
On Attribute Efficient and Non-adaptive Learning of Parities

and DNF Expressions∗

Vitaly Feldman†

Harvard University

Cambridge, MA 02138

vitaly@eecs.harvard.edu

Editor:

Abstract

We consider the problems of attribute-efficient PAC learning of two well-studied concept
classes: parity functions and DNF expressions over {0, 1}n. We show that attribute-efficient
learning of parities with respect to the uniform distribution is equivalent to decoding high-
rate random linear codes from low number of errors, a long-standing open problem in
coding theory.

An algorithm is said to use membership queries (MQs) non-adaptively if the points
at which the algorithm asks MQs do not depend on the target concept. Using a simple
non-adaptive parity learning algorithm and a modification of Levin’s algorithm for locat-
ing a weakly-correlated parity due to Bshouty et al., we give the first non-adaptive and
attribute-efficient algorithm for learning DNF with respect to the uniform distribution.
Our algorithm runs in time Õ(ns4/ε) and uses Õ(s4/ε) non-adaptive MQs where s is the
number of terms in the shortest DNF representation of the target concept. The algorithm
improves on the best previous algorithm for learning DNF (of Bshouty et al.) and can also
be easily modified to tolerate random classification noise in MQs.

Keywords: Attribute-efficient, parity, non-adaptive membership query, DNF

1. Introduction

The problems of PAC learning parity functions and DNF expressions are among the most
fundamental and well-studied problems in machine learning theory. Along with running
time efficiency, an important consideration in the design of learning algorithms is their
attribute efficiency. A class C of Boolean functions is said to be attribute-efficiently learnable
if there is an efficient algorithm which can learn any function f ∈ C using a number of
examples which is polynomial in the “size” (description length) of the function f to be
learned, rather than in n, the number of attributes in the domain over which learning takes
place. Attribute-efficiency arises naturally from a ubiquitous practical scenario in which the
total number of potentially influential attributes is much larger than the number of relevant
attributes (i.e., the attributes on which the concept actually depends), whereas examples
are either scarce or expensive to get.

∗. Parts of this work are published in the Proceedings of 18th Annual Conference on Learning Theory, 2005
†. Supported by grants from the National Science Foundation NSF-CCF-9877049, NSF-CCF-0432037, and

NSF-CCF-0427129.

1

Electronic Colloquium on Computational Complexity, Report No. 66 (2006)

ISSN 1433-8092

Learning of DNF expressions and attribute-efficient learning of parities from random
examples with respect to the uniform distribution are both long-standing challenges in
learning theory. Lack of substantial progress on these questions has resulted in attempts to
solve them in stronger learning models. The most well-studied such model is one in which
a membership query oracle is given to the learner in addition to the example oracle. The
learning algorithm may query this oracle for a value of the target function at any point of its
choice. Jackson gave the first algorithm that learns DNF from membership queries (MQs)
under the uniform distribution [Jac94] and later Bshouty, Jackson and Tamon gave a more
efficient and attribute-efficient algorithm for learning DNF in the same setting [BJT99].
The first algorithm for attribute-efficient learning of parities using MQs is due to Blum,
Hellerstein and Littlestone [BHL95], and their result was later refined by Uehara et al.
[UTW97].

A number of later works gave learning algorithms for DNF expressions in models where
the learning algorithm is more passive than in the MQ model [JSS97, BF02, BMOS03]. A
restricted model of membership queries, which addresses some of the disadvantages of the
MQ model, is the model in which MQs are asked non-adaptively. An algorithm is said to
use MQs non-adaptively (in our context we will often call it non-adaptive for brevity) if the
queries of the algorithm do not depend on the target concept. In other words, the learning
algorithm can be split into two stages. The first stage, given the learning parameters,
generates a set S of queries for the membership oracle. The second one, given the answers
to the queries in S, produces a hypothesis (without further access to the oracle). An
immediate advantage of this model (over the usual MQ) is the fact that the queries to the
membership oracle can be parallelized. This, for example, is crucial in DNA sequencing and
other biological applications where tests are very time-consuming but can be parallelized (cf.
[FKKM97, Dam98] and references therein). Another advantage of a non-adaptive learner
is that the same set of points can be used to learn numerous concepts. This seems to
be happening in human brain where a single example can be used in learning of several
different concepts and hence systems that aim to reproduce learning abilities of the human
brain need to possess this property [Val94, Val00, Val05]. It is important to note that in
the two practical applications mentioned above, attribute-efficiency is also a major concern.
It is therefore natural to ask: which classes can be PAC learned attribute-efficiently by
non-adaptive MQs? We refer to this model of learning as ae.naMQ learning. This question
was first explicitly addressed by Damaschke [Dam98] who proved that any function of r
variables is ae.naMQ learnable when it is represented by the truth table of the function
(requiring r log n+2r bits). Later Hofmeister gave the first ae.naMQ algorithm for learning
parities [Hof99] and Guijarro et al. gave an algorithm for learning functions of at most log n
variables in the decision tree representation [GLR99]. But the question remains open for
numerous other representations used in learning theory.

1.1 Our Results

We first establish the equivalence between attribute-efficient learning of parities from ran-
dom uniform examples [BHL95] and decoding high-rate random linear codes from low num-
ber of errors a long-standing open problem in coding theory widely believed intractable.
The latter is equivalent to learning of parities with adversarial classification noise. Thus

2

we may consider this equivalence as a new evidence of the hardness of attribute-efficient
learning of parities from random examples only. This result together with a recent result of
Feldman et al. [FGKP06] implies equivalence of attribute-efficient learning of parities and
learning of parities with random noise (for an appropriate transformation of parameters).

We give a simple and fast randomized algorithm for ae.naMQ learning of parities and
show transformation that converts a non-adaptive parity learning algorithm into an algo-
rithm for finding heavy Fourier coefficients of a function while preserving attribute-efficiency
and non-adaptiveness. Using these components we give the first ae.naMQ algorithm for
learning DNF expressions with respect to the uniform distribution. It runs in time Õ(ns4/ε)
and uses Õ(s4 log2 n/ε) MQs (where s is the DNF-size of the target concept). The algorithm
improves on the Õ(ns6/ε2)-time and Õ(ns4 log n/ε2)-query algorithm of Bshouty et al. We
also show a simple and general modification that allows the above algorithm to efficiently
handle random persistent classification noise in MQs.

1.2 Previous Results

Blum et al. were the first to ask whether parities are learnable attribute-efficiently (in the
related on-line mistake-bound model) [BHL95]. They also presented the first algorithm
to learn parity functions attribute-efficiently using MQs. Their algorithm is based on the
following approach. First all the relevant attributes are identified and then a simple (not
attribute-efficient) algorithm restricted to the relevant variables is used to learn the concept.
Since then other algorithms were proposed for attribute-efficient identification of relevant
variables [BH98, GTT99]. All the algorithms are based on a binary search for a relevant
variable given a positive and a negative example. Binary search and the fact that queries
in the second stage depend on the variables identified in the first stage only allows for the
construction of adaptive algorithms via this approach. Uehara et al. gave several algorithms
for attribute-efficient learning of parities that again used adaptiveness in an essential way
[UTW97].

Equivalence of attribute-efficient learning of parities by membership queries and linear
codes was earlier observed by Hofmeister [Hof99]. He also gave the first ae.naMQ algorithm
for learning parities based on BCH codes. Our (independently-obtained) result can be seen
as an extension of this equivalence to random uniform examples.

Little previous work has been published on attribute-efficient learning of parities from
random examples. Indeed, the first non-trivial result in this direction has only recently
been given by Klivans and Servedio [KS04]. They prove that parity functions on at most k

variables are learnable in polynomial time using O(n1− 1

k log n) examples.

Efficient learning of unrestricted DNF formulas under the uniform distribution begins
with a famous result by Jackson [Jac94]. The algorithm, while polynomial-time, is somewhat
impractical due to the Õ(ns10/ε12) bound on running time. By substantially improving
the key components of Jackson’s algorithm the works of Freund [Fre92], Bshouty et al.
[BJT99], and Klivans and Servedio [KS03] resulted in an algorithm that learns DNF in
time Õ(ns6/ε2) and uses Õ(ns4/ε2) MQs1. This algorithm is non-adaptive but also not
attribute-efficient. Using the algorithm for identification of relevant variables by Bshouty

1. Bshouty et al. claimed sample complexity Õ(ns2/ε2) but this was in error as explained in Remark 13.

3

and Hellerstein mentioned above Bshouty et al. gave an attribute-efficient version of their
algorithm running in time Õ(rs6/ε2 + n/ε) and using Õ(rs4 log n/ε2) adaptive MQs.

2. Preliminaries

General. For vectors x, y ∈ {0, 1}n we denote by x|y the vector obtained by concatenating
x with y; by x⊕y the vector obtained by bitwise XOR of x and y; by [k] the set {1, 2, . . . , k};
by ei a vector with 1 in i-th position and zeros in the rest; by xi the i-th element of vector
x; by Mi the i-th column of matrix M ; and define x[i,j] = xi|xi+1| · · · |xj . Dot product x · y

of vectors x, y ∈ {0, 1}n denotes
∑

i xiyi (mod 2) or simply vector product xyT over GF(2)
(with vectors being row vectors by default). By wt(x) we denote the Hamming weight of x
and we define dist(x, y) = wt(x ⊕ y).

To analyze accuracy and confidence of estimates produced by random sampling besides
the more standard Chernoff and Hoeffding bounds, we use Bienaymé-Chebyshev’s inequality
for pairwise independent samples.

Lemma 1 (Bienaymé-Chebyshev) Let X1, . . . , Xm be pairwise independent random vari-
ables all with mean µ and variance σ2. Then for any λ ≥ 0,

Pr

[∣∣∣∣∣
1

m

m∑

i=1

Xi − µ

∣∣∣∣∣ ≥ λ

]
≤

σ2

mλ2
.

We study learning of Boolean functions on the Boolean cube {0, 1}n. Our Boolean
functions take values +1 (true) and −1 (false). Our main interest are the classes of parity
functions and DNF expressions. Parity function χa(x) for a vector a ∈ {0, 1}n is defined as
χa(x) = (−1)a·x. We refer to the vector associated with a parity function as its index. We
denote the concept class of parity functions {χa | a ∈ {0, 1}n} by PAR and the class of all
the parities on at most k variables by PAR(k). We represent a parity function by listing all
the variables on which it depends. This representation for a parity on k variables requires
θ(k log n) bits.

For the standard DNF representation and any Boolean function f we denote by DNF-
size(f) the number of terms in a DNF representation of f with the minimal number of terms.
In context of learning DNF this parameter is always denoted s. The uniform distribution
over {0, 1}n is denoted U .

PAC Learning. Our learning model is Valiant’s well-known PAC model [Val84] for
learning Boolean functions over {0, 1}n. In this model, for a concept c and distribution
D over X, an example oracle EXD(c) is an oracle that upon request returns an example
〈x, c(x)〉 where x is chosen randomly with respect to D, independently of any previous
examples. For ε ≥ 0 we say that function g ε-approximates a function f with respect to
distribution D if PrD[f(x) = g(x)] ≥ 1− ε. We say that an algorithm A (efficiently) learns
concept class C if for every ε > 0, n, c ∈ C, and distribution D over {0, 1}n, A(n, ε, s)
(where s is the size of c in the representation associated with C) outputs, with probability
at least 1/2, an efficiently computable hypothesis h that ε-approximates c. When a learning
algorithm is guaranteed to learn only with respect to a specific distribution we specify the
distribution explicitly.

4

Membership query oracle MEM(c) is the oracle that, given any point x ∈ {0, 1}n, returns
the value c(x). When learning with respect to U , EXU (c) can be trivially simulated using
MEM(c) and therefore EXU (c) is not used at all.

An algorithm A is said to be attribute-efficient if the number of examples (both random
and received from MQ oracle) it uses is polynomial in the size of the representation of the
concept. We say that a variable xi is relevant for a function f if there exists y ∈ {0, 1}n such
that f(y) 6= f(y⊕ ei). The number of relevant variables of the target concept is denoted by
parameter r.

For a function t(· · ·) we say a function q(· · ·) (of the same parameters as t) is Õ(t(· · ·))
when there exist constants α and β such that q(· · ·) ≤ αt(· · ·) logβ (t(· · ·)).

Learning by Non-adaptive Membership Queries. We say that an algorithm A uses
MQs non-adaptively if it can be split into two stages. The first stage, given all the parameters
of learning, (n, ε and a bound on the size of the target concept), generates a set of points
S ⊆ {0, 1}n. The second stage, given the answers from MEM(c) on points in S, i.e. the set
{(x, c(x)) | x ∈ S}, computes a hypothesis (or, in general, performs some computation).
Neither of the stages has any other access to MEM(c). We note that in the general definition
of PAC learning we did not assume that size of the target concept (or a bound on it) is
given to the learning algorithm. When learning with adaptive queries a good bound can be
found via the “guess-and-double” technique but for adaptive algorithms we will assume that
this bound is always given. Clearly the same “guess-and-double” technique can be used to
produce a sequence of independent and non-adaptive executions of the learning algorithm.

The immediate consequence of non-adaptiveness is that in order to parallelize a non-
adaptive learning algorithm only the usual computation has to be parallelized since all the
MQs can be made in parallel. Another simple consequence is for parallel learning of `
concepts from the same concept class. The fact that queries are independent of the target
concept implies that same set of points can be used for learning different concepts. To
achieve probability of success 1/2 in learning of all ` concepts we will have to learn with
each concept with probability of success 1− 1/(2`). This implies that the number of points
needed for learning might grow by a factor of log ` whereas in the general case ` times more
examples might be required.

Valiant has proved that if one-way functions exist then there exists a concept class not
learnable even with access to MQ oracle and only with respect to U [Val84]. A simple
modification of his proof can be used to show that if one-way functions exist then use of
non-adaptive MQ is strictly weaker than (adaptive) MQs and is strictly stronger than use
random examples only.

Fourier transform. The Fourier transform is a technique for learning with respect to
the uniform distribution (primarily) based on the fact that any function f over {0, 1}n can
be represented as a linear combination of parities, that is f(x) =

∑
a∈{0,1}n f̂(a)χa(x). The

coefficient f̂(a) is called Fourier coefficient of f on a and equals EU [f(x)χa(x)]; a is called
the index and wt(a) the degree of f̂(a). All Fourier coefficients (or the Fourier transform)
can be computed via the Fast Fourier Transform algorithm in time O(n2n). The same
transformation also converts Fourier coefficients into the values of the function f on all the
points and is called inverse Fourier transform [CT65]. For further details on the technique
we refer the reader to the survey by Mansour [Man94].

5

Boolean linear codes. We say that a code C is an [m, n] code if C is a binary linear code
of block length m, message length n. Any such code can be described by its n×m generator
matrix G as follows: C = {xG | x ∈ {0, 1}n}. Equivalently, a code can be described by its
parity-check matrix H of size m × (m − n) by C = {y | yH = 0̄}. It is well-known (and
easy to see) that G ·H = 0n×(m−n) and decoding given a corrupted message y is equivalent
to decoding given the syndrome of the corrupted message. The syndrome equals to yH
and the decoding consists of finding a vector e of Hamming weight at most d such that
y ⊕ e = xG, where d is a bound on the number of errors the code can correct.

By saying that C is a random [m, n] code we mean that C is defined by choosing ran-
domly, uniformly, and independently n vectors in {0, 1}m that form the basis of C. Al-
ternatively, we can say that the generator matrix G of C was chosen randomly with each
entry equal to 1 with probability 1/2 independently of others. We denote this distribution
by Un×m.

3. Attribute-Efficient Learning of Parities

In this section we show that attribute-efficient learning of parities from uniform random
examples only is likely to be hard by proving that it is equivalent to an open problem in
coding theory. We also give a simple and fast algorithm for ae.naMQ learning of parities.
Unlike in the rest of the paper in this section parity functions will be 0, 1 functions. To
emphasize this we use χ̇ instead of χ.

3.1 Learning of Parities and Binary Linear Codes

The equivalence of attribute-efficient learning of parities with respect to the uniform distri-
bution and decoding of random linear codes relies on two observations. The first one, due
to Hofmeister [Hof99], is that attribute-efficient learning of parities is exactly the syndrome
decoding of a linear code. The second one is that an equivalent way to generate a random
linear code is to generate a random parity check matrix (instead of the random generator
matrix).

The first observation follows immediately from the definition of syndrome decoding since
yH = eH and wt(e) ≤ d (see Section 2). Therefore yH equals to evaluation of parity χe

on the columns of H. Hence syndrome decoding of d-error correcting code is the same as
learning of PAR(d) from evaluations on columns of H. Let Vn×m denote the distribution
on matrices of size n × m resulting from the following process. Choose a random matrix
H of size m × (m − n) of rank m − n and then choose randomly and uniformly a matrix
G of size n × m of rank n such that G · H = 0n×(m−n). Let p(i, j) denote the probability
that i vectors chosen randomly and uniformly from {0, 1}j are linearly independent. By
definition, p(i, j) = (1−2−j) ·(1−2−j+1) · · · (1−2−j+i−1). We first give the following simple
lemma on the distribution Vn×m.

Lemma 2 Vn×m is efficiently samplable.

Proof First note that for x < 1, (1 − x
2) ≥ (1 − x + x2

2) ≥ e−x. Therefore

p(i, j) ≥ e−2−j+1

e−2−j+2

· · · e−2−j+i

= e−2−j+i+1+2−j+1

> e−2−j+i+1

. (1)

6

This means that for any i < j, p(i, j) > e−2. Therefore a randomly and uniformly chosen
matrix H of size m × (m − n) will have rank m − n with probability p(m − n, m) which
is at least a constant. We can then find a basis b1, . . . , bm for the subspace of {0, 1}m that
is “orthogonal” to H in the standard (and efficient) way. Let G0 denote the matrix whose
rows are the vectors b1, . . . , bm. It is easy to see that any matrix G of rank m such that
GH = 0n×(m−n), can be represented uniquely as F · G0 where F is a matrix of size n × n
and full rank. Therefore we can generate G’s as above by choosing randomly and uniformly
a matrix F of rank n. If we choose a random matrix F according Un×n, with probability at
least p(n, n), it will have the full rank. Altogether, we can generate a matrix according to
Vn×m with probability at least some constant c > 0 in time O(n3) (or less if a non-trivial
matrix multiplication algorithm is used).

The second observation is based on the following lemma.

Lemma 3 The statistical distance between Vn×m and Un×m is at most 2−m+n+2.

Proof Let G be any matrix of size n × m with linearly independent rows. Its probability
under Un×m is Un×m(G) = 2−mn. When sampling with respect to Vn×m, G can be obtained
only if all the columns of H are “orthogonal” to rows of G, that is belong to a linear subspace
of {0, 1}m of dimension m−n. Total number of H’s like these of rank m−n is 2(m−n)2p(m−
n, m−n) and the total number of matrices size m× (m−n) of rank m−n is 2m(m−n)p(m−

n, m). Therefore the probability of getting each H like this is 2−n(m−n) p(m−n,m−n)
p(m−n,m) . Given

H the total number of matrices of size n × m and rank n that are orthogonal to H is
p(n, n)2n2

and therefore G will be generated with probability 2−n2

/p(n, n). Hence the

total probability of G under Vn×m is Vn×m(G) = 2−mn p(m−n,m−n)
p(m−n,m)p(n,n) . For every i < j,

p(j − i, j)p(i, i) = p(j, j). Therefore Vn×m(G) = 2−mn/p(n, m). This implies that the
statistical distance between Vn×m and Un×m is at most 2(1−p(n, m)). According to equation
(1), 2(1 − p(n, m)) ≤ 2(1 − e−2−m+n+1

) ≤ 2−m+n+2.

We can now present the exact statement of equivalence between attribute-efficient learning
and decoding of random linear codes.

Theorem 4 Assume that there exists an algorithm AELearnPar that efficiently learns PAR(k)
over {0, 1}m using at most q(k, log m) random examples. Then there exists an algorithm
RandDec, that for a randomly chosen [m, n] code C, where n = m − q(k, log m), and any
y ∈ {0, 1}m such that ∃x ∈ {0, 1}n, dist(C(x), y) ≤ k, runs in polynomial time and, with
probability at least 1/2 − o(1), (over the choice of C and the random choices of RandDec)
finds x.

Proof Let G and y = xG ⊕ e such that wt(e) ≤ k be the input to RandDec. If G
is not of rank n we just return the vector 0n. Otherwise we use G to generate a ran-
dom matrix H according to distribution Vm−n,n (as in Lemma 2). The syndrome of y,
yH is equal to eH which is equal to the vector χ̇e(H1), χ̇e(H2), . . . , χ̇eHm−n where Hi is
the i-th column of H. The statistical distance between the H generated as above and
a randomly and uniformly chosen matrix is at most 2−m+(m−n)+2 = 2−n+2. Therefore
with probability at least 1/2 − 2−n+2, AELearnPar will return e when given the examples
〈H1, yH1〉, 〈H2, yH2〉, . . . , 〈Hq, yHq〉. Given e we can easily find x. This algorithm succeeds
with probability at least 1/2−(1−p(n, m))−2−n+2 = 1/2−o(1) for superconstant n and q.

7

It is easy to see from the proof of Theorem 4 that the converse is also true, giving us
the following theorem.

Theorem 5 Assume that there exists an algorithm RandDec that for a randomly chosen
[m, n] code C and any y ∈ {0, 1}m such that ∃x ∈ {0, 1}n, dist(C(x), y) ≤ d, runs in
polynomial time and, with probability at least 1/2 + o(1) (over the choice of C and the
random choices of RandDec), finds x. Then PAR(d) over {0, 1}m is efficiently learnable
from m − n random examples.

Another famous open problem in learning theory, learning of parities with random clas-
sification noise is equivalent to decoding of random linear codes with random errors that is
likely to be easier than decoding with adversarial errors. However Feldman et al. recently
showed that decoding with adversarial noise of rate η can be reduced to decoding with
random noise of rate 2η−2η2 [FGKP06]. This allows us to relate the two learning problems
directly, in particular, we obtain the following theorem.

Theorem 6 Assume that there exists an algorithm LearnPar that efficiently learns PAR
over {0, 1}n with random noise of rate η using at most q(n, η) random examples. Then
there exists an efficient algorithm AELearnPar that learns PAR(η·m

2) over {0, 1}m using at
most m − n examples, where m = q(n, η).

Equivalence in the other direction is the same as Theorem 4 since decoding of [m, n]
code from k errors is the same as learning of parities over {0, 1}n with random noise of rate
η = k/n (in fact, even adversarial) from m examples.

3.2 A Fast Randomized Algorithm for ae.naMQ Learning of Parities

We next present a simple randomized algorithm for ae.naMQ learning of parities. Previous
ae.naMQ algorithms for learning parities by Hofmeister relied on decoding of specific binary
linear codes (as BCH or Reed-Solomon) and require superlinear in n time [Hof99].

Theorem 7 For each k ≤ n there exists an algorithm that ae.naMQ learns the class
PAR(k) in time O(nk log(n/δ)) and asks O(k log(n/δ)) MQs.

Proof Let χ̇c be the target concept (such that wt(c) ≤ k). We define D 1

t
to be the product

distribution such that for each i, Pr[xi = 1] = 1
t . Let us draw a point x randomly according

to distribution D 1

4k
. Then for each i ≤ n

PrD 1
4k

[xi = 1 and χ̇c(x) = 1] = PrD 1
4k

[χ̇c(x) = 1 | xi = 1] PrD 1
4k

[xi = 1]

=
1

4k
PrD 1

4k

[χ̇c(x) = 1 | xi = 1] .

Our second observation is that for any set of indices B ⊆ [n] and the corresponding parity
function χ̇b,

PrD 1
4k

[χ̇b(x) = 1] ≤ 1 − PrD 1
4k

[∀i ∈ B, xi = 0] = 1 − (1 −
1

4k
)|B| ≤

|B|

4k
.

8

We now assume that ci 6= 1 and therefore does not influence χ̇c. Then by the second
observation

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c(x) = 1] ≤
k

4k
≤ 1/4 .

Now assume that ci = 1 and let c′ = c ⊕ ei. Then χ̇c(x) = 1 if and only if χ̇c′(x) = 0 and
χ̇c′(x) is independent of xi. Therefore

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c′(x) = 0 | xi = 1]

= 1 − PrD 1
4k

[χ̇c′(x) = 1] ≥ 1 −
k − 1

4k
> 3/4 .

Hence estimation of PrD 1
4k

[xi = 1 and χ̇c(x) = 1] within the half of the expectation can

be used to find out whether ci = 1. By taking αk log (n/δ) independent samples2 with
respect to D 1

4k
(for some constant α ≥ 32 ln 2) we will get that each estimate is correct with

probability at least 1− δ/n and therefore we will discover c with probability at least 1− δ.
The running time of resulting algorithm is clearly O(nk log (n/δ)).

4. Weak Parity Learning

The original Jackson’s algorithm for learning DNF expressions with respect to the uniform
distribution is based on a procedure that weakly learns DNF with respect to the uniform
distribution [Jac94]. The procedure for weak learning is essentially an algorithm that, given
a Boolean function f finds one of its heavy Fourier coefficients, if one exist. Jackson’s
algorithm is based on a technique by Goldreich and Levin for finding a heavy Fourier
coefficient [GL89]. Bshouty, Jackson, and Tamon used a later algorithm by Levin [Lev93]
to give a significantly faster weak learning algorithm [BJT99]. Below we briefly describe
Levin’s algorithm with improvements by Bshouty et al. Detailed proofs of all the statements
and smaller remarks can be found in the paper by Bshouty et al. [BJT99](Sect. 4) (we
follow their definitions and notation to simplify the reference).

A Fourier coefficient f̂(a) of a function f : {0, 1}n → {−1, +1} is said to be θ-heavy if
|f̂(a)| ≥ θ.

Definition 8 (Weak Parity Learning) Given θ > 0 and access to MEM(f) for a Boolean
function f that has at least one θ-heavy Fourier coefficient the weak parity learning problem
consists of finding the index a θ/2-heavy Fourier coefficient of f .

We will only consider algorithms for weak parity learning that are efficient, that is,
produce the result with probability at least 1/2 in time polynomial in n, and θ−1. In
addition we are interested in weak parity learning algorithms that are attribute-efficient.

Definition 9 (Attribute-Efficient Weak Parity Algorithm) Attribute-efficient weak
parity algorithm is an algorithm that given k, θ, and MEM(f) for f that has a θ-heavy

2. It is important to use the multiplicative and not the additive form of Chernoff bounds to get linear
dependence on k.

9

Fourier coefficient of degree at most k efficiently solves weak parity learning problem and
asks polynomial in k, log n, and θ−1 number of MQs.

Attribute-efficient weak learning of DNF can be obtained from an attribute-efficient
weak parity algorithm via the following lemma by Bshouty and Feldman.

Lemma 10 ([BF02](Lemma 18)) For any Boolean function f of DNF-size s and a dis-
tribution D over {0, 1}n there exists a parity function χa such that

|ED[fχa]| ≥
1

2s + 1
and wt(a) ≤ log ((2s + 1)L∞(2nD)) .

Levin’s algorithm is based on estimating a Fourier coefficient f̂(a) by sampling f on
randomly-chosen pairwise independent points. More specifically, the following pairwise
independent distribution is generated. For a fixed k, a random m-by-n 0-1 matrix R is
chosen and the set Y = {pR | p ∈ {0, 1}m − {0m}} is formed. Bienaymé-Chebyshev’s
inequality implies that

PrR

[
|

∑
x∈Y f(x)χa(x)

2m − 1
− f̂(a)| ≥ γ

]
≤

1

(2m − 1)γ2
(2)

Therefore using a sample for m = log (16ρ−1θ−2 + 1),
∑

x∈Y f(x)χa(x) will, with prob-

ability at least 1 − ρ, approximate f̂(a) within θ/4.
On the other hand,

∑
x∈Y f(x)χa(x) is a summation over all (but one3) elements of a

linear subspace of {0, 1}n and therefore can be seen as a Fourier coefficient of f restricted
to the subspace Y . That is, if we define fR(p) = f(pR) then, by definition of Fourier
transform, for every z ∈ {0, 1}m

f̂R(z) = 2−m
∑

p∈{0,1}m

fR(p)χz(p) .

This together with equality χa(pR) = χaRT (p) implies that f̂(a) is approximated by

f̂R(aRT) (with probability at least 1 − ρ).

All the coefficients f̂R(z) can be computed exactly in time |Y | log |Y | via the FFT
algorithm giving estimations to all the Fourier coefficients of f .

Another key element of the weak parity algorithm is the following equation. For c ∈
{0, 1}n let fc(x) = f(x ⊕ c). Then

f̂c(a) = 2−n
∑

x∈{0,1}n

f(x ⊕ c)χa(x) = 2−n
∑

x∈{0,1}n

f(x)χa(x ⊕ c) = f̂(a)χa(c) . (3)

Assuming that f̂(a) ≥ θ estimation of f̂(a) within θ/4 (when successful) has the same sign
as f̂(a). Similarly we can obtain the sign of f̂c(a). The sign of the product f̂(a)f̂c(a) is

equal to χa(c). This gives a way to make MQs for χa using the values f̂c,R(aRT) for a
random R and leads to the following result.

3. The value at 0m does not influence the estimation substantially and therefore can be offset by slightly
increasing the size of sample space Y [BJT99].

10

Theorem 11 Let B(k) be an ae.naMQ algorithm for learning parities that runs in time
t(n, k) and uses q(log n, k) MQs. There exists an attribute-efficient and non-adaptive weak
parity learning algorithm WeakDNF−U(θ, k) that runs in time Õ

(
θ−2 · t(n, k) · q(log n, k)

)

and asks Õ
(
θ−2 · q2(log n, k)

)
MQs.

Proof Let B2(k) be the algorithm B(k) repeated twice to get the probability of success to
3/4 and let S be the set of MQs for an execution of B2(k). Choose randomly an m-by-n
matrix R for m = log (16θ−2 · 4 · (q(log n, k) + 1) + 1) and compute the Fourier transforms
of fR and fy,R for each y ∈ S.

Then, for each z ∈ {0, 1}m such that |f̂R(z)| ≥ 3θ/4, we run B2(k) with the answer

to MQ y ∈ S equal to sign(f̂R(z)f̂y,R(z)) (here the non-adaptiveness of parity learning
algorithm is essential). If the output of B2(k) is a parity function on at most k variables we
add it to the set of hypotheses H.

By Lemma 1, for a such that |f̂(a)| ≥ θ and wt(a) ≤ k, with probability at least

1 − 1
4(q(log n,k)+1) , each of the estimations f̂y,R(aRT) for y ∈ S ∪ {0k} will be within θ/4 of

f̂y(a). In particular, all of them will have the right sign with probability at least 3/4. When
all the signs used for B2’s MQs are correct, B2(k) succeeds with probability at least 3/4.
Therefore a will pass the magnitude test and will be added as a possible hypothesis with
probability at least 1/2. On the other hand for any f̂(b) < θ/2 it will not pass the magnitude
test with probability at least 1− 1

4(q(log n,k)+1) ≥ 3/4. Therefore by repeating this algorithm

O(1) times and choosing a vector a that appears in at least 3/8 of all lists of hypotheses, we
will find a θ/2-heavy coefficient with probability at least 1/2. It can be easily verified that
time and sample complexity of the algorithm are as stated and its MQs are non-adaptive.

Another way to see Theorem 11 is as a way to convert an ae.naMQ algorithm for learning
parities to an attribute-efficient algorithm for learning parities with adversarial classification
noise (with respect to U) of rate arbitrarily close to 1/2. This follows from the fact that
a parity function χc corrupted by noise of rate η has Fourier coefficient on c of weight at
least 1 − 2η.

We can now use the randomized parity learning algorithm and Theorems 10, 11 to get
an algorithm for weakly learning DNF with the following properties.

Theorem 12 There exist an algorithm WeakDNF-U that for a Boolean function f of DNF-
size s given n, s, and access to MEM(f), with probability at least 1/2, finds a (1

2 − Ω(1
s))-

approximator to f with respect to U . Furthermore, WeakDNF-U runs in time Õ
(
ns2

)
and

asks Õ
(
s2 log2 n

)
non-adaptive MQs.

The previous weak learning algorithm by Bshouty et al. requires Õ
(
ns2

)
MQs and runs

in time4 Õ
(
ns2

)
.

4. The running time bound is based on use of a membership query oracle, that given any two vectors
x, y ∈ {0, 1}n, passed to it “by reference”, returns f(x ⊕ y) in O(1) time.

11

5. Learning DNF Expressions

Jackson’s DNF learning paper gives a way to use a weak DNF learning algorithm with re-
spect to the uniform distribution to obtain a (strong) DNF learning algorithm. It consists
of generalizing a weak parity algorithm to work for any real-valued function (and not only
Boolean functions). An important property of the generalized algorithm is that its running
time depends polynomially on the L∞ norm of the function. This algorithm is then used
with a boosting algorithm that produces distributions that are polynomially-close to the
uniform distribution; that is, the distribution function is bounded by p2−n where p is a
polynomial in learning parameters (such boosting algorithms are called p-smooth). In Jack-
son’s result Freund’s boost-by-majority algorithm [Fre90] is used to produce distribution
functions bounded by O(ε−(2+ρ)) (for arbitrarily small constant ρ). More recently, Klivans
and Servedio have observed [KS03] that a later Freund’s algorithm [Fre92] produces distri-
bution functions bounded by Õ(ε), thereby improving the dependence of running time and
sample complexity on ε. This improvement together with improved weak DNF learning
algorithm due to Bshouty et al. gives DNF learning algorithm that runs in Õ(ns6/ε2) time
and has sample complexity of Õ(ns4/ε2).

Remark 13 Bshouty et al. claimed sample complexity of Õ(ns2/ε2) based on erroneous
assumption that sample points for weak DNF learning can be reused across boosting stages.
A distribution function Di in i-th stage depends on hypotheses produced in previous stages.
The hypotheses depend on random sample points and therefore in i-th stage the same set
of sample points cannot be considered as chosen randomly and independently of Di [Jac04].
This implies that new and independent points have to be sampled for each boosting stage
and increases the sample complexity of the algorithm by Bshouty et al. by a factor of O(s2).

We now briefly describe the generalization of weak parity learning and the boosting step,
stressing only the points relevant to our improvements. Let f be the target DNF expression
of size s. Lemma 10 states that f has an Ω(1/s)-correlated parity of degree bounded by
O (log (sL∞(2nD))). This implies that function f(x)2nD(x) has an Ω(1/s)-heavy Fourier
coefficient of degree bounded by O (log (sL∞(2nD))). Therefore one can expect that weak
parity algorithm WeakDNF-U applied to function f2nD should find the desired parity. By
revisiting the proof of Theorem 11 we can see that the only concern is Equation 2 in which
we used the fact that the random variable f(y) ∈ {−1, +1} has variance σ2 ≤ 1. This is
likely to be wrong for random variable f(y)2nD(y). Instead we can derive that (expectations
are by default for x chosen randomly from U)

σ2 = Var(f(x)2nD(x)) = E[(f(x)2nD(x))2] − E2[f(x)2nD(x)] (4)

≤ L∞(2nD(x))E[2nD(x)] − E2[2nD(x)] < L∞(2nD(x)) (5)

This bound on variance relies essentially on the fact that D(x) is a distribution5 and is better
than L2

∞(2nD(x)) bound for an unrestricted function D(x) that was used in analysis of
previous weak DNF learning algorithms [Jac94, BJT99]. The only thing that has to be done
to offset this higher variance is to use a larger sample space (by a factor of L∞(2nD(x))).
This yields the following weak DNF learning result.

5. Actual D(x) given to a weak learner will be equal to cD′(x) where D′(x) is a distribution and c is a
constant in [2/3, 4/3] [BJT99]. This modifies the bound above by a small constant factor.

12

Theorem 14 There exist an algorithm WeakDNF that for a Boolean function f of DNF-size
s and any distribution D(x), given n, s, and access to MEM(f), with probability at least
1/2, finds a (1

2 − Ω(1
s))-approximator to f with respect to D. Furthermore, WeakDNF

• runs in time Õ
(
ns2L∞(2nD(x)) + tD

)
where tD is a bound on the time required to

estimate D(x) on all the points used as MQs of WeakDNF;

• asks Õ
(
s2 log2 n · L∞(2nD(x))

)
non-adaptive MQs;

• returns a parity function on at most O(log (s · L∞(2nD(x))) variables or its negation.

5.1 Optimized Boosting

The next modification specifically addresses the bound tD. Evaluation of distribution func-
tion Di(x) at boosting stage i usually involves evaluation of i− 1 previous hypotheses on x
and therefore, in a general case, for a sample of size q will require Ω(i · q) steps making the
last stages of boosting noticeably slower. We show that, in fact, for most known boosting
methods the complexity of boosting a weak learner based on Levin’s algorithm (in particular
the weak learning algorithm by Bshouty et al. and WeakDNF) can be significantly reduced.
The idea is to use the fact that most boosting algorithms compose weak hypotheses linearly,
the samples come from a linear subspace of low dimension, and parities are linear functions.

Lemma 15 Let {c1, c2, . . . , ci} be a set of vectors in {0, 1}n of Hamming weight at most
w; ᾱ ∈ Ri be a real-valued vector, and R be a m-by-n 0-1 matrix. Then the set of pairs

S = {〈p,
∑

j≤i

αjχcj
(pR)〉 | p ∈ {0, 1}m}

can be computed in time Õ(i · w log n + 2m).

Proof We define g(x) =
∑

j≤i αjχcj
(x) and for p ∈ {0, 1}m we define gR(p) = g(pR) (as in

Sect. 4). Our goal is to find the values of function g on all the points of some k-dimensional
subspace of {0, 1}n. The function is given as a linear combination of parities, or in other
words, we are given its Fourier transform. Hence the problem is simply to compute the
inverse Fourier transform or g. This task can be performed in O(k2k) steps using the FFT
algorithm. Naturally, the transform has to be done from the Fourier coefficients of gR and
not g (as we are given). But the relation between the complete and restricted transforms
is simple and follows from the formula below.

gR(p) =
∑

j≤i

αjχcj
(pR) =

∑

j≤i

αjχcjRT (p) =
∑

z∈{0,1}m

(

∑

j≤i; cjRT =z

αj)χz(p)

Hence ĝR(z) =
∑

j≤i; cjRT =z αj . To compute the Fourier transform of gR we need to com-

pute cjR
T for each j ≤ i and sum the ones that correspond to the same z. Given that each

cj is of Hamming weight w, cjR
T can be computed in O(wm log n) steps. Therefore the

computation of the Fourier transform and the inversion using the FFT algorithm will take
O(i · w log n + m2m) steps.

13

Corollary 16 Let {b1χc1 , b2χc2 , . . . , biχci
} be a set of hypotheses returned by WeakDNF in i

stages of a certain L-smooth boosting algorithm (bj ∈ {−1, +1} is a sign of χcj
); ᾱ ∈ Ri

be a real-valued vector; and W be a set of queries for the (i + 1)-th execution of WeakDNF.
Then the set of pairs

S = {〈y,
∑

j≤i

αjbjχcj
(z)〉 | z ∈ W}

can be computed in time Õ(i + s2L log2 n).

Proof As can be seen from the proof of Theorem 11, WeakDNF asks queries on set
Y = {pR | p ∈ {0, 1}m} for a randomly chosen R and 2m = Õ(s2L log2 n) to compute
the Fourier transform of (f2nDi+1)R and then for each query y of ae.naMQ parity learning
algorithm it computes the Fourier transform of (f2nDi+1)y,R by asking queries on points in
the set Yy = {z ⊕ y | z ∈ Y }. The set Yy is a subset of linear subspace of dimension m + 1
spanned by the rows of R and vector y. Therefore by using Lemma 15 on subspace Y and
then on each Yy we can compute the set S in Õ(i + s2L log2 n) time.

To apply these observations to the computation of distribution function Di gener-
ated while learning DNF we need to look closer at Freund’s boosting algorithm BComb
[Fre92, KS03]. It is based on a combination of two other boosting algorithms. The first
one F1 is used to boost from accuracy 1

2 − γ to accuracy 1/4. The output of the first
booster is used as a weak learner by the second boosting algorithm BFilt. Each of the
executions of F1 has O(γ−2) stages and BFilthas O(log (1/ε)) stages. Accordingly, the
distribution function can be decomposed into Di,j(x) = DFilt

i · DF1
j . In both boosting

algorithms by Freund the weight of a point equals to wi(N(x))/α where N(x) is the num-
ber of previous hypotheses that are correct on x, wi is a certain real-valued function, and
α is a normalization factor independent of x. Therefore the only information about the
previous hypotheses that is needed to compute DF1

j is the number of them that are correct
on x. Let b1χc1 , b2χc2 , . . . , bj−1χcj−1

be the hypotheses generated by previous stages of F1.

Then N(x) =
f(x)(

∑
l≤j−1

blχcl
(x))+j−1

2 , that is, given
∑

l≤j−1 blχcl
(x) and f(x), N(x) can

be computed in O(1) steps. Therefore Cor. 16 implies that DF1
j (x) for all the points needed

by WeakDNF can be computed in Õ(s2 log2 n/ε) steps (values of f for all the points in the
sample are available in WeakDNF).

Let h1, h2, . . . , hi−1 be the previous hypotheses needed for computation of DFilt
i . For

each l ≤ i − 1, hl is output of F1 or a random coin flip. Majority of O(s2) parities (or
their negations) is simply the sign of their sum. Hence by Cor. 16, hl(x) for all the points
in the sample for WeakDNF can be computed in Õ(s2 log2 n/ε) time. BFilthas O(log (1/ε))
stages and therefore all the previous hypotheses can be computed in Õ(s2/ε) time and
consequently DFilt

i (x) can be computed in Õ(s2/ε) time.
To finish the analysis of the DNF learning algorithm we describe the computation of

the normalization factor α for each of the distributions DFilt
i and DF1

j . For DFilt
i (x)

this factor equals EU [wi(N(x))] and needs to be estimated within c1ε for a constant c1. By
Chernoff bounds this can be done (with confidence 1 − δ) using a random sample of size
O(1

ε log 1
δ). All the previous hypotheses can be estimated on this sample in time Õ(s2/ε)

and therefore the total running time of each boosting stage will not grow (asymptotically).

14

For DF1
j called in i-th iteration of BFiltthe normalization factor is defined to be

α = E
DFilti

[wj(N(x))] = EU [2n · DFilt
i · wj(N(x))]

and has to be estimated within a constant c2. In this case the straightforward estimation via
Hoeffding bound will be too expensive since estimation of DFilt

i ·wj(N(x)) on independent
points is more “expensive” than on pairwise independent sample. As we have previously
observed, 2n ·DFilt

i (x) is a distribution (or some constant multiple of a distribution) and is
bounded by Õ(1

2nε). On the other hand, wj(N(x)) is defined to be in [0, 1] range. Therefore,

analogously to (4) we can conclude that the variance of 2n · DFilt
i · wj(N(x)) is bounded

by Õ(1
ε). Hence we can take a pairwise sample S1 that gives an estimate of α within c2

with probability at least 3/4. By Bienaymé-Chebyshev’s inequality 1 a sample of size Õ(1
ε)

is sufficient. We take l independent samples like this and denote the generated estimates
by α1, α2, . . . , αl. When l = O(log (1/δ)) with probability at least 1 − δ more than a half
of the estimates will be within c2 of true value α. Therefore if we take the median of the
set {α1, α2, . . . , αl} it will necessarily approximate α within c2. From the description and
Cor. 16 it is clear that this estimation will take Õ(s2/ε) time and hence will not increase
the running time of each boosting stage.

Remark 17 While the analysis of the speedup was done for Freund’s BComb booster the
same idea works for any other booster in which estimation of new weight function is based
on a linear combination of previous hypotheses. In particular, for the other known boost-
ing algorithms that produce smooth distributions: SmoothBoost by Servedio [Ser03] and
AdaFlat by Gavinsky [Gav03].

Altogether we have obtained a learning algorithm for DNF expressions with the following
properties.

Theorem 18 There exists an algorithm AENALearnDNF that for any Boolean function f
of DNF-size s, given n, s, ε, and access to MEM(f), with probability at least 1/2, finds an
ε-approximator to f with respect to U . Furthermore, AENALearnDNF runs in time Õ

(
ns4/ε

)

and asks Õ
(
s4 log2 n/ε

)
non-adaptive MQs.

The improvements to the algorithm by Bshouty et al. are summarized below.

• The use of attribute-efficient weak learning improves the total sample complexity
from Õ

(
ns4/ε2

)
to Õ

(
s4 log2 n/ε2

)
and the same running time is achieved without

assumptions on the MQ oracle (see Theorem 12).

• Faster computation of distribution functions used in boosting improves the total run-
ning time from Õ

(
ns6/ε2

)
to Õ

(
ns4/ε2

)
(see Corollary 16).

• Tighter estimation of variance improves the dependence of running time and sample
complexity on ε from 1/ε2 to 1/ε (equation 4).

15

5.2 Handling Noise

Now we would like to show that our DNF learning algorithm can be easily converted to
a noise tolerant one. Noise model we consider is random persistent classification noise
introduced by by Goldman, Kearns and Shapire [GKS93]. In this model, the answer to
a query at each point x is corrupted with probability η (the noise rate). However, if the
membership oracle was already queried about the value of f at some specific point x or x
was already generated as a random example, the returned label has the same value as in
the first occurrence (i.e., in such a case the noise persists and is not purely random). This
persistency is necessary to prevent the learner from removing the noise by repeatedly asking
for the label of the same point. However, if the learner does not ask for the label of a point
more than once then this noise can be treated as usual random classification noise.

We start by observing that in the algorithm AENALearnDNF all the points that are given
to the MQ oracle are chosen uniformly and the points that are used in different executions
of WeakDNF are independent. As can be seen from the proof of Theorem 11, the generated
points are of the form pR ⊕ y where R is a randomly and uniformly chosen matrix and y
is chosen randomly according to D 1

4k
or equal to 0n. If two points y1 and y2 are chosen

randomly from D 1

4k
, or one of them equals 0n then Pr[y1 = y2] ≤ (1 − 1

4k)n ≤ e−n/(4k). If

y1 6= y2 or y1 = y2 = 0n then two points p1R⊕ y1 and p2R⊕ y2 are different samples only if
p1 6= p2. They are equal if (p1 ⊕ p2)R = y1 ⊕ y2. For a randomly chosen matrix R with m
rows, this happens with probability at most 2m−n. Both k and m are logarithmic in learning
parameters and the total number of points is polynomial. Therefore the total probability
of asking an MQ for the same point is exponentially small. Hence in the following analysis
we assume that we are dealing with random and independent classification noise.

5.2.1 Boosting Weak Parity Learning Algorithm in the Presence of Noise

The main part of the modification is to show any weak parity learning algorithm that can
handle functions whose values are random variables can be boosted to a DNF learning
algorithm in the presence of noise. Our method can be applied in more general setting.
In particular, it could be used to prove that Jackson’s original algorithm is resistant to
persistent noise in MQs and was recently used to produce a noise tolerant DNF learning
algorithm by Feldman et al. [FGKP06].

The goal of a weak DNF learning algorithm is to find a parity correlated with the
function g(x, f(x)) = 2nD(x, f(x))f(x) given the oracle for f with noise of rate η < 1/2
and a weak parity learning algorithm that can handle functions whose values are random
variables.

We use the following observation due to Bshouty and Feldman [BF02]. For any real-
valued function ψ(x, b)

ψ(x, f(x)) = ψ(x,−1)
1 − f(x)

2
+ ψ(x, 1)

1 + f(x)

2
=

1

2
((ψ(x, 1) − ψ(x,−1))f(x) + ψ(x, 1) + ψ(x,−1)) .

16

Let Φη(x) denote a random variable that is equal to f(x) with probability 1 − η and to
−f(x) with probability η. This is exactly the noisy version of f(x). Then

Ex,b∼Φη(x)[
1

2
(ψ(x, 1) − ψ(x,−1)) · b] = (1 − 2η)Ex[

1

2
(ψ(x, 1) − ψ(x,−1))f(x)] ,

and therefore we can offset the effect of noise in g(x, f(x)) as follows.

[̂g(x, f(x))](a) = E[g(x, f(x))χa(x)]

=
1

2
(Ex[(g(x, 1) − g(x,−1))χa(x)f(x)] + Ex[(g(x, 1) + g(x,−1))χa(x)])

=
1

2
(

1

1 − 2η
Ex,b∼Φη(x)[(g(x, 1) − g(x,−1))χa(x) · b] + Ex[(g(x, 1) + g(x,−1))χa(x)])

= Ex,b∼Φη(x)

[
1

2

(
1

1 − 2η
(g(x, 1) − g(x,−1)) · b + g(x, 1) + g(x,−1)

)
χa(x)

]

Therefore if we denote Ψ(x) to be the random variable equal to

Ψ(x) =
1

2

(
1

1 − 2η
(g(x, 1) − g(x,−1)) · Φη(x) + g(x, 1) + g(x,−1)

)

then for every a, [̂g(x, f(x))](a) = Ψ̂(a) and therefore we can find a θ-heavy Fourier coeffi-
cient of g(x, f(x)) by finding a θ-heavy Fourier coefficient of Ψ. For analyzing the perfor-

mance of a weak parity learner on Ψ it is important to note that L∞(Ψ) ≤ 2n+1

1−2ηL∞(D) and

Var(Ψ) ≤ 2n+1

(1−2η)2
L∞(D).

We now need to prove that our weak parity learning algorithm can handle functions
whose values are random variables. Our analysis treats the value 2nD(x, f(x))f(x) as a
random variable produced by choosing x randomly with respect to the uniform distribution.
Therefore the fact that given x, Ψ(x) is itself a random variables does not change the
algorithm as long as we account for the changed variance of the variable. This is done
in the same way as it was done in the proof of Theorem 14. Altogether this gives us the
following algorithm for learning DNF expressions with persistent classification noise in MQs.

Theorem 19 There exists an algorithm AENALearnDNFη that for any Boolean function f
of DNF-size s, given n, s, ε, and access to MEM(f) corrupted by random persistent clas-
sification noise of rate η, with probability at least 1/2, finds an ε-approximator to f with
respect to U . Furthermore, AENALearnDNFη runs in time Õ

(
ns4/(ε(1 − 2η)2)

)
and asks

Õ
(
s4 log2 n/(ε(1 − 2η)2)

)
non-adaptive MQs.

6. Acknowledgments

We thank Leslie Valiant for his advice and encouragement of this research. We are grateful to
Jeffrey Jackson for discussions and clarifications on the DNF learning algorithm of Bshouty
et al. We also thank Alex Healy, Dmitry Gavinsky and anonymous COLT reviewers for
valuable comments and proofreading of the earlier version of this paper.

17

References

[BF02] N. Bshouty and V. Feldman. On using extended statistical queries to avoid
membership queries. Journal of Machince Learning Research, 2:359–395, 2002.

[BH98] N. Bshouty and L. Hellerstein. Attribute efficient learning with queries. Journal
of Computer and System Sciences, 56:310–319, 1998.

[BHL95] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely
or infinitely many irrelevant attributes. JCSS, 50:32–40, 1995.

[BJT99] N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF
with membership queries under the uniform distribution. In Proceedings of
COLT ’99, pages 286–295, 1999.

[BMOS03] N. Bshouty, E. Mossel, R. O’Donnell, and R. Servedio. Learning DNF from
random walks. In Proceedings of FOCS ’03, pages 189–199, 2003.

[CT65] J. Cooley and J. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. Math. Computat., 19:297–301, 1965.

[Dam98] P. Damaschke. Adaptive versus nonadaptive attribute-efficient learning. In
Proceedings of STOC ’98, pages 590–596, 1998.

[FGKP06] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. New results for
learning noisy parities and halfspaces. Electronic Colloquium on Computational
Complexity (ECCC), (059), 2006.

[FKKM97] M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan. Group testing problems
in experimental molecular biology. In Proceedings of Sequences ’97, 1997.

[Fre90] Y. Freund. Boosting a weak learning algorithm by majority. In Proceedings of
the Third Annual Workshop on Computational Learning Theory, pages 202–216,
1990.

[Fre92] Y. Freund. An improved boosting algorithm and its implications on learning
complexity. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 391–398, 1992.

[Gav03] D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic
learning. J. Mach. Learn. Res., 4:101–117, 2003.

[GKS93] S. Goldman, M. Kearns, and R. Schapire. Exact identification of read-once
formulas using fixed points of amplification functions. SIAM J. Comput.,
22(4):705–726, 1993.

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proceedings of STOC ’89, pages 25–32, 1989.

[GLR99] D. Guijarro, V. Lavin, and V. Raghavan. Exact learning when irrelevant vari-
ables abound. In Proceedings of EuroCOLT ’99, pages 91–100, 1999.

18

[GTT99] D. Guijarro, J. Tarui, and T. Tsukiji. Finding relevant variables in PAC model
with membership queries. Lecture Notes in Artificial Intelligence, 1720:313 –
322, 1999.

[Hof99] T. Hofmeister. An application of codes to attribute-efficient learning. In Pro-
ceedings of EuroCOLT, pages 101–110, 1999.

[Jac94] J. Jackson. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. In Proceedings of STOC ’94, pages 42–53,
1994.

[Jac04] J. Jackson. Personal communication, 2004.

[JSS97] J. Jackson, E. Shamir, and C. Shwartzman. Learning with queries corrupted by
classification noise. In Proceedings of the Fifth Israel Symposium on the Theory
of Computing Systems, page 45. IEEE Computer Society, 1997.

[KS03] A. Klivans and R. Servedio. Boosting and hard-core set construction. Machine
Learning, 51(3):217–238, 2003.

[KS04] A. Klivans and R. Servedio. Toward attribute efficient learning of decision lists
and parities. In Proceedings of COLT ’04, pages 234–248, 2004.

[Lev93] L. Levin. Randomness and non-determinism. Journal of Symbolic Logic,
58(3):1102–1103, 1993.

[Man94] Y. Mansour. Learning Boolean functions via the Fourier transform, pages 391–
424. 1994.

[Ser03] R. Servedio. Smooth boosting and learning with malicious noise. Journal of
Machine Learning Research, 4:633–648, 2003.

[UTW97] R. Uehara, K. Tsuchida, and I. Wegener. Optimal attribute-efficient learning of
disjunction, parity, and threshold functions. In Proceedings of EuroCOLT ’97,
pages 171–184, 1997.

[Val84] L. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[Val94] L. Valiant. Circuits of the Mind. Oxford University Press, 1994.

[Val00] L. Valiant. A neuroidal architecture for cognitive computation. Journal of
ACM, 47(5):854–882, 2000.

[Val05] L. Valiant. Knowledge infusion (unpublished manuscript). 2005.

19

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

