
Optimal Hardness Results for Maximizing Agreements with

Monomials

Vitaly Feldman∗

Harvard University

vitaly@eecs.harvard.edu

December 5, 2005

Abstract

We consider the problem of finding a monomial (or a term) that maximizes the
agreement rate with a given set of examples over the Boolean hypercube. The problem
originates in learning and is referred to as agnostic learning of monomials. Finding
a monomial with the highest agreement rate was proved to be NP-hard by Kearns
and Li [14]. Ben-David et al. gave the first inapproximability result for this problem,
proving that the maximum agreement rate is NP-hard to approximate within 770

767 − ε,
for any constant ε > 0 [5]. The strongest known hardness of approximation result
is due to Bshouty and Burroughs, who proved an inapproximability factor of 59

58 − ε
[7]. We show that the agreement rate is NP-hard to approximate within 2 − ε for any
constant ε > 0. This is optimal up to the second order terms. We extend this result to
ε = 2−c

√

log n for some constant c > 0 under the assumption that NP 6⊆ RTIME(nlog(n)),

thus also obtaining an inapproximability factor of 2c

√

log n for the symmetric problem of
minimizing disagreements. This improves on the log n hardness of approximation factor
due to Kearns et al. [16] and Hoffgen et al. [12].

∗Supported by grants from the National Science Foundation NSF-CCF-9877049, NSF-CCF-0432037, and

NSF-CCF-0427129.

Electronic Colloquium on Computational Complexity, Report No. 32 (2006)

ISSN 1433-8092

1 Introduction

We study the computational complexity of approximation problems arising in agnostic
learning of monomials. The agnostic framework [11] is a useful variant of Valiant’s PAC
learning model in which, informally, nothing is known about the target function and a
learning algorithm is required to do nearly as well as is possible using hypotheses from
a given class. Haussler’s work [11] implies that learnability in this model is, in a sense,
equivalent to the ability to come up with a member of the hypothesis class that has high
agreement rate with the given examples.

For a number of concept classes it is known that finding a hypothesis with the best
agreement rate is NP-hard [3, 12, 14]. However, for most practical purposes a hypothesis
with agreement rate close to the maximum would be sufficient. This reduces agnostic learn-
ing of a function class to a natural combinatorial approximation problem or, more precisely,
to the following two problems: approximating the maximum agreement rate and the min-
imum disagreement rate. We address the approximation complexity of these problems for
the class of monomials (also referred to as terms). The class of monomials is one of the
simplest and most well-studied function classes easily learnable in a variety of settings. The
learnability of monomials in the agnostic framework was first addressed by Angluin and
Laird who proved that finding a monotone monomial with the maximum agreement rate
(this problem is denoted MMon-MA) is NP-hard [3]. This was extended to general mono-
mials by Kearns and Li [14] (the problem is denoted Mon-MA). Ben-David et al. gave the
first inapproximability result for this problem, proving that the maximum agreement rate
is NP-hard to approximate within a factor of 770

767 − ε for any constant ε > 0 [5]. This result
was more recently improved by Bshouty and Burroughs to the inapproximability factor of
59
58 − ε [7].

The problem of approximating the minimum disagreement with a monomial (denoted
Mon-MD) was first considered by Kearns et al. who give an approximation preserving re-
duction from the SET-COVER problem to Mon-MD (similar result was also obtained by
Hoffgen et al. [12]). This reduction together with the hardness of approximation results
for SET-COVER due to Lund and Yannakakis [17] (see also [19]) implies that Mon-MD is
NP-hard to approximate within a factor of c log n for some constant c.

On the positive side, the only non-trivial approximation algorithm is due to Bshouty
and Burroughs and achieves 2 − log n

n -approximation for the agreement rate [7]. Note that
factor 2 can always be achieved by either constant 0 or constant 1 function.

In this work, we give the following inapproximability results for Mon-MA.

Theorem 1 For every constant ε > 0, Mon-MA is NP-hard to approximate within a factor
of 2 − ε.

Then, under a slightly stronger assumption, we show that the second order term is small.

Theorem 2 There exists a constant c > 0 such that there is no polynomial-time algorithm
that approximates Mon-MA within a factor of 2 − 2−c

√
log n, unless NP ⊆ DTIME(nlog(n)) ∪

RP.

Theorem 2 also implies strong hardness results for Mon-MD.

1

Corollary 3 There exists a constant c > 0, such that there is no polynomial time algorithm
that approximates Mon-MD within a factor of 2c

√
log n, unless NP ⊆ DTIME(nlog(n)) ∪ RP.

In practical terms, these results imply that even very low (subconstant) amounts of “noise”
in the examples make finding a term with agreement rate larger (even by very small amount)
than 1/2, NP-hard.

All of our results hold for the MMon-MA problem as well. A natural equivalent formu-
lation of the MMon-MA problem is maximizing the number of satisfied monotone clause
constraints, that is, equations of the form t(x) = b, where t(x) is a disjunction of (unnegated)
variables and b ∈ {0, 1} (see Definition 6 for more details). In the proof of Theorem 1, each
of the clause constrains will only have a constant number of variables and therefore our
hardness result is equivalent to the PCP theorem (with imperfect completeness).

Finally, we show that Theorems 1 and 2 can be easily used to obtain hardness of agnostic
learning results for classes richer than monomials, thereby improving on several known
results and establishing hardness of agreement max/minimization for new function classes.

Our proof technique is based on using Feige’s multi-prover proof system for 3SAT-5
(3SAT with each variable occurring in exactly 5 clauses) together with set systems possessing
a number of specially-designed properties. The set systems are then constructed by a
simple probabilistic algorithm. As in previous approaches, our inapproximability results
are eventually based on the PCP theorem. However, previous results reduced the problem
to an intermediate problem (such as MAX-CUT, MAX-E2-SAT, or SET COVER) thereby
substantially losing the generality of the constraints. We believe that key ideas of our
technique might be useful in dealing with other constraint satisfaction problems involving
constraints that are conjunctions or disjunctions of Boolean variables.

1.1 Related Work

Besides the results for monomials mentioned earlier, hardness of agnostic learning results
are known for a number of other classes. Optimal hardness results are known for the class
of parities. H̊astad proved that approximating agreements with parities within a factor
of 2 − ε is NP-hard for any constant ε. Amaldi and Kann [2], Ben-David et al. [5], and
Bshouty and Burroughs [7] prove hardness of approximating agreements with halfspaces
(factors 262

261 , 418
415 , and 85

84 , respectively). Similar inapproximability results are also known
for 2-term DNF, decision lists and balls [5, 7].

Arora et al. give strong inapproximability results for minimizing disagreements with
halfspaces (factor 2log0.5−ε n) and with parities1 (factor 2log1−ε n) under the assumption that
NP 6⊆ DTIME(npoly log n). Bshouty and Burroughs prove inapproximability of minimizing
disagreements with k-term multivariate polynomials (factor lnn) and a number of other
classes [6].

For an extension of the agnostic framework where a learner can output a hypothesis
from a richer class of functions (see also Section 2.1) the first non-trivial algorithm for
learning monomials was recently given by Kalai et al. [13]. Their algorithm learns monomials

agnostically in time 2Õ(
√

n). They also gave a breakthrough result for agnostic learning of
halfspaces by showing a simple algorithm that for any constant ε > 0 agnostically learns

1This problem is more commonly known as “finding the nearest codeword”.

2

halfspaces with respect to the uniform distribution up to ε accuracy (both their algorithm
output thresholds of parities as hypotheses).

We also note that minimum disagreement cannot be approximated for classes that are
known to be not properly learnable (i.e. when a hypothesis has to use the same represen-
tation as the class being learned). In particular, the minimum disagreement with various
classes of DNF formulae, intersections of halfspaces, decision trees, and juntas cannot be
approximated [18, 1].

2 Preliminaries and Notation

For a vector v, we denote its ith element by vi (unless explicitly defined otherwise). For a
positive integer m we denote [m] = {1, 2, . . . , m}. We say that a function f (of any arity)
is Õ(g), where g is the function of the same parameters, if there exist two constants c and
d such that f ≤ c · g · logd (g).

The domain of all discussed Boolean functions is the Boolean hypercube {0, 1}n. The ith
literal is a function over {0, 1}n equal to the i-th coordinate of a point and denoted xi, or its
negation, denoted x̄i. A monomial is a conjunction of literals and/or constants (0 and 1). It
is also commonly referred to as a term. A monotone monomial is a monomial that includes
only positive literals and constants. We denote the function class of all monomials by Mon

and the class of all monotone monomials by MMon. A DNF formula is a disjunction of terms
and a k-term DNF formula is a disjunction of k terms. A halfspace or a threshold function
is a function equal to

∑

i∈[n] wixi ≥ θ (as a Boolean expression), where w1, . . . , wk, θ are
real numbers.

2.1 The Problem

For the purposes of this discussion we do not need the definitions of PAC learning and the
agnostic learning framework. The interested reader is referred to the work of Haussler [11],
Kearns et al. [16], and Valiant [21]. Instead, we directly define the combinatorial problems
underlying learnability in this model.

For a domain D, an example is a pair (x, b) where x ∈ D and b ∈ {0, 1}. An example is
called positive if b = 1, and negative otherwise. For a set of examples S ⊆ D × {0, 1}, we
denote S+ = {x | (x, 1) ∈ S} and similarly S− = {x | (x, 0) ∈ S}. For any function f and a

set of examples S, the agreement rate of f with S is AgreeR(f, S) =
|Tf∩S+|+|S−\Tf |

|S| , where

Tf = {x | f(x) = 1}. For a class of functions C, let AgreeR(C, S) = maxf∈C{AgreeR(f, S)}.

Definition 4 For a class of functions C and domain D, we define the Maximum Agreement
problem C-MA as follows: The input is a set of examples S ⊆ D × {0, 1}. The problem is
to find a function h ∈ C such that AgreeR(h, S) = AgreeR(C, S).

For α ≥ 1, an α-approximation algorithm for C-MA is an algorithm that returns a
hypothesis h such that α · AgreeR(h, S) ≥ AgreeR(C, S). Similarly, an α-approximation
algorithm for the Minimum Disagreement problem C-MD is an algorithm that returns a
hypothesis h ∈ C such that 1 − AgreeR(h, S) ≤ α(1 − AgreeR(C, S)).

3

An extension of the original agnostic learning framework is the model in which a hypoth-
esis may come from a richer class H. The corresponding combinatorial problems were in-
troduced by Bshouty and Burroughs and are denoted C/H-MA and C/H-MD [7]. Note that
an approximation algorithm for these problems can return a value larger than AgreeR(C, S)
and therefore cannot be used to approximate even just the value AgreeR(C, S).

Remark 5 An α-approximation algorithm for C′-MA(MD) where C ⊆ C′ ⊆ H is an α-
approximation algorithm for C/H-MA(MD).

2.2 Agreement with Monomials and Set Covers

For simplicity we first consider the MMon-MA problem. The standard reduction of the
general to the monotone case [15] implies that this problem is at least as hard to approximate
as Mon-MA. We will later observe that our proof will hold for the unrestricted case as well.
We start by giving two equivalent ways to formulate MMon-MA.

Definition 6 The Maximum Monotone Clause Constraints problem MAX-MSAT is defined
as follows: The input is a set C of monotone clauses constraints, that is, equations of the
form t(x) = b where, t(x) is a clause without negated variables and b ∈ {0, 1}. The output
is a point z ∈ {0, 1}n that maximizes the number of satisfied equations in C. For an integer
function B, MAX-B-MSAT is the same problem with each clause containing at most B
variables.

To see the equivalence of MMon-MA and MAX-MSAT, let ti be the variable “xi is present
in the clause t”. Then each constraint t(z) = b in MMon-MA is equivalent to ∨zi=0ti = 1−b.
Therefore we can interpret each point in an example as a monotone clause and the clause
t as a point in {0, 1}n.

Another way equivalent way to formulate MMon-MA and the one we will be using
throughout our discussion is the following.
Input: S = (S+, S−, {S+

i }i∈[n], {S
−
i }i∈[n]) where S+

1 , . . . , S+
n ⊆ S+ and S−

1 , . . . , S−
n ⊆ S−.

Output: A set of indices I that maximizes the sum of two values, Agr−(S, I) = |
⋃

i∈I S−
i | and

Agr+(S, I) = |S+|−|
⋃

i∈I S+
i |. We denote this sum by Agr(S, I) = Agr−(S, I)+Agr+(S, I)

and denote the maximum value of agreement by MMaxAgr(S).
To see that this is an equivalent formulation, let S−

i = {x | x ∈ S− and xi = 0} and
S+

i = {x | x ∈ S+ and xi = 0}. Then for any set of indices I ⊆ [n], the monotone monomial
tI = ∧i∈Ixi is consistent with all the examples in S− that have a zero in at least one of
the coordinates with indices in I, that is, with examples in

⋃

i∈I S−
i . It is also consistent

with all the examples in S+ that do not have zeros in coordinates with indices in I, that is,
S+ \

⋃

i∈I S+
i . Therefore the number of examples with which tI agrees is exactly Agr(S, I).

It is also possible to formulate Mon-MA in a similar fashion. We need to specify an
additional bit for each variable that tells whether this variable is negated in the monomial
or not (when it is present). Therefore the formulation uses the same input and the following
output.
Output(Mon-MA): A set of indices I and a vector a ∈ {0, 1}n that maximizes the value

Agr(S, I, a) = |
⋃

i∈I

Z−
i | + |S+| − |

⋃

i∈I

Z+
i |,

4

where Z
+/−
i = S

+/−
i if ai = 0 and Z

+/−
i = S+/− \S

+/−
i if ai = 1. We denote the maximum

value of agreement with a general monomial by MaxAgr(S).

3 Hardness of Approximating Mon-MA and Mon-MD

It is easy to see that MMon-MA is similar to the SET-COVER problem. Indeed, our
hardness of approximation result will employ some of the ideas from Feige’s hardness of
approximation result for SET-COVER [8].

3.1 Feige’s Multi-Prover Proof System

Feige’s reduction from the SET COVER problem is based on a multi-prover proof system
for 3SAT-5. The basis of the proof system is the standard two-prover protocol for 3SAT in
which the verifier chooses a random clause and a random variable in that clause. It then
gets the values of all the variables in the clause from the first prover and the value of the
chosen variable from the second prover. The verifier accepts if the clause is satisfied and
the values of the chosen variable are consistent [4]. Feige then amplifies the soundness of
this proof system by repeating the test ` times (based on Raz’ parallel repetition theorem
[20]). Finally, the consistency checks are distributed to k provers with each prover getting
`/2 clause questions and `/2 variable questions. This is done using an asymptotically-good
code with k codewords of length ` and Hamming weight `/2. The verifier accepts if at least
two provers gave consistent answers. More formally, for integer k and ` such that ` ≥ c` log k
for some fixed constant c`, Feige defines a k-prover proof system for 3SAT-5 where:

1. Given a 3CNF-5 formula φ over n variables, verifier V tosses a random string r of

length ` log (5n) and generates k queries q1(r), . . . qk(r) of length ` log
√

5
3n.

2. Given answers a1, . . . ak of length 2` from the provers, V computes V1(r, a1), . . . , Vk(r, ak) ∈
[2`] for fixed functions2 V1, . . . , Vk.

3. V accepts if there exist i 6= j such that Vi(r, ai) = Vj(r, aj).

4. If φ ∈ 3SAT-5, then there exist a k-prover P̄ for which V1(r, a1) = V2(r, a2) = · · · =
Vk(r, ak) with probability 1 (note that this is stronger than the acceptance predicate
above).

5. If φ 6∈ 3SAT-5, then for any P̄ , V accepts with probability at most k22−c0` for some
fixed constant c0.

3.2 Balanced Set Partitions

As in Feige’s proof, the second part of our reduction is a set system with certain properties
tailored to be used with the equality predicate in the Feige’s proof system. Our set system
consists of two main parts. The first part is sets divided into partitions in a way that sets
in the same partition are highly correlated (e.g., disjoint) and sets from different partitions

2These functions choose a single variable from each answer to a clause question.

5

are uncorrelated. Covers by uncorrelated sets are balanced in the sense that they cover
about the same number of points in S+ and S− and therefore the agreement rate is close
to 1/2. Therefore these sets force any approximating algorithm to use sets from the same
partition.

The second part of our set system is a collection of uncorrelated smaller sets. These
smaller sets do not substantially influence small covers but make any cover by a large
number of sets balanced. Therefore unbalanced covers have to use a small number of sets
and have sets in the same partition. Intuitively, this makes it possible to use an unbalanced
cover to find consistent answers to verifiers questions. In this sense, the addition of smaller
sets is analogous to the use of the random skew in the H̊astad’s long code test [10].

Formally, a balanced set partition B(m, L, M, k, γ) has the following properties:

1. There is a ground set B of m points.

2. There is a collection of L distinct partitions p1, . . . , pL.

3. For i ≤ L, partition pi is a collection of k disjoint sets Bi,1, . . . , Bi,k ⊆ B whose union
is B.

4. There is a collection of M sets C1, . . . , CM .

5. For any I ⊆ [M] and J ⊆ [L] × [k] with all elements having different first coordinate,
it holds

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
⋃

i∈I Ci

)
⋃

(

⋃

(i,j)∈J Bi,j

)∣

∣

∣

m
− 1 + (1 −

1

k2
)|I|(1 −

1

k
)|J |

∣

∣

∣

∣

∣

∣

≤ γ .

To see why a balanced set partition could be useful in proving hardness MMon-MA, consider
an instance S of MMon-MA defined as follows. For B(m, L, k, γ) as above, let S+ = S− = B,
S−

j,i = Bj,i, and S+
j,i = Bj,1. Now for any j ∈ [L], and an index set Ij = {(j, i) | i ∈ [k]},

|Agr(S, Ij)| ≥ (2 − 1
k − γ)m. On the other hand, for any index set I that does not include

two indices with the same first coordinate, we have that |Agr(S, I)| ≤ (1 + 2γ)m. For
sufficiently large k and sufficiently small γ, this creates a multiplicative gap of 2−ε between
the two cases.

3.3 Creating Balanced Set Partitions

In this section, we show a straightforward randomized algorithm that produces balanced
set partitions.

Theorem 7 There exists a randomized algorithm that on input k, L, M, γ produces, with
probability at least 1

2 , a balanced set partition B(m, L, M, k, γ) for m = Õ(k2γ−2 log (M + L))
in time O((M + L)m).

Proof: First we create the sets Bj,i. To create each partition j ∈ [L], we roll m k-sided
dice and denote the outcomes by d1, . . . , dm. Set Bj,i = {r | dr = i}. This clearly defines a

6

collection of disjoint sets whose union is [m]. To create M sets C1, . . . , CM , for each i ∈ [M]
and each r ∈ [m], we include r in Ci with probability 1

k2 .
Now let I ⊆ [M] and J ⊆ [L] × [k] be a set of indices with different first coordinate

(corresponding to sets from different partitions) and let U =
(
⋃

i∈I Ci

)
⋃

(

⋃

(i,j)∈J Bi,j

)

.

Elements of these sets are chosen independently and therefore for each r ∈ [m],

Pr[r ∈ U] = 1 − (1 −
1

k2
)|I|(1 −

1

k
)|J |

independently of other elements of [m]. Let ps,t = 1− (1− 1
k2)s(1− 1

k)t, then using Chernoff
bounds, we get that for any δ > 0,

Pr

[∣

∣

∣

∣

|U |

m
− p|I|,|J |

∣

∣

∣

∣

> δ

]

≤ 2e−2mδ2
,

which is exactly the property 5 of balanced set partitions (for δ = γ). Our next step is to
ensure that property 5 holds for all possible index sets I and J . This can be done by first
observing that it is enough to ensure that this condition holds for δ = γ/2, |I| ≤ k2 ln 1

δ
and |J | ≤ k ln 1

δ . This is true since for |I| ≥ k2 ln 1
δ and every t, p|I|,t ≥ 1 − δ. Therefore

|U |/m− p|I|,t ≤ 1− p|I|,t ≤ δ < γ. For the other side of the bound on the size of the union,

let I ′ be a subset of I of size k2 ln 1
δ and U ′ be the union of sets with indices in I ′ and J . It

then follows that

p|I|,t −
|U |

m
≤ 1 −

|U ′|
m

≤ 1 − (pk2 ln 1
δ
,t − δ) = 1 − (1 − δ) + δ = γ.

The second condition, |J | ≤ k ln 1
δ , is obtained analogously.

There are at most M s different index sets I ⊆ [M] of size at most s and at most (kL)t

different index sets J of size at most t. Therefore, the probability that property 5 does not
hold is at most ((kL)k ln 1

δ + Mk2 ln 1
δ) · 2e−2mδ2

. For m ≥ 2k2γ−2 · ln (kL + M) · ln 2
γ + 2,

this probability is less than 1/2. 2

We can now proceed to the reduction itself.

3.4 Main Reduction

Below we describe our main transformation from Feige’s proof system to MMon-MA. To
avoid confusion we denote the number of variables in a given 3CNF-5 formula by d and use
n to denote the number of sets in the produced MMon-MA instance (that corresponds to
the number of variables in the original formulation).

Theorem 8 For every ε > 0 (not necessarily constant), there exists an algorithm A that
given a 3CNF-5 formula φ over d variables, produces an instance S of MMon-MA on base
sets S+ and S− of size T such that

1. A runs in time 2O(`) plus the time to create a balanced set partition B(m, 2`, 4`, 1
4ε ,

ε
4),

where ` = c1 log 1
ε for some constant c1.

2. |S+| = |S−| = T = (5d)`m, where m is the size of the ground set of the balanced set
partition.

7

3. n = 4
ε (4

√

5
3 · d)`.

4. If φ ∈3SAT-5, then MMaxAgr(S) ≥ (2 − ε)T .

5. If φ 6∈3SAT-5, then |MMaxAgr(S) − T | ≤ ε · T .

Proof: Let k = 1
4ε , γ = ε/4, and V be Feige’s verifier for 3SAT-5. Given φ, we construct

an instance S of MMon-MA as follows. Let R denote the set of all possible random strings
used by V , let Qi denote the set of all possible queries to prover i and let Ai = {0, 1}2`

denote the set of possible answers of prover i. Let L = 2`, M = 22`, and B(m, L, M, k, γ)
be a balanced set partition. We set S+ = S− = R×B, and for every r ∈ R and B′ ⊆ B, let
(r, B′) denote the set {(r, b) | b ∈ B′}. We now proceed to define the sets in S. For i ∈ [k],
q ∈ Qi and a ∈ Ai we set

S−
(q,a,i) =

⋃

qi(r)=q

(r, BVi(r,a),i ∪ Ca) and S+
(q,a,i) =

⋃

qi(r)=q

(r, BVi(r,a),1 ∪ Ca) .

Intuitively, sets S−
(q,a,i) (or S+

(q,a,i)) correspond to prover i responding a when presented with
query q. We can also immediately observe that answers from different provers that are
mapped to the same value (and hence cause the verifier to accept) correspond to sets in S−

that are almost disjoint and strongly overlapping sets in S+. To formalize this intuition,
we prove the following claims.

Claim 9 If φ ∈3SAT-5, then MMaxAgr(S) ≥ (2 − ε)T for T = m|R|.

Proof: Let P̄ be the k-prover that always answers consistently and let Pi(a) denote the
answer of the ith prover to question a. Now consider the set of indices I = {(q, Pi(q), i) | i ∈
[k], q ∈ Qi}. For each r ∈ R, the prover P̄ satisfies

V1(r, P1(q1(r))) = V2(r, P2(q2(r))) = · · ·Vk(r, Pk(qk(r))) = c(r).

Therefore,
⋃

i∈[k]

S−
(qi(r),Pi(qi(r)),i)

⊆
⋃

i∈[k]

(r, Bc(r),i) = (r, B) .

This means that sets with indices in I cover all the points in S− = R × B. On the other
hand for each r,

⋃

i∈[k]

S+
(qi(r),Pi(qi(r)),i)

=
⋃

i∈[k]

(r, Bc(r),1 ∪ CPi(qi(r))) = (r, Bc(r),1) ∪ (r,
⋃

i∈[k]

CPi(qi(r))) .

This implies that for each r only (r, Bc(r),1 ∪ CPi(qi(r))) is covered in (r, B). By property 5
of balanced set partitions, the size of this set is at most

(1 − (1 −
1

k
)(1 −

1

k2
)k + γ)m ≤ (1 − (1 −

1

k
)(1 −

1

k
) + γ)m ≤ (

2

k
+ γ)m < εm .

This means that at most ε fraction of S− is covered by the sets with indices in I. Therefore
Agr(S, I) ≥ (1 + 1 − ε)m|R| = (2 − ε)T . 2

8

For the case when φ 6∈ 3SAT-5, let I be any set of indices for the instance S. Let Sr

denote an instance of MMon-MA obtained by restricting S to points with the first coordinate
equal to r. We denote corresponding restrictions of the base sets by S−

r and S+
r . It is easy

to see that Agr(S, I) =
∑

r∈R Agr(Sr, I). We say that r is good if |Agr(Sr, I) − 1| > ε
2m,

and let δ denote the fraction of good r’s. Then it is clear that

Agr(S, I) ≤ δ · 2T + (1 − δ)(1 + ε/2)T ≤ (1 + ε/2 + 2δ)T , and

Agr(S, I) ≥ (1 − δ)(1 − ε/2)T ≥ (1 − ε/2 − δ)T .

Hence

|Agr(S, I) − T | ≤ (ε/2 + 2δ)T. (1)

Claim 10 There exists a prover P̄ that will make the verifier V accept with probability at
least δ(k2 ln 4

ε)
−2.

Proof: We define P̄ with the following randomized strategy. Let q be a question to prover
i. Define Ai

q = {a | (q, a, i) ∈ I} and Pi to be the prover that presented with q answers
with a random element from Ai

q. We show that properties of B imply that there exist i
and j such that ai ∈ Ai

qi(r)
, aj ∈ Ai

qj(r)
, and Vi(r, ai) = Vj(r, aj). To see this, denote

V i
q = {Vi(a) | a ∈ Ai

q}. Then

Agr−(Sr, I) =

∣

∣

∣

∣

∣

∣

S−
r ∩

⋃

(q,a,i)∈I

S−
(q,a,i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

⋃

i∈[k], j∈V i
qi(r)

Bj,i

⋃

⋃

i∈[k], a∈Ai
qi(r)

Ca

∣

∣

∣

∣

∣

∣

∣

.

Now, if for all i 6= j, V i
qi(r)

∩V j
qj(r)

= ∅, then all elements in sets V 1
q1(r), . . . , V

k
qk(r) are distinct

and therefore by property 5 of balanced set partitions,

∣

∣

∣

∣

Agr−(Sr, I)

m
− 1 + (1 −

1

k2
)s(1 −

1

k
)t

∣

∣

∣

∣

≤ γ ,

where s = | ∪i∈[k] Ai
qi(r)

| and t =
∑

i∈[k] |V
i
qi(r)

|. Similarly,

Agr+(Sr, I) = m−

∣

∣

∣

∣

∣

∣

S−
r ∩

⋃

(q,a,i)∈I

S−
(q,a,i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

⋃

i∈[k], j∈V i
qi(r)

Bj,1

⋃

⋃

i∈[k], a∈Ai
qi(r)

Ca

∣

∣

∣

∣

∣

∣

∣

and therefore
∣

∣

∣

∣

Agr+(Sr, I)

m
− (1 −

1

k2
)s(1 −

1

k
)t

∣

∣

∣

∣

≤ γ .

This implies that |Agr(Sr, I) − m| ≤ 2γm = ε
2m, contradicting the assumption that r is

good. Hence, let i′ and j′ be the indices for which V i′

qi′ (r)
∩V j′

qj′ (r)
6= ∅. To analyze the success

probability of the defined strategy, we observe that if s ≥ k2 ln 4
ε , then (1 − 1

k2)s < ε
4 and

9

consequently

∣

∣

∣

∣

⋃

i∈[k], a∈Ai
qi(r)

Ca

∣

∣

∣

∣

≥ (1 − ε
4 − γ)m. Therefore Agr+(Sr, I) ≤ (ε

4 − γ)m and

Agr−(Sr, I) ≥ (1 − ε
4 − γ)m. Altogether, this would again imply that |Agr(Sr, I) − m| ≤

(ε
4 + γ)m = ε

2 , contradicting the assumption that r is good.
For all i ∈ [k], |Ai

qi(r)
| ≤ s ≤ k2 ln 4

ε . In particular, with probability at least (k2 ln 4
ε)

−2,

Pi′ will choose ai′ and Pj′ will choose aj′ such that Vi′(r, ai′) = Vj′(r, aj′), causing V to
accept. As this happens for all good r’s, the success probability of P̄ is at least δ(k2 ln 4

ε)
−2.

2

Using the bound on the soundness of V , Claim 10 implies that δ(k2 ln 4
ε)

−2 ≤ k22−c0`,
or δ ≤ (k3 ln 4

ε)
22−c0`. Thus for

` =
1

c0
log (

4

ε
(k3 ln

4

ε
)2) ≤ c1 log

1

ε
(2)

we get δ ≤ ε
4 . We set c1 to be at least as large as c` (constant defined in Section 3.1). For

δ ≤ ε
4 equation 1 gives |Agr(S, I)−T | ≤ εT . The total number of sets used in the reduction

(which corresponds to the number of variables n is k · |Q| · |A| where |Q| is the number of
different queries that a prover can get and |A| is the total number of answers that a prover
can return (both |A| and |Q| are equal for all the provers). Therefore, by the properties of

Feige’s proof system, n = 4
ε (4

√

5
3 · d)`. 2

An important property of this reduction is that all the sets that are created S
+/−
(q,a,i) have

size at most ε|Q||B|, where |Q| is the number of possible queries to a prover (it is the same
for all the provers). Hence each set covers at most ε|Q|/|R| < ε fraction of all the points.
This implies that a monomial with a negated variable will be negative on all but fraction
ε of all the positive examples and will be consistent with all but at most fraction ε of all
the negative examples. In other words, a non-monotone monomial will always agree with
at least (1 − ε)T examples and at most (1 + ε)T examples.

Corollary 11 Theorem 8 holds even when the output S is an instance of Mon-MA, that
is, with MaxAgr(S) in place of MMaxAgr(S).

Remark 12 For each r ∈ R and b ∈ B, (r, B) belongs to at most k · M = poly(1
ε) sets in

S. This means that in the MMon-MA instance each example will have poly(1
ε) zeros. This,

in turn, implies that an equivalent instance of MAX-MSAT will have poly(1
ε) variables in

each clause.

3.5 Results and Applications

We are now ready to use the reduction from Section 3.4 with balanced set partitions from
Section 3.3 to prove our main theorems.

Theorem 13 (same as 1) For every constant ε′ > 0, MMon/Mon-MA is NP-hard to ap-
proximate within a factor of 2 − ε′.

Proof: We use Theorem 8 for ε = ε′/2. Then k, γ, and ` are constants and therefore
B(m, 2`, 4`, 1

4ε ,
ε
4) can be constructed in constant randomized time. The reduction creates

10

an instance of Mon-MA of size polynomial in d and runs in time dO(`) = poly(d). By
derandomizing the construction of B in a trivial way, we get a deterministic polynomial-
time reduction that produces a gap in Mon-MA instances of 2−ε

1+ε > 2 − ε′. 2

Furthermore, Remark 12 implies that for any constant ε, there exists a constant B such
that MAX-B-MSAT is NP-hard to approximate within 2 − ε. This formulation implies the
PCP theorem with imperfect completeness (as in the case of parities, if all the monotone
clause constraints are satisfiable then the solution is easy to find).

Theorem 1 can be easily extended to subconstant ε.

Theorem 14 (same as 2) There exists a constant c > 0, such that there is no polynomial-
time algorithm that approximates MMon/Mon-MA within a factor of 2 − 2−c

√
log n, unless

NP ⊆ DTIME(nlog(n)) ∪ RP.

Proof: We use Theorem 8 for ε′ = d−1. Then k = 4d, γ = d−1/4 and ` = c1 · log d.
Therefore B(m, 2`, 4`, 1

4ε′ ,
ε′

4) can be constructed in polynomial in d randomized time and

m = dc2 . The rest of the reduction takes time dO(`) = dO(log d) and creates an instance of
MMon-MA over n = dc3 log d variables. Therefore, in terms of n, ε′ = 2−c

√
log n for some

constant c. 2

It is easy to see that the gap in the agreement rate between 1 − ε and 1/2 + ε implies

a gap in the disagreement rate of 1/2−ε
ε > 1

3ε (for small enough ε). That is, we get the
following multiplicative gap for approximating Mon-MD.

Corollary 15 (same as 3) There exists a constant c > 0, such that there is no polynomial
time algorithm that approximates MMon/Mon-MD within a factor of 2c

√
log n, unless NP ⊆

DTIME(nlog(n)) ∪ RP.

A simple application of these results is hardness of approximate agreement maximization
with function classes richer than monomials. More specifically, let C be a class that includes
monotone monomials. Assume that for every f ∈ C such that f has high agreement with
the sample, one can extract a monomial with “relatively” high agreement. Then we could
approximate the agreement or the disagreement rate with monomials, contradicting Theo-
rems 1 and 2. A simple and, in fact, the most general class with this property, is the class of
threshold functions with low integer weights. Let THW (C) denote the class of all functions
equal to 1

2 + 1
2sign(

∑

i≤k wi(2fi − 1)), where k, w1, . . . , wk are integer,
∑

i≤k |wi| ≤ W , and
f1, . . . , fk ∈ C (this definition of a threshold function is simply sign(

∑

i≤k wifi) when fi

and the resulting function are in the range {−1, +1}). The following lemma is a straight-
forward generalization of a simple lemma due to Goldmann et al. [9] (the original version
is for δ = 0).

Lemma 16 Let C be a class of functions and let f ∈ THW (C). If for some function g
and distribution D, PrD[f = g] ≥ 1 − δ, then for one of the input functions h ∈ C to the

threshold function f , it holds that |PrD[h = g] − 1/2| ≥ 1−δ(W+1)
2W .

Proof: Let D′ be the distribution D conditioned on f(x) = g(x). By the definition of
D′, PrD′ [f = g] = 1. We can therefore apply the original lemma and get that there exists

h ∈ C such that |PrD′ [h = g] − 1/2| ≥ 1
2W . Therefore |PrD[h = g] − 1/2| ≥ 1−δ(W+1)

2W . 2

Hence we obtain the following results.

11

Corollary 17 Assume that NP 6⊆ DTIME(nlog(n))∪RP. There exists a constant c such that
for t = 2c

√
log n, there is no polynomial-time algorithm that approximates MMon/THt(Mon)-

MD within a factor of t.

Corollary 18 For every constant k and ε > 0, MMon/THW (Mon)-MA is NP-hard to ap-
proximate within a factor of 1 + 1

W − ε.

Proof: The reduction in Theorem 1 proves hardness of distinguishing instances of MMon-MA
with the maximum agreement rate r being ≥ 1 − ε′

2 and instances for which |r − 1/2| ≤ ε′

2 .

If there exists an algorithm that, given sample with r ≥ 1 − ε′

2 , can produce a function
f ∈ THW (Mon) such that f agrees with at least W

W+1 + ε′ fraction of examples then, by
Lemma 16, one of the monomials used by f has agreement rate r′ that satisfies

|r′ −
1

2
| ≥

1 − δ(W + 1)

2W
≥

1 − (1
W+1 − ε′)(W + 1)

2W
=

ε′(W + 1)

2W
>

ε′

2
.

Therefore MMon/THW (Mon)-MA cannot be approximated within 1−ε′
W

W+1
+ε′

≥ 1 + 1
W − ε for

an appropriate choice of ε′. 2

A k-term DNF can be expresses as THk+1(Mon). Therefore Corollary 18 improves
the best known inapproximability factor for (2-term DNF)-MA from 59

58 − ε [7] to 4/3 − ε
and gives the first results on hardness of agreement maximization with thresholds of any
constant number of terms.

4 Discussion and Further Work

While this work resolves approximation complexity of the maximum agreement problem
for monomials, several questions remain open for other simple function classes. Most no-
tably, the best inapproximability factor known for halfspaces is 85

84 , while no approximation
algorithms achieving better than (2 − log n/n)-approximation are known [7].

It would also be interesting to see whether the construction of balanced set partitions
can be derandomized (removing RP from the NP 6⊆ DTIME(nlog(n)) ∪ RP assumption).
We remark that derandomizing this construction would, in particular, produce a bipartite
expander graph with almost optimal expansion factor.

5 Acknowledgments

I am grateful to Leslie Valiant for his advice and encouragement of this research. I would
also like to thank Salil Vadhan for useful discussions and Shaili Jain for careful proofreading
and valuable comments on the earlier versions of this paper.

12

References

[1] M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans, and T. Pitassi. Learnability
and automizability. In Proceeding of FOCS ’04, pages 621–630, 2004. Extended version
available at www.eecs.harvard.edu/∼vitaly/papers/properDNF.pdf.

[2] E. Amaldi and V. Kann. The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical Computer Science, 147(1&2):181–
210, 1995.

[3] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343–370,
1988.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[5] S. Ben-David, N. Eiron, and P. M. Long. On the difficulty of approximately maximizing
agreements. J. Comput. Syst. Sci., 66(3):496–514, 2003.

[6] N. Bshouty and L. Burroughs. Bounds for the minimum disagreement problem with
applications to learning theory. In Proceedings of COLT ’02, pages 271–286, 2002.

[7] N. Bshouty and L. Burroughs. Maximizing agreements and coagnostic learning. In
Proceedings of ALT ’02, pages 83–97, 2002.

[8] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

[9] M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. general weighted thresh-
old gates. Computational Complexity, 2:277–300, 1992.

[10] J. Hastad. Some optimal inapproximability results. Journal of ACM, 48(4):798–859,
2001.

[11] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100(1):78–150, 1992.

[12] K. Hoffgen, H. Simon, and K. Van Horn. Robust trainability of single neurons. Journal
of Computer and System Sciences, 50(1):114–125, 1995.

[13] A. Tauman Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically learning
halfspaces. In FOCS ’05, pages 11–20, 2005.

[14] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on
Computing, 22(4):807–837, 1993.

[15] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formulae.
In Proceedings of the Nineteenth Annual Symposium on Theory of Computing, pages
285–295, 1987.

13

[16] M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine
Learning, 17(2-3):115–141, 1994.

[17] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41(5):960–981, 1994.

[18] L. Pitt and L. Valiant. Computational limitations on learning from examples. Journal
of the ACM, 35(4):965–984, 1988.

[19] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of STOC ’97,
pages 475–484, 1997.

[20] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
1998.

[21] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

14

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

