ECCC

# Finding Lower Bounds for Nondeterministic State Complexity is Hard 

Hermann Gruber and Markus Holzer<br>Institut für Informatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München, Germany<br>email: \{gruberh,holzer\}@informatik.tu-muenchen.de


#### Abstract

We investigate the following lower bound methods for regular languages: The fooling set technique, the extended fooling set technique, and the biclique edge cover technique. It is shown that the maximal attainable lower bound for each of the above mentioned techniques can be algorithmically deduced from a canonical finite graph, the so called dependency graph of a regular language. This graph is very helpful when comparing the techniques with each other and with nondeterministic state complexity. In most cases it is shown that for any two techniques the gap between the best bounds can be arbitrarily large. The only exception is the biclique edge cover technique which is always as good as the logarithm of the deterministic or nondeterministic state complexity. Moreover, we show that deciding whether a certain lower bound w.r.t. one of the investigated techniques can be achieved is in most cases computationally hard, i.e., PSPACE-complete and hence are as hard as minimizing nondeterministic finite automata.


## 1 Introduction

Finite automata are one of the oldest and most intensely investigated computational models. It is well known that deterministic and nondeterministic finite automata are computationally equivalent, and that nondeterministic finite automata can offer exponential state savings compared to deterministic ones [20]. Nevertheless, some challenging problems of finite automata are still open. For instance, to estimate the size, in terms of the number of states, of a minimal nondeterministic finite automaton for a regular language is stated as an open problem in [2] and [13]. This is contrary to the deterministic case, where for a given $n$-state deterministic automaton the minimal automaton can be efficiently computed in $O(n \log n)$ time. Observe, that computing a state minimal nondeterministic finite automaton is known to be PSPACE-complete [16]. Moreover, it has been shown, that upper or lower bounds on the state size of minimal nondeterministic automata with a guaranteed relative error better than $\frac{\sqrt{n}}{\operatorname{poly}(\log (n))}$ cannot be obtained in polynomial time, provided some cryptographic assumption holds [9].

Several authors have introduced communication complexity methods for proving such lower bounds; see, e.g., $[4,8,12]$. Although the bounds provided by these
techniques are not always tight and in fact can be arbitrarily worse compared to the nondeterministic state complexity, they give good results in many cases. In this paper we investigate the fooling set technique [8], the extended fooling set technique $[4,12]$, and the biclique edge cover technique. Note that the latter method is an alternative representation of the nondeterministic message complexity [12]. One drawback of all these methods is that getting such a good estimate seems to require conscious thought and "clever guessing." However, we show for the considered techniques that this is in fact not the case. In order to achieve this goal, we present a unified view of these techniques in terms of bipartite graphs. This setup allows us to show that there is a canonical bipartite graph for each regular language, which is independent of the considered method, such that the best attainable lower bound can be determined algorithmically for each method. This canonical bipartite graph is called the dependency graph of the language.

The dependency graph is a tool that allows us to compare the relative strength of the methods, and to determine whether they provide a guaranteed relative error w.r.t. the nondeterministic state complexity. Following [2], no lower bound technique is known to have such a bounded error, but a lower bound can be obtained by noticing that the numbers of states in minimal deterministic automata and in minimal nondeterministic automata are at most exponentially apart from each other. We are able to prove that the biclique edge cover technique always gives an estimate at least as good as this trivial lower bound, whereas the other methods cannot provide any guaranteed relative error. On the other hand, we give evidence that the guarantee for the biclique edge cover technique is essentially optimal. In turn we improve a result of $[14,17]$ on the gap between nondeterministic message complexity and nondeterministic state complexity.

Finally, we also address computational complexity issues and show that deciding whether a certain lower bound w.r.t. one of the investigated techniques can be achieved is in most cases computationally hard, i.e, PSPACE-complete and hence these problems are as hard as minimizing nondeterministic finite automata. Here it is worth mentioning that the presented algorithms for the upper bounds also rely on the dependency graph, which vertices are the equivalence classes of the Myhill-Nerode relation for the language $L$ and its reversed $L^{R}$. Hence, doing the computation on this object in a straight forward manner would result in an exponential time algorithm. This is due to the fact that the index of the Myhill-Nerode equivalence relation for $L^{R}$ can be exponential in terms of the index of the Myhill-Nerode relation for $L$, or equivalently to the size of the minimal deterministic finite automaton accepting $L$. Nevertheless, by clever encoding the equivalence classes we succeed to implicitly represent the dependency graph, which finally results in PSPACE-algorithms for the problems under consideration.

The paper is organized as follows: In the next section we define the basic notions. Section 3 introduces the three lower bound techniques we are interested in. Then the dependency graph is defined in Section 4 and based on this graph the question "How good is a lower bounded induced by one of these lower bound
techniques?" is answered in Section 5. The penultimate section is devoted to computational complexity considerations on how to compute witnesses (fooling sets, extended fooling sets, biclique edge covers) for a certain lower bound technique. Finally, in Section 7 we summarize our results and state some open problems.

## 2 Definitions

We assume the reader to be familiar with the basic notations in formal language and automata theory as contained in [11]. In particular, let $\Sigma$ be an alphabet and $\Sigma^{*}$ the set of all words over the alphabet $\Sigma$ containing the empty word $\lambda$. The length of a word $w$ is denoted by $|w|$, where $|\lambda|=0$. The reversal of a word $w$ is denoted by $w^{R}$ and the reversal of a language $L \subseteq \Sigma^{*}$ by $L^{R}$, which equals the set $\left\{w^{R} \mid w \in L\right\}$.

A nondeterministic finite automaton is a 5 -tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where $Q$ is a finite set of states, $\Sigma$ is a finite set of input symbols, $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function, $q_{0} \in Q$ is the initial state, and $F \subseteq S$ is the set of accepting states. The transition function $\delta$ is extended to a function from $\delta: Q \times \Sigma^{*} \rightarrow 2^{Q}$ in the natural way, i.e., $\delta(q, \lambda)=\{q\}$ and $\delta(q, a w)=\bigcup_{q^{\prime} \in \delta(q, a)} \delta\left(q^{\prime}, w\right)$, for $q \in Q$, $a \in \Sigma$, and $w \in \Sigma^{*}$. The language accepted by $A$ is

$$
L(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F \neq \emptyset\right\} .
$$

Two automata are equivalent if they accept the same language.
A nondeterministic finite automaton $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is deterministic if $|\delta(q, a)|=1$ for every $q \in Q$ and $a \in \Sigma$. In this case we simply write $\delta(q, a)=p$ instead of $\delta(q, a)=\{p\}$. By the powerset construction one can show every nondeterministic finite automaton can be converted into an equivalent deterministic finite automaton by increasing the number of states from $n$ to $2^{n}$; this bound is known to be sharp [19]. Thus, deterministic and nondeterministic finite automata are equally powerful.

For a regular language $L$, the deterministic (nondeterministic, respectively) state complexity of $L$, denoted by $\operatorname{sc}(L)(\operatorname{nsc}(L)$, respectively) is the minimal number of states needed by a deterministic (nondeterministic, respectively) finite automaton accepting $L$. Observe, that the minimal deterministic finite automata is isomorphic to the deterministic finite automaton induced by the Myhill-Nerode equivalence relation $\equiv_{L}$, which is defined as follows: For $u, v \in \Sigma^{*}$ let $u \equiv_{L} v$ if and only if $u w \in L \Longleftrightarrow v w \in L$, for all $w \in \Sigma^{*}$. Hence, the number of states of the minimal deterministic finite automaton accepting the language $L \subseteq \Sigma^{*}$ equals the index, i.e., the cardinality of the set of equivalence classes, of the Myhill-Nerode equivalence relation $\equiv_{L}$. The set of all equivalence classes w.r.t $\equiv_{L}$ is referred to $\Sigma^{*} / \equiv_{L}$ and we denote the equivalence class of a word $u$ w.r.t. the relation $\equiv_{L}$ by $[u]_{L}$. Moreover, we define the relation ${ }_{L} \equiv$ as follows: For $u, v \in \Sigma^{*}$ let $u_{L} \equiv$ if and only if $w u \in L \Longleftrightarrow w v \in L$, for all $w \in \Sigma^{*}$. The set of all equivalence classes w.r.t. $L \equiv$ is referred to $\Sigma^{*} / L \equiv$ and we denote the equivalence class of a word $u$ w.r.t. the relation ${ }_{L} \equiv$ by ${ }_{L}[u]$.

Finally, we recall two remarkable simple lower bound techniques for the nondeterministic state complexity of regular languages. Both methods are commonly called fooling set techniques and were introduced in [4] and [8]. Although the difference in both theorems look quite harmless, the two techniques are essentially different. The latter technique reads as follows-for the convenience of the reader we recall the. proof of this theorem:

Theorem 1 (Fooling Set Technique). Let $L \subseteq \Sigma^{*}$ be a regular language and suppose there exists a set of pairs $S=\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq n\right\}$ such that

1. $x_{i} y_{i} \in L$ for $1 \leq i \leq n$,
2. $x_{i} y_{j} \notin L$, for $1 \leq i, j \leq n$, and $i \neq j$,
then any nondeterministic finite automaton accepting $L$ has at least $n$ states, i.e., $n s c(L) \geq n$. Here $S$ is called a fooling set for $L$.

Proof. Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any nondeterministic finite automaton accepting the language $L$. Since $x_{i} i y_{i} \in L$, there is a state $q_{i}$ in $Q$ such that $q_{i} \in \delta\left(q_{0}, x_{i}\right)$ and $\delta\left(q_{i}, y_{1}\right) \cap F \neq \emptyset$. Assume that a fixed choice of $q_{i}$ has been made for any $i$ with $1 \leq i \leq n$. We prove that $q_{i} \neq q_{j}$ for $i \neq j$. For the sake of a contradiction assume that $q_{i}=q_{j}$ for some $i \neq j$. Then the nondeterministic finite automaton accepts both words $x_{i} y_{j}$ and $x_{j} y_{i}$. This contradicts the assumption that $\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq n\right\}$ is a fooling set for the language $L$. Hence, the nondeterministic finite automaton $A$ has at least $n$ states.

Observe, that the below given theorem, which is due to [4], follows also by the proof of Theorem 1.

Theorem 2 (Extended Fooling Set Technique). Let $L \subseteq \Sigma^{*}$ be a regular language and suppose there exists a set of pairs $S=\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq n\right\}$ such that

1. $x_{i} y_{i} \in L$ for $1 \leq i \leq n$, and
2. $i \neq j$ implies $x_{i} y_{j} \notin L$ or $x_{j} y_{i} \notin L$, for $1 \leq i, j \leq n$.

Then any nondeterministic finite automaton accepting $L$ has at least $n$ states, i.e., $n s c(L) \geq n$. Here $S$ is called an extended fooling set of $L$.

Note that the lower bounds provided by these techniques are not always tight and in fact can be arbitrarily bad compared to the nondeterministic state complexity. Nevertheless, they give good results in many cases - for the fooling set technique see the examples provided in [8].

## 3 Lower Bound Techniques and Bipartite Graphs

In this section we develop a unified view of fooling sets and extended fooling sets in terms of bipartite graphs and introduce a technique that leverage the
shortcomings of the fooling set techniques. We need some notations from graph theory.

A bipartite graph is a 3-tuple $G=(X, Y, E)$, where $X$ and $Y$ are the (not necessarily finite, or disjoint) sets of vertices, and $E \subseteq X \times Y$ is the set of edges. A bipartite graph $H=\left(X^{\prime}, Y^{\prime}, E^{\prime}\right)$ is a subgraph of $G$ if $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$, and $E^{\prime} \subseteq E$. The subgraph $H^{\prime}$ is induced if $E^{\prime}=\left(X^{\prime} \times Y^{\prime}\right) \cap E$. Given a set of edges $E^{\prime}$, the subgraph induced by $E^{\prime}$ w.r.t. $E$ is the smallest induced subgraph containing all edges in $E^{\prime}$.

The relation between a fooling sets and graphs is quite natural, because a (extended) fooling set $S$ can be interpreted as the edge set of a bipartite graph $G=(X, Y, S)$ with $X=\{x \mid$ there is a $y$ such that $(x, y) \in S\}$ and $Y=\{y \mid$ there is a $y$ such that $(x, y) \in S\}$. In case $S$ is a fooling set, the induced bipartite graph is nothing other than a ladder, i.e., a collection of pairwise vertex-disjoint edges. More generally, the notation of (extended) fooling sets carries over to bipartite graphs as follows: Let $G=(X, Y, E)$ be a bipartite graph.

1. Then a set $S \subseteq E$ is a fooling set for $G$, if for every two different edges $e_{1}$ and $e_{2}$ in $S$, the subgraph induced by the edges $e_{1}$ and $e_{2}$ w.r.t. $E$ is the rightmost graph of Figure 1,
2. and a set $S \subseteq E$ is an extended fooling set for $G$, if for every two different edges $e_{1}$ and $e_{2}$ in $S$, the subgraph induced by the edges $e_{1}$ and $e_{2}$ w.r.t. $E$ is one of the graphs depicted in Figure 1.


Fig. 1. Three important bipartite (sub)graphs.

Now let us associate to any language $L \subseteq \Sigma^{*}$ and sets $X, Y \subseteq \Sigma^{*}$ a bipartite graph $G=\left(X, Y, E_{L}\right)$, where $(x, y) \in E_{L}$ if and only if $x y \in L$, for every $x \in X$ and $y \in Y$. Then it is easy to see that the following statement holds-we omit the straight forward proof.

Theorem 3. Le $L \subseteq \Sigma^{*}$ be a regular language. Then the set $S$ is a (extended, respectively) fooling set for $L$ if and only if the edge set $S \subseteq E_{L}$ is a (extended, respectively) fooling set for the bipartite graph $G=\left(\Sigma^{*}, \Sigma^{*}, E_{L}\right)$.

For the lower bound technique to come we need the notion of a biclique edge cover for bipartite graphs. Let $G=(X, Y, E)$ be a bipartite graph. A set $C=\left\{H_{1}, H_{2}, \ldots\right\}$ of non-empty bipartite subgraphs of $G$ is an edge cover of $G$
if every edge in $G$ is present in at least one subgraph. An edge cover $C$ of the bipartite graph $G$ is a biclique edge cover if every subgraph in $C$ is a biclique, where a biclique is a bipartite graph $H=(X, Y, E)$ satisfying $E=X \times Y$. The bipartite dimension of $G$ is referred to as $d(G)$ and is defined to be the size of the smallest biclique edge cover of $G$ if it exists and is infinite otherwise. Then the biclique edge cover technique reads as follows-this technique is a reformulation of the nondeterministic message complexity method (see [12] and the appendix) in terms of graphs:
Theorem 4 (Biclique Edge Cover Technique). Let $L \subseteq \Sigma^{*}$ be a regular language and suppose there exists a bipartite graph $G=\left(X, Y, E_{L}\right)$ with $X, Y \subseteq$ $\Sigma^{*}$ (not necessarily finite) for the language $L$. Then any nondeterministic finite automaton accepting $L$ has at least the bipartite dimension of $G$ number of states, i.e., $n s c(L) \geq d(G)$.

Proof. Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any nondeterministic finite automaton accepting $L$. We show that every finite automaton induces a finite size biclique edge cover of the bipartite graph $G$. For each state $q \in Q$ let $H_{q}=\left(X_{q}, Y_{q}, E_{q}\right)$ with $X_{q}=X \cap\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \ni q\right\}, Y_{q}=Y \cap\left\{w \in \Sigma^{*} \mid \delta(q, w) \cap F \neq \emptyset\right\}$, and $E_{q}=X_{q} \times Y_{q}$. We claim that $C=\left\{H_{q} \mid q \in Q\right\}$ is a biclique edge cover for $G$. By definition each $H_{q}$, for $q \in Q$, is a biclique. Moreover, each bipartite graph $H_{q}$ is a subgraph of $G$. Since by construction $X_{q} \subseteq X$ and $Y_{q} \subseteq Y$ it remains to show that $E_{q} \subseteq E$. To this end assume that $x \in X_{q}$ and $y \in Y_{q}$. Then the word $x y$ belongs to the language $L$ because $q \in \delta\left(q_{0}, x\right)$ and $\delta(q, y) \cap F \neq \emptyset$. But then $(x, y)$ is an edge of $G$. Finally, we must prove that $C$ is an edge cover. Let $(x, y)$ be an edge in $G$, for $x \in X$ and $y \in Y$. Then the word $x y$ is in $L$ and since the nondeterministic finite automaton $A$ accepts the language $L$, there is a state $q$ in $Q$ such that $q \in \delta\left(q_{0}, x\right)$ and $\delta(q, y) \cap F \neq 0$. Therefore $x \in X_{q}$ and $y \in Y_{q}$ and moreover $(x, y)$ is an edge in $E_{q}$, because $H_{q}$ is a biclique. This proves that $C$ is a biclique edge cover of $G$.

Now assume that there is a nondeterministic finite automaton accepting $L$ which number of states is strictly less than the bipartite dimension of $G$. Then this automaton induces a biclique edge cover $C$ of $G$, which size is bounded by the number of states and thus is also strictly less than the bipartite dimension of $G$. This is a contradiction because the bipartite dimension is defined to be the size of the smallest biclique edge cover. Therefore any nondeterministic finite automaton accepting $L$ has at least the bipartite dimension of $G$ number of states.

By the above given theorem we obtain the following corollary.
Corollary 5. Let L be a regular language over the alphabet $\Sigma$. Then the bipartite graph $G=\left(\Sigma^{*}, \Sigma^{*}, E_{L}\right)$ has finite bipartite dimension.

## 4 The Dependency Graph of a Language

In applying the lower bound theorems from the previous section to any particular language it is necessary to choose pairs $\left(x_{i}, y_{i}\right)$ or set $X$ and $Y$ appropriately. For
fooling sets a heuristic, ${ }^{1}$ which of course also applies to the other techniques, was proposed in [8] and seems to work well in most cases. In fact, we show that such a heuristic is not needed. To this end we define the following bipartite graph:

Definition 6. Let $L \subseteq \Sigma^{*}$. Then the dependency graph for the language $L$ is defined to be the bipartite graph $G_{L}=\left(X, Y, E_{L}\right)$, where $X=\Sigma^{*} / \equiv_{L}$ and $Y=\Sigma^{*} / L \equiv$ and $\left([x]_{L},{ }_{L}[y]\right) \in E_{L}$ if and only if $x y \in L$.

It is easy to see that the dependency graph $G_{L}$ for a language $L$ is independent from the chosen representation of the equivalence classes. Hence all these graphs are isomorphic to each other. Moreover, it is worth mentioning that the dependency graph of a language was implicitly defined in [18]. Now we are ready to state the main lemma of this section.

Lemma 7. Let $L \subseteq \Sigma^{*}$ be a regular language and $G=\left(\Sigma^{*}, \Sigma^{*}, E_{L}\right)$ its associated bipartite graph.

1. The maximum size of a (extended, respectively) fooling set for $G$ is $n$ if and only if the maximum size of a (extended, respectively) fooling set for the dependency graph $G_{L}$ equals $n$.
2. The bipartite dimension of $G$ is $n$ if and only if the bipartite dimension of the dependency graph $G_{L}$ equals $n$.

Proof. We only prove the first statement. The second statement can be shown with similar arguments.

Let $S=\left\{\left(u_{i}, v_{i}\right) \mid 1 \leq i \leq n\right\}$ be a (extended) fooling set for the bipartite graph $G=\left(\Sigma^{*}, \Sigma^{*}, E_{L}\right)$. By definition any two different edges in $S$ are vertexdisjoint, if $S$ is interpreted as a subset of $E_{L}$. Moreover, we find that any two different edges $\left(u_{i}, v_{i}\right)$ and $\left(u_{j}, v_{j}\right)$ obey $u_{i} \not 三_{L} u_{j}$ and $v_{i L} \not \equiv v_{j}$. Otherwise the (extended) fooling set property is not satisfied. Thus, the idea to obtain the finite bipartite graph that mirrors all relevant properties of $G$ is to replace the vertex sets by the corresponding equivalence classes.

The construction is done in two steps. Any edge $\left(u_{i}, v_{i}\right)$ in $G$ can be replaced by ( $u_{i}^{\prime}, v_{i}$ ) whenever $u_{i} \equiv_{L} u_{i}^{\prime}$. Thus, the "left vertices" in $G$ can be replaced by an essential set of words $x_{i}$ pairwise nonequivalent with respect to $\equiv_{L}$. Since $L$ is regular, this set is finite. To conclude the first step, the bipartite graph $G^{\prime}$ is defined as the subgraph induced by the vertex set $\left(X, \Sigma^{*}\right)$, where $X=\left\{x_{i} \mid 1 \leq\right.$ $i \leq m\}$ and $m$ is the index of $\Sigma^{*} / \equiv_{L}$. The (extended) fooling set $S$ is updated accordingly. We denote this (extended) fooling set by $S^{\prime}$. Note that $S$ and $S^{\prime}$ are of same size. For the second step we argue as follows: Define the equivalence relation $\sim_{X}$ on $\Sigma^{*}$ by $v \sim_{X} v^{\prime}$ if and only if $x v \in L \Longleftrightarrow x v^{\prime} \in L$, for all $x \in X$. We show that this relation is the same as the relation $L \equiv$. By definition

[^0]$v \sim_{X} v^{\prime}$ implies $v_{L} \equiv v^{\prime}$. Conversely, let $v \sim_{X} v^{\prime}$. For each $u \in \Sigma^{*}$ we have $u v \in L \Longleftrightarrow[u]_{L} v \subseteq L$. Thus we conclude $[u]_{L} v \subseteq L$ if and only if $u v \in L$ iff $u v^{\prime} \in L$ if and only if $[u]_{L} v^{\prime} \subseteq L$. Hence $v \sim_{X} v^{\prime}$. This shows that $\sim_{X}$ is just an alternative formulation of $L \equiv$, and we can apply a similar replacement procedure as in the first step, now for the "right vertices" in $G^{\prime}$ using the relation $\sim_{X}$. This results in a bipartite graph $G^{\prime \prime}$, which is defined as the subgraph induced by the vertex set $(X, Y)$, where $Y$ is chosen in a similar way as the $x_{i}$ 's above, but now w.r.t. equivalence relation $\Sigma^{*} / L \equiv$. Similarly we modify the (extended) fooling set $S^{\prime}$ and obtain the set $S^{\prime \prime}$. It is easy to see that $S^{\prime \prime}$ is in fact a (extended) fooling set for $G^{\prime \prime}$, and that it is of same size as the original (extended) fooling set $S$. This completes the construction.

An immediate consequence of the previous theorem is that finding the best possible lower bound for the technique under consideration is indeed solvable in an algorithmic manner. For instance, a fooling set corresponds to an induced matching [6] in $G_{L}$, and an extended fooling set to a cross-free matching [7] in $G_{L}$, and vice versa. The drawback of the dependency graph $G_{L}$ is that its size can be exponential in terms of the state complexity of the deterministic finite automaton for the language [21].

## 5 How Good are the Lower Bounds Induced by These Techniques?

We compare the introduced techniques with each other w.r.t. the lower bounds that can be obtain in the best case and to the nondeterministic state complexity. The first theorem shows that the bound based on the biclique edge cover technique can be seen as a generalization of the extended fooling set technique.

Theorem 8. Let $L$ be a regular language. Then the bipartite dimension of the dependency graph $G_{L}$ is equal to or greater than the maximum size of an extended fooling set for $L$.

Proof. The proof of this fact is entirely graph theoretic. We need some further notations from graph theory: An undirected simple graph is a tuple $\Gamma=(V, E)$, where $V$ is the set of vertices and $E \subseteq\{\{u, v\} \mid u, v \in V$ and $u \neq v\}$ the set of edges. A set $C \subseteq V$ of vertices is a clique, if $\left\{v, v^{\prime}\right\} \in E$ for all vertices $v, v^{\prime} \in C$. The clique number of $G$, denoted by $\omega(\Gamma)$, is the maximum size of a clique in $\Gamma$. A coloring of the vertex set is an assignment of a color to each vertex in a way such that each pair of vertices sharing an edge receives a different color. The chromatic number $\chi(\Gamma)$ is then the least number of colors needed in order to color the vertex set.

As it turns out, the bipartite dimension of a bipartite graph $G$ can be determined in an associated undirected simple graph via the following result, which is due to [10]. Let $G=(X, Y, E)$ a bipartite graph and $\Gamma_{G}$ be its associated undirected simple graph whose vertex set is the edge set of $G$, and for each pair of vertex-disjoint edges $e_{i}=\left(x_{i}, y_{i}\right)$ and $e_{j}=\left(x_{j}, y_{j}\right)$ in $G$, let $\left\{e_{i}, e_{j}\right\}$ be an
edge in $\Gamma_{G}$ if and only if the subgraph induced by $\left(\left\{u_{i}, u_{j}\right\},\left\{v_{i}, v_{j}\right\}\right)$ is one of the constellations shown in Figure 1. Then the result in [10] reads as follows:

Let $G=(X, Y, E)$ be a bipartite graph and $\Gamma_{G}$ be its associated undirected simple graph. Then the bipartite dimension of $G$ equals the chromatic number of $\Gamma_{G}$, i.e., $d(G)=\chi\left(\Gamma_{G}\right)$.

Next we show that a extended fooling sets correspond to cliques in the graph $\Gamma_{G}$, and thus are related to the clique number $\omega\left(\Gamma_{G}\right)$.

Let $G=(X, Y, E)$ be a bipartite graph and $S \subseteq E$ a set of edges. Then $S$ is an extended fooling set for $G$ if and only if $S$ is a clique in $\Gamma_{G}$.

We argue as follows: If $S$ is an extended fooling set for $G$, then every pair of distinct edges $e_{i}, e_{j} \in S$ forms a constellation as in Figure 1, each giving rise to an edge $\left\{e_{i}, e_{j}\right\}$ in $\Gamma_{G}$. Thus, when $S$ is seen as a set of vertices in $\Gamma_{G}$, then all members in $S$ are pairwise connected by an edge in $\Gamma_{G}$. Thus, $S$ is a clique in $\Gamma_{G}$. Conversely, assume $S$ is not an extended fooling set for $G$. Then $S$ contains a pair of edges $e_{i}=\left(x_{i}, y_{i}\right)$ and $e_{j}=\left(x_{j}, y_{j}\right)$ such that either (i) $x_{i}=x_{j}$ or $y_{i}=y_{j}$, or (ii) $\left(x_{i}, y_{j}\right) \in E$ and $\left(x_{j}, y_{i}\right) \in E$. In both cases, $\left\{e_{i}, e_{j}\right\}$ is not an edge in $\Gamma_{G}$, and $S$ is not a clique in $\Gamma_{G}$. We immediately obtain the following relation:

Let $L$ be a regular language and $G_{L}$ the dependency graph of $L$. Then the maximum size extended fooling set for $L$ has size $\omega\left(\Gamma_{G_{L}}\right)$.

The relation $\chi(\Gamma) \geq \omega(\Gamma)$ holds for any graph $\Gamma$ because all vertices in a clique are mutually connected by edges, and thus indeed $n$ colors are needed to color a clique of size $n$. Therefore by [10] the bipartite dimension of a bipartite graph is always equal to or greater than the maximum possible size of an extended fooling set. This completes the proof of the stated claim.

Before we compare the techniques introduced so far, let us give a small example.

Example 9. Consider the finite language $L=\{a b, a c, b c, b a, c a, c b\}$, which has nondeterministic state complexity five - see Figure 2. Then one can easily verify that, for instance,

$$
S=\{(\lambda, a b),(b a, \lambda)\} \cup\{(a, b),(b, a)\}
$$

is a fooling set and

$$
S^{\prime}=\{(\lambda, a b),(b a, \lambda)\} \cup\{(a, b),(b, c),(c, a)\}
$$

an extended fooling set for $L$. Note that the size of $S^{\prime}$ exactly matches the nondeterministic state complexity of $L$, while $S$ is one element off the optimum, but best possible w.r.t. the fooling set condition.

For the latter statement it remains to be shown that there is no larger fooling set than $S$ for $L$. To this end we argue as follows: (i) Any element of a fooling


Fig. 2. Two non-isomorphic minimal nondeterministic finite automata for the finite language $L=\{a b, a c, b c, b a, c a, c b\}$.
set for $L$ is obviously of the form $(\lambda, y),(x, \lambda)$ with $|x|=|y|=2$, or $(x, y)$ with $|x|=|y|=1$. (ii) No three or more different pairs of the form $(\lambda, y)$ or $(x, \lambda)$ with $|x|=|y|=2$ can be present simultaneously in any fooling set for $L$. Assume to the contrary that there are at least three pairs of this form. Then with loss of generality there are two pairs with first component $\lambda$. This contradicts the obvious fact that in any fooling set no two elements can be present with the same first or second component. (iii) No three or more different pairs of the form $(x, y)$ with $|x|=|y|=1$ can be present simultaneously in any fooling set for $L$. Assume to the contrary that there are at least three pairs of this form. Let $\left(x_{i}, y_{i}\right)$ with $i \geq 3$ be these pairs satisfying $x_{i} y_{i} \in L$, for $\left|x_{i}\right|=\left|y_{i}\right|=1$. Then from the fooling set property we conclude $x_{1} y_{3} \notin L$ and $x_{2} y_{3} \notin L$, and therefore $x_{1}=y_{3}$ and $x_{2}=y_{3}$. Thus we obtain $x_{1}=x_{2}$, a contradiction, by similar reasons as above. This proves that the fooling set $S$ is already of maximal size.

For the biclique edge cover technique we define the bipartite graph $G=$ $\left(X, Y, E_{L}\right)$ for $L$ with $X=\{\lambda, a, b, c, a b\}, Y=\{\lambda, a, b, c, a b\}$. The edge set $E_{L}$ is depicted in Figure 3. This graph is the edge-disjoint union of two graphs $G_{1}$ and $G_{2}$, where $G_{1}$ is a 2-ladder and $G_{2}$ is the bi-complement of a 3-ladder. Clearly, the bipartite dimension of $G_{1}$ equals 2 , and by [3] follows that the bipartite dimension of $G_{2}$ equals 3. Hence the bipartite dimension of $G=\left(X, Y, E_{L}\right)$ equals 5 , which is optimal.

Figure 4 is an eye-catching proof of the fact that the finite language $L$ has an extended fooling set of size 5 using the graph $\Gamma_{G_{L}}$ - the 5 -clique is outlined in boldface. The reader is invited to check that the depicted graph is indeed $\Gamma_{G_{L}}$, and to find a 5 -coloring for this graph.

When comparing the techniques under consideration we obtain the following result:

Theorem 10. There is a sequence of languages $\left(L_{n}\right)_{n>1}$ such that the nondeterministic state complexity of $L_{n}$ is at least $n$, i.e., $n s c\left(L_{n}\right) \geq n$, but any fooling set for $L$ has size at most $c$, for some constant $c$. An analogous statement holds for extended fooling sets versus fooling sets, nondeterministic state complexity versus extended fooling sets, and the bipartite dimension versus extended fooling sets.


Fig. 3. The dependency graph $G_{L}$ (only vertices are shown that are connected by edges) of the finite language $L=\{a b, a c, b c, b a, c a, c b\}$.


Fig. 4. The undirected simple graph $\Gamma_{G_{L}}$ for the finite language $L=$ $\{a b, a c, b c, b a, c a, c b\}$.

Proof. Nondeterministic state complexity versus fooling sets: The statement is due to [8] and uses as witness languages

$$
L_{n}=\left\{w \in 0^{*}| | w \mid=0 \text { or }|w| \neq 0 \quad \bmod n\right\} .
$$

Extended fooling sets versus fooling sets: Let $\Sigma=\left\{a_{i} \mid 1 \leq i \leq n\right\}$. Consider the finite language $L_{n}=\left\{a_{i} a_{j} \mid 1 \leq i \leq j \leq n\right\}$. It is easy to see that $S_{n}=\left\{\left(a_{i}, a_{i}\right) \mid 1 \leq i \leq n\right\} \cup\left\{\left(\lambda, a_{1} a_{1}\right),\left(a_{1} a_{1}, \lambda\right)\right\}$ is an extended fooling set for $L_{n}$ of size at least $n+2$. Then the analysis that any fooling set for $L_{n}$ has size at most 3 goes as follows: (i) First one observes, that any fooling set can only contain at most one pair of the form $(\lambda, w)$ or $(w, \lambda)$. Then (ii) no two pairs of the form $\left(a_{i}, a_{j}\right)$ and $\left(a_{k}, a_{\ell}\right)$ with $1 \leq i \leq j \leq n$ and $1 \leq k \leq \ell \leq n$ can be members of any fooling set for $L_{n}$. W.l.o.g. assume that $i \leq k$, then $a_{i} a_{\ell} \in L_{n}$, which contradicts the fooling set property. Hence, any fooling set for $L_{n}$ can have at most 3 elements. This bound is tight, which is seen by the fooling set $S=\left\{\left(\lambda, a_{1} a_{1}\right),\left(a_{1} a_{1}, \lambda\right),\left(a_{1}, a_{1}\right)\right\}$ for the language $L_{n}$.
Nondeterministic state complexity versus extended fooling sets: Let us consider the language $L_{n}=\left\{w \in 0^{*}| | w \mid=0\right.$ or $\left.|w| \neq 0 \bmod n\right\}$. We will show that there is no extended fooling set of size four for $L_{n}$. As any subset of a extended fooling set is again an extended fooling set, there cannot be an extended fooling set of larger cardinality either. The idea of the proof is that any subgraph of $G_{L_{n}}$ induced by a set of four vertex-disjoint edges contains too many edges for being an extended fooling set for $L_{n}$.
For an arbitrary bipartite graph $G$, let $S=\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq 4\right\}$ be an extended fooling set for $G$. Then for any pair $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ in $S$ with $i \neq j$, there is at least one non-edge in the corresponding induced subgraph of $G$, namely $\left(x_{i}, y_{j}\right)$ or $\left(x_{j}, y_{i}\right)$. There are $\binom{4}{2}=6$ such pairings, so the subgraph induced by $S$ can have at most $4 \cdot 4-6=10$ edges.
Now let us turn to the dependency graph $G_{L_{n}}$. The cases $n \leq 3$ are trivial. Now assume $n \geq 4$. For the graph $G_{L_{n}}=\left(X, Y, E_{L}\right)$, we choose the representation

$$
\begin{aligned}
X & =\left\{0^{k} \mid 1 \leq k \leq n\right\} \\
Y & =\left\{0^{n-k} \mid 0 \leq k \leq n-1\right\}
\end{aligned}
$$

and define $\left(0^{i}, 0^{j}\right) \in E_{L}$, if $i+j \neq n$. Let $S=\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq 4\right\}$ be a set of pairwise vertex-disjoint edges in $G_{L_{n}}$. Set $U=\left\{x_{i} \mid 1 \leq i \leq 4\right\}$ and $V=\left\{y_{i} \mid 1 \leq i \leq 4\right\}$, and let $G$ the bipartite subgraph induced by $(U, V)$. Out of the maximally 16 edges from $U$ to $V$, at most four pairs $\left(x_{i}, y_{j}\right)$ can be non-edges: Assume $\left|x_{i}\right|=k \bmod n$. Then $\left(x_{i}, y_{j}\right) \notin E_{L}$ implies $\left|y_{j}\right|=(n-k) \bmod n$. Two words of the same length modulo $n$ are equivalent w.r.t. $\equiv_{L}$. Hence $V$ contains only one word with this property. We conclude that for each element in $U$, there is at most one member $y_{j}$ in $V$ such that $\left(x_{i}, y_{j}\right) \notin E_{L}$, and the bipartite graph $G$ has at least 12 edges. This contradicts our previous result that $S$ induces a subgraph of at most 10 edges.
Finally it is easy to see that the nondeterministic state complexity of $L_{n}$ grows with $n$ and cannot be bounded by any constant.

Bipartite dimension versus extended fooling sets: Consider the language $L_{n}=$ $\left\{w \in 0^{*}| | w \mid=0\right.$ or $\left.|w| \neq 0 \bmod n\right\}$ used in the proof above, where it was shown that any extended fooling for $L_{n}$ has size at most 4 . In order to prove the above stated result it suffices to show that the bipartite dimension of $G_{L_{n}}$ grows with $n$ and cannot be bounded by any constant.
For the dependency graph $G_{L_{n}}=\left(X, Y, E_{L}\right)$ we chose the same representation as in the proof above. Let $\bar{G}_{L_{n}}:=\left(X, Y,(X \times Y) \backslash E_{L}\right)$ be the bicomplement of $G_{L_{n}}$ w.r.t. the edge set $E_{L}$. Observe, that $\bar{G}_{L_{n}}$ is an induced matching with $n$ edges, i.e., an $n$-ladder. The bipartite dimension of graphs with the property that their complement w.r.t. the edge set is an induced matching with $n$ edges was determined in [3]. It was shown that it equals $k$, where $k$ is the smallest integer such that $n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$. So $k$ grows with $n$, and cannot be bounded by any constant as $n$ tends to infinity.

As the reader may have noticed, the comparison between bipartite dimension and nondeterministic state complexity is missing in the above given theorem. The following theorem shows that the bipartite dimension of a regular language is a measure of descriptional complexity.

Theorem 11. Let $L \subseteq \Sigma^{*}$ be a regular language and $G_{L}$ the dependency graph for $L$. Then $2^{d\left(G_{L}\right)}$ is greater or equal to the deterministic state complexity of $L$, i.e., $2^{d\left(G_{L}\right)} \geq s c(L)$.

Proof. Let $G_{L}=\left(X, Y, E_{L}\right)$ and assume that the bipartite dimension of $G_{L}$ equals $k$. Then the edge set of $G_{L}$ can be covered by a set of bicliques $C=$ $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$. For $x \in \Sigma^{*}$, let $B(x) \subseteq C$ be the set of bicliques where $x$ occurs as a "left vertex." We claim that $B(x)=B\left(x^{\prime}\right)$ implies $x \equiv_{L} x^{\prime}$, for all $x, x^{\prime} \in \Sigma^{*}$. Suppose that $y \in \Sigma^{*}$ occurs as a "right vertex" in some biclique in $B(x)$. If $B(x)=B\left(x^{\prime}\right)$, then both $(x, y) \in E_{L}$ and $\left(x^{\prime}, y\right) \in E_{L}$. The other possibility is that $y$ does not occur as a right vertex in any biclique from $B(x)$. Then $B(x)=B\left(x^{\prime}\right)$ implies that $(x, y) \notin E_{L}$ and $\left(x^{\prime}, y\right) \notin E_{L}$. By definition of $G_{L}$ we have $(x, y) \in E_{L}$ if and only if $x y \in L$. To conclude, if $B(x)=B\left(x^{\prime}\right)$, then $x y \in L \Longleftrightarrow x^{\prime} y \in L$, for all $y \in \Sigma^{*}$, which is the definition of the MyhillNerode equivalence $\equiv_{L}$ of $L$. Then define $x \sim x^{\prime}$ with $x, x^{\prime} \in \Sigma^{*}$ if and only if $B(x)=B\left(x^{\prime}\right)$. This equivalence relation induces $2^{|C|}$ equivalence classes, and is a refinement of the Myhill-Nerode relation. Thus we have shown that $2^{|C|}$ is greater or equal than the deterministic state complexity of $L$.

Hence, $d\left(G_{L}\right) \geq \log \operatorname{sc}(L)$ and $d\left(G_{L}\right) \geq \log \operatorname{nsc}(L)$. By Corollary 5 and Theorem 11 we obtain a characterization of regular languages in terms of bipartite dimension.

Corollary 12. Let $L \subseteq \Sigma^{*}$ be an arbitrary language and $G=\left(\Sigma^{*}, \Sigma^{*}, E_{L}\right)$ the bipartite graph associated with $L$. Then $L$ is a regular language if and only if $d(G)$ is finite.

The above result is essentially optimal. In $[14,17]$ it was shown that the nondeterministic state complexity can be $\Omega\left(2^{\sqrt{d}}\right)$, where $d$ is the bipartite dimension
of the dependency graph. We improve on this result showing that this gap can be actually even larger using the languages $L_{n}=\left\{w \in 0^{*}| | w \mid \neq 0 \bmod n\right\}$.

Theorem 13. There is a sequence of languages $\left(L_{n}\right)_{n \geq 1}$ over a one letter alphabet such that $n s c\left(L_{n}\right)=\Omega\left(d_{n}^{-1 / 2} \cdot 2^{d_{n}}\right)$, where $d_{n}$ is the bipartite dimension of $G_{L_{n}}$.

Proof. Let $L_{n}=\left\{w \in 0^{*}| | w \mid \neq 0 \bmod n\right\}$. As in the proof of Theorem 10 one can show that the bipartite dimension of the dependency graph $G_{L_{n}}$ is the unique integer $k$ such that

$$
\binom{k-1}{\left\lfloor\frac{k-1}{2}\right\rfloor}<n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor} .
$$

By Stirling's approximation of the factorial $\binom{k-1}{\left\lfloor\frac{k-1}{2}\right\rfloor}=\Omega\left(2^{k} / \sqrt{k}\right)$ and we conclude that

$$
n=\Omega\left(\frac{2^{d\left(G_{L_{n}}\right)}}{\sqrt{d\left(G_{L_{n}}\right)}}\right)
$$

It remains to be shown that there are infinitely many $n$ such that $\operatorname{nsc}\left(L_{n}\right) \geq$ $n$. We show that this is the case, whenever $n$ is a prime number and thus taking the sequence $\left(L_{p_{i}}\right)_{i \geq 1}$, where $p_{i}$ is the $i$ th prime number, will prove the stated result. To this end we argue as follows: An unary language $L$ is called $n$-cyclic, if $0^{i} \in L \Longleftrightarrow 0^{i+n} \in L$, for every $i \geq 0$. Moreover, language $L$ is minimally $n$-cyclic, if $L$ is $n$-cyclic, but not $m$-cyclic for any $m<n$. In [15, Corollary 2.1] it was shown that if $L$ is a minimally $p$-cyclic unary language, where $p$ is prime, then $\operatorname{nsc}(L)=p$. We show that $L_{n}$ is minimally $n$-cyclic. It can be readily seen that $L_{n}$ is $n$-cyclic. Assume to the contrary that $L_{n}$ is also $m$-cyclic with $m<n$. Then $\lambda \notin L_{n}$ implies $0^{m} \notin L_{n}$. But the shortest nonempty word not in the language has length $n$, a contradiction. Thus, the stated claim follows.

## 6 Computational Complexity of Lower Bound Techniques

To determine the nondeterministic state complexity of a regular language is known to be a computationally hard task, namely PSPACE-complete [16]. In this section we consider three decision problems based on the lower bound techniques presented so far. The fooling set problem is defined as follows:

- Given a deterministic finite automaton $A$ and a natural number $k$ in binary, i.e., and encoding $\langle A, k\rangle$.
- Is there a fooling set $S$ for the language $L(A)$ of size at least $k$ ?

The extended fooling set and the biclique edge cover problem are analogously defined. We start our investigations with the fooling set problem.

Theorem 14. The fooling set problem is NP-hard and contained in PSPACE.

Proof. For the NP-hardness we reduce the NP-complete induced matching problem on bipartite graphs [6] to the problem under consideration. The induced matching problem on bipartite graphs is defined as follows: Given a bipartite graph $G=(X, Y, E)$ and an integer $k$ encoded in binary, does $E$ contain an induced matching of size at least $k$ ?

Let $\langle G, k\rangle$ be an instance of the induced matching problem for bipartite graphs. Assume $G=(X, Y, E)$ with $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$. Then we define the regular language $L_{G}=\left\{a_{i} b_{j} \mid(i, j) \in E\right\}$ over the alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m}\right\}$. It is easy to see that there is a deterministic finite automaton $A$ for $L_{G}$ of size polynomially in $n$ and $m$. Then one can easily verify that there is an induced matching for $G$ of size at least $k$ if and only if there is a fooling set for $L_{G}$ of size at least $k+2$. Note that if $M$ is an induced matching for $G$, then $S=\left\{\left(a_{i}, b_{j}\right) \mid(i, j) \in M\right\} \cup\{(\lambda, w),(w, \lambda)\}$ is a maximum fooling set for $L_{G}$, where $w$ is any word in $L_{G}$. Hence the induced matching problem for bipartite graphs reduces to the fooling set problem.

It remains to prove the containment within PSPACE. Let $\langle A, k\rangle$ be the instance of the fooling set problem, where $A=\left(Q, \Sigma, \delta, q_{o}, F\right)$ is a deterministic finite automaton and $k$ an integer. If $S$ is a fooling set, then one can assume w.l.o.g. that for every $(x, y) \in S$ we have $|x| \leq|Q|$ and $|y| \leq 2^{|Q|}$. Moreover we note that the size of $S$ cannot exceed $|Q|$. This gives the idea to the following algorithm: A polynomially space bounded nondeterministic Turing machine can guess $k$ words $x_{i}$ with $\left|x_{i}\right| \leq|Q|$ and store the states $q_{i}=\delta\left(q_{0}, x_{i}\right)$ in a $k$-vector. Then the Turing machine guesses words $y_{i}$ of length at most $2^{|Q|}$ in sequence, for $1 \leq i \leq k$, and verifies that the fooling set property is satisfied. Thus, for the word $\overline{y_{i}}$ the Turing machine checks whether $\delta\left(q_{i}, y_{i}\right) \in F$ and $\delta\left(q_{j}, y_{i}\right) \notin F$, if $i \neq j$. Of course, due to the space bounds, the machine cannot remember the whole of the word $y_{i}$, but it suffices to guess the word letter by letter and to update the $k$-state vector accordingly. This shows containment in PSPACE.

Next, let us consider the extended fooling set technique, where we can give a precise complexity bound. Despite the striking similarity to the definition of a fooling set, it turns out that finding a maximum extended fooling set is, from a computational point of view, as least as hard as the nondeterministic finite automaton minimization task itself, i.e., PSPACE-complete. The PSPACEhardness is shown by a reduction from the PSPACE-complete deterministic finite automaton union universality problem, and closely follows that of the PSPACEhardness of the nondeterministic finite automaton minimization problem [16]. The deterministic finite automaton union universality problem is defined as follows:

- Given a list of deterministic finite automata $A_{1}, A_{2}, \ldots, A_{n}$ over a common alphabet $\Sigma$.
- Is $\bigcup_{i=1}^{n} L\left(A_{i}\right)=\Sigma^{*}$ ?

Now we are ready for the computational complexity of the the extended fooling set problem.

Theorem 15. The extended fooling set problem is PSPACE-complete.

Proof. Note that the upper bound for fooling sets as shown in Theorem 14 easily transfers to extended fooling sets.

For the hardness we argue as follows: The given construction relies on a definition of a special language $L$ commonly specified by multiple deterministic finite automata-recall the construction given in [16].

Let $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ be the instance of the union universality problem for deterministic finite automata, where $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i 1}, F_{i}\right)$, for $1 \leq i \leq n$ is a deterministic finite automaton with state set $Q_{i}=\left\{q_{i 1}, q_{i, 2}, \ldots q_{i, t_{i}}\right\}$. Obviously, the deterministic finite automata union universality problem remains PSPACE-complete, if for given deterministic finite automata $A_{1}, A_{2}, \ldots, A_{n}$, all words of length at most one are in $\bigcup_{i=1}^{n} L\left(A_{i}\right)$, and all states are reachable from the respective start state by reading some word in $\Sigma^{*}$. We assume that $Q_{i} \cap Q_{j}=\emptyset$ for $i \neq j$. The language $P(i, j)$ is defined as the set of words which could be accepted by $A_{i}$ if $q_{i j}$ was redefined as the only accepting state, that is $P(i, j)=\left\{w \in \Sigma^{*} \mid \delta_{i}\left(q_{i 1}, w\right)=q_{i j}\right\}$. We introduce a new symbol $a_{i}$ for each automaton $A_{i}$, and a new symbol $b_{i j}$ for each state $q_{i j}$ in $\bigcup_{i=1}^{n} Q_{i}$. In addition, we have new symbols $c, d$ and $f$. Define the language $P(i)$ as a marked version of the language accepted by $A_{i}$ :

$$
P(i)=\bigcup_{j=1}^{t_{i}}\left[a_{i} \cdot P(i, j) \cdot b_{i j}\right]
$$

The language $Q(i)$ consists of short prefixes of words in $L\left(A_{i}\right)$, which are marked at the end:

$$
Q(i)=\left\{w b_{i j} \mid w \in(\Sigma \cup \lambda) \text { and } \delta\left(q_{i 1}, w\right)=q_{i j}\right\} .
$$

Let $B$ be the set of symbols $b_{i j}$ introduced above. Then the auxiliary language $R$ is given by

$$
R=(\{c\} \cup \Sigma)(d \cup \Sigma) \Sigma^{*}(\{f\} \cup B) .
$$

Lastly, let

$$
\begin{equation*}
L=\bigcup_{i=1}^{n}\left[P(i) \cup a_{i} L\left(A_{i}\right) \cup Q(i)\right] \cup R \cup \Sigma^{*} . \tag{1}
\end{equation*}
$$

Given $A_{1}, A_{2}, \ldots, A_{n}$, it is easy to construct in polynomial time

- a deterministic finite automaton with a single state accepting $\Sigma^{*}$,
- a deterministic finite automaton with four states accepting $R$,
- a deterministic finite automaton with $|\Sigma|+2$ states accepting the language $\bigcup_{i=1}^{n} Q(i)$, and
- a deterministic finite automaton with $2+\sum_{i=1}^{n}\left|Q_{i}\right|$ states accepting $\bigcup_{i=1}^{n}[P(i) \cup$ $\left.a_{i} L\left(M_{i}\right)\right]$.

By the well-known product construction, a deterministic finite automaton accepting the union of these four languages can be obtained in polynomial time, and the union of these languages equals $L$.

We show that the size of a maximum extended fooling set for $L$ depends on whether $\bigcup_{i=1}^{n} L\left(A_{i}\right)$ equals $\Sigma^{*}$. Let $k=4+\sum_{i=1}^{n}\left|Q_{i}\right|$. Then size of a maximum extended fooling set for $L$ equals $k$, if the union of deterministic finite automata languages under consideration is universal, and equals $k+1$ otherwise. To this end we argue as follows: Define the set of pairs $S=S^{\prime} \cup S^{\prime \prime}$ with

$$
S^{\prime}=\left\{\left(a_{i} w_{i j}, b_{i j}\right) \mid 1 \leq i \leq n \text { and } 1 \leq j \leq t_{i}\right\}
$$

and

$$
S^{\prime \prime}=\left\{\left(\lambda, a_{1} b_{11}\right),\left(a_{1} b_{11}, \lambda\right),(c, d f),(c d, f)\right\}
$$

where $w_{i j}$ is any word in $P(i, j)$, for each $1 \leq i \leq n$ and $1 \leq j \leq t_{i}$. We claim that $S$ is an extended fooling set for $L$.

It is readily observed that $x y \in L$ for all $(x, y) \in S$. Next, we note that the word $a_{i} w_{i j} b_{i \ell}$ is in $L$ only if $j=\ell$. Of course, if $j=\ell$ then $a_{i} w_{i j} b_{i \ell} \in L$. Assume now $i \neq \ell$. Since the word begins with $a_{i}$ and ends with $b_{i \ell}$, it is not in $L$, or it is in $P(i) \cup a_{i} \cdot L\left(A_{i}\right)$. It is clear that $w_{i j} \in P(i, j)$. Any word in $P(i)$ ending with $b_{i \ell}$ is in $a_{i} \cdot P(i, \ell) \cdot b_{i \ell}$, so $w_{i j} \in P(i, j) \cap P(i, \ell)$. But automaton $A_{i}$ is deterministic, so $P(i, j) \cap P(i, \ell)=\emptyset$ if $j \neq \ell$, and thus $a_{i} w_{i j} b_{i \ell} \notin L$. Thus, all elements in $S^{\prime}$ obey the extended fooling set property. We turn to the elements in $S^{\prime \prime}$ : Obviously, $a_{1} b_{11} \in L$. But neither any of the words $a_{i} w_{i j} b_{i j} a_{1} b_{1,1}$ nor any of $a_{1} b_{1,1} a_{i} w_{i j} b_{i j}$ are in $L$. Therefore $S^{\prime}$ can be augmented by adding the elements $\left(\lambda, a_{1} b_{11}\right)$ and $\left(a_{1} b_{11}, \lambda\right)$. Similar, none of the words $c b_{i j}, c a_{11} b_{11}, c$, and $c d d f$ are in $L$, so the element $(c, d f)$ can be added to the set without altering this property. And finally, none of the words $c d b_{i j}, c d a_{1,1} b_{1,1}$, and $c d$ is in $L$. Therefore, $S$ is in fact an extended fooling set as claimed above.

The rest of the proof consists in showing that there is an extended fooling set of cardinality at least $k+1$ if and only if $\bigcup_{i=1}^{n} L\left(A_{i}\right) \neq \Sigma^{*}$. In the case the language in question is universal, an explicit construction shows that the nondeterministic state complexity is at most $k$, see [16, Claim 3.2] and Figure 5. This NFA is not proper, since it contains $\epsilon$-transitions, but these can be removed without increasing the number of states using the standard construction found in [22, Theorem 3.2].

Hence, there cannot be an extended fooling set of size $k+1$ in this case. Conversely, let $w \in \Sigma^{*}$ be a word not in $\bigcup_{i=1}^{n} L\left(A_{i}\right)$. Since $|w| \geq 2$, we can write $w=x y$ with $|x| \geq 1$ and $|y| \geq 1$. We claim that $S \cup\{(x, y)\}$ (the union is disjoint) is also a larger extended fooling set for $L$ : Assume this is not the case. Then there is $\left(x^{\prime}, y^{\prime}\right) \in S$ such that $x y^{\prime}$ and $x^{\prime} y$ are both in $L$. We first rule out the case that $\left(x^{\prime}, y^{\prime}\right)$ is in $S^{\prime \prime}$. Then $x a_{1} b_{1,1} \notin L$, if $|x| \geq 1$, and $a_{1} b_{1,1} y \notin L$, if $|y| \geq 1$. Any word in $L$ beginning with $c$ ends either with $f$, or $b_{i j}$, for some $i, j$. Hence, neither $c y$ nor $c d y$ is in $L$. So $\left(x^{\prime}, y^{\prime}\right)$ must be in $S^{\prime}$ and of the form $\left(a_{i} w_{i j}, b_{i j}\right)$. Then both $a_{i} w_{i j} y$ and $x b_{i j}$ are in $L$, see Figure 6 for illustration. We can deduce that $w_{i j} y \in L\left(A_{i}\right)$, since the word $a_{i} w_{i j} y$ begins with $a_{i}$. And $x \in P(i, j)$, since the word $x b_{i j}$ ends with $b_{i j}$. Since $A_{i}$ is deterministic and $w_{i j}$ is also in $P(i, j)$, we have $w_{i j} \equiv_{L\left(A_{i}\right)} x$, where $\equiv_{L\left(A_{i}\right)}$ is the Myhill-Nerode equivalence relation for $L\left(A_{i}\right)$. But $w_{i j} y \in L\left(A_{i}\right)$ implies, by definition of the equivalence relation,

$a$, for $a \in \Sigma$

Fig. 5. Schematic view of a $k$-state nondeterministic finite automaton with $\lambda$-moves accepting the language $L$-provided $\bigcup_{i=1}^{n} L\left(A_{i}\right)=\Sigma^{*}$. Otherwise, an additional state is needed, which has a $a$-loop, for $a \in \Sigma$ and is connected from the start state with an $a$-transition, for $a \in \Sigma$. The structures inside the boxes are copies of the deterministic finite automata $A_{1}, A_{2}, \ldots, A_{n}$.


Fig. 6. This would be a constellation in the graph $G=\left(\Sigma^{*}, \Sigma^{*}, E_{L}\right)$ contradicting the extended fooling set condition.
that $x y \in L\left(A_{i}\right)$, contradicting $x y=w \in \Sigma^{*} \backslash \bigcup_{i=1}^{n} L\left(A_{i}\right)$. We conclude there is an extended fooling set of size $k+1$ in this case.

Finally, we show that that deciding the biclique edge cover problem is also PSPACE-complete, although the dependency graph of the given language can be of exponential size in terms of the input.

Theorem 16. The biclique edge cover problem is PSPACE-complete.
Proof. The PSPACE-hardness follows along the lines of the proof for the PSPACEcompleteness of the extended fooling set problem and the fact that the bipartite dimension is sandwiched between the maximum size of an extended fooling set and the nondeterministic state complexity. To be more precise, let $L$ be the language defined in Equation (1). In the case where $L$, the union of the deterministic finite automata languages, is not universal, there is an extended fooling set of size $k+1$, and since the bipartite dimension cannot be lower we have $d\left(G_{L}\right) \geq k+1$. In the other case, the nondeterministic state complexity is at most $k$ (recall Figure 5, see also [16, Claim 3.2]), and matches the size of the extended fooling set $S$ for $L$. But the bipartite dimension of the graph $G_{L}$ is sandwiched between both measures. Thus, $d\left(G_{L}\right) \leq k$.

The containment in PSPACE is seen as follows: We present a PSPACE algorithm deciding on input $\langle A, k\rangle$ whether there is a biclique edge cover of size at most $k$ for $G_{L(A)}$. Since PSPACE is closed under complement, this routine can also be used to decide whether there is no biclique edge cover of size at most $k-1$, and moreover that the bipartite dimension of the graph is at least $k$.

Due to the space constraints, keeping the dependency graph $G_{L(A)}$ in memory is ruled out, since the index of $L(A) \equiv$ can be exponential in the size of the given deterministic finite automaton. Recall, that the vertex sets of $G_{L(A)}$ can be chosen to correspond to the equivalence classes of $\equiv_{L(A)}$ and ${ }_{L(A)} \equiv$. So the first vertex set is in one-to-one correspondence with the state set $Q$ of the automaton $A$, while by Brzozowski's theorem [5], the second vertex set corresponds one-to-one to a certain subset of $2^{Q}$. Namely, for $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ let $A^{R}=\left(Q, \Sigma, \delta^{R}, F,\left\{q_{0}\right\}\right)$, where $p \in \delta^{R}(q, a)$ if and only if $\delta(p, a)=q$, be a finite automaton with multiple initial states, the so called reversed automaton of $A$. Moreover, let $D\left(A^{R}\right)$ be the automaton obtained by applying the "lazy" subset construction to the automaton $A^{R}$, that is we generate only the subsets reachable from the set of start states of the finite state automaton $A^{R}$. Then these subsets of $Q$ correspond to the equivalence classes of $L(A) \equiv$. Since this automaton can be of size exponential in $|Q|$, however, it cannot be kept in the working memory, too. Nevertheless, assuming $Q=\left\{q_{0}, q_{1}, \ldots q_{n-1}\right\}$, we can represent the subsets of $Q$ as binary string of length $n$ in a natural fashion. By these mappings, we may assume now that $G_{L(A)}=\left(X, Y, E_{L(A)}\right)$ with $X=Q, Y=\{0,1\}^{n}$, and the suitably induced edge relation $E_{L(A)}$. Thus, we have established a compact representation of the vertices in the dependency graph. Next, we need a routine to decide membership in the edge set of $G_{L(A)}$.

Given the implicit representation of $G_{L(A)}$ in terms of a $n$-state deterministic finite automaton $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, there is a PSPACE algorithm deciding,
given a state $q$ of $A$ and a subset address $s=a_{0} a_{1} \ldots a_{n-1}$, whether $(q, s) \in$ $E_{L(A)}$. Assume $x$ to be a word satisfying $\delta\left(q_{0}, x\right)=q$. As $|x| \leq n$, it can be determined and stored to the work tape without affecting the space bounds. If $s$ corresponds to a reachable subset $M$ in $D\left(A^{R}\right)$, then we can guess on the fly a word $y$ of length at most $2^{n}$, and verify that $M$ is reached in $D\left(A^{R}\right)$ by reading $y$. Now, $(q, s)$ is an edge in $G_{L(A)}$ if and only if $x y^{R}$ is in $L(A)$. This is the case if and only if $\left(x y^{R}\right)^{R}=y x^{R}$ is accepted by $D\left(A^{R}\right)$. Recall that the word $y$ may be of exponential length and cannot be directly stored on the work tape. But $D\left(A^{R}\right)$ is in the state set $M$ after reading $y$, and we only have to verify that we reach an accepting state if we continue by reading $x^{R}$. This is the desired subroutine for deciding whether $(q, s) \in E_{L(A)}$, which runs in (nondeterministic) polynomial space.

The next obstacle is that, although there surely exists a biclique edge cover of cardinality at most $n$ for $G_{L(A)}$, a single biclique in this cover can be of exponential size. Thus we have to reformulate the biclique edge cover problem in a suitable manner. Let $G=(X, Y, E)$ be a bipartite graph, and for $y \in Y$ define $\Gamma(y)=\{x \in X \mid(x, y) \in E\}$. Then the formula

$$
\begin{equation*}
\exists C \subseteq 2^{X}:|C| \leq k \wedge(\forall(x, y) \in E: \exists c \in C: x \in c \wedge c \subseteq \Gamma(y)) \tag{2}
\end{equation*}
$$

is a statement equivalent to the biclique edge cover problem. This is seen as follows: Assume $C$ is a set of at most $k$ subsets of $X$ satisfying the above conditions. We construct a set of $|C|$ bicliques covering all edges in $G$. For $c \in C$, let $c^{\prime}$ be the set of vertices in $Y$ such that $\Gamma(y) \supseteq c$. Then $\left(c, c^{\prime}\right)$ induces a biclique in $G$, since every vertex in $c$ is adjacent to all vertices in $c^{\prime}$. Furthermore, the condition on $C$ ensures that every edge is member of least one such biclique, and we have obtained a biclique edge cover of size at most $k$. Conversely, assume that $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ is a biclique edge cover of size $k$ for $G$, where $H_{i}=\left(c_{i}, c_{i}^{\prime}, c_{i} \times c_{i}^{\prime}\right)$ for $1 \leq i \leq k$. We set $C=\left\{c_{1}, c_{2}, \ldots c_{k}\right\}$. Then for every edge $(x, y)$ in $G$, there is a $c \in C$ such that $x \in c$ and $c \subseteq \Gamma(y)$. If $H_{i}$ is a biclique covering of the edge ( $x, y$ ), then obviously $x \in c_{i}$ and $y$ is adjacent to all vertices in $c_{i}$. This proves the stated claim on Equation (2).

Now let us come back to the input $\langle A, k\rangle$, where $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$. The reformulated statement can be checked in PSPACE by guessing a set $C$ of at most $k$ subsets of $Q$, and then the Turing machine checks the following for each pair $(x, y) \in X \times Y$, where $X$ and $Y$ is chosen as described above: If $(x, y) \notin E_{L(A)}$ it goes to the next pair. Otherwise, it guesses a subset $c \in C$ and verifies that both $x \in C$ and that for every $x^{\prime} \in c$ holds $\left(x^{\prime}, y\right) \in E_{L(A)}$. By our previous investigations it is easy to see that this algorithm can be implemented on a Nondeterministic polynomial space bounded Turing machine. This proves that the biclique edge cover problem belongs to PSPACE.

Finally, let us mention that the complexity of the fooling set and the extended fooling set problem does not increase if the regular languages is specified as a nondeterministic finite automaton. The proofs for the upper bounds on the complexity carry over to this setup with minor modifications. Currently, we do not know whether this also true for the biclique edge cover technique, if the
regular language is given as a nondeterministic finite automaton. The best upper bound we are aware of is co-NEXPTIME, obtained by explicit construction of $G_{L}$ and verifying that there is no biclique edge cover of size at most $k$.

## 7 Discussion

Finding nontrivial lower bounds for descriptional complexity is still a challenging business, even in the seemingly simple case of regular languages. We have investigated three different techniques for proving lower bounds on the size of nondeterministic automata and developed a unified framework based on bipartite graphs, which allows a rigorous analysis of the strengths and limitations of these methods. The capstone of this work is the notion of the dependency graph of a regular language, a finite canonical object mirroring many properties of regular languages. One of the main advantages of the dependency graph is that, in principle, good lower bounds can be found in an algorithmic way, which does not require conscious thought. Based on this work, we compared the best possible bounds attainable to the actual nondeterministic state complexity, and to each other. In passing, using methods from graph theory, we improve a result by [14] on the gap between nondeterministic message complexity and nondeterministic state complexity. We hope that more such ideas from graph theory can be successfully applied in the theory of regular languages.

Since the best possible bound for each method can be effectively computed using the dependency graph, the question arises whether any of them can be computed efficiently. Recently, it has been shown in [9] that lower bounds with a generous guaranteed relative error as large as $\frac{\sqrt{n}}{\text { poly }(\log (n))}$ cannot be found in polynomial time, provided some cryptographic assumption holds. But this theorem does not apply for the techniques presented here, as we found that the relative error can be even larger than this. However, we showed that deciding whether a certain lower bound w.r.t. one of the investigated techniques can be achieved is in all cases computationally hard, i.e., NP-hard or even PSPACE-complete. That means that this task is already computationally as hard as minimizing nondeterministic finite automata.

The classification of the computational complexity of the lower bound techniques is nearly complete, but some questions are open, for example whether finding a maximum fooling set has complexity different to the same question for extended fooling sets. Furthermore, do these problems get even harder if the input is specified by a nondeterministic finite automaton instead of a deterministic one? This would be a surprising phenomenon, since the corresponding minimization problem remains complete for PSPACE: Loosely speaking, one can ask whether finding lower bounds can be harder than minimization?

As we mentioned in the introduction, the biclique edge cover method for finding lower bounds is equivalent to nondeterministic message complexity. For a proof of this fact the reader is referred to the appendix. Lately, the latter has been generalized by the advent of so-called multi-party nondeterministic message complexity [1]. This technique can be in some cases much more powerful than the
techniques presented here. Can the notion of dependency graphs be generalized so as to reflect this concept?

## Acknowledgments

Thanks to Martin Kutrib for some discussion on the subject during the early stages of the paper.

## References

1. H. N. Adorna. 3-party message complexity is better than 2-party ones for proving lower bounds on the size of minimal nondeterministic finite automata. Journal of Automata, Languages and Combinatorics, 7(4):419-432, 2002.
2. H. N. Adorna. Some descriptional complexity problems in finite automata theory. In R. P. Salde na and C. Chua, editors, Proceedings of the 5th Philippine Computing Science Congress, pages 27-32, Cebu City, Philippines, March 2005. Computing Society of the Philippines.
3. S. Bezrukov, D. Fronček, S. J. Rosenberg, and P. Kovář. On biclique coverings. Preprint, 2005.
4. J.-C. Birget. Intersection and union of regular languages and state complexity. Information Processing Letters, 43:185-190, 1992.
5. J. A. Brzozowski. Mathematical theory of automata. In Canonical Regular Expressions and Minimal State Graphs for Definite Events, volume 12 of MRI Symposia Series, pages 529-561. Polytechnic Press, NY, 1962.
6. K. Cameron. Induced matchings. Discrete Applied Mathematics, 24:97-102, 1989.
7. M. Dawande. A notion of cross-perfect bipartite graphs. Information Processing Letters, 88:143-147, 2003.
8. I. Glaister and J. Shallit. A lower bound technique for the size of nondeterministic finite automata. Information Processing Letters, 59:75-77, 1996.
9. G. Gramlich and G. Schnitger. Minimizing NFA's and regular expressions. In V. Diekert and B. Durand, editors, Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, number 3404 in LNCS, pages 399-411, Stuttgart, Germany, February 2005. Springer.
10. P. L. Hammer and P. C. Fishburn. Bipartite dimension and bipartite degrees of graphs. Discrete Applied Mathematics, 160:127-148, 1996.
11. J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to Automata. Addison-Wesley, 1968.
12. J. Hromkovič. Communication Complexity and Parallel Computing. Springer, 1997.
13. J. Hromkovič. Descriptional complexity of finite automata: Concepts and open problems. Journal of Automata, Languages and Combinatorics, 7(4):519-531, 2002.
14. J. Hromkovič, J. Karhumäki, H. Klauck, G. Schnitger, and S. Seibert. Measures of nondeterminism in finite automata. Report TR00-076, Electronic Colloquium on Computational Complexity (ECCC), 2000.
15. T. Jiang, E. McDowell, and B. Ravikumar. The structure and complexity of minimal NFAs over unary alphabet. International Journal of Foundations of Computer Science, 2(2):163-182, June 1991.
16. T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing, 22(6):1117-1141, December 1993.
17. G. Jirásková. Note on minimal automata and uniform communication protocols. In C. Martín-Vide and V. Mitrana, editors, Grammars and Automata for String Processing, volume 9 of Topics in Computer Mathematics, pages 163-170. Taylor and Francis, 2003.
18. T. Kameda and P. Weiner. On the state minimization of nondeterministic finite automata. IEEE Transactions on Computers, C-19(7):617-627, 1970.
19. F. R. Moore. On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transaction on Computing, C-20:1211-1219, 1971.
20. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal, 3:114, 1959.
21. A. Salomaa, D. Wood, and S. Yu. On the state complexity of reversals of regular languages. Theoretical Computer Science, 320(2-3):315-329, 2004.
22. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, pages 41-110. Springer, 1997.

## Appendix

Up to here, it seems like our discussion had largely omitted a line of research on lower bounds for nondeterministic state complexity, namely the nondeterministic message complexity discussed in $[1,12,17]$. This is for the reason that the bipartite dimension of the dependency graph equals this complexity measure, and so there is no need to introduce the whole machinery of communication complexity in the main part of the paper. However, as this fact is not entirely obvious, a proof is given here. The following definitions related to communication complexity are taken literally from the monograph [12].

Definition 17. Let $\Sigma$ be a finite alpabet, and $L \subseteq \Sigma^{*}$ be a regular language. $A$ one-way uniform nondeterministic protocol over $\Sigma$ is a pair $(\Phi, \varphi)$, where

1. $\Phi: \Sigma^{*} \rightarrow 2^{\{0,1\}^{*}}$ is a function fulfilling the following properties:
(a) $\Phi$ has the "prefix-freeness property," i.e., if $z \in \Phi(x)$ and $u \in \Phi(y)$, then neither $u$ is a proper prefix of $z$ nor $z$ is a proper prefix of $u$,
(b) for every $x \in \Sigma^{*}, \Phi(x)$ is a finite set, and
(c) the set $\left\{\Phi(x) \mid x \in \Sigma^{*}\right\}$ is finite;
2. $\varphi: \Sigma^{*} \times\{0,1\}^{*} \rightarrow\{\overline{0}, \overline{1}\}$ is a function.
$A$ computation of $D$ on a word $x=x_{1} x_{2}$ is a word $u \$ r$, where $u \in \Phi\left(x_{1}\right)$ and $r=\varphi\left(x_{2}, u\right)$. In what follows we call $u \$ r$ a computation of $D$ on the partition $x_{1}, x_{2}$ of the word $x$, too. A computation of $D$ is called accepting (rejecting, respectively) if $r=\overline{1}$ ( $r=\overline{0}$, respectively). The message complexity of the protocol $D$ is

$$
n m c(D)=\mid\left\{u \in\{0,1\}^{*} \mid u \in \Phi(x) \text { for some } x \in \Sigma^{*}\right\} \mid \text {. }
$$

We say $D=(\Phi, \varphi)$ accepts the language $L$, if, for all $x, y \in \Sigma^{*}$, there exists an accepting computation of $D$ on the partition $x, y$ of the word $x y$ if and only if $x y \in L$. The nondeterministic message complexity of $L$ is

$$
\left.\begin{array}{rl}
n m c(L) & =\min \{n m c(D) \mid D
\end{array} \text { is a one-way uniform } \quad \text { nondeterministic protocol accepting } L\right\} .
$$

Nondeterministic message complexity is a lower bound for nondeterministic state complexity, see [12, Theorem 5.2.4.10]. This measure can be reformulated in terms of Boolean matrices. This setup proves more suitable for our purposes.

Definition 18. $A$ Boolean matrix $M=\left[a_{i j}\right]_{i \in I ; j \in J}$, with $I, J \subseteq \mathbb{N}$ is any matrix whose entries are all either 0 or 1. A matrix $M$ is called 1-monochromatic matrix iff the values of all entries are equal to 1. For a Boolean matrix M, assume the rows are indexed with elements in the set $I$, and the columns with elements in $J$. Let $R=\left\{i_{1}, i_{2}, \ldots\right\} \subseteq I$ and $S=\left\{j_{1}, j_{2}, \ldots\right\} \subseteq J$. Then $M[R, S]$ denotes the submatrix of $M$ consisting of the elements $\left[b_{r s}\right]_{r=1,2, \ldots,|R| ; s=1,2, \ldots,|S|}$, for $b_{r s}=$ $a_{i_{r} j_{s}}$. Now, let $M\left[R_{1}, S_{1}\right], M\left[R_{2}, S_{2}\right], \ldots M\left[R_{k}, S_{k}\right]$ be some 1-monochromatic submatrices of $M$ (not necessarily disjoint). We say that the Boolean matrices
$M\left[R_{1}, S_{1}\right], M\left[R_{2}, S_{2}\right], \ldots M\left[R_{k}, S_{k}\right]$ cover all ones of $M$ if each 1-element in $M$ is also an element of one of the matrices $M\left[R_{1}, S_{1}\right], M\left[R_{2}, S_{2}\right], \ldots M\left[R_{k}, S_{k}\right]$. Finally, $\operatorname{Cov}(M)$ is defined as the least natural number $t$ such that all ones in $M$ can be covered by $t$ 1-monochromatic submatrices provided $t$ exists, and as infinite otherwise.

Next, we define a Boolean matrix based on a language $L$ :
Definition 19. Let $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be an alphabet. For any two words $x, y \in \Sigma^{*}$, we say that $x$ is before $y$ in the canonical order for $\Sigma^{*}$ if

1. $|x|<|y|$, or
2. $|x|=|y|, x=z x_{1} x^{\prime}, y=z y_{2} y^{\prime}$, where $z, x^{\prime}, y^{\prime} \in \Sigma^{*}$ and $x_{1}=a_{i}, y_{2}=a_{j}$, for some $1 \leq i<j \leq k$.

Let $L \subseteq \Sigma^{*}$, and $w_{1}, w_{2}, w_{3}, \ldots$ be the canonical order of words from $\Sigma^{*}$. We define the infinite Boolean matrix $M(L, \Sigma)=\left[a_{i j}\right]_{i \geq 1 ; j \geq 1}$ in such a way that $a_{i j}=1$ if and only if $w_{i} w_{j} \in L$.

In the case of regular languages, this matrix has a particularly nice property, see [12, Exercise 5.2.5.14]:

Lemma 20. Let $L \subseteq \Sigma^{*}$ be a regular language. Then

$$
n m c(L)=\operatorname{Cov}(M(L, \Sigma))
$$

Now we are ready to prove the correspondence between nondeterministic message complexity and the bipartite dimension of the dependency graph:

Theorem 21. Let $L \subseteq \Sigma^{*}$ be a regular language. Then

$$
n m c(L)=d\left(G_{L}\right)
$$

Proof. We prove an intermediate version, namely that the bipartite dimension of the graph $G=\left(\Sigma^{*}, \Sigma^{*}, E_{L}\right)$ equals $\operatorname{Cov}(M(L, \Sigma))$. This suffices by means of Lemma 20 and the equivalence $d\left(G_{L}\right)=d(G)$ established in Lemma 7. The key point is that we can interpret the matrix $M(L, \Sigma)$ as the adjacency matrix of the bipartite graph associated with $L$ in the obvious way: There is an edge $(x, y)$ in the graph if and only if $x y \in L$ iff the corresponding element in the matrix equals one. In the same way, we associate the submatrix $M(L, \Sigma)[R, S]$ with a corresponding induced subgraph of $G$. Obviously, if the induced subgraph is a biclique then $M(L, \Sigma)[R, S]$ is 1-monochromatic, and vice versa. Since the 1-entries in $M(L, \Sigma)$ are in one-to-one correspondence with the edges in $G$, these elements can be covered by $k$ 1-monochromatic submatrices if and only if the edge set $E_{L}$ can be covered by $k$ induced bicliques. This completes the proof.

Example 22. Reconsider the finite language $L=\{a b, a c, b c, b a, c a, c b\}$ from Example 9. The Boolean matrix $M:=M(L,\{a, b, c\})$ reads as follows
where $\lambda, a, b, c, a^{2}, a b, a c, b a, b^{2}, b c, c a, c b, c^{2}, \ldots$ is the canonical order of the words from $\{a, b, c\}^{*}$. Hence, only the upper left corner, to be more precise the ma$\operatorname{trix} M[R, S]$ with $R=S=\{1,2, \ldots, 13\}$ is of interest. It is easy to see that the 1-entries in the first line and the first column of $M$ can be covered by two monochromatic matrics, while the inner part of $M$, namely

$$
M[\{2,3,4\},\{2,3,4\}]=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

needs three monochromatic matrices to be covered. Therefore, $\operatorname{Cov}(M)=5$, which coincides with the bipartite dimension of the dependency graph $G_{L}$ depicted in Figure 3.


[^0]:    ${ }^{1}$ In [8] the following heuristic is proposed: "Construct a nondeterministic finite automaton $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepting $L$, and for each state $q$ in $Q$ let $x_{q}$ be the shortest string such that $\delta\left(q_{0}, x_{q}\right)=q$, and let $y_{q}$ be the shortest string such that $\delta\left(q, y_{q}\right) \cap F \neq \emptyset$. Then choose the set $S$ to be some appropriate subset of the pairs $\left\{\left(x_{q}, y_{q}\right) \mid q \in Q\right\} . "$

