π(a) = 7. As a ≥ 7 + 80Kε, we have x[v] ≥ 1/(2K) +
1/(4K) + 1/(8K) + 10ε. From figure 8, we have x[v∗1] ≥ x[v] − ε, x[v1] =B 1 in the first loop
and

x[v∗2] ≥ x[v∗1]− x[v2
1]− ε ≥ x[v]− ε− (2−1x[v1] + ε)− ε

≥ x[v] − 2−1(1/K + ε)− 3ε > 1/(4K) + 1/(8K) + 6ε.

Since x[v1
2] ≤ 1/(4K) + ε and x[v∗2]− x[v1

2] > ε, we have x[v2] =B 1 and

x[v∗3] ≥ x[v∗2]− x[v2
2]− ε > 1/(8K) + 3ε.

As a result, x[v∗3]− x[v1
3] > ε and x[v3] =B 1.

Next, we consider the general case that t < π(a) < t+ 1 for 0 ≤ t ≤ 6. Let b1b2b3 be the
binary representation of t. As a is well-positioned, we have

b1/(2K) + b2/(4K) + b3/(8K) + 10ε ≤ x[v] ≤ b1/(2K) + b2/(4K) + (b3 + 1)/(8K) − 10ε.

With similar arguments, after the first loop, one can show that x[v1] =B b1 and

b2/(4K) + b3/(8K) + 6ε ≤ x[v] ≤ b2/(4K) + (b3 + 1)/(8K) − 6ε.

After the second loop, we have x[v2] =B b2 and

b3/(8K) + 3ε ≤ x[v] ≤ (b3 + 1)/(8K) − 3ε.

Thus, x[v3] =B b3.

26

A Network Which Computes π(a)

1: pick unused nodes v∗1 , v
∗
2, v

∗
3 , v

∗
4 ∈ VA and w ∈ VI

2: insert gadget G=(v, v∗1 , w)

3: for j from 1 to 3 do

4: pick unused nodes v1, v2 ∈ VA and w1, w2, w3, w4 ∈ VI

5: insert gadgets G2−(6m+i)(v1, w1), G<(v1, v∗i , vi, w
2)

6: insert gadgets G×2−i(vi, v
2, w3), G−(v∗i , v

2, v∗i+1, w
4)

Figure 8: A Network Which Computes π(a)

Note that because the comparator G< is brittle, the values of vi could be arbitrary if a is
poorly-positioned.

For a well-positioned point p ∈ R
n
+, let q = π(p) be the integer lattice point in Bn with

qi = π(pi) for all i : 1 ≤ i ≤ n. We now construct a larger network of gadgets to simulate the
evaluation of circuit C. Let {vi }1≤i≤n and {v+

i , v
−
i }1≤i≤n be 3n arithmetic nodes. For a pair

of probability vectors (x,y), we view the values of {vi }1≤i≤n as an encoding of a point p ∈ R
n
+,

with pi = 8Kx[vi]. This network then guarantees that in a ε-well-supported Nash equilibrium
(x,y) of the ultimate game, if p is a well-positioned point, then

x[v+
i] =B ∆+

i [q] and x[v−i] =B ∆−i [q], where q = π(p) ∈ Bn. (3)

The network is divided into two parts.

Part 1. Let {vi,j }1≤i≤n, 1≤i≤3 to be 3n arithmetic nodes. For each k : 1 ≤ k ≤ n, we
add a network described in Figure 8 with connect vk with vk,1, vk,2, vk,3 so that the values at
vk,1, vk,2, vk,3 encode the binary bits of the number represented by vk according to Lemma 7.

Part 2. We view the values of the 3n nodes {vi,j }1≤i≤n, 1≤j≤3 as the encoding of 3n input
bits of circuit C, and use the three type of logic gadgets G∧, G∨, G¬ to simulate the evaluation
of C on these bits. The 2n output bits are stored in arithmetic nodes {v+

i , v
−
i }1≤i≤n. The

simulation of C works correctly in any ε-well-supported Nash equilibrium, provided that the
values of nodes {vi,j }1≤i≤n, 1≤j≤3 are representations of boolean bits.

Equation 3 is a direct corollary of Lemma 7. We refer to this simulation network as a
sampling network. Note that this network works correctly only if p is a well-positioned point,
and when p is not, the values of {v+

i , v
−
i }1≤i≤n could be arbitrary. In which case, we only

know, or at least fortunately know, that 0 ≤ x[v+
i],x[v−i] ≤ 1/K + ε, because the game we

design belongs to class L.

27

4.6 Construction of the Game G
We place n4 distinguished arithmetic nodes {vk

i }0≤k<n3, 1≤i≤n in the game G. In an ε-well-
supported Nash equilibrium (x,y) of G, they encode n3 points S = {pk }0≤k<n3 , where pk

i =
8Kx[vk

i] for all i : 1 ≤ i ≤ n. Our objective is to design the game G so that it satisfies the
following property.

Property 3. Let (x,y) be an ε-well-supported Nash equilibrium of G. Then

Q =
{

qk = π(pk)
∣
∣
∣ pk is a well-positioned point, 0 ≤ k < n3

}

is a panchromatic set of C

Proof. It follows directly from Lemmas 12, 11, and 13.

We introduce some more notations for our construction below. For two vectors r, r ′ ∈ R
n

and a > 0, we will use r = r′ ± a to denote ri = r′i ± a for all 1 ≤ i ≤ n.
Let IG and IB denote, respectively, the sets of indices of well-positioned and poorly-

positioned points in S, that is,

IG =
{
t

∣
∣
∣ 0 ≤ t < n3, pt ∈ S is a well-positioned point

}
, and

IB =
{
t

∣
∣
∣ 0 ≤ t < n3, pt ∈ S is a poorly-positioned point

}
.

For each t ∈ IG, let ct ∈ {1, 2, ..., n, n + 1} be the color of qt = π(pt) ∈ Bn assigned by circuit
C. We also define, for each i : 1 ≤ i ≤ n + 1, Ti = |{t ∈ IG |ct = i}| to be the number of
well-positioned points in S whose associated integer lattice point in Bn is colored with i.

Our construction of G is divided into the following four parts.

Part 1. For each 0 < k < n3 and 1 ≤ i ≤ n, by inserting gadgets Gζ and G+, we make sure

x[vk
i] = min

(

x[v0
i] +

k

K2
,xC [vk

i]
)

±O(ε). (4)

in any ε-well-supported Nash equilibrium (x,y) of G. We use 1/K 2 as the increment in this
step because it is much larger than ε = 1/K3 and much smaller than 1/(8K). This property
of our choice of increment is very important in proving the following two lemmas.

Lemma 8 (Not Too Many Poorly-Positioned Points). In any ε-well-supported Nash
equilibrium (x,y) of G, |IB | ≤ n.
Proof. For each t ∈ IB, according to the definition of poorly-positioned point, there exists an
integer 1 ≤ l ≤ n such that pt

l is a poorly-positioned number. We will prove that, for every
integer 1 ≤ l ≤ n, there exists at most one 0 ≤ t < n3 such that real number pt

l = 8Kx[vt
l]

is poorly-positioned, which implies |IB | ≤ n immediately.
Assume pt

l and pt′

l are both poorly-positioned, for a pair of integers 0 ≤ t < t′ < n3. Then,
from the definition, there exists a pair of integers 0 ≤ k, k ′ ≤ 7,

∣
∣x[vt

l]− k/(8K)
∣
∣ ≤ 10ε and

∣
∣x[vt′

l]− k′/(8K)
∣
∣ ≤ 10ε. (5)

28

Because (5) implies that x[vt
l] < 1/K − ε ≤ xC [vt

l] and x[vt′

l] < 1/K − ε ≤ xC [vt′

l], by Equation
(4) of Part 1, we have

x[vt
l] = x[v0

l] + t/K2 ±O(ε) and x[vt′

l] = x[v0
l] + t′/K2 ±O(ε). (6)

Hence, x[vt
l] < x[vt′

l], k ≤ k′ and

x[vt′

l]− x[vt
l] = (t′ − t)/K2 ±O(ε) (7)

Note that when k = k′, Equation (5) implies that x[vt′

l] − x[vt
l] ≤ 20ε, while when k < k′, it

implies that x[vt′

l]− x[vt
l] ≥ (k′ − k)/(8K)− 20ε ≥ 1/(8K)− 20ε. In both cases, we derived an

inequality that contradicts with (7). Thus, only one of pt
l or pt′

l can be poorly-positioned.

Lemma 9 (Q Is Accommodated). In any ε-well-supported Nash equilibrium, Q is accom-
modated and |Q| ≤ n+ 1.

Proof. To show Q is accommodated, it is sufficient to prove

qt
l ≤ qt′

l ≤ qt
l + 1, for all 1 ≤ l ≤ n and t < t′ ∈ IG. (8)

First, assume qt
l > qt′

l for some pair of t < t′ and t, t′ ∈ IG. Since qt′

l < qt
l ≤ 7, we have

pt′

l < 7 and thus, x[vt′

l] < 7/(8K). As a result, the first component of the min operator in (4)
is the smallest for both t and t′, implying that x[vt

l] < x[vt′

l] and pt
l < pt′

l , which results in a
contradiction with the assumption that qt

l > qt′

l .
Second, assume qt′

l − qt
l ≥ 2 for some pair of t < t′ and t, t′ ∈ IG. From to the definition of

π, we have pt′

l −pt
l > 1 and thus, x[vt′

l]−x[vt
l] > 1/(8K). But from (4), we have x[vt′

l]−x[vt
l] ≤

(t′ − t)/K2 +O(ε) < n3/K2 +O(ε)� 1/(8K). Thus, (8) is true.
Now we prove |Q| ≤ n + 1. Note that the definition of Q together with (4) implies that

there exists integers t1 < t2 < ... < t|Q| ∈ IG such that qti is strictly dominated by qti+1 , that

is, qti 6= qti+1 and qti
j ≤ q

ti+1

j for all j : 1 ≤ j ≤ n.
On the one hand, for every 1 ≤ l ≤ |Q| − 1, there exists an integer 1 ≤ kj ≤ n such that

q
tl+1

kj
= qtl

kj
+ 1. On the other hand, for every 1 ≤ k ≤ n, (4) implies that there is at most one

1 ≤ l ≤ |Q| − 1 such that q
tl+1

k = qtl
k + 1. Therefore, |Q| ≤ n+ 1.

By Lemma 9, to prove Property 3, it is sufficient to establish in any ε-well-supported Nash
equilibrium (x,y), Ti > 0 for all 1 ≤ i ≤ n+ 1.

Part 2. We allocate 2n4 unused arithmetic nodes {vk+
i , vk−

i }1≤i≤n, 0≤k<n3 . For each inte-
ger k : 0 ≤ k < n3, we insert a sampling network (see Section 4.5) to connect {vk

i }1≤i≤n

with {vk+
i , vk−

i }1≤i≤n in order to simulate the evaluation of C on the point associated with
{vk

i }1≤i≤n.
For any 0 ≤ k < n3, we use rk to denote the vector that satisfies rk

i = x[vk+
i]− x[vk−

i] for
all i : 1 ≤ i ≤ n. Let En = {z1, z2, ..., zn, zn+1 } be a set of n+ 1 vectors where zi = ei/K and
zn+1 = −∑

1≤i≤n ei/K. The next lemma follows directly from Section 4.5 and the definition
of valid Brouwer-mapping circuits.

29

Lemma 10 (Correct Encoding of Colors). Let (x,y) be an ε-well-supported Nash equilib-
rium. Then for any t ∈ IG, rt = zct ± ε.

In the next step, we add all these vectors from Part 2 together in order to reduce the con-
tribution from poorly-positioned points.

Part 3. Let {v+
i , v

−
i }1≤i≤n be 2n unused arithmetic nodes. By inserting gadgets G×ζ and G+,

we make sure

x[v+
i] =

∑

0≤k<n3

(
1

K
x[vk+

i]

)

±O(n3ε) and x[v−i] =
∑

0≤k<n3

(
1

K
x[vk−

i]

)

±O(n3ε)

in any ε-well-supported Nash equilibrium (x,y). Note that the multiplication gadget G×1/K

should be inserted before G+.
Finally, let r denote the vector with ri = x[v+

i]−x[v−i], for all i : 1 ≤ i ≤ n. In the last part
of our construction, we insert comparison gadgets (together addition and subtraction gadgets)
to ensure ‖r‖∞ = maxi |ri| is close to zero in any ε-well-supported Nash equilibrium (x,y) of G.

Part 4. For each 1 ≤ i ≤ n, we pick two unused nodes v ′i, v
′′
i ∈ VA and w1, w2, w3 ∈ VI , and

insert the following three gadgets:

G+(v0
i , v

+
i , v

′
i, w1), G−(v′i, v

−
i , v

′′
i , w2), G=(v′′i , v

0
i , w3).

Ideally, we wish to establish ‖r‖∞ = O(ε) as one might hope. However, whether or not this
condition holds depends on the value of nodes v0

i . For example, in the case when x[v0
i] = 0,

the magnitude of x[v−i] could be much larger than that of x[v+
i]. We are able to establish the

following lemma which is sufficient to carry out our correctness proof of the reduction.

Lemma 11 (Well-Conditioned Solution). For an ε-well-supported Nash equilibrium (x,y)
of G and for all i : 1 ≤ i ≤ n,

1. if x[v0
i] > 4ε, then ri = x[v+

i]− x[v−i] > −4ε;

2. if x[v0
i] < 1/K − 2n3/K2, then ri = x[v+

i]− x[v−i] < 4ε.

Proof. In order to set up a proof-by-contradiction of the first if-statement of this lemma, we
assume there exists some i such that x[v0

i] > 4ε and x[v+
i]− x[v−i] ≤ −4ε.

By the first gadget G+(v0
i , v

+
i , v

′
i, w1), we have

x[v′i] = min(x[v0
i] + x[v+

i],xC [v′i])± ε ≤ x[v0
i] + x[v+

i] + ε ≤ x[v0
i] + x[v−i]− 3ε. (9)

By the second gadget G−(v′i, v
−
i , v

′′
i , w2), we have

x[v′′i] ≤ max(x[v′i]− x[v−i], 0) + ε ≤ max(x[v0
i]− 3ε, 0) + ε ≤ x[v0

i]− 2ε, (10)

where the last inequality follows from the assumption x[v0
i] > 4ε. So by the upper bound of

Lemma 6, x[v′′i] ≤ x[v0
i]− 2ε ≤ 1/K −ε ≤ xC [v0

i]. Thus, min(x[v′′i],xC [v0
i]) = x[v′′i].

30

So, by the last gadget G=(v′′i , v
0
i , w3), we have x[v0

i] = min(x[v′′i],xC [v0
i]) ± ε = x[v′′i] ± ε,

which contradicts with (10).
Similarly, to prove the second if-statement of the lemma, we assume there exists some i

such that x[v0
i] < 1/K − 2n3/K2 and x[v+

i]− x[v−u] ≥ 4ε in order to derive a contradiction.
By Part 3 and Lemma 6, x[v+

i] ≤ n3/K2 +O(n3ε). Together with the assumption, we have
x[v0

i]+x[v+
i] ≤ 1/K −n3/K2 +O(n3ε) < 1/K − ε ≤ xC [v′i]. Thus, by the first gadget, we have

x[v′i] = min(x[v0
i] + x[v+

i],xC [v′i])± ε = x[v0
i] + x[v+

i]± ε ≥ x[v0
i] + x[v−i] + 3ε

and x[v′i] ≤ x[v0
i] +x[v+

i] + ε ≤ 1/K −n3/k2 +O(n3ε) < xC [v′′i]. By the second gadget G−, we
have

x[v′′i] ≥ min(x[v′i]− x[v−i],xC [v′′i])− ε = x[v′i]− x[v−i]− ε ≥ x[v0
i] + 2ε, (11)

since x[v′i]− x[v−i] ≤ x[v′i] < xC [v′′i]. But the last gadget G= implies

x[v0
i] = min(x[v′′i],xC [v0

i])± ε = x[v′′i]± ε,

which contradicts with (11), where min(x[v ′′i],xC [v0
i]) = x[v′′i] because from the second gadget

G−, we have x[v′′i] ≤ max(x[v′i]−x[v−i], 0)+ε ≤ x[v′i]+ε ≤ 1/K−n3/k2+O(n3ε)+ε < xC [v0
i].

4.7 Correctness of the Reduction

First, adding up the number of nodes of VA and hence VI in our construction, we see that at
most K arithmetic nodes and K internal nodes are used in our construction. Thus, size of
the bimatrix game G is at most N = 2K which is polynomial in Size [C]. Moreover, G can
be constructed from the input instance (C, 0n) of Brouwer in time polynomial in Size [C].
Thus., in order to prove the correctness of our reduction, it is sufficient to establish Property 3.

For any ε-well-supported Nash equilibrium (x,y), by Part 3 and Part 4 of our construction,
we have

r =
1

K

∑

0≤i<n3

ri

±O(n3ε) =
1

K

∑

i∈IG

ri

 +
1

K

∑

i∈IB

ri

±O(n3ε)

=
1

K

∑

i∈IG

zci

 +
1

K

∑

i∈IB

ri

±O(n3ε)

=
1

K

∑

1≤i≤n+1

Tiz
i

 +
1

K

∑

i∈IB

ri

±O(n3ε). (12)

Let rG = 1
K

(
∑

1≤i≤n+1 Tiz
i
)

and rB = 1
K

(
∑

i∈IB
ri

)

. So we have r = rG + rB ± O(n3ε).

Since |IB | ≤ n and
∥
∥ri

∥
∥
∞
≤ 1/K + ε according to lemma 6, we obtain

∥
∥rB

∥
∥
∞

= O(n/K2).
Because |IG| ≥ n3− |IB | ≥ n3 − n, we have

∑

1≤i≤n+1 Ti ≥ n3 − n. The next lemma shows

that, if one of Ti equals zero, then
∥
∥rG

∥
∥
∞
�

∥
∥rB

∥
∥
∞

.

Lemma 12 (Color Gap). Let r′ =
∑

1≤i≤n+1 Tiz
i. If one of Ti is zero, then ‖r′‖∞ ≥

n2/(3K), and thus
∥
∥rG

∥
∥
∞
≥ n2/(3K2) and ‖r‖∞ � 4ε.

31

Proof. First, assume Tn+1 = 0. Let l be the integer such that Tl = max1≤i≤n Ti, then Tl >
n2 − 1. Thus, r′l = Tl/K ≥ (n2 − 1)/K > n2/(3K2).

Second, assume Tt = 0 for some 1 ≤ t ≤ n. We have the following two cases: (1) When
Tn+1 ≥ n2/2, r′t = −Tn+1/K ≤ −n2/(2K2) < −n2/(3K2). (2) When Tn+1 < n2/2. Let
l be the integer such that Tl = max1≤i≤n+1 Ti, then l 6= t, n + 1 and Tl > n2 − 1. Then,
r′l = (Tl − Tn+1)/K > (n2/2 − 1)/K2 > n2/(3K2).

Therefore, if Q is not a panchromatic set, then one of the Ti’s is equal to zero, and hence
‖r‖∞ ≥ n2/(2K2) � ε. Had the Part 4 of our construction guaranteed ‖r‖∞ = O(ε), we
would have completed the proof. As it is not always the case, we now prove the following
lemma to establish a condition so that we could use Lemma 11 to complete the proof.

Lemma 13 (Well-Conditioness). Let (x,y) be an ε-well-supported Nash equilibrium for G.
Then 4ε < x[v0

i] < 1/K − 2n3/K2, for all integers i : 1 ≤ i ≤ n.

Proof. In this proof, we will use Lemma 14 below about the boundary conditions of C. We
will also use 1/K = 2−6m, ε = 2−18m, and 2m > n.

First, if there exists an integer k : 1 ≤ k ≤ n such that x[v0
k] ≤ 4ε, then qt

k = 0 for all
t ∈ IG, according to Part 1. By Lemma 14.1, Tn+1 = 0. Let 1 ≤ l ≤ n be the integer
such that Tl = max1≤i≤n Ti. As

∑n+1
i=1 Ti = n3, we have Tl > n2 − 1. So, by Equation (12),

rl = Tl/K
2 − n/K2 ±O(n3ε) > 4ε. Consider the following cases:

• If x[v0
l] < 1/K − 2n3/K2, then we get a contradiction in Lemma 11.2.

• If x[v0
l] ≥ 1/K − 2n3/K2, then for all t ∈ IG,

pt
l = 8Kx[vt

l] = 8K
(

min(x[v0
l] + t/K2,xC [vt

l])±O(ε)
)

> 1

and hence qt
l > 0. By Lemma 14.2, we have Tl = 0 which contradicts with the assumption.

Second, if there exists an integer k : 1 ≤ k ≤ n such that x[v0
k] ≥ 1/K − 2n3/K2, then we

have qt
k = 7 for all t ∈ IG. By Lemma 14.3, Tk = 0. If Tn+1 ≥ n2/2, then rk = −Tn+1/K

2 +
n/K2 ± O(n3ε) < −4ε, which contradicts with the assumption that x[v0

k] ≥ 1/K − 2n3/K2 >
4ε (see Lemma 11.1). Below, we assume Tn+1 < n2/2.

Let l be the integer such that Tl = max1≤i≤n+1 Ti. Since Tk = 0, we have Tl ≥ n2 − 1 and
l 6= k. As Tn+1 < n2/2, Tl − Tn+1 > n2/2− 1 and rl = (Tl − Tn+1)/K

2 − n/K2 ±O(n3ε) > 4ε.
Consider the following two cases:

• x[v0
l] < 1/K − 2n3/K2, then we get a contradiction in Lemma 11.2.

• x[v0
l] ≥ 1/K − 2n3/K2, then pt

l > 1 and thus qt
l > 0, for all t ∈ IG. By Lemma 14.4, we

have Tl = 0 which contradicts with the assumption.

In conclusion, 4ε < x[v0
i] < 1/K − 2n3/K2 for all 1 ≤ i ≤ n, and the lemma is proven.

Lemma 14 (Boundary Conditions). For every lattice point q ∈ Bn and integers 1 ≤ k 6=
l ≤ n,

32

1. if qk = 0, then ColorC [q] 6= n+ 1;

2. if qk = 0 and ql > 0, then ColorC [q] 6= l;

3. if qk = 7, then ColorC [q] 6= k;

4. if qk = 7 and ColorC [q] = l 6= k, then ql = 0.

Proof. The lemma follows directly from the definition of valid circuits.

5 Smoothed Complexity of Bimatrix Games

In the smoothed analysis of the bimatrix game, we assume that each entry of the payoff matrices
is subject to a small and independent random perturbation. Consider a bimatrix game given
by two n × n matrices (Ā, B̄), where Ā, B̄ ∈ R

n×n
[−1,1]. In the smoothed model, the input8 is

then defined by (A,B), where ai,j and bi,j are, respectively, independent perturbations of āi,j

and b̄i,j, with magnitude σ.

5.1 Models of Perturbations and Smoothed Complexity

There might be several models of perturbations for ai,j and bi,j with magnitude σ. The common
two perturbation models are the uniform perturbation and Gaussian perturbation.

In the uniform perturbation with magnitude σ, ai,j and bi,j are chosen uniformly from the
intervals [āi,j−σ, āi,j +σ] and [b̄i,j−σ, b̄i,j +σ], respectively. In the Gaussian perturbation with
variance σ2, ai,j and bi,j are, respectively, chosen with density

1√
2πσ

e−|ai,j−āi,j |
2/2σ2

and
1√
2πσ

e−|bi,j−b̄i,j |
2/2σ2

.

Following Spielman and Teng [22], the smoothed complexity of an algorithm J for the
bimatrix game is defined as following: Let TJ(A,B) be the complexity of algorithm J for
solving a bimatrix game defined by (A,B). Then, the smoothed complexity of algorithm J
under perturbations Nσ() of magnitude σ is

SmoothedJ [n, σ] = max
Ā,B̄∈R

n×n
[−1,1]

≤1
EA←Nσ(Ā),B←Nσ(B̄) [TJ(A,B)] ,

where we use A← Nσ(Ā) to denote that A is a perturbation of Ā according to Nσ(Ā).

8For the simplicity of presentation, in this section, we model the entries of payoff matrices and perturbations
by real numbers. Of course, to connect with the complexity result of the previous section, where entries of
matrices are in finite binary representations, we are mindful that some readers may prefer that we state our
result and write the proof more explicitly using the finite binary representation. Using Equations (13) and (14)
in the proof of Lemma 15, we can define a discrete version of the uniform and Gaussian perturbations and state
and prove the same result.

33

An algorithm J has a polynomial smoothed time complexity if for all 0 < σ < 1 and for all
positive integer n, there exist positive constants c, k1 and k2 such that

SmoothedJ [n, σ] ≤ c · nk1σ−k2 .

The bimatrix game is in smoothed polynomial time if there exists an algorithm J with polyno-
mial smoothed time-complexity for computing a Nash equilibrium.

5.2 The Smoothed 2-Nash Conjecture

The following optimistic conjecture concerning the smoothed complexity of the Lemke-Howson
algorithm for bimatrix games, made in [21], captures a repeatedly asked question after Spielman
and Teng [22] proved that the smoothed complexity of the simplex method with the shadow-
vertex pivoting rule is polynomial for solving linear programming.

Conjecture 1 (Smoothed 2-Nash Conjecture). The problem of finding a Nash equilibrium
of a bimatrix game can be solved in smoothed time polynomial in n and 1/σ, under uniform
perturbations and Gaussian perturbations with magnitude σ for all 0 < σ < 1.

Below, we show it is unlikely that this conjecture is true. We use the observation that
the computation of a Nash equilibrium of a bimatrix game in the smoothed model can be
used as a probabilistic polynomial reduction from the approximation problem of the bimatrix
game to the search problem over a perturbed instance. Moreover, the approximation ratio is
linearly related with the magnitude of the perturbation. Thus, if the smoothed complexity of
an algorithm for the computation of a Nash equilibrium of bimatrix games is polynomial, then
this algorithm can be used, with the help of perturbations, as a randomized polynomial-time
algorithm for the approximation of Nash equilibrium 9. So, we derive a hardness result of the
bimatrix games in the smoothed model from our hardness result for the approximation of Nash
equilibria.

5.3 Perturbation and Probabilistic Approximation

To help explain the probabilistic reduction from the approximation of bimatrix games to the so-
lution of perturbed bimatrix games, we first define a notion of many-way polynomial reduction
among TFNP problems.

Definition 12 (Many-way Reduction). Let F be a set of polynomial-time computable func-
tions and g be a polynomial-time computable function. A search problem QR1 ∈ TFNP is
(F,g)-reducible to QR2 ∈ TFNP if, for all y ∈ {0, 1}∗, (f(x), y) ∈ R2 implies (x, g(y)) ∈ R1

for every input x of R1 and for every function f ∈ F .

We now show that if the smoothed complexity under uniform perturbations of the bimatrix
game is low, then one can quickly find an approximate Nash equilibrium.

9This connection was previously discussed in [1] and [21].

34

Lemma 15 (Smoothed Nash and Approximate Nash). If the problem of computing
a Nash equilibrium of a bimatrix game is in smoothed polynomial time under uniform per-
turbations, then for any 0 < ε < 1, there exists a randomized algorithm for computing an
ε-approximate Nash equilibrium with expected time polynomial in n and 1/ε.

Proof. Suppose J is an algorithm with polynomial smoothed complexity for computing a Nash
equilibrium of a bimatrix game. Let TJ(A,B) be the complexity of algorithm J for solving the
bimatrix game defined by (A,B). Let Nσ() denotes the uniform perturbation with magnitude
σ. Then there exists constants c, k1 and k2 such that for all 0 < σ < 1,

max
Ā,B̄∈R

n×n
[−1,1]

,
EA←Nσ(Ā),B←Nσ(B̄) [TJ(A,B)] ≤ c · nk1σ−k2 .

For each pair of perturbation matrices S,T ∈ R
n×n
[−σ,σ], we can define a function f(S,T) :

R
n×n × R

n×n → R
n×n × R

n×n as f(S,T)((Ā, B̄)) = (Ā + S, B̄ + T). Let Fσ be the set of all
such functions, i.e.,

Fσ =
{

f(S,T)|S,T ∈ R
n×n
[−σ,σ]

}

.

Let g be the identity function from R
n × R

n to R
n × R

n.
We now show that the problem of computing an ε-approximate Nash equilibrium is (Fε/2, g)-

reducible to the problem of finding a Nash equilibrium of perturbed instances. More specifically,
we prove that for every bimatrix game (Ā, B̄) and for every f(S,T) ∈ Fε/2, an Nash equilibrium
(x,y) of f(S,T)((Ā, B̄)) is an ε-approximate Nash equilibrium of (Ā, B̄).

Let A = Ā + S and B = B̄ + T. Then,

|xTAy − xT Āy| = |xT Sy| ≤ ε/2 (13)

|xTBy − xT B̄y| = |xT Ty| ≤ ε/2. (14)

Thus, for each Nash equilibrium (x,y) of (A,B), for any (x′,y′),

(x′)T Āy − xT Āy ≤
(
(x′)T Ay− xT Ay

)
+ ε ≤ ε.

Similarly, xT B̄y′ − xT B̄y ≤ ε. Therefore, (x,y) is an ε-Nash equilibrium of game (Ā, B̄).
Now given the algorithm J with polynomial smoothed time-complexity, we can apply the

following randomized algorithm with the help of (Fε/2, g)-many-way reduction to find an ε-
approximate Nash equilibrium of game (Ā, B̄):

Algorithm smoothedForApproximation(Ā, B̄)

1. Randomly choose a pair of perturbation matrices S,T of magnitude σ and set
A = Ā + S and B = B̄ + T.

2. Apply algorithm J to find a Nash equilibrium (x,y) of (A,B).

3. Return (x,y).

The expected time complexity of smoothedForApproximation is bounded from above by the
smoothed complexity of J when the magnitude perturbations is ε/2 and hence is at most
2k2c · nk1ε−k2 .

35

We can similarly prove (with a slightly more complex argument to handle the low probability
case when the absolute value of the perturbation is too large).

Lemma 16 (Smoothed 2-Nash: Gaussian Perturbations). If the problem of comput-
ing a Nash equilibrium of a bimatrix game is in smoothed polynomial time under Gaussian
perturbations, then for any 0 < ε < 1, there exists a randomized algorithm for computing an
ε-approximate Nash equilibrium with expected time polynomial in n and 1/ε.

Remark 1. We observe that our proof of Lemma 15 can be extended to prove the following
proposition.

Proposition 10 (Probabilistic Polynomial Reduction). Let F is a set of polynomial-
time computable functions and g be a polynomial-time computable function such that a TFNP
search problem QR1 is (F,g)-reducible to QR2 . For any positive function t(n), if there exists a
polynomial-time computable distribution D of F and an algorithm with time-complexity TR2(y)
for solving an instance y of R2 such that

max
x∈In(R1)

Ef∈DF [TR2(f(x))] ≤ t(n),

then, there there is a randomized algorithm for R1 with expected complexity t(n) + q(n), where
q(n) is the time for generating a function from F according to distribution D.

In the statement above, In(R1) denotes the set of all inputs of R1 of size n and we use
f ∈D F to denote that f is chosen from F according to distribution D.

5.4 Complexity Consequences

Setting ε = n−Θ(1), Theorem 3 and Lemmas 15 and 16 imply that the Smoothed 2-Nash
Conjecture is unlikely to be true. Otherwise, we would have shown PPAD ⊂ RP.

Theorem 4 (Hardness of Smoothed Bimatrix Games). It is unlikely that the problem
of computing a Nash equilibrium of a bimatrix game is in smoothed polynomial time, under
uniform or Gaussian perturbations, unless PPAD ⊂ RP.

Thus, it is unlikely that the expected polynomial-time result of Barany, Vempala, and
Vetta [1] can be extended to the smoothed model. In particular, our results show that the
smoothed complexity of the Lemke-Howson algorithm is unlikely to be polynomial.

Theorem 5 (Smoothed Complexity of Lemke-Howson). It is unlikely that the Lemke-
Howson algorithm has a polynomial smoothed complexity (in n and 1/σ) under σ-uniform or
σ-Gaussian perturbations, unless PPAD ⊂ RP.

6 Extensions and Conclusion

Our results can be naturally extended to r-person matrix games [18] and r-graphical games
[10] for any fixed r.

There remains a complexity gap on the approximation of Nash equilibria of bimatrix games:
Lipton, Markakis, and Mehta [14] show that an ε-approximate Nash equilibrium can be found in

36

nO(log n/ε2)-time, while this paper shows that finding an O(1/nΘ(1))-approximate Nash equilib-
rium is PPAD-complete — hence it is unlikely that the bimatrix game has a fully polynomial-
time approximation scheme. However, our hardness result does not cover the case when ε is
an absolute constant between 0 and 1. Naturally, it is unlikely that finding an ε-approximate
Nash equilibrium of a bimatrix game is PPAD-complete when ε is an absolute constant, for
otherwise, all PPAD problems would be solved in nO(log n)-time, due to the result of Lipton,
Markakis, and Mehta.

Thinking optimistically, we would like to see the following conjecture to be true.

Conjecture 2 (PTAS Approximate NASH). There is an algorithm to find an ε-approximate
Nash equilibrium of an n× n bimatrix game in time O(nk+ε−c

) for some positive constants c
and k.

In the similar spirit, we would like to see a weaker version of the Smoothed 2-Nash Conjec-
ture to be true.

Conjecture 3 (Smoothed 2-Nash: Constant Perturbations). There is an algorithm to
find a Nash equilibrium of an n× n bimatrix game with smoothed time complexity O(nk+σ−c

)
under perturbations with magnitude σ, for some positive constants c and k.

References

[1] I. Barany, S. Vempala, and A. Vetta. Nash equilibria in random games. In Proceedings of
46th Annual IEEE Symposium on Foundations of Computer Science.

[2] X. Chen and X. Deng. Characterizing the Computational Complexity of 2D-SPERNER.
submitted to ICALP 2006.

[3] X. Chen and X. Deng. On Algorithms for Discrete and Approximate Brouwer Fixed Points.
In STOC 2005, pages 323–330.

[4] X. Chen and X. Deng. 3-Nash is PPAD-complete. ECCC, TR05-134, 2005.

[5] X. Chen and X. Deng. Settling the Complexity of 2-Player Nash-Equilibrium. TR05-140,
ECCC, 2005.

[6] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The Complexity of Computing a
Nash Equilibrium. ECCC, TR05-115, 2005.

[7] C. Daskalakis and C.H. Papadimitriou. Three-player games are hard. ECCC, TR05-139.

[8] T. Iimura. A discrete fixed point theorem and its applications. Journal of Mathematical
Economics, 39(7):725–742, 2003.

[9] N. K. Karmarkar. A new polynomial–time algorithm for linear programming. Combina-
torica, 4:373–395, 1984.

37

[10] Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. Graphical models for
game theory. In UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence, pages 253–260, 2001.

[11] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademia
Nauk SSSR, pages 1093–1096, 1979.

[12] C.E. Lemke. Bimatrix equilibrium points and mathematical programming. Management
Science, 11:681–689, 1965.

[13] C.E. Lemke and JR. J.T. Howson. Equilibrium points of bimatrix games. J. Soc. Indust.
Appl. Math., 12:413–423, 1964.

[14] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games us-
ing simple strategies. In EC ’03: Proceedings of the 4th ACM conference on Electronic
commerce, pages 36–41, 2003.

[15] N. Megiddo and C. Papadimitriou. On total functions, existence theorems and computa-
tional complexity. Theoret. Comput. Sci., 81:317–324, 1991.

[16] O. Morgenstern and J. von Neumann. The Theory of Games and Economic Behavior.
Princeton University Press, 1947.

[17] J. Nash. Equilibrium point in n-person games. Porceedings of the National Academy of
the USA, 36(1):48–49, 1950.

[18] J. Nash. Noncooperative games. Annals of Mathematics, 54:289–295, 1951,.

[19] C.H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, pages 498–532, 1994.

[20] Rahul Savani and Bernhard von Stengel. Exponentially many steps for finding a nash
equilibrium in a bimatrix game. In FOCS ’04: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’04), pages 258–267, 2004.

[21] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms and heuristics: Progress
and open questions. In Foundations of Computational Mathematics, pages 274–342, 2006.

[22] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.

A Proof of Lemma 1

We start with some notations.
Let f be a well-behaved function and (C, 0n) be an input instance of Brouwerf , then C

is a valid Brouwer-mapping circuit with parameter d and r, where d = bn/mc, m = f(n) and
ri = 2m, ∀ i : 1 ≤ i ≤ d.

A simplicial decomposition S of set Ad
r ⊂ R

d is a collection of simplices such that

38

1. Ad
r =

⋃

S∈S S, where we use Ad
r to denote the convex hull of Ad

r;

2. for every S ∈ S, if S ′ is a face of S, then S ′ ∈ S;

3. for every n-simplex S ∈ S, its vertex set is accommodated;

4. for all S1, S2 ∈ S, if S1
⋂
S2 6= ∅, then S1

⋂
S2 is a face of both S1 and S2.

We now describe a simplicial decomposition of set Ad
r. We let

V =
{

(p, σ)
∣
∣
∣ p ∈ Z

d, 0 ≤ pi < ri − 1, ∀ i : 1 ≤ i ≤ d, σ is a permutation over {1, 2, ..., d}
}

.

Obviously, |V | ≤ 2mdd! = 2O(n log n). For every pair v = (p, σ) ∈ V , it defines d + 1 points
p0,p1...,pd in Z

d where p0 = p and pi+1 = pi + eσ(i+1), ∀ i : 0 ≤ i ≤ d − 1. We use Sv to
denote the d-simplex that is the convex hull of these d+ 1 points. One can check that

S =
{
S

∣
∣
∣ ∃ v ∈ V, S is a face of Sv

}

is a simplicial decomposition of set Ad
r. S also has the following nice property:

For every d-simplex Sv1 ∈ S, if F is one of its facets, which is not on the boundary
of Ad

r, then we can find Sv2 ∈ S such that F = Sv1

⋂
Sv2 in polynomial time.

To prove that Brouwerf ∈ PPAD, we will construct a directed graph G = (V ∪{v∗}, E).
Both the in-degree and out-degree of every vertex are at most 1, and v∗ is a source of G. We
will prove that, for every directed leaf v except v∗, the vertex set of Sv is a panchromatic set
of C.

Let F be a facet of some d-simplex Sv ∈ S. F is said to be panchromatic if it contains all
the colors except “red”. Let pi be the vertex of F which has color i, ∀ i : 1 ≤ i ≤ d. We can
define the orientation of facet F , that is, the orientation of the ordered sequence {pi }1≤i≤d, in
Sv in the standard way, which is either clockwise or counter-clockwise. The orientation defined
has the following properties:

1. If F = Sv1

⋂
Sv2 , then the orientations of F in Sv1 and Sv2 are opposite;

2. Assume Sv ∈ S has all the colors except “red”, then it has exactly two panchromatic
facets F1 and F2 which have opposite orientations in it.

Besides, if Sv contains exactly one panchromatic facet, then its vertex set is a panchromatic
set of C.

Since C is a valid Brouwer-mapping circuit, one can prove that there exists exactly one
panchromatic (d − 1)-simplex F on the boundary of Ad

r. Here F is the convex hull of pd, ...
p2,p1, where pd = 0 and pi−1 = pi + ei, for all i : 2 ≤ i ≤ d. F is a facet of d-simplex Sv′ ∈ S
where v′ = (0, σ′) and σ′(i) = d+ 1 − i, ∀ i : 1 ≤ i ≤ d. Moreover, the orientation of F in Sv′

is counter-clockwise.
Now we can construct the edge set E of G as follows. First, v∗v′ ∈ E; Second, if v1, v2 ∈ V

and Sv1

⋂
Sv2 = F is a panchromatic (d − 1)-simplex which is clockwise in Sv1 (and thus,

counter-clockwise in Sv2), then v1v2 ∈ E.

39

On the one hand, every directed leaf v except v∗ gives a panchromatic set of C, that is, the
vertex set of Sv. On the other hand, starting from C, we can compute a Turing machine M in
polynomial time, which generates the directed graph G.

In conclusion, we have Brouwerf ∈ PPAD.

40

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

