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Abstract

We address well-studied problems concerning the learnability of parities and halfspaces in the presence
of classification noise.

Learning of parities under the uniform distribution with random classification noise, also called the noisy
parity problem is a famous open problem in computational learning. We reduce a number of basic problems
regarding learning under the uniform distribution to learning of noisy parities, thus highlighting the central
role of this problem for learning under the uniform distribution. We show that under the uniform distribution,
learning parities with adversarial classification noise reduces to learning parities with random classification
noise. Together with the parity learning algorithm of Blumet al. [BKW03], this gives the first nontrivial
algorithm for learning parities with adversarial noise. Weshow that learning of DNF expressions reduces to
learning noisy parities of just logarithmic number of variables. We show that learning of

�
-juntas reduces to

learning noisy parities of
�

variables. These reductions work even in the presence of random classification
noise in the original DNF or junta.

We then consider the problem of learning halfspaces over� � with adversarial noise or finding a halfspace
that maximizes the agreement rate with a given set of examples. Finding the best halfspace is known to be��

-hard [GJ79, PV88] and many inapproximability results are known for this problem [ABSS97, HSH95,
AK95, BDEL00, BB02]. We show that even if there is a halfspacethat correctly classifies� � � fraction of
the given examples, it is hard to find a halfspace that is correct on a 	
 � � fraction for any� �  assuming� �� ��

. This gives an essentially optimal inapproximability factor of � � �, improving the factor of���� � �
due to Bshouty and Burroughs [BB02]. Under stronger complexity assumptions, we can take� to be as small
as������ � where� is the size of the input.

Finally, we prove that majorities of halfspaces are hard to PAC-learn using any representation, based
on the cryptographic assumption underlying the security ofthe Ajtai-Dwork cryptosystem. We show that
this result implies that learning halfspaces with high levels of adversarial noise is hard, independent of the
representation of the hypothesis.

�
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1 Introduction

Parities and halfspaces are two of the most fundamental concept classes in learning theory. While efficient
algorithms are known for learning these classes when the data is guaranteed to be noise-free, presence of noise
leads to a number of challenging and important problems. Thecomplexity of the problems depends on the
process through which the noise is generated. In this article, we study various kinds of classification noise,
where the noise only affects the label of a data point. This isdifferent from the model of malicious errors
defined by Valiant [Val85] (see also [KL93]) where the noise can affect both the label and the point itself, and
thus possibly change the distribution of the data-points.

The two natural models for classification noise are random noise and adversarial noise. In the former model,
the label of each point is flipped independently with probability � for some� � ��� and then given to the
learner. As� approaches��� the labels approach an unbiased coin flip and hence the running time of the
learning algorithm is allowed to depend polynomially on����� . In the adversarial noise model, an adversary is
allowed to flip the labels of an� fraction of the input points. Alternatively, one can view this as learning in the
agnostic framework of Haussler [Hau92] and Kearns et al. [KSS94] where we do not make any assumptions
about how the data is generated, our goal is to find a hypothesis which does well in comparison to any other
hypothesis from a certain class.

1.1 Learning Noisy Parities Under the Uniform Distribution

A parity function is the XOR of some set of variables	 
 ��. In the absence of noise, one can identify the set
	 by taking samples and running Gaussian elimination. The problem of learning parity in the presence of noise
has been well studied in both the adversarial noise model andthe random noise model. Both these problems are
closely related to problems in coding theory regarding the decoding of random linear codes. We summarize the
known results about these problem.

� Adversarial Noise: In the adversarial noise model, under arbitrary distributions, the problem of learning
parity is intractable in the proper learning setting where the learner must produce a parity as the hypothesis.
This follows from a celebrated result of Håstad [Hås97]. We are unaware of non-trivial algorithms for this
problem under any fixed distribution, prior to our work. The problem of learning parity with adversarial
noise under the uniform distribution is related to the problem of decoding Hadamard codes. If the learner
is allowed to ask membership queries, a celebrated result ofGoldreich and Levin gives a polynomial time
algorithm for this problem [GL89]. Later algorithms were given by Kushilevitz and Mansour [KM91] and
Levin [Lev93].

� Random Noise: The problem of learning parity in the presence of random noise, or the noisy parity
problem is a notorious open problem in computational learning theory. Blum, Kalai and Wasserman give
algorithms for learning parity functions on� variables in the presence of random noise in time�� � ���� �

�
for

any constant� [BKW03]. Their algorithm works for any distribution. We will also consider the problem
under the promise that the set	 is of size at most�. A brute force approach to this problem is to take� � ����� � ��� � � samples and find the parity on� variables that best fits the data through exhaustive search

in time
� ��� �. We are unaware of a better algorithm for this problem.

In this work, we focus on learning parities under the uniformdistribution. We reduce a number of basic
problems about learning under the uniform distribution to learning noisy parities, establishing the central role of
noisy parities in this model of learning.
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Learning Parities with Adversarial Noise

We show that under the uniform distribution, learning parities with adversarial noise reduces to learning parities
with random noise at the cost of a small increase in the noise level. More precisely, learning parities with
adversarial noise of rate� can be reduced to learning parities with random noise of rate�� �

� �� � � �� . In
particular, our reduction and the result of Blumet al. imply the first non-trivial algorithm for learning parity
with adversarial noise under the uniform distribution. Equivalently, this gives the first non-trivial algorithm
under any distribution for agnostically learning parity (see Section 3.1 for the definition of agnostic learning).

Theorem 1 For any constant� � ���, parities are learnable under the uniform distribution with adversarial
noise of rate� in time

� �� ���� �
�.

Our main technical contribution is to show that an algorithmfor learning noisy parities gives an algorithm
that finds heavy Fourier coefficients (i.e. correlated parities) of a function from random samples. Thus an
algorithm for learning noisy parities gives an analogue of the Goldreich-Levin/Kushilevitz-Mansour algorithm
for the uniform distribution, but without queries.

This result is proved using Fourier analysis. The high-level idea of the reduction is to modify the Fourier
spectrum of the function

�
so that it is concentrated at a single point. For this, we introduce the notion of a

probabilistic oracle for real-valued functions
� � �� � ��� � �� � � �. Informally, such an oracle produces a pair	
 � �� where
 is random vector in

�� � ��� and
�  �

� � � �� is a random bit whose expectation is
� �
 �. We

present a set of transformation on oracles that allow us to use an oracle for the function
�

to simulate oracles for
many related functions. In particular, one can reduce the influence of the smaller Fourier coefficients, and project�

onto Fourier coefficients belonging to a particular subspace of
�� � ��� . By composing these operations, we

show that one can simulate an oracle which is close (in statistical distance) to a noisy parity.

Learning DNF formulae

Learning of DNF expressions from random examples is anotherfamous open problem formulated in Valiant’s
seminal paper on PAC learning [Val84]. In this problem we aregiven access to examples of some Boolean
function

�
randomly chosen with respect to distribution� , and� � �

. The goal is to find a hypothesis that�-
approximates

�
with respect to� in time polynomial in�, � � DNF-size

�� � and���, whereDNF-size
�� � is

the number of terms in the DNF formula for
�

with the minimum number of terms. A straightforward algorithm
for learning DNFs with respect to the uniform distribution collects all the terms of size��� ����� � � ��� that are
consistent (in the PAC sense) with the target function, i.e.do not accept negative points. We are unaware of an
algorithm improving on the

� �� ��� ����� � running time of this algorithm. Jackson [Jac97] proved thatDNFs are
learnable under the uniform distribution if the learning algorithm is allowed to get the value of function

�
at any

point (or makemembership queries). This influential result gives essentially the only known approach to learn
unrestricted DNFs in polynomial time.

We establish a connection between these problems proving that learning of DNF expressions reduces to
learning parities of

� ���� ������ variables with noise rate� � ��� �
�� ��� ��� � under the uniform distribution.

Theorem 2 Let� be an algorithm that learns parities of� variables on
�� � ��� for every noise rate� � ���

in time 	 �� � � � �����
� using at most� �� � � � �����

� examples. Then there exists an algorithm that learns DNF

expressions of size� in time
�� � ���� � 	

�� � ���  �  � � � �
�� � ���  �  � ��, where � �� �����.

Learning �-juntas

A Boolean function on� variables is a�-junta if it depends only on� variables out of�. This problem was pro-
posed by Blum and Langley [BL97], as a clean formulation of the problem of efficient learning in the presence
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of irrelevant information. In addition, for� � ��� � , a �-junta can be expressed as a decision tree or a DNF of
size�. Hence, a polynomial time algorithm for DNFs or decision trees under the uniform distribution would
imply an algorithm for the�-junta problem. Thus, learning juntas is a first step towardslearning polynomial size
decision trees and DNFs under the uniform distribution. A brute force approach would be to take

� �� ��� � �
samples, and then run through all�� subsets of possible relevant variables. The first non-trivial algorithm was
given only recently by Mossel et al. [MOS03], and runs in timeroughly

� �� � ��� �. Their algorithm relies on
some new structural properties of Boolean functions. However, even the question of whether one can learn
�-juntas in polynomial time for� � � ��� still remains open.

For the problem of learning�-juntas, we give a simpler reduction to learning noisy parities of size� , which
also gives a lower noise rate� .

Theorem 3 Let� be an algorithm that learns parities of� variables on
�� � ��� for every noise rate� � ���

in time	 �� � � � �����
�. Then there exists an algorithm that learns�-juntas in time

� ���� � 	
�� � � � �� ��.

This reduction also applies for learning�-juntas with random noise. A noisy parity of� variables is a special
case of a�-junta. Thus we can reduce the noisy junta problem to a special case, at the cost of an increase in the
noise level. By suitable modifications, the reduction from DNF can also be made resilient to random noise.

Even though our reductions for DNFs and juntas do not give an improved algorithm for at this stage, they
establish connections between well-studied open problems. Our reductions allow one to focus on functions
with known and simple structure viz parities, in exchange for having to deal with random noise. They show
that a non-trivial algorithm for learning parities of

� ���� � � variables will help make progress on a number of
important questions regarding learning under the uniform distribution.

1.2 Hardness of Learning Halfspaces with Adversarial Noise

In the problem of learning a halfspace, we are given a set of points in � � labeled ‘� ’ or ‘ �’. Our goal is to
find a halfspace that separates the ‘� ’s and the ‘�’s, if such a halfspace exists, else to find one that classifies
most of the data correctly. This is one of the oldest and best-studied problems in machine learning, dating back
to work on Perceptrons in the 1950s [Agm64, Ros64, MP69]. If such a halfspace does exist, one can find it in
polynomial time using efficient algorithms for Linear Programming. In practice, simple greedy algorithms like
the Perception and Winnow are used, which also seem to be robust to noise [Gal90, Ama94]. Much of the recent
research in this area focuses on finding provably good algorithms when the data is noisy [BFKV96, ABSS97,
Coh97, KKMS05]. Halfspaces are PAC-learnable even in the presence of random noise: Blum et al. [BFKV96]
show that a variant of the Perceptron algorithm can be used inthis setting (see also [Coh97]).

In the adversarial noise scenario, there is no halfspace that correctly classifies all the data points and our
goal is to find one that does as well as possible. This version of the halfspace problem arises frequently in
practice, where the data is often inconsistent. Also, this problem has important implications for some central
open problems in computational learning, namely PAC learning of DNFs and�� � circuits.

This problem was known to be NP-complete [GJ79], even when the points lie in
�� � ��� [PV88]. A number

of results are known on hardness of producing a halfspace whose rate of agreement is within a certain constant
factor of the optimal. Amaldi and Kann [AK95], Ben-Davidet al. [BDEL00], and Bshouty and Burroughs
[BB02] prove hardness of approximating agreements with halfspaces - factors����� �

� 	 �
	 �� , and 
�
	 , respectively.
Further Arora et al. [ABSS97] showed that for any constant� , the problem of minimizing the number of points
that are wrongly classified by the halfspace is hard to approximate within factor� .

The problem we resolve is the following: if there is a halfspace that correctly classifies�� of the data,
can one find a halfspace that is correct on even� �? Note that by taking any hyperplane, and deciding which
halfspace to label ’� ’, one can get a�� success rate. An algorithm with a non-trivial guarantee would be a
tremendous breakthrough in computational learning. It is known that any�� � circuit can be approximated by
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the sign of a low-degree polynomial over the reals under any distribution [BRS91, ABFR91]. Thus, a non-trivial
algorithm for learning a halfspace would imply that�� � circuits are weakly PAC-learnable. One can then boost
this to get a PAC-learning algorithm for�� � circuits in quasi-polynomial time [KV94]. In contrast, at present
the best PAC-learning algorithm even for DNFs (which are a special case of�� � circuits) runs in time�

�
� �� ��� �

[KS01]. This connection is well-known, Blum et al. [BFKV96]observe this connection, and state the question
of learning halfspaces with adversarial noise as an important open problem.

We prove a negative result which is essentially optimal. We show that even if there is a halfspace that
correctly classifies� � � fraction of the input, it is hard to find a halfspace that is correct on a��

� � fraction of
the inputs for any� � �

assuming� �� �� . Under stronger complexity assumptions, we can take� to be as
small as��� ��� � where� is the size of the input.

Theorem 4 Assuming�� � 	
�� �� ���� � �� ��� �, no polynomial time algorithm can distinguish between the
following cases of the halfspace problem over� points:

� � � ��� �� ��� � �
fraction of the points can be correctly classified by some halfspace.

� No more than��� � ��� �� ��� � �
fraction of the points can be correctly classified by any halfspace.

Similar optimal results were only known for the class of parities [Hås97] and, recently, for monomials [Fel06b].
The crux of our proof is to first show a hardness result for solving systems of linear equations over the reals.

Equations are easier to work with than inequalities since they admit some tensoring and boosting operations
which can be used for gap amplification. We show that given a system where there is a solution satisfying
a � � � fraction of the equations, it is hard to find a solution satisfying even an� fraction. We then reduce
this problem to the halfspace problem. The idea of repeated tensoring and boosting was used by Khot and
Ponnuswami for equations over� � in order to show hardness for Max-Clique [KP06]. The main technical
difference in adapting this technique to work over� is keeping track of error-margins. For the reduction to
halfspaces, we need to construct systems of equations wherein the ‘No’ case, many equations are unsatisfiable
by a large margin. Indeed our tensoring and boosting operations resemble taking tensor products of codes and
concatenation with Hadamard codes over finite fields. This result was proved independently by Guruswami and
Raghavendra [GR06], their result holds even if the data points are restricted to lie in

�� � ��� .
We note that the approximability of systems of linear equations over various fields is a well-studied problem.

Håstad shows that no non-trivial approximation is possible over� � [Hås97]. Similar results are known for
equations over�� and finite groups [Hås97, HER04]. However, to our knowledgethis is the first optimal
hardness result for equations over� . On one hand, the Fourier analytic techniques that work wellfor finite
groups and fields do not seem to apply over� . On the other hand, the fact that we are not restricted to equations
with constantly many variables makes our task much simpler.A natural open question is whether a similar
hardness result holds for equations of constant size over� .

We note that this is a hardness result for proper learning, where the algorithm must output a halfspace as a
hypothesis. In order to PAC-learn�� � circuits, any hypothesis suffices provided it can be evaluated efficiently.
On one hand, halfspaces are the most natural hypothesis to begin with, since many of the known algorithms
for learning halfspaces are proper learning algorithms, including the algorithms for the non-noisy case, as well
as for random classification noise [Coh97]. On the other hand, a recent algorithm for agnostically learning
halfspaces under certain distributions due to Kalai et al. [KKMS05] uses the sign of a low degree polynomial
as a hypothesis, hence it is not a proper learning algorithm.This suggests a natural question of whether it is
possible to learn a halfspace under adversarial noise usinga low-degree polynomial. To our knowledge, even
NP-hardness is not known for this problem, even if we restrict the hypothesis to quadratic polynomials.
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1.2.1 Thresholds of Halfspaces are not PAC-learnable

As opposed to proper-learning results, once could hope to show that a certain concept class is hard to PAC-learn,
irrespective of the hypothesis representation. Such results typically rely on specific cryptographic assumptions
[KV94]. We show such a hardness result for Threshold circuits of depth�. Since a single threshold gate is just a
halfspace, these are thresholds of halfspaces. Such circuits correspond to two-level neural networks, which are
used in machine learning [Mit97]. They also capture severalimportant concept classes: a convex polytope is an
intersection of halfspaces in� � , whereas a DNF is a union of halfspaces over

�� � ��� .
Thresholds of halfspaces are well studied in the literature[BK97, Vem04, KOS02, ABF�04, KS06a]. There

are known algorithms for learning various thresholds of� halfspaces both over� � [BK97, Vem04] and
�� � ���

[KOS02] under many distributions. Typically, the running time of these algorithm is exponential in�. There are
numerous negative results known for proper learning of suchconcepts [Vem04]. Recent results by Alekhnovich
et al. [ABF�04] show that it is NP-hard to learn the intersection of� � � halfspaces by� halfspaces for any
constant�. They also show that one cannot learn a union by halfspaces (even a DNF) by a union of halfspaces
in polynomial time assuming RP�� NP. Klivans and Sherstov show lower bounds for learning intersections
of halfspaces in the Statistical Query model [KS06a]. Therehas also been work showing that constant depth
threshold circuits are hard for PAC-learning. Based on certain cryptographic assumptions, Kearns and Valiant
showed that constant depth threshold circuits cannot be learned over a certain distribution using any represen-
tation [KV89]. Kharitonov strengthened this result by allowing membership queries, and using the uniform
distribution [Kha95].

We obtain a hardness result for threshold circuits of depth 2independent of the hypothesis representation,
based on the cryptographic assumption used in the Ajtai-Dwork lattice-based cryptosystem [AD97].

Theorem 5 Assuming the security of the Ajtai-Dwork cryptosystem, there is no weak PAC-learning algorithm
for the concept class of (unweighted) Threshold circuits ofdepth 2.

For this result, one can even take all the gates to be Majoritygates. To our knowledge, this is the first such re-
sult for depth-2 circuits of any kind. This result follows the general outline for proving inherent unpredictability
of [KV89]. We show that the decryption of the Ajtai-Dwork cryptosystem [AD97], (specifically a modification
by Goldreich et al. [GGH97]) can be done by a depth-2 threshold circuit. This result was obtained independently
by Klivans and Sherstov [KS06b], their reduction allows oneto use an AND gate at the second level.

Finally, using the Discriminator Lemma of Hajnalet al. [HMP�93], we show that Theorem 5 implies the
hardness of learning halfspaces with adversarial noise of high rate even when the learning algorithm is allowed
to output a hypothesis of its choice.

Theorem 6 Assuming the security of the Ajtai-Dwork cryptosystem, there exists a polynomial� �� � such that
halfspaces (in fact majorities) are not weakly learnable with adversarial noise of rate�� � �� �� � .

This result is incomparable to Theorem 4, since one hand it isindependent of the representation of the
hypothesis. On the other hand, it applies only when the noiserate is very close to�� .

This paper is organized as follows: we present our main technical Lemma regarding finding significant
Fourier coefficients in Section 2. We derive various consequences of this Lemma in Section 3. We present our
hardness result for proper learning of halfspaces in Section 4. In Section 5, we show the hardness of learning
majorities of halfspaces under cryptographic assumptions.

2 Learning Parities with Noise

In this section, we describe the main component of our reductions: an algorithm that using an algorithm for
learning noisy parities, finds a heavy Fourier coefficient ofa Boolean function if one exists. Following Jackson,
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we call such an algorithm aweak parity algorithm.

2.1 Fourier Transform

Our reduction uses Fourier-analytic techniques which werefirst used in computational learning by Linialet al.
[LMN93]. We view Boolean functions as functions

� � �� � ��� � �
� � � ��. All probabilities and expectations

are taken with respect to the uniform distribution unless specifically stated otherwise. For a Boolean vector�  �� � ��� let �� �
 � � �
� ��� �� , where ‘�’ denotes an inner product modulo 2, and letweight

�� � denote
the Hamming weight of�. For any real-valued function

�
the Fourier coefficient of

�
with index� is

�� �� � �
� �� �
 ��� �
 � and itsdegreeis weight

�� �. We say that a Fourier coefficient
�� �� � is �-heavy if � �� �� � � � � .

The function
�

can be written as
� �
 � � �� �� �� ��� �
 �. Let 	 �

�� � � 
� ��� �
 ���  ��� . Parseval’s identity
states that �	 �

�� ��� � � ��� �
 ���  � �� �� � �� �
We also define the quantity	 �

�� � as 	 �
�� � � �� � �� �� � ��

2.2 Oracle Transformations

Given an oracle for a Boolean function
�

the main idea of the reduction is to transform this oracle into an oracle
for a noisy parity�� such that

�� �� � is a heavy Fourier coefficient of
�

. First we define probabilistic oracles for
real-valued functions.

Definition 1 For any function
� � �� � ��� � �� � � � an oracle  �� � is the oracle that produces samples	
 � ��, where
 is chosen randomly and uniformly from

�� � ��� and
�  �

� � � � �� is a random variable with
expectation

� �
 �.
Our first observation is that for�  �� � � �,  ���� �
 �� is exactly the oracle for parity�� �
 � with noise of

rate� � ��� � � ��. Our second key observation is that if the Fourier spectra of
�

and� are close to each other,
then their oracles are close in statistical distance.

Claim 1 The statistical distance between the outputs of �� � and �� � is upper-bounded by	 �
��
� � �.

PROOF: The probability that �� � outputs
	
 � �� is �� � �� �� and the probability that it outputs

	
 � � �� is ��� �� �� .
Therefore the statistical distance between �� � and �� � equals

� ��� �
 � � � �
 � � � � �������� � �� �� � � �� �� ���� �
 � �����
�

� �� ��� �� �� � � �� �� � ��� � 	 �
��
� � ��

We now describe the transformations on probabilistic oracles that will be used in our reductions. For a
function

� � �� � ��� � �� � � � we define
�
�
�
 � as

�
�
�
 � � �� � �� �� ����� �
 �

Intuitively, the function
�
� reduces the influence of the smaller Fourier coefficients in

�
. Note that if

�
is a

Boolean function, then	 �
�� � could be large, however	 �

��
�
� � �.
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Lemma 1 For the function
�
� defined above:

1.
�
�
�
 � �  � ������ �� ��

�
�� ��

�
�.

2. Given access to the oracle �� � one can simulate the oracle ��
�
�.

Proof: Part 1 follows from the standard Fourier analysis. To simulate the oracle ��
�
� get two samples

	�
�
� �

�
�

and
	�

�
� �

�
�

from  �� � and return
	�

�
� �

�
� �

�
�
�
�
. By Part 1, this simulates the oracle for

�
�.

�
For a matrix�  �� � ��� �� define an�-projection of

�
to be

�� �
 � � ���	� 
��� 
�����
�� �� ��� �
 �

Lemma 2 For the function
��

defined above:

1.
�� �
 � � � �	� 
���

� �
 � � � �.
2. Given access to the oracle �� � one can simulate the oracle ��� �.

Proof: First note that for every�  �� � ��� and�  �� � ��� ,

�� �� � � � �
� ���� ���� � � � �

� ���
���� �� � ��� �� �

Thus if�� � �� then
� ��� �� � � � � otherwise it is
�
. Now let�� �
 � � � �	� 
���
�� �
 � � � �

We show that�� is the same as the function
��

by computing its Fourier coefficients.

��� �� � � �� �� �
 � � � ��� �
 �
� � �� �� �
 � � � ��� �
 �
� � � �� �� ��� �� � �
� �� �� �� ��� �� � �

Therefore
��� �� � � �� �� � if �� � �� and

��� �� � � �
otherwise. This is exactly the definition of

�� �
 �.
For Part 2, we sample

	
 � ��, choose random�  �� � ��� and return
	
 � � � � ��. The correctness follows

from Part 1 of the Lemma.
�

We will use this Lemma to project
�

in a way that separates one of its significant Fourier coefficients from
the rest. We will do this by choosing� to be a random� � � matrix for appropriate choice of� .

Lemma 3 Let
� � �� � ��� � �� � � � be any function, and let� �� �� be any vector. Choose� randomly and

uniformly from
�� � ��� �� . With probability at least��� ��, the following conditions hold:

��� ��� � �� ��� (1)���	� 
��� �	� 
�� � �
��� �� � � � 	 �

�� ����� � (2)
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Proof: Event (1) holds if� � � �� , which happens with probability��� .
For every�  �� � ��� � �� � �� � and a randomly uniformly chosen vector�  �� � ��� ,

� �� �� � � � � � � � � � � � ���
Therefore � �� ��� � �� � � � � ��  � ���

This implies that

�
�� ���	� 
��� �	� 
�� � �

��� �� � � ������ � � � ���� � ���	� 
��� �	� 
�� � ��� � �� �� � � � ��� 	 �
�� �

By Markov’s inequality,

� ��
�� ���	� 
��� �	� 
�� � �

��� �� � � � ���� �	 �
�� �

������ � � � ���� � ���

Thus conditioned on Event (1), Event (2) happens with probability at least 1/2. So both events happen with
probability ����� ��. �

This projection does not influence
�� ��� �. But one can clear the coefficient

�� �� � as follows. Define the
function

� �� as � �� �
 � � �
� �� ����

�� �� ��� �
 �
Lemma 4 For the function

� �� defined above, given access to �� � one can simulate the oracle �� �� �.
Proof: By definition,

�� ��� � � � �� �
 �. Therefore

� �� �
 � � �
�
� �
 � �

�
�  � �

� �� � � �
�
� �
 � � �

�  � ��
� �� � (3)

Let
	
 � �

�
�

and
	� � �

�
�

be two random examples from �� �. With probability �� return example
	
 � �

�
�

and with
probability �� return example

	
 � �
�
�
�
. By Equation 3, this simulates �� �� �. �

Finally, we show that by composing these transformations, one can use an algorithm for learning noisy
parities to get a weak parity algorithm.

Theorem 7 Let� be an algorithm that learns parities of� variables over
�� � ��� for every noise rate� � ���

in time	 �� � � � �����
� using at most� �� � � � �����

� examples. Then there exists an algorithmWP-R that for every
function

� � �� � ��� � �� � � � that has a�-heavy Fourier coefficient� of degree at most�, given access to �� �
finds� in time

� �	 �� � � � ���� � � � �� � � � ���� �� with probability at least���.

Proof: The algorithmWP-R proceeds in the following steps:

1. Square the coefficients of
�

and obtain ��
�
�.

2. Clear	�� ��� � and obtain the oracle �� ���
�.

3. Let� � 
��� � �� � � � ���� �� � �. Let �  �� � ��� �� be a randomly chosen matrix and �� ��� 

� � be the

oracle for�-projection of
� ��� . Run the algorithm� on  �� ��� 


� �.
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4. If � stops in	 �� � � � ���� � steps and outputs� with weight
�� � � �, check that� is at least� ��-heavy

and if so, output it.

Let � be a�-heavy Fourier coefficient of degree at most�. Our goal is to simulate an oracle for a function
that is close to a noisy version of� � �
 �.

The first step transforms
�

into a function
�
� with small 	 � norm (	 �

��
�
� � �), while at the same time�

�
��� � � � so � stays a reasonably heavy coefficient. The second step clearsthe coefficient	�� ��� � and halves

the rest of the coefficients. By Lemma 3, in the third step, with probability at least��� �� , we create a function� ��� 

� such that

�� ��� 

� ��� � � � �� and

�� �� � �
�� ��� 


� �� � � � ���� �	 �
�� ���

� � �
�� �� � � � ���� �

By Claim 1, the statistical difference between the oracle �� ��� 

� � and oracle ��� ��� 


� ���� � �
 �� is small. Since
� uses at most� �� � � � ���� � samples, with probability at least 1/2 it will not notice thedifference between the

two oracles. But, ��� ��� 

� ���� � �
 �� is exactly the noisy parity� � with noise rate

� � ��� �
�� ��� 


� �� � ��� � � � ��
Hence we get

�� � �� ��� � ����, so the algorithm� will learn the parity�. We can check that the coeffi-
cient produced by� is indeed heavy using Chernoff bounds, and repeat until we succeed. Using

� ��� � �� �� �� � � � ���� �� repetitions, we will get a�-heavy Fourier coefficient of degree� with probability at least���.�
Remark 1 A function

�
can have at most	 ��

�� ��� � �-heavy Fourier coefficients. Therefore by repeatingWP-R� ���� �	 �
�� ��� �� times we can, with high probability, obtain all the�-heavy Fourier coefficients of

�
as it is

required in some applications of this algorithm.

3 Applications

3.1 Agnostic Learning of Parities and Adversarial Noise

We start by defining the agnostic PAC model of Haussler [Hau92] and Kearnset al.[KSS94] more precisely. For
two Boolean functions

�
and� and a distribution� over

�� � ��� we define�� �� � � � � � �� �� �� � . Similarly,
for a class of Boolean functions� and a function

�
define�� �� � � � � ��	
�� ��� �� � � ��. We say that a class

� is PAC learnable in the agnostic model under the distribution � if there exists an algorithm that for every
Boolean function

�
and� � �

, runs in time polynomial in� and��� and, with probability at least 1/2, produces
a hypothesis� such that�� �� � � � � �� �� � � � � �.

An equivalent way to think of function
�

is as a function in� corrupted by adversarial classification noise
of rate�� �� � � �. A minor difference arises from the fact that the noise rate is not explicitly mentioned in the
agnostic setting. But we note that if� � ��� � � then a constant function will be a good agnostic hypothesis.
Therefore any algorithm that is polynomial in��� will also be polynomial in ����� .

Theorem 7 gives the following reduction from adversarial torandom noise.

Theorem 8 Let � be an algorithm that learns parities of� variables over
�� � ��� for every noise rate� �

��� in time 	 �� � � � �����
� using at most� �� � � � �����

� examples. Then parities with adversarial noise� � are

learnable in time
� �	 �� � � � ������ 

��
�
� �

�� � � � ������ 
��

� � ��� � with probability at least���.
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Proof: Let
�

be a parity� � corrupted by noise of rate� �. Then
�� ��� �  �� � � � �� � � � � � �

� ��� � � � � �� �.
We now apply the reduction from Theorem 7 with a minor modification. We make the estimates of Fourier
coefficients within� to make sure that we return a coefficient that is at least� � �� � � �, meaning that the error
of our hypothesis is at most� � � � (as required by the definition).

�
Blum et al.give a sub-exponential algorithm for learning noisy parity.

Lemma 5 [BKW03] Parity functions on
�� � ��� can be learned in computation-time and sample-complexity

�� � ���� �
�

in the presence of random noise of rate� for any constant� � �� .

If the rate of adversarial noise� � is a constant then the rate of random noise that our reductionproduces
� � �� �

� �� � � � �� is also a constant. Therefore Theorem 8 together with Lemma 5gives Theorem 1.

3.2 Learning DNF Expressions

Jackson [Jac97] in his breakthrough result on learning DNF expressions with respect to the uniform distribution
gives a way to use an algorithm for locating correlated parities and the boosting algorithm due to Freund [Fre90]
to build a DNF learning algorithm. We can adapt Jackson’s approach to our setting. We give an outline of the
algorithm and omit the now-standard analysis.

We view a probability distribution� as a density function and define its	� norm. Jackson’s algorithm is
based on the following Lemma (we use a refinement from [BF02]).

Lemma 6 ([BF02](Lemma 18)) For any Boolean function
�

of DNF-size� and any distribution� over
�� � ���

there exists a parity function�� such that�� �� ��  � � ���� � andweight
�� � � ��� ���� � ��	� ���� ��.

This lemma implies that DNFs can be weakly learned by finding aparity correlated with
�

under distri-
bution� �
 � which is the same as finding a parity correlated with the function ��� �
 �� �
 � under the uniform
distribution. The range of��� �
 �� �
 � is not necessarily�� � � �, whereas ourWP-R algorithm was defined for
functions with this range. So in order to apply Theorem 7, we first scale��� �
 �� �
 � to the range�� � � � and
obtain the function� � �
 �� �
 �, where� � �
 � � � �
 ��	� ���� � (	� �� � is known to the boosting algorithm).
We then get the probabilistic oracle �� � �
 �� �
 �� by flipping a

� � coin with expectation� � �
 �� �
 �. Therefore
a �-heavy Fourier coefficient of��� �
 �� �
 � can be found by finding a� �	� ���� �-heavy Fourier coefficient
of � � �
 �� �
 � and multiplying it by	� ���� �. We summarize this generalization in the following lemma.

Lemma 7 Let� be an algorithm that learns parities of� variables over
�� � ��� for every noise rate� � ���

in time 	 �� � � � �����
� using at most� �� � � � �����

� examples. Then there exists an algorithmWP-R’ that for
every real-valued function� that has a�-heavy Fourier coefficient� of degree at most�, given access to random
uniform examples of�, finds � in time

� �	 �� � � � � �	� �� ��� �� � � � �� � � � � �	� �� ��� �� �� with probability at
least���.

The running time ofWP-R’ depends on	� ���� � (polynomially if 	 is a polynomial) and therefore gives
us an analogue of Jackson’s algorithm for weakly learning DNFs. Hence it can be used with a boosting algorithm
that produces distributions that arepolynomially-closeto the uniform distribution; that is, the distribution func-
tion is bounded by� ��� where� is a polynomial in learning parameters (such boosting algorithms are called
� -smooth). In Jackson’s result [Jac97], Freund’s boost-by-majority algorithm [Fre90] is used to produce distri-
bution functions bounded by

� �������
� � (for arbitrarily small constant�). More recently, Klivans and Servedio

have observed [KS03] that a later algorithm by Freund [Fre92] produces distribution functions bounded by
�� ���.

Putting the two components together, we get the proof of Theorem 2.
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3.3 Learning Juntas

For the class of�-juntas, we can get a simpler reduction with better parameters for noise. We first clear the
coefficient

�� �� �. Since there are at most�� non-zero coefficients and each of them is at least���� �-heavy, for
a suitable choice of� , the projection step is likely to isolate just one of them. This leaves us with an oracle � �� ���� � �. Since

�� ��� � ���� �, the noise parameter is bounded by� � ��� � ��� . Using Remark 1 we
will obtain the complete Fourier spectrum of

�
by repeating the algorithm

� �� � times. The proof of Theorem 3
follows from these observations.

3.4 Learning in the Presence of Random Noise

Our reductions from DNFs and�-juntas can be made tolerant to random noise in the original function.
This is easy to see in the case of�-juntas. An oracle for

�
with classification noise� � is the same as an

oracle for the function
��� �� � �� . By repeating the reduction used for�-juntas, we get an oracle for the function ��� � �� � � ���� � �. Hence we have the following theorem:

Theorem 9 Let� be an algorithm that learns parities of� variables on
�� � ��� for every noise rate� � ��� in

randomized time	 �� � � � �����
�. Then there exists an algorithm that learns�-juntas with random noise of rate

� � in time
� ���� � 	

�� � � � ������ 
��.

A noisy parity of� variables is a special case of a�-junta. Thus we have reduced the noisy junta problem to
a special case viz. noisy parity, at the cost of an increase inthe noise level.

Handling noise in the DNF reduction is more subtle since Freund’s boosting algorithms do not necessarily
work in the presence of noise, in particular Jackson’s original algorithm does not handle noisy DNFs. Never-
theless, as shown by Feldman [Fel06a], the effect of noise can be offset if the weak parity algorithm can handle
a “noisy” version of��� �
 �� �
 �. More specifically, we need a generalization of theWP-R algorithm that for
any real-valued function� �
 �, finds a heavy Fourier coefficient of� �
 � given access to

� �
 �, where
� �
 � is an

independent random variable with expectation� �
 � and	� �� �
 �� � ��� �
� �

���� . It is easy to see thatWP-R’ can
handle this case. Scaling by	� �� �
 �� will give us a random variable

� � �
 � in the range�� � � � with expec-
tation � �
 ��	� �� �
 ��. By flipping a

� � coin with expectation
� � �
 � we will get a

� � random variable with
expectation� �
 ��	� �� �
 ��. ThereforeWP-R algorithm will find a heavy Fourier coefficient of� �
 � (scaled
by 	� �� �
 �� � ��� �

� �
���� ). Altogether we obtain the following theorem for learning noisy DNFs.

Theorem 10 Let� be an algorithm that learns parities of� variables on
�� � ��� for every noise rate� � ���

in time 	 �� � � � �����
� using at most� �� � � � �����

� examples. Then there exists an algorithm that learns DNF

expressions of size� with random noise of rate� � in time
�� � ���� � 	

�� � ���  � � �
���� 

�� � � �
�� � ���  �  � �� where

 � �� �����.

4 Hardness of Learning a Halfspace with Adversarial Noise

The following is the combinatorial version of the problem oflearning a halfspace over� � with adversarial
noise (as stated in Arora et al. [ABSS97]).

Definition 2 Let � � and � � be two sets of points from� � . Given a pair
��� � � � � as input, the goal of the

halfspace learning problem is to find a hyperplane��� � �
�� 
� � �

that correctly classifies as many points as
possible. A point
  � � is said to be correctly classified if� �
 � �

and a point
  � � is said to be correctly
classified if� �
 � �

.
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A trivial factor 2 algorithm for this problem is to just take an arbitrary hyperplane and decide which one
of the two sides of the hyperplane to mark as positive. We showthat this is essentially the best approximation
possible. The proof is by reduction from the gap version of 5-regular vertex cover to the learning halfspaces
problem. The main steps in the reduction are as follows:

� Obtain a
�� � � � � � �� instance of MaxLin-� from the vertex cover instance for some fixed constants

�
, �

and
�

(see Definition 3).

� Convert the above instance to a
�� � � � � � � � � � � � gap where� is a very small function of� �. To achieve

this, we use two operations calledtensoringandboosting.

� Convert the instance of the MaxLin-� problem obtained to an instance of the halfspace problem.

We begin by defining the MaxLin-� problem. Informally, we are given a system of equations overrationals
and we are expected to find an assignment that satisfies as manyequations as possible. We will show that even if
a large fraction, say�� , of the equations can be satisfied, one can not efficiently findan assignment such that
more than� of the equations are “almost” satisfied. That is, the difference in the left hand side and right hand
side of all but� of the equations is “large”.

Definition 3 Given a system of linear equations with rational coefficients

�� �� � ���� �
� �� 
� � ���� � 
� 
���
�

as input, the objective of the MaxLin-� problem is to find
�


�
� 


�
� � � � � 
� �  � � that satisfies the maximum

number of equations. A system of equations is said to be a
�� � � � � � �� MaxLin-� instance if the number of

equations in the system is� and one of the following conditions holds:

� At least
�� of the equations can be satisfied by some assignment, or

� In any assignment, �� �� � ��� � �
� �� 
� � � �

is true for at most�� values of�  � � � � � � � �� .

The goal of the MaxLin-� problem when given such an instance is to find out which of the two cases is true. If
the system of equations satisfies the first condition, we say it has completeness

�
. In the other case, we say it has

soundness� under tolerance
�
.

An instance of MaxLin-� can be specified by a matrix

� �
�
����

�
��

�
�� � � � �

���
��

�
� � � � � �

��...
...

...�� � �� � � � � ���
�����

We will refer to
�

itself as an instance of MaxLin-� . We may also use the rows of
�

to represent the equations
in the instance. The MaxLin-� problem is to find a vector� � �� � 
 �

� 

�
� � � � � 
� � such that

�� has as many
zeros as possible. In all the instances of MaxLin-� that we consider, the number of variables will be less than
the number of equations in the system. Also, the size of each entry of the matrix will be proportional to the
number of equations. Hence, we refer to� itself as the size of the instance.
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4.1 A Small Hardness Factor for MaxLin-�
We first state the gap version of the��-hardness result for regular vertex cover.

Lemma 8 [PY91, ALM�98] There exist constants� and � such that given a 5-regular graph with� vertices,
it is ��-hard to decide whether there is a vertex cover of size� �� or every vertex cover is of size at least�� � � ��� .

Arora et al. [ABSS97] give a reduction from the above gap version of vertex cover of regular graphs to
MaxLin-� . They show that if there is a “small” vertex cover, the reduction produces a MaxLin-� instance in
which a “large” fraction of the equations can be satisfied. But when there is no small vertex cover, only a small
fraction of the equations can be exactly satisfied. We show that the proof can be strengthened so that if there is
no small vertex cover, only a small fraction of equations canbe satisfied even within a certain tolerance.

Lemma 9 There exists a polynomial time algorithm that when given a 5-regular graph� � �� �
 � with �
vertices as input produces a

�� � �� � �� � �� � MaxLin-� instance
�

over� variables as output where� � �� ��
�
,�� and �� are absolute constants satisfying�� � �� , �� � ��� and:

� If � has a vertex cover of size��, then at least
�� fraction of the equations in

�
can be satisfied.

� If � has no vertex cover smaller than
�� � � ��� , then for any vector� � �� � 
 �

� 

�
� � � � � 
� �, at least�� � �� � fraction of the entries in

�� have magnitude� �� .
Proof: The instance

�
contains one variable
 � for every vertex� �  �

. Corresponding to every vertex, there
is a constraint
 � � �

. Corresponding to every edge between� � and� � , we add three constraints

� � � 
 � � 
 �
 �

�
� � � 
 � � �
� � � 
 �

 �
�

In all,
�

has� � �� equations, where� � �
 � � ����. If there is a vertex cover
�� of size��, set
 � � � if� �  �� and
 � � �

otherwise. This satisfies at least
�� � � �� � �� equations.

Suppose there is no vertex cover smaller than
�� � � ��� . We will show that not too many of the� � ��

equations in
�

can be satisfied under a tolerance of���. Under a tolerance of���, the � equations for the
vertices relax to�
 � � � ���, and the equations for an edge relax to� � � � 
 � � 
 �

 � � ���� � � � 
 � � � ���� � � � 
 �
 � � ���

Note that no more than two of the three inequalities for an edge can be simultaneously satisfied. We will show
that given any rational assignment to the
 �s, there is a

�� � �� assignment that is just as good or better. Consider
any� � �� � 
 �

� 

�
� � � � � 
� �, where
 �  � . Set� � � �

if 
 � � ��� and� � � � otherwise. It is clear that� �
satisfies the inequality for vertex� � if 
 � does. Now suppose at least one of the three inequalities for an edge�� � � � �� � is satisfied. Then, either
 � � ��� or 
 � � ���. In this case, at least one of� � and� � is set to 1. But
then two of the equalities � � � � �

 � �
� � � �
� �
 � �

are satisfied. Therefore, the� � are at least as good an assignment as the
 �.
Let � � �� � � �

� �
�
� � � � � �� �. If there is no vertex cover of size less than

�� � � ���,
�� must contain at

least
�� � � ��� � � entries that are 1. That is,

�� contains at most
�� �

�� � � �� �� � �� zeros. The claim
about the soundness follows.

�
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4.2 Amplifying the Gap for MaxLin- �
We define two operations calledtensoringandboosting. Tensoring converts a

�� � � � �� � �
� � �� MaxLin-�

instance to a
�� � � � � ��

� � �
� � � �� � MaxLin-� instance. We use this to get the completeness close to 1. But as

a side-effect, it also gets the soundness close to 1. We use boosting to overcome this problem. A
�� � � �-boosting

converts a
�� � � � � � �� MaxLin-� instance to a

�� �� ��� � �� � �� ��
� � ���� MaxLin-� instance. Note that there

must be a reasonable gap between the completeness and soundness before we can use boosting. We amplify the�� � �� gap for MaxLin-� in four steps:

� Obtain a
�� � �

� � �
� �� gap for very large constant

�
.

� Obtain a
��� ��

� �� � gap for a very small constant�� � �
by a boosting operation. The first step guarantees

that we can use boosting without destroying the gap.

� Improve the completeness even further to� � � ��� while keeping the soundness at��. This is done by
alternately tensoring and boosting many times.

� Using one more boosting operation, decrease the soundness.This gives the
�� � � ���

� � � � � � instance where
� � ��� �� ��� �  � as desired.

We define the first operation called tensoring. This operation is similar to an operation defined by Dumer et
al. [DMS99] on linear codes. Informally, the tensoring of a system of equations contains one equation for the
“product” of every pair of equations. In this product, we replace the occurance of
� �
� � with 
� �� � and
� with
 �� respectively.

Definition 4 The tensoring of the system of equations

�� �� � ���� �
� �� 
� � ���� � 
� 
���
�

is the system

�� � ��� �� � � � � �� � ���
�� �

� �
�
�
�

 �� �

� � � �
� �

� ��� �� �
� � �� �
 �� � � � � ��� �� �

���
�� �

� ��� �� ��� � 
� �� � �
� ��� � 
��� � 
���
�

In the matrix representation, the tensoring of�
����

�
��

�
�� � � � �

���
��

�
� � � � � �

��...
...

...�� � �� � � � � ���
�����

�
����

�

�...

�

����� � �

is the system�
����

�
��

�
�� � � � �

���
��

�
� � � � � �

��...
...

...�� � �� � � � � ���
�����

�
����

� 
 � � � � � 
 ��
 � � 

�� � � � 


��...
...

...
 �� 

� � � � � 


��

�����
�
����

�
��

�
�� � � � �� ��

��
�
� � � � � �� �...
...

...�
��

�
�� � � � ���

����� � �

where the the
 �� s in the second matrix are the variables in the new instance.
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Lemma 10 Let
�

be a
�� � � � � � �� instance of MaxLin-� . Let � be obtained by tensoring

�
. Then� is a�� � � � �

�� �
��� � � �

�� � ��� � �� � instance

Proof: Suppose there is a vector� � �� � 
 �
� 


�
� � � � � 
� � such that

�� has a zero in
�� fraction of the entries.

Define
 �� � 
� and
� �� � �

� �
� � for � � � �. This satisfies all but

�� �
���� � of the equations in� . It

remains to show the claim about the soundness.
Suppose that for any vector� � �� � 
 �

� 

�
� � � � � 
� �, at least� fraction of the entries in

�� have magnitude
greater than or equal to

�
. Consider any assignment to the variables

�
� �� �
� in � . Let � �

denote the matrix�
����

� 
 � � � � � 
 ��
 � � 

�� � � � 


��...
...

...
 �� 

� � � � � 


��

�����
We will show that at least

������� � entries in
�� �� have magnitude� �� . Let� � �� � 
 � �

� 
 ��
� � � � � 
 �� �.

The vector
�� has at least

�� � ��� entries with magnitude� �
. Let � be the set of indices of these entries.

Let � � ��� � � . Note that since the first column of� �
is � , � has at least

�� � ��� entries in the first
row that have magnitude� �

. Let � � denote the� �
 column of� . Note that if�  � ,
� � � contains at least�� � ��� entries that have magnitude� �� . Therefore,

�� �� � �  � � �� � � has at least
�� � ���� �

entries with magnitude� ��. �
We now define an operation called boosting. Roughly speaking, we pick

�
equations at a time from the

MaxLin-� instance
�

. We add�� linear combinations of these to the boosted instance� . The intention is
that even if one of the

�
equations fails under some assignment, a lot of the�� corresponding equations in�

must fail. This is accomplished by using a construction similar to Hadamard code. If
�

has� equations,�
will have

��� �� equations. Though this suffices to prove a� � � hardness factor for the halfspace problem for
constant�, the size of the boosted system becomes crucial when we want to achieve� � � ���. Therefore, instead
of generating all the� � possible combinations of

�
equations, we pseudorandomly generate only�� ��

�� of
them. To accomplish this, we construct an expander on the equations of

�
and perform random walks of length

�
on it.

Definition 5 A walk of length
�

on a graph� is an ordered sequence of vertices
�� � � �� � � � � � �� � such that there

is an edge between� � and� �� � in � for all � � � � �
.

Definition 6 Let
�

be a MaxLin-� instance with� equations. Let�,
�

be two arbitrary numbers. We define
the

�� � � �-boosting to be the MaxLin-� instance� obtained as follows. Let�� be the 5-regular Gabber-
Galil graph on� vertices. Associate every vertex� of �� to an equation

� � in
�

. For every possible walk�� � � �� � � � � � �� � of length
�

on�� and a vector
�� �

� ��
� � � � � �� �  �� � , add a row� �

� � �� � �
� �� � � � �� ��� ��

to � . We call the�� rows of� that correspond to a walk on the rows of
�

a cluster.

The idea behind adding�� equations to each cluster is the following. If
�
� � �

, then for any
�
, � �

�
�
� �

lies
in the interval

�
�
��� � ���� for at most one value of� �

 �� . Similarly, for any given values of� �
� � � � � �� and�

�
� � � � � �� , � ��� � �

� ��, lies in the interval
�
�
��� � ���� for at most one value of� �

 �� . An analogy to Hadamard
codes is that if a bit in a string is 1, then half of the positions in its Hadamard code are 1.

The specific kind of expander used in boosting is not important. We would like to point out that since
Gabber-Galil graphs are defined only for integers of the form�� �, we might have to add some trivially satisfied
equations to

�
. This only improves the completeness of

�
. The soundness suffers by at most

� ����� �, which
is a negligible increase if the soundness of the instance

�
were constant. Hence, we ignore this issue from now

on. Before we analyze boosting, we mention some results about expanders that will be useful.
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Lemma 11 Let � denote a subset of the vertices of a regular graph� . If �� � � �� � ��� , then at most
� �

fraction of the walks of length
�

contain a vertex from�� .

Proof: Pick a walk uniformly at random from all possible walks of length
�

on �. The probability that the��

vertex of the walk is contained in�� is at most�. This is because the graph is regular and hence all vertices are
equally likely to be visited as the��
 vertex. Applying union bound over all the

�
possible locations for a vertex

in the walk, the probability that at least one of the verticesin the walk is contained in�� is no more than
� �. �

Lemma 12 [LW95, Section 15] Let� be a subset of the vertices of�� . Let �� � � �� for some constant�.
There exists an absolute constant� such that for sufficiently large� , at most��� fraction of all walks of length
�

in �� do not contain a vertex from�� .

Lemma 13 Let
�

be a
�� � � � � � �� MaxLin-� instance. Let� be a

�� � � � boosting of� . Then� is a�������� � � �
� �� �

�� � �� � � ��� � ���� instance.

The number of walks of length
�

beginning from each vertex in a graph�� is ����. Corresponding to each
walk, we add�� rows to� . This proves the claim about the size of� .

Fix an assignment that satisfies
�

fraction of the equations in
�

. Let � denote the set of equations in
�

that
are satisfied by this assignment. From Lemma 11, we know that at most

� �� �
�� fraction of walks of length

�

visit a row from �� . If all of the
�

rows visited by a walk are satisfied, then all the equations of� in the cluster
corresponding to this walk are also satisfied under the same assignment.

Now suppose for any� � �� � 
 �
� 


�
� � � � � 
� �, at least�� fraction of the entries in

�� have magnitude
� �

. Fix any assignment� to the variables in
�

. Consider
�

rows
� � � �� �� � � � � �� �� from

�
. Now suppose�� � �� � � �

. Let
�  � . Then, for at most one value of� �

 �� , � �
� � �� � �

has magnitude less than
���.

Therefore, for all but a��� fraction of
�� �

� ��
� � � � � �� �  �� � ,��� �� � � � ��
� �� � � � � � ��� �� �� � � ���

If
�� � � �� �� � � � � �� �� � is a random walk on�� , then from Lemma 12, the probability that none of

� � �� �
� ��� � � � � �� �

�
� have magnitude� �

is at most�� � . Therefore, at most��� � �� � ��� ���� � ��� � ���
fraction of the entries in�� have magnitude less than

���. This proves the claim about the soundness.
�

We now use tensoring and boosting to obtain a� � �� versus�� gap for MaxLin-� .

Lemma 14 For any constants�� � �
,
� � � � � � � and

� � �
, there exists a polynomial time algorithm that

when given a
�� � � � � � �� MaxLin-� instance

�
as input produces a

�� �
� � � ��

� �� � � � � instance where
�
� �

�
is

a constant.

Proof: Let � be the instance obtained by repeatedly tensoring
� �

times. Then,� is a
�� � � � �

�� �
��� � � ��� � ��� � �� � MaxLin-� instance, where	 � � �. Choose

�
large enough so that�� �

�

� � ���
�� �	 ����� � � ��

Now we use
�� � � �-boosting on� where� � ���� and

� � �	 ����� �� �� � ���
The result is a

�� �
� �

�
� � �

� �
�
� instance where

�
� � � �

� �� �
��� � � �

�	 ����� �� �� � ���
�� �

��� � � � ��
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and �� �
�� � ����� � ������ � ������ � �� �� ����� � � ����

Therefore,� � �
�� �

�� � ��� �� � � ��� � �� and
�
� �

�� ��.
�

We would like to point out that combining Lemma 14 with Lemma 15 suffices to show a� � � hardness
factor for the halfspace problem for any constant� � �

. The next theorem makes this parameter sub-constant.

Theorem 11 There exists a� ���� � �� ��� time reduction that when given a 5-regular graph� on� vertices outputs
a MaxLin-� instance

�
� of size� � � � ���� � �� ��� such that

� If there is a vertex cover of size��, then there is an assignment that satisfies� � ��� �� ��� � �
�

fraction of
the equations.

� If every vertex cover is of size� �� � � ���, then under any assignment, at most��� �� ��� � �
�

fraction of
the equations can be satisfied within a tolerance as large as��� �� ��� � �

�
.

where� and � are the constants mentioned in Lemma 8

We first use Lemma 9 and Lemma 14 to convert a vertex cover instance to a
�� �

� � � �� � �� � � �� MaxLin-
� instance

�
�. We alternately tensor and boost

�
� so that the soundness stays at��, but the completeness

progressively comes closer to�. As a final step, we boost once more so that the completeness is� � � and the
soundness is� for a small value� as desired.
Proof: Fix �� large enough such that �� ��� ��� ���� ��� ���� � ��� � � ���
Fix

�� such that
�� � ��� ��� ���� ��� ���� � ��� �

and let�� � ���� .
We first use Lemma 9 and Lemma 14 to convert the graph to a

�� �
� � � �� � �� � � � � MaxLin-� instance�

�, where� � � �� ��
�
. Suppose� � is the result of tensoring and

�� � � �� �-boosting
�

� once. Then� � is
a

�� �� �
�� � � �

� � ��� � �� �
�� � �� �� ���� � ����

� ������ instance. Note that
�� �� � ��� � � and

�� �
�� ��� �� �� �� � ���� � ���� � ��� �� �� � ���� � ���� � ���� � ��. This implies that after one round of tensoring and

boosting, the completeness comes closer to 1 and the soundness does not get worse. Now, let
�

� be the result of
repeatedly tensoring and

��� � � � �-boosting
�

�
�
times. Let	 � � �. Then

�
� is a

�� �
� �

�
� ��

� �
�
� instance where

� � �
� �� �

�� ,
�
� � � �

� ���� , �� � �� and
�
� �

� ���� .

As a final step, we now use
���

� �
�
�-boosting on

�
� where�� � � ��� ,

�
� �

� � 	� ��� ����� � . This produces

a
�� �

� �
�
� �� � �� � instance where� � � � ���

���� � � �� �
� � �� �

� ,
�
� � � �

� �	 �� ���� � � �
� ���� , �� �

�� ��� � ���� � ��� , and
�
� � � ���� . Choose	 � ��� � �. Then ��� � � � � ���� � � �

�, which implies	 � � �� ��� � � �. That is,
�

� is a
�� �

� � � ��� �� ��� �� � � ��� �� ��� �� � � ��� �� ��� �� � � instance.
�

4.3 From MaxLin- � to the Halfspace Problem

Lemma 15 There exists a polynomial time algorithm that when given a
�� � � � � � �� instance

�
of MaxLin-�

produces a instance of the halfspace problem with�� points such that:

� If there is a solution to the MaxLin-� instance that satisfies� �� of the equations, there is a halfspace
that correctly classifies� ��� of the points.
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� If
�

has soundness� under tolerance
�
, then no halfspace can correctly classify more than

�� � ��� of
the points.

Proof: We can rewrite each equation of
�

as two inequalities

�
� � � � �� � ���� �

� �� 
� � � �

for any
� �  � satisfying

� � � � � �
. Homogenizing the above, one can rewrite

�
as a system of�� inequalities

�� �� � � � �
 � � � �� � �
� �� 
� � �

�� �� � � � �
 � � � �� � �
� �� 
� � � (4)

where�  �� � � � � � � �� �. If we could satisfy
�� equations in

�
, the new system has a solution satisfying���

inequalities by setting
 � to 1. Note that if we set
 � to some value� �
, then we can not satisfy more than half

of the inequalities. Suppose there is a solution satisfying
�� � ��� of the inequalities in (4). Since
 � � �

, we
can scale the values of
 �s so that
 � is 1. Then,

�

�
� 


�
� � � � 
� � is a solution to

�
that satisfies� fraction of the

equalities within tolerance
� � � �

.
Select a value of

� � such that
� � � � � �

and
� � � ��� �� ��� � 
� ���� . The second condition on

� � ensures that
the coefficient of
 � in none of the�� inequalities of (4) is zero. Now divide each inequality by the coefficient
of 
 � and flip the direction of the inequality if we divided by a negative number. This way, we can convert the
system (4) to an equivalent system of�� inequalities, where each inequality is of the form


 � � ��� � �
� �� 
� � � �� 
 � � ��� � �

� �� 
� � �
(5)

where�  �� � � � � � � � �� �. We now define the halfspace instance. The halfspace instance produced is over� � .
For an inequality of the first form in (5), add the point

�� ��
� � ��

� � � � � � �� � to �� . For an inequality of the second
form add the point

�� ��
� � ��

� � � � � � �� � to � � .
Suppose that there is an assignment

�
 � � 
 �
� � � � � 
� � satisfying��� inequalities in (4). Then the hyperplane
 � � � ��� �


� �� � �
correctly classifies

�� points in
�� � � � � �.

Now suppose there is a hyperplane
 � �� �� � �

� �� � �

that correctly classifies
��� ��� points in

��� � � � �
for some� � �

. Clearly,
 � � �
. Scale the
 � so that
 � � �. Now,

�

�
� 


�
� � � � � 
� � is an assignment satisfying�� � ��� inequalities in (5), and equivalently in (4). This completes the proof of the lemma.

�
We can now prove Theorem 4.

Proof: We give a reduction from the vertex cover problem on 5-regular graphs mentioned in Lemma 8. The
reduction will have running time� ���� � �� ��� for � vertex graphs.

Let � be the input graph with� vertices. We use the reduction mentioned in Theorem 11 to produce a�� �
� �

�
� ��

� �
�
� MaxLin-� instance

�
, where

�
� � � � �, �� � �, � � ��� �� ��� � �

�
and

� � ��� �� ��� � �
� � �

.
We transform

�
� to a halfspace instance

�� � � � � � as described in Lemma 15. Note that� � � �� � � � �� � � ��� � . Now, if there is a vertex cover of size� �� in � , there is a halfspace that correctly classifies
�
� fraction

of the points. On the other hand, if there is no vertex cover ofsize smaller than
�� � � ��� in � , there is no

halfspace that correctly classifies� ��� �� � �� � fraction of the points.
Therefore the gap obtained is

�
� �

���� �� � �� �� � � �� � ��� �� � �� � � �� �
� ���� � � � ��� �� ��� �  �. �

5 Thresholds of Halfspaces are not PAC-learnable

We show that under certain cryptographic assumptions, it isnot possible to learn a circuit of depth 2 with
unweighted threshold gates.
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Definition 7 Given a set of vectors� � � �� � � � � � ��  �� , the objective of SVP is to find the shortest non-zero
vector in the set� � �� ��� �

��� � �� � � �� � � � � � ��  � �. The set of points� is called the lattice generated by the
basis vectors� � � �� � � � � � �� .

We say a lattice is� �� �-unique if every vector of the lattice which is of length at most� �� � times the shortest
vector is an integer multiple of the shortest vector. The� �� �-unique SVP is the problem of finding the shortest
vector in a� �� �-unique lattice.

Assumption 1 There does not exist a randomized polynomial time algorithmfor � 
-unique SVP.

Under the above assumption, Goldreich et al. [GGH97] construct a public-key encryption scheme
�� � � � � �

and show it to be secure. Here,
�

,
�

and� are the key generation, encryption and decryption algorithms
respectively. The encryption scheme of Goldreich et al. [GGH97] builds on that of Ajtai-Dwork [AD97].
We use the former because decryption in that scheme is error-free. This is particularly convenient for getting
hardness results for noise-free learning models. We next briefly describe the encryption scheme of Goldreich et
al. [GGH97].�

when given a security parameter� as input generates a uniformly random vector�  � � from the unit
sphere in� dimensions. The coordinates of� and all real numbers that follow need to be only specified up to� bits of precision. Let� � � � . It then picks random vectors� � � �� � � � � � �� from the set

�
 �
 ��  � � �  ,
where is a ball of “big” radius� � �� �� ��� � � centered at the origin. Each vector� � is perturbed by a “small”
vector

�� to obtain vector� �. Let �� denote the smallest index� for which the parallelepiped generated by vectors� �� �
� � ��� � � ��� has width���� . It is shown in [AD97] that such an index exists with high probability and is

less than� ��. Let � � � � ��� �
�� � � � ���� � � � � �� � � � ���� . Let � � be an index such that� �� � � is an odd

integer (such an index exists with probability close to� � ��� ). Then,
�� � �� is the private-key public-key pair

where� � �� � � �� � � � � � �� � �� � � � �.
To encrypt a 0,

�
picks bits

�
�
� �

�
� � � � � �� at random and reduces the vector� � ���� �

��� � modulo the
parallepiped� generated by� �

�� �
� � � � �� � . By reducing� modulo� , we mean finding a vector� �  � such

that � � � � � � ��� �, where
��  � . The cipher-text is then the vector� �  � . To encrypt a 1,

�
picks bits�

�
� �

�
� � � � � �� as before. The vector� in this case is computed as� � � �� � ���� �

��� �. The cipher-text� � is once
again computed as� modulo� . Let 
 � �
 � denote the distribution on cipher-texts when the bit
 is encrypted
by algorithm

�
using public key�.

To decrypt a cipher-text� � using private key�, Algorithm � computes� �� �. If � �� �  � � ����� � ���,� � is decrypted as a 0 (If� �  
 � , we denote by� �  the set
�� � � ��  � � �   �). Otherwise,� �� � is

guaranteed to satisfy� �� �  � � ��� � ����� � ��� and� � is decrypted as a 1. Goldreich et al. [GGH97] prove
the following about the encryption scheme.

Lemma 16 Suppose there exists a randomized polynomial time algorithm � � that when given
�
�
�� � as input,

where� is a random public key generated by Algorithm
�

on parameter�, and� is either the encryption of a 0
or 1 outputs a bit denoted by� � �� �� � satisfying

� � �� � �� �
 � �� �� � � � � � �� � �� �
 � ���� � � � � �� �
where� �� � is an inverse polynomial in�, and the probabilities are taken over the key generation, encryption
and the computation of� �. Then� 
-unique SVP has a randomized polynomial time algorithm.

Definition 8 An unweighted threshold gate (or majority gate) is a gate that when given
�


�
� 


�
� � � � � 
� � 

�� � ��� outputs 1 if more than half of its inputs are 1 and outputs 0 otherwise. Let	 � �
� denote the class of depth

two polynomial (in the number of inputs) sized circuits withmajority gates.

Lemma 17 For any key to the encryption scheme of [GGH97], the decryption can be done by a	 � �
� circuit of

size polynomial in�, the security parameter.
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Proof: Let the cipher-text be the vector
 � �

�
� 


�
� � � � � 
� �, where each of the coordinates
 � is specified up

to a precision of� bits. That is we are given bits
 �� where
 � � � � �� 
 �� . Then the decoding algorithm� just
computes� �
 and checks if it is strictly within��� of an integer. The quantity� �
 can be computed as

�� � �
 � � �� � � �� �� 
 �� � �� 
� � ��� 
 ��

Let
��� denote the fractional part of� ��� . Then the fractional part of� �
 is the same as that of� ��� 
 �� . Also,�� � � ��� 
 �� is a quantity in the range from

�
to � for some� � � ��� �. Since either��  � � ����� � ���

or ��  � � ��� � ����� � ���, we can round off all the weights
��� to

� ��� � decimal places. This results in
an error of at most� ���� 	 � � ����� � in calculating�� . Therefore,
 is the cipher-text of

�
if and only if �� is

within
� ���� � of an integer.

We now specify how to check if the number�� is close to an integer using a	 � �
� circuit with �� � � gates,

provided��  �� �� . Note that for any�
 � and any�  � , at least one of the two constraints� � � � ���

and� � � � ��� is satisfied. Both the constraints are met if and only if�  �
� � ��� � � � ����. Therefore, for

any �  �� �� , at least� � � of the �� � � constraints� � � � ��� and� � � � ��� are satisfied, where
�
 �� � � � � � � � � �� �. If � is within ��� of some integer, then exactly� � � of the constraints are satisfied.

Otherwise exactly� � � of the constraints are satisfied. Each of the constraints� ��� 
 �� � � � ��� (and by
a similar argument, the constraints� ��� 
 �� � � � ���) can be checked by a majority gate. This is because
�	 ��� � ��� is an integer in the range

�
through� 	 . Consider a polynomial sized list in which we add� 	 ��� copies

of the variable
 �� . We want to check if less than� 	 �� � ���� entries in the list are 1. This can be done using
a majority gate. Checking whether� � � or � � � of these�� � � gates evaluate to true can be done using
another majority gate.

�
We use the notation of Kearns and Valiant [KV89] to define our learning problem for depth 2 threshold

circuits.

Definition 9 We say the concept class� is weakly PAC learnable if there exists a randomized polynomial time
algorithm� and a polynomially evaluatable hypothesis class� with the following properties:

� (Input:) The algorithm is given access to oracles POS and NEGthat generate points from some distribu-
tions� �� and� �� over the positive and negative examples respectively of a concept

�
. It is also given a

confidence parameter
�
.

� (Output:) With probability� �
�
, the algorithm outputs a hypothesis�  � such that

� � �� �
 � � � ���	 � �
 � � � � ��� � � �� �

� � �� �
 � � �
���	 � �
 � � � � ��� � � �� �

for some polynomial� �� �.
Theorem 12 If the concept class	 � �

� is weakly PAC learnable, then there exists a polynomial timerandomized
algorithm for� 
-unique SVP.

Proof: Suppose there exists a weakly PAC learning algorithm� for the class	 � �
� . We construct an algorithm� �

for decoding a bit encrypted using the scheme of Goldreich etal [GGH97] with a reasonable success probability.
Let � be the public key used generated by the key-generation algorithm

�
. This key specifies a distribution
 � �� � and
 � ��� on the cipher-texts of 0 and 1 (the positive and negative examples) respectively. It is easy to

sample from these distributions since the public key and theencryption algorithm are known. We also know
that there is a	 � �

� circuit that correctly identifies if its input is the encryption of a 0 or 1. Algorithm� � uses
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Algorithm � to learn this circuit. Suppose that with probability� � �
�
, Algorithm � outputs a hypothesis�

such that
� � �� �
 � � � �
 � 
 � �� � � � � �� �
 � � � �
 � 
 � ��� � � �� �

for some� �� � that is inverse polynomial in�. Then,� � when given a string that is the random encryption of a 0
or a 1 can use� to decode the input with reasonable success:

� � �� � ������� � ���	 � ���	 ��	��� �	��	�� ��	 � 
 �
� � � �� � ������� � ���	 � ���	 ��	��� �	��	�� ��	 � 
 � � � �� �

� �� �� �

Using Lemma 16, this implies an algorithm for� 
-unique SVP.
�

5.1 Further Hardness of Learning Halfspaces with Adversarial Noise

We now show that our result on hardness of learning	 � �
� circuits easily implies hardness of learning halfspaces

with adversarial noise of high rate even when the learning algorithm is allowed to output any circuit. The proof
is immediate from the “discriminator lemma” due to Hajnalet al. [HMP�93].

Lemma 18 ([HMP�93]) For any Boolean functions� � � � � � � �� on � ,
� � � � � �� � � � � � � � � � �� � and any dis-

tribution � on� there exists� � � such that�� �� �� � � �  � �� � � ��� .

If it holds that� �� �� � � �  � ��
� ��� , then examples of

�
drawn from distribution� can be seen as examples

of � � with adversarial noise of rate�� � ��� . Similarly, if � �� �� � � �  � �� � ��� , then the examples are equivalent
to examples of�� � with adversarial noise of rate�� � ��� . The negation of a halfspace is a halfspace (in fact
the negation of a majority is a majority of negated variables). Thus the discriminator lemma implies that a	 � �

�
circuit is equivalent to a halfspace with adversarial noise. Hence Theorem 5 implies Theorem 6.

6 Conclusions

We have shown connections between some well-studied open problems in learning under the uniform distri-
bution. Our reductions imply that in a sense, the class of noisy parities is the hardest concept class for this
model of learning. A natural question is whether one can reduce learning noisy parities of

� ���� � � variables to
learning DNF. On the positive side, a non-trivial algorithmfor learning parities of

� ���� � � variables will help
make progress on a number of important questions regarding learning under the uniform distribution. Indeed it
is plausible that there exists a better algorithm than exhaustive search for this variant of the problem, as in the
case of (unrestricted) noisy parity [BKW03].

For halfspaces, a natural question is whether one can extendour hardness result for learning halfspaces to
more general concept classes. One possible generalizationwould be to allow the sign of a low-degree polynomial
as hypothesis. Kalai et al. [KSS94] use this hypothesis class to design algorithms for agnostic learning of
halfspaces under some natural distributions. Similarly, for the problem of learning parity with adversarial noise,
one could allow the algorithm to produce a low degree polynomial over� � as hypothesis. To the best of our
knowledge, there are no negative results known for these problems.
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