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Abstract

Strategic games may exhibit symmetries in a variety of ways.A common aspect of symmetry,
enabling the compact representation of games even when the number of players is unbounded, is that
players cannot (or need not) distinguish between the other players. We define four classes of symmetric
games by considering two additional properties:identical payoff functionsfor all players and the ability
to distinguish oneselffrom the other players. Based on these varying notions of symmetry, we investigate
the computational complexity of pure Nash equilibria. It turns out that in all four classes of games
equilibria can be found efficiently when only a constant number of actions is available to each player, a
problem that has been shown intractable for other succinct representations of multi-player games. We
further show that identical payoff functions simplify the search for equilibria, while a growing number
of actions renders it intractable. Finally, we show that ourresults extend to wider classes ofthreshold
symmetricgames where players are unable to determine the exact numberof players playing a certain
action.

1 Introduction

In recent years, the computational complexity of game-theoretic solution concepts, both in cooperative and
non-cooperative game theory, has come under increasing scrutiny. A major obstacle when considering
non-cooperative normal-form games with an unbounded number of players is the exponential size of the
naive representation of payoffs. More precisely, a generalgame in normal-form withn players andk ac-
tions per player comprisesn·kn numbers. Computational statements over such large objectsare somewhat
questionable for two reasons (cf. Papadimitriou and Roughgarden, 2005). First, the value of efficient, i.e.,
polynomial-time, algorithms for problems whose input sizeis already exponential in a natural parameter
(the number of players) is doubtful. Secondly, most, if not all, “natural” multi-player games will hardly
be given as multi-dimensional payoff matrices but rather interms of some more intuitive (and compact)
representation. A natural and straightforward way to simplify the representation of multi-player games is to
somehow formalize similarities between players. As a matter of fact, symmetric gameshave been studied
since the early days of game theory (see,e.g., von Neumann, 1928; Gale et al., 1950; Nash, 1951). The
established definition states that a game is symmetric if thepayoff functions of all players areidenticaland
symmetricin the other players’ actions,i.e., it is impossible to distinguish between the other players (von
Neumann and Morgenstern, 1947; Luce and Raiffa, 1957). Whenexplicitly looking atmulti-playergames,
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there are other conceivable notions of symmetry. For instance, dropping the requirement of identical payoff
functions yields a more general class of multi-player gamesthat still admits a compact representation.

In this paper, we define four classes of succinctly representable symmetric multi-player games and study
the computational complexity of finding pure Nash equilibria in games belonging to these classes. It turns
out that in all four classes equilibria can be found efficiently if only a constant number of actions is avail-
able to each player. Moreover, identical payoff functions for all players further reduce the computational
complexity associated with pure Nash equilibria, an effectthat is nullified as soon as there are two different
payoff functions. Anonymity,i.e., the fact that a player cannot (or does not) distinguish himself from the
other players, does not seem to offer any computational advantage. Finally, computing equilibria becomes
intractable in all four classes of symmetric games when the number of actions grows linearly in the number
of players.

Unlike Nash equilibria inmixedstrategies,i.e., probabilistic combinations of actions, pure Nash equilib-
ria are not guaranteed to exist. They nevertheless form an interesting subset of equilibria for three reasons.
First, requiring randomization in order to reach a stable outcome has been criticized on various grounds. In
multi-player games, where action probabilities in equilibrium can be irrational, randomization is particularly
questionable. Secondly, computation of pure equilibria may be tractable in cases where that of mixed ones
is not. Finally, pure equilibria as computational objects are usually much smaller in size than mixed ones.

We assume the reader to be familiar with the well-known chainof complexity classes AC0 ⊂ TC0 ⊆
L ⊆ P⊆ NP, and the notions of constant-depth and polynomial-time reducibility (see,e.g., Papadimitriou,
1994; Johnson, 1990). AC0 is the class of problems solvable by uniform constant-depthBoolean circuits
with unbounded fan-in. TC0 adds so-called threshold gates which outputtrue if and only if the number of
true inputs exceeds a certain threshold. L is the class of problems solvable by deterministic Turing machines
using only logarithmic space. P and NP are the classes of problems that can be solved in polynomial time by
deterministic and nondeterministic Turing machines, respectively. Furthermore, #P is the class of counting
problems associated with polynomially balanced polynomial-time decidable relations. The class PLS of
polynomial local search problems and an appropriate notionof reduction (Johnson et al., 1988) will be
introduced as needed.

The remainder of this paper is organized as follows: In the following section, we survey relevant work
on symmetric games, succinct representations, and the computational complexity of pure Nash equilibrium.
In Section 3, we then formally introduce four different notions of symmetry in strategic games and the
solution concept of Nash equilibrium. The main results of this paper, including efficient algorithms as well
as hardness results for all four symmetry classes, are givenin Section 4. In Section 5, we provide additional
results for a more general notion of symmetry. Section 6 concludes the paper and points to some open
problems.

2 Related Work

Symmetries in games have been investigated since the earliest days of game theory. Von Neumann (1928)
and von Neumann and Morgenstern (1947) were the first to consider symmetries ofcooperativegames,
calling a game in characteristic form symmetric if the valueof a coalition depends only on its size. In
the context of two-player (non-cooperative) normal-form games, the term symmetric is used to refer to
games with a skew-symmetric payoff matrix (see,e.g., Borel, 1921; Gale et al., 1950), corresponding to
strong symmetry in the vocabulary of this paper. Gale et al. (1950) provided a (polynomial-time) reduction
from arbitrary games to symmetric games which preserves equilibria. Since finding a (possibly mixed)
equilibrium in general games has recently been shown PPAD-complete even for just two players (Chen and
Deng, 2005; Daskalakis et al., 2006), the same holds for symmetric games as well.
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To date, most research on symmetries in games has concentrated on strongly symmetric games, which
require identical payoff functions for all players. One of the reasons for this may have been the strong
focus of the early research in non-cooperative game theory on two-player games, where weak symmetry as
defined in this paper does not impose any restrictions. An early result by Nash (1951) implies the existence
of a symmetric equilibrium in (again, strongly) symmetric games. Papadimitriou and Roughgarden (2005)
capitalize on this existence result and show that a Nash equilibrium of a strongly symmetric game withn
players andk actions can be computed in P ifk = O(logn/ log logn). While their related results about the
tractability of correlated equilibrium (Aumann, 1974) do not rely on identical payoff functions and hence
apply to weakly symmetric games as well, this is not the case for their results about Nash equilibria. The
aforementioned existence ofsymmetricNash equilibria does neither extend to pure equilibria, nordoes it
hold for the classes of weakly symmetric and weakly anonymous games. For example, Figure 3 on page 7
shows a weakly symmetric game without a symmetric equilibrium.

Obviously, deciding the existence of a pure equilibrium is easy if the number of candidates for such an
equilibrium, i.e., the number of action profiles, is polynomial in the size of the game. This is certainly the
case for the “naive” representation of a game as a multi-dimensional table of payoffs, but no longer holds
if the game is represented succinctly. For example, deciding the existence of a pure Nash equilibrium has
been shown to be NP-complete for games in graphical normal-form (Fischer et al., 2006; Gottlob et al.,
2005) or circuit form (Schoenebeck and Vadhan, 2006). Apartfrom these generic types, many succinct
representations are related to symmetries in that they exploit similarities between players. In congestion
games (Rosenthal, 1973), the available actions consist of sets of resources, and the payoff depends on the
number of other players that have selected the same resources (i.e., played the same action). Congestion
games always have a pure Nash equilibrium (Rosenthal, 1973), and finding one is PLS-complete in the
general case and in P in the symmetric network case (Fabrikant et al., 2004). For singleton (or simple) con-
gestion games, where only a single resource can be selected,there is a polynomial-time algorithm for finding
a social-welfare-maximizing Nash equilibrium (Ieong et al., 2005). In local-effect games (Leyton-Brown
and Tennenholtz, 2003), the payoff from an action may also depend on (a function of) the number of agents
playing “neighboring” actions. Unlike congestion games and local-effect games, action-graph games (Bhat
and Leyton-Brown, 2004; Jiang and Leyton-Brown, 2006) can encode arbitrary payoffs. For action-graph
games of bounded degree, expected payoffs and the Jacobian of the payoff function can be computed in
polynomial time. In practice, the latter forms the practical bottleneck step of the algorithm of Govindan
and Wilson (2003) for finding Nash equilibria, but the algorithm may still take exponentially many steps
to converge even for bounded degree. While closely related to the general notion of symmetry as studied
in this paper, the main idea behind all the above representations is to exploit some form of independency
among certain actions, or among players playing these actions. We do not make such assumptions in this
paper.

3 Preliminaries

In this section, we formally define essential game-theoretic concepts, introduce four notions of symmetry in
games, and state several facts concerning these notions.

3.1 Strategic Games

An accepted way to model situations of strategic interaction is by means of anormal-form game(see,e.g.,
Luce and Raiffa, 1957).
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Indistinguishability
of other players

Identical payoff
functions

Indistinguishability of
oneself and other players

weakly symmetric X – –

strongly symmetric X X –

weakly anonymous X – X

strongly anonymous X X X

Table 1: Four classes of symmetric games

Definition 1 (normal-form game) A game in normal-formis a tupleΓ = (N,(Ai)i∈N,(pi)i∈N) where N
is a set ofplayersand for each player i∈ N, Ai is a nonempty set ofactionsavailable to player i, and
pi : ("i∈NAi) → R is a function mapping each action profile of the game (i.e., combination of actions) to a
real-valuedpayoff for player i.

A combination of actionss∈ "i∈NAi is also called a profile ofpure strategies. This concept can be general-
ized tomixed strategy profiles s∈ S= "i∈NSi , by letting players randomize over their actions. We haveSi

denote the set of probability distributions over playeri’s actions, ormixed strategiesavailable to playeri.
We further writen = |N| for the number of players in a game,si for the ith strategy in profiles, ands−i for
the vector of all strategies insbut si .

3.2 Symmetries in Multi-Player Games

A central aspect of our view on symmetry is the inability to distinguish between other players. We will
therefore mainly talk about games where the set of actions isthe same for all players and writeA = A1 =
· · · = An and k = |A|, respectively, to denote this set and its cardinality. In the following definition, we
formally introduce four classes of symmetric games by considering two additional characteristics:identical
payoff functionsfor all players and the ability todistinguish oneselffrom the other players. An overview of
the different classes and their properties is given in Table1.

Definition 2 (symmetries) Let Γ = (N,(Ai)i∈N,(pi)i∈N) be a normal-form game, A a set of actions such
that Ai = A for all i ∈ N. For any permutationπ : N → N of the set of players, letπ ′ : AN → AN be the
permutation of the set of action profiles given byπ ′((a1, . . . ,an)) = (aπ(1), . . . ,aπ(n)). Γ is called

• weakly symmetricif pi(s) = pi(π ′(s)) for all s∈ AN, i ∈ N and allπ with π(i) = i,

• strongly symmetricif pi(s) = p j(π ′(s)) for all s∈ AN, i, j ∈ N and allπ with π( j) = i,

• weakly anonymousif pi(s) = pi(π ′(s)) for all s∈ AN, i ∈ N, and

• strongly anonymousif pi(s) = p j(π ′(s)) for all s∈ AN, i, j ∈ N.

Inclusions and separations of the different classes followdirectly from the definition and are illustrated in
Figure 1. Figure 2 details the relationship forn = 3 andk = 2.

π ′ is an automorphism on the set of action profiles that preserves the number of players that play a
particular action. Thus, an intuitive and convenient way todescribe a symmetric game is in terms of the
equivalence classes induced byπ ′, or by the number of players playing the different actions ineach of these
classes. We use a notion introduced by Parikh (1966) in the context of context-free languages.
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WS

SS WASA

Figure 1: Inclusion relationships between weakly symmetric (WS), weakly anonymous (WA), strongly
symmetric (SS), and strongly anonymous (SA) games

Γ1:
(·, ·, ·) (a,g,b) (a,c, · ) ( · ,e, f )
( · ,c,b) (d,e, · ) (d, ·, f ) (·, ·, ·)

Γ2:
(a,a,a) (b,c,b) (b,b,c) (e,d,d)
(c,b,b) (d,d,e) (d,e,d) ( f , f , f )

Γ3:
(·, ·, ·) (a,b,c) (a,b,c) (d,e, f )
(a,b,c) (d,e, f ) (d,e, f ) (·, ·, ·)

Γ4:
(a,a,a) (b,b,b) (b,b,b) (c,c,c)
(b,b,b) (c,c,c) (c,c,c) (d,d,d)

Figure 2: Relationships between the payoffs of weakly symmetric (Γ1), strongly symmetric (Γ2), weakly
anonymous (Γ3), and strongly anonymous (Γ4) games forn = 3 andk = 2. Players 1, 2, and 3 choose
rows, columns, and tables, respectively. As an example for the separation of the different classes,Γ1 is not
strongly symmetric ifa 6= b and not weakly anonymous ifc 6= g. Γ2 is not anonymous ifb 6= c. Γ3 is not
strongly symmetric ifa 6= c.

Definition 3 (commutative image) LetΓ = (N,(Ai)i∈N,(pi)i∈N) be a normal-form game, A a set of actions
such that Ai = A for all i ∈ N. Then, thecommutative imageof an action profile s∈ AN is defined as

#(s) = (#(a,s))a∈A where

#(a,s) = |{ i ∈ N | si = a}|.

That is, #(a,s) denotes the number of players playing actiona in action profiles, and #(s) is the vector of
these numbers for all the different actions. This definitionnaturally extends to action profiles for subsets of
the players. Since for every permutationπ ′ induced by a permutationπ of the set of players and for every
action profiles, #(s) = #(π ′(s)), the following is easily verified.

Fact 4 Let A be a set of actions. A normal-form gameΓ = (N,(Ai)i∈N,(pi)i∈N) with Ai = A for each i∈ N
is

• weakly symmetric iff pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with si = ti and#(s−i) = #(t−i),

• strongly symmetric iff pi(s) = p j(t) for all i , j ∈ N and all s, t ∈ AN with si = t j and#(s−i) = #(t− j),

• weakly anonymous iff pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with #(s) = #(t), and
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• strongly anonymous iff pi(s) = p j(t) for all i , j ∈ N and all s, t ∈ AN with #(s) = #(t).

When talking about symmetric games, we will writepi(si ,x−i) to denote the payoff of playeri under any
action profiles with #(s−i) = x−i. For anonymous games, we will writepi(x) for the payoff of playeri
under any profileswith #(s) = x. In terms of this characterization, a game isweakly symmetricif the payoff
pi(s) of player i ∈ N in action profiles depends, besides his own actionsi , only on the number #(a,s−i)
of other players playing each of the actionsa ∈ A, but not on who plays them. If two players exchange
actions, all other players’ payoffs remain the same. For two-player games, weak symmetry does not impose
any restrictions (action sets of equal size can simply be achieved by adding dummy actions for one of the
players). This may be one of the reasons why weak symmetry hasnot received much attention in the past.
A game isstrongly symmetricif it is weakly symmetric and if the payoff function is the same for all players.
Hence, if two players exchange actions, their payoffs are also exchanged while all other players’ payoffs
remain the same. Many well-known games like the Prisoner’s Dilemma, Rock-Paper-Scissors, or Chicken
are examples of (two-player) strongly symmetric games. Multi-player simple congestion games (Ieong
et al., 2005) are also strongly symmetric. In aweakly anonymousgame the payoff of each player depends
only on the number #(a,s) of players playing each of the actionsa ∈ A, including the player himself. If
two players exchange actions, the payoffs of all players remain the same. Matching Pennies is a weakly
anonymous two-player game, voting with identical weights can be seen as an example for the multi-player
case. Finally, in astrongly anonymousgame the payoff is always the same for all players and stays the same
if two players exchange actions. Strongly anonymous games are a special case of common payoff (or pure
coordination) games, in which every action profile with maximum payoff is a Nash equilibrium (no player
can gain by deviating). Obviously, every common payoff game, and hence every strongly anonymous game,
is guaranteed to possess a pure Nash equilibrium. Other games with this property, and the complexity of
finding an equilibrium in this case, have recently been investigated by Fabrikant et al. (2004).

The most basic way to specify a normal-form game is by means ofa multi-dimensional table of payoffs
for every single action profile. Certain games are succinctly representable simply because the payoff is
the same for action profiles that are equivalent according tosome equivalence relation, and needs only be
specified once. For symmetric games, this equivalence relation is given by the number of players playing
each action. The representation that lists the payoffs for every equivalence class will henceforth be referred
to as thenaive representationof a symmetric game. There are

(n+k−1
k−1

)

distributions ofn players amongk
actions. Since these are exactly the equivalence classes ofthe set of action profiles forn−1 players under
the commutative image, we have the following.

Fact 5 A weakly symmetric game can be represented using at most n·k·
(n+k−2

k−1

)

numbers, and is succinctly
representablein generalif and only if k is bounded by a constant.

In turn, the size of the game may become super-polynomial inn even for the slightest growth ofk. Never-
theless, a succinct representation may exist forcertain classesof games with a larger number of actions.

3.3 Nash Equilibrium

One of the best-known solution concepts for strategic gamesis Nash equilibrium (Nash, 1951). In a Nash
equilibrium, no player is able to increase his payoff byunilaterally changing his strategy.

Definition 6 (Nash equilibrium) A strategy profile s∈ S is called aNash equilibriumif for each player
i ∈ N and each strategy s′i ∈ Si ,

pi(s) ≥ pi((s−i ,s
′
i)).

A Nash equilibrium is calledpureif it is a pure strategy profile.
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(0,1,1) (0,0,1)

(1,1,1) (0,0,0)

(0,1,0) (0,0,0)

(0,1,0) (1,0,1)

Figure 3: A weakly symmetric game with a unique, non-symmetric Nash equilibrium at the action profile
with payoff (1,1,1). Players 1, 2, and 3 choose rows, columns, and tables, respectively. Action profiles with
the same commutative image as the equilibrium are shaded.

For general games, simply checking the equilibrium condition for each action profile takes time polynomial
in the size of their natural representation (i.e., a table of payoffs for the different action profiles). Usinga
succinct representation for games where the size of the natural representation grows exponentially in the
number of players, which is the case fork≥ 2 already, quickly renders the problem NP-complete (see,e.g.,
Fischer et al., 2006; Schoenebeck and Vadhan, 2006). In turn, the polynomial size of the naive representation
for symmetric games with a constant number of actions might suggest that finding pure Nash equilibria is
easy by a similar argument as above. This reasoning is flawed,however, since a single entry in the payoff
table corresponds to an exponential number of action profiles, and it is very well possible that only a single
one of them is a Nash equilibrium while all others are not. Theweakly symmetric game given in Figure 3
illustrates this fact.

Interestingly, the ability to distinguish oneself from theother players does not extend the expressive
power of anonymous games when players only have two actions.

Fact 7 When there are only two actions available to each player, there is an AC0-reduction from symmetric
games to anonymous games that preserves pure Nash equilibria and strong symmetry.

Let Γ = (N,{a1,a2}
n,(pi)i∈N) be a weakly symmetric game. This game induces a weakly anonymous game

Γ′ = (N,{a1,a2}
n,(p′i)i∈N) by definingp′ so that for alli ∈ N and for allx ∈ {0, . . . ,n− 1} the following

statements hold:

1. p′i(x) > p′i(x+1) if pi(a1,x) > pi(a2,x)

2. p′i(x) < p′i(x+1) if pi(a1,x) < pi(a2,x)

3. p′i(x) = p′i(x+1) if pi(a1,x) = pi(a2,x)

Depending on the original gameΓ, it may be necessary to use up ton different payoffs inΓ′, even whenΓ
contains only two. Moreover, the procedure cannot in general be extended to games where players have more
than two actions, because it can lead to cyclic preference relations. For example, the (strongly) symmetric
two-player game Rock-Paper-Scissors cannot be mapped to a corresponding anonymous game using the
above technique.

4 Solving Symmetric Games

In this section, we analyze the computational complexity associated with pure Nash equilibrium in symmet-
ric games with a constant number of actions and a growing number of actions, respectively.

4.1 Games with a Constant Number of Actions

As we have noted earlier, the potential hardness of finding pure Nash equilibria in games with succinct repre-
sentations stems from the fact that the number of action profiles that are candidates for being an equilibrium
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is exponential in the size of the representation of the game.While weakly symmetric games certainly satisfy
this property, the following lemma shows that the problem ofdeciding whether such a game possesses a
pure Nash equilibrium is nevertheless tractable.

Lemma 8 The problem of deciding whether a weakly symmetric or weaklyanonymous game with a constant
number of actions has a pure Nash equilibrium is in L.

Proof: We propose an algorithm to decide whether there exists a pureNash equilibriums with #(s) =
(wa1, . . . ,wak). Fixing a particularx = (wa1, . . . ,wak), this algorithm can be divided into two phases:

1. For eachC ⊆ A, compute the numberwC of players for whichC is the set ofpotential pure best
responses inx. We say that an actiona` ∈A is a potential best response for playeri in the commutative
imagex = (wa1, . . . ,wak) of an action profile for all players includingi if wa`

> 0 and

pi(a`,x−`) ≥ pi(am,x−`) for all am ∈ A, (1)

wherex−` = (wa1, . . . ,wa`−1,wa`
−1,wa`+1, . . . ,wak).

2. Check if the numbers computed in the first step are consistent with x, i.e., if for eachC ⊆ A and each
c∈C there exists a non-negative integerw(C,c) such that

∑
c∈C

w(C,c) = wC (2)

and

∑
C⊆A

w(C,a) = wa for all a∈ A. (3)

In other words,w(C,c) denotes the number of players that haveC ⊆ A as their set of potential best
responses inx and actually playc∈ A, and Equations 2 and 3 ensure this number is consistent with
the numberwC of players havingC as possible best responses and the numberwc of players playing
c.

Weights(w(C,c))C⊆A,c∈C exist if and only if there is an action profile in which every player plays a best
response inx, i.e., a Nash equilibrium. Furthermore, ifk is a constant,x, a constant number of values not
larger thann, can be stored using only logarithmic space. It hence suffices to show that both of the above
steps require only logarithmic space. The number of different coefficientswC equals the cardinality of 2A

and is a constant ifk is. Since each coefficient is an integer not larger thann, all of them can be stored using
logarithmic space. Their computation from the input involves checking Inequality 1 for each playeri ∈ N
and can be done using logarithmic space as well.

The problem faced in the second phase of the algorithm can alternatively be written as a homologous
flow problem in a directed (almost bipartite) graphG = (V,E) with nodesV = A∪ 2A ∪{s, t} and edges
E = {(C,a) ∈ 2A×A | a∈C}∪ ({s}×2A)∪ (A×{t}). In a homologous flow problem, both a lower bound
`(e) and an upper boundu(e) are given for the capacity of every edgee∈ E (see,e.g., Greenlaw et al.,
1995). If we let`(s,C) = u(s,C) = wC and`(a, t) = u(a, t) = wa for all C ⊆ A anda ∈ A, and`(e) = 0,
u(e) = n otherwise, then a feasible flow forG exists if and only if(wC)C⊆A and(wa)a∈A are compatible. To
see this, observe that Equations 2 and 3 constitute flow consistency conditions for all nodes butsandt, and
that the size of every feasible flow throughG must equaln. While this problem can be solved in polynomial
time in the general case ifG has a polynomial number of nodes and is in fact P-complete (Greenlaw et al.,
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s

{0}

{0,1}

{1}

0

1

t

(2,2)

(1,1)

(0,0)

(0,3)

(0,3)

(0,3)

(0,3)

(2,2)

(1,1)

Figure 4: Integer flow network used in the proof of Lemma 8, example for the game of Figure 3. Edgee is
labeled(u(e), `(e)).

1995), we will give an algorithm for our special case of the problem that requires only logarithmic space.
As an example, the flow network for the game in Figure 3 is givenin Figure 4. Edge capacities have been
computed by checking for each player if his action in the respective (shaded) action profile of Figure 3
is a best response. This particular instance can easily be solved by assigningw({0},0) = 2, w({0,1},0) = 0,
w({0,1},1) = 1, andw({1},1) = 0. In general, however, there need not be a unique solution, and the graph
may contain (undirected) cycles, preventing a direct assignment of the weights. We therefore claim that the
existence of a feasible flow means that there are particular weights(wC,c)C⊆A,c∈C satisfying an additional
property, namely that there is a sequence〈e1, . . . ,em〉 of all edgesej = (Cj ,c j) and an integeri ≤ m such
thatw(Cj ,cj ) = 0 if j ≤ i and

w(Cj ,cj ) = min((wCj − ∑
m< j

Cm=Cj

w(Cm,cm)),(wcj − ∑
m< j

cm=cj

w(Cm,cm))) (4)

otherwise. To see that this is indeed the case, consider weights satisfying Equations 2 and 3. Further assume
w.l.o.g. thatevery(undirected) cycle in the flow network contains an edgee with weight zero. Otherwise,
while the graph contains a cycle〈e1, . . . ,em〉 (which must have even length, since the graph is bipartite) such
that the weightwe1 of e1 is positive and minimal among all edges in the cycle, we modify the weightswei ,
1≤ i ≤ maccording to

wei :=

{

wei +we1 if i is even

wei −we1 if i is odd.

Observe that after this modification, (i) Equations 2 and 3 are still satisfied and (ii)we1 = 0. If now we
remove all edges with zero weight from the graph, we obtain anacyclic graph, which must have a nodev
with degree 1 if it contains at least one edge. If the latter was not the case, we could construct a sequence
〈v1, . . . ,vm〉 for arbitrarymwith (vi ,vi+1)∈ E for 1≤ i ≤m−1 andvi 6= vi+2 for 1≤ i ≤m−2. Form> |V|,
we would necessarily havevi = v j for somei 6= j, and hence a cycle. Returning to the nodev of degree one,
we can greedily assign the weight to the sole edge(v,v′) incident tov, remove(v,v′) from the graph, and
update the weights ofv andv′ accordingly. Repeating this process until no more edges remain, we obtain
all weightswC,c, C ⊆ A, c ∈ C. These weights satisfy Equations 2 and 3 if and only if all vertices in the
remaining graph (withE = /0) have weight zero.

Based on this observation, we can design a simple algorithm that enumerates all possible pairs(ē, i) of
a sequence ¯e= 〈e1, . . . ,em〉 and an indexi ≤ m and tries to assign weights in a particular order. Allej with
j ≤ i receive weight 0. If one of the nodes incident toej , j > i has degree 1 in the graph(V,{ej , . . . ,em}), wej

is set according to Equation 4. Otherwise the sequence is rejected. Ifk and hence the number of different
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pairs(ē, i) is a constant, the algorithm requires only logarithmic space. The inclusion relationship between
the different classes of symmetric games implies that the pure Nash equilibrium problem is in L for all kinds
of symmetric games with a constant number of actions, and forweakly anonymous games in particular.�

The flow network used to prove the above lemma has some rather unusual properties. On the one hand,
its structure only depends on the number of actions in the game, and is predetermined if this number is a
constant. On the other hand, edge capacities greatly dependon the number of players and on the payoff
structure of the game. Hence, while showing that the sequential execution of the above algorithm requires
only logarithmic space has been quite illustrative, the fixed structure of the flow network for a fixed number
of actions raises the question if we can do better than that. As we will see, this is indeed the case. The
following theorem states that the problem under consideration can be solved in TC0, and is in fact TC0-
complete.

Theorem 9 Deciding whether a weakly symmetric or weakly anonymous game with a constant number
of actions has a pure Nash equilibrium is TC0-complete. Hardness holds even if there is only a constant
number of payoffs and only two different payoff functions.

Proof: To showmembership, we will return to the algorithm used in the proof of Lemma 8 todecide whether
a weakly symmetric gameΓ has a pure Nash equilibrium, and show that it can be realized as a threshold
circuit with unbounded fan-in, constant depth, and a polynomial number of gates.

We start with the edge capacities computed in the first phase of the algorithm. For a fixed commutative
imagex, a particular playeri ∈ N, and a particular actiona∈ A, we can easily construct a circuit of constant
depth that checks whether Equation 1 is satisfied. To computewhetherC⊆ A is the set of best responses for
playeri underx, we simply combine the outputs of the above circuits for all actionsa∈ A into a singleAND
gate, negating the outputs of that for actionsa 6∈C. wC is then obtained by adding up the outputs of these
gates for all playersi ∈ N. Clearly, the number of gates in this circuit is polynomial if the number of actions
is a constant.

As for the the second phase of the algorithm, we construct a circuit that computes whether a feasible flow
can be found by assigning weights to edges using the algorithm of Lemma 8 and according to a particular
pair (〈e1, . . . ,em〉, i) of a sequence of all edges and an index in this sequence. When aweight is assigned
to edgeej , j > i, the weights of the nodes incident toej have to be updated by subtracting the weight just
assigned. Clearly, the new weights can be computed using a constant-depth circuit, and sincem is a constant,
these circuits can be layered. Thejth layer receives as inputs the weights before a weight has been assigned
to ej , and outputs the updated weights after this has been done. Furthermore, it outputs an additional bit that
is true if and only if the assignments up to and including thejth step have been consistent. If the latter is
true at the final layer, and the updated weights are zero, the circuit outputstrue. Finally, since there is only
a constant number of pairs(ē, i), the outputs of the above circuits can be combined into a single OR gate
to obtain a circuit with constant depth and a polynomial number of gates that decides whetherΓ has a pure
Nash equilibrium.

For hardness, we reduce the problem of deciding whether exactly` bits of a string ofm bits are 1 to
deciding the existence of a pure Nash equilibrium in a weaklyanonymous game. Hardness of the former
problem is immediate from that ofMAJORITY (see,e.g., Chandra et al., 1984). For a particularm-bit string
b, we define a gameΓ with m+ 2 players of two different types 0 and 1 and actionsA = {0,1}. The ith
player ofΓ is of type 0 or 1 if theith bit of b is 0 or 1, respectively. Playerm+1 is of type 0, playerm+2
is of type 1. The payoffsp0 and p1 for the two types are given in Figure 5, the column labeledj specifies
the payoff when exactlyj players, including the player himself, play action 1. It is easily verified that this
is an AC0 reduction. We claim thatΓ possesses a pure Nash equilibrium if and only if exactly` bits ofb are
1. We observe the following:
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p0 0 . . . `+1 . . . m+2
. . . 0 1 0 2 1 0 1 0 1 . . .

p1 0 . . . `+1 . . . m+2
. . . 1 0 1 0 1 2 0 1 0 . . .

Figure 5: Payoffs of the gameΓ used in the proof of Theorem 9

• An action profiles cannot be a Nash equilibrium ofΓ if #(1,s) 6= `+ 1. In this case, the players of
one of the two types get a higher payoff at both #(1,s)−1 and #(1,s)+ 1 (or at one of these in case
#(1,s) = 0 and #(1,s) = m+2). Since by construction we have at least one player of each type, there
always exists a player who can change his action to get a higher payoff.

• If there are`+ 1 players of type 1, the action profile where all players of type 0 play action 0 and
all players of type 1 play action 1 is a Nash equilibrium. Noneof the players of type 0 can gain by
changing his action to 1, and none of them can change his action to 0 (because all of them already
play 0). A symmetric condition holds for players of type 1.

• In turn, if the number of players of type 1 does not equal`+1, an action profileswith #(s,1) = `+1
cannot be a Nash equilibrium. In this case, there must be (i) aplayer of type 0 playing action 1 ins,
or (ii) a player of type 1 playing 0. This player can change hisaction to get a higher payoff.

Hence, a pure Nash equilibrium exists if and only if there are`+1 players of type 1,i.e., if and only if b has
` 1-bits. This completes the reduction. �

In contrast to weakly symmetric games, ifs is a Nash equilibrium of astrongly symmetric game, so
are allt satisfying #(t) = #(s). This is due to the fact that the payoff functions of all players, and thus the
situation of all players playing the same actiona ∈ A, is identical, as would be the situation of any other
player exchanging actions with someone playinga. We exploit this property to show that deciding the
existence of a Nash equilibrium in strongly symmetric gameswith a constant number of actions is strictly
easier than for weakly symmetric or weakly anonymous games.

Theorem 10 The problem of deciding whether a strongly symmetric game with a constant number of actions
has a pure Nash equilibrium is in AC0.

Proof: Like with weakly symmetric games, an action profiles is a Nash equilibrium of a strongly symmetric
game if and only if, for alli ∈ N, si is a best response to #(s−i), i.e., if

pi(si ,#(s−i)) ≥ pi(a,#(s−i)) for all a∈ A. (5)

For a particular playeri ∈ N and for constantk, checking this inequality requires only a constant number of
comparisons and can be done using a circuit of constant depthand polynomial size (see,e.g., Chandra et al.,
1984). When it comes to checking Equation 5 for the differentplayers, the observation about action profiles
with identical commutative images affords us a considerable computational advantage as compared to, say,
weakly symmetric or weakly anonymous games. More precisely, we only have to check if Equation 5 is
satisfied for a playerplaying a certain action, of which there are at mostk. Again, this can be done using a
circuit of constant depth and polynomial size ifk is a constant.

Finally, to decide whether gameΓ has a pure Nash equilibrium, we have to check Equation 5 for the
different values of #(s) for s∈ AN. If k is constant, there are only polynomially many of these, so the
complete check requires only polynomial size and constant depth. �
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This proof provides a nice illustration of the fact that every strongly symmetric game with two actions
possesses a pure Nash equilibrium, as recently shown by Cheng et al. (2004). In this case,pi depends only on
playeri’s action (0 or 1) and on the number of other players playing action 1. A pure Nash equilibrium exists
if for somem neither the players playing 0 (who seem players playing 1) nor the players playing 1 (who
seem−1 other players playing 1) have an incentive to deviate,i.e., pi(0,m) ≥ pi(1,m) andpi(1,m−1) ≥
pi(0,m−1). Form= 0 andm= n, one of the conditions is trivially satisfied, because thereare no players
playing 1 or 0, respectively. It is easily verified that at least one suchm must exist. Alternatively, the
existence of pure Nash equilibria in strongly symmetric games with two actions can be obtained as an
immediate consequence of Fact 7. We can transform every strongly symmetric game with two actions into
a strongly anonymous game with the same set of equilibria, and every strongly anonymous is guaranteed to
have at least one pure equilibrium.

As we have already said, stronglyanonymousgames always possess a pure Nash equilibrium. We
proceed to show that we can find one that maximizes the sum of payoffs of all players in AC0.

Theorem 11 The problem of finding a social-welfare-maximizing pure Nash equilibrium of a strongly
anonymous game with a constant number of actions is in AC0.

Proof: Since strongly anonymous games belong to the class of commonpayoff games, any action pro-
file with maximum payoff (for all players) is a social-welfare-maximizing Nash equilibrium (and Pareto-
dominates any other strategy profile). Finding such an equilibrium is thus equivalent to finding the maximum
of

(n+k−2
k−1

)

integers. The exact number is irrelevant as long as it is polynomial in the size of the input which,
according to Fact 5, is certainly the case ifk is bounded by a constant. Chandra et al. (1984) have shown that
the maximum ofm m-bit binary numbers can be computed by an unbounded fan-in, constant-depth Boolean
circuit of size polynomial inm. Sincem is of course polynomial in the size of the input, the size of this
circuit is as well. �

4.2 Games with a Growing Number of Actions

The proofs we have seen in the previous section rely on the fact that for constantk the naive representation of
a symmetric game (i.e., in terms of payoff tables) is computationally equivalent to any kind of polynomially
computable payoff function because we can transform the latter representation into the former by means of a
log-space reduction. This is no longer the case for unbounded k, because the size of the naive representation
grows exponentially inn. However, a succinct representation of the payoff function(e.g., a Boolean circuit)
might exist for certain classes of games.

We will now show that deciding the existence of a pure Nash equilibrium in weakly and strongly sym-
metric and weakly anonymous games becomes NP-hard if the number of actions grows inn. For strongly
anonymous games, which always have a Nash equilibrium, the associated search problem will be shown
to be PLS-hard. In the following, we will only consider gameswhere (i) the payoffto all playerscan be
computed in polynomial time and (ii) a single player can check in polynomial time whether a particular
action is a best response to a given action profile for the other players. Under this assumption, which is
quite reasonable for “natural” games, we will be able to obtain membership in NP or PLS, respectively. All
hardnessresults hold irrespective of this assumption. While there certainly are meaningful games with an
exponential number of players or actions, the complexity inthis case mainly stems from the sheer size of
the game rather than the actual problem of finding a Nash equilibrium.

For the following proofs, recall that circuit satisfiability (CSAT), i.e., deciding whether a Boolean circuit
has a satisfying assignment, is NP-complete (see,e.g., Papadimitriou, 1994). We provide a reduction from
CSAT to the problem of deciding the existence of a pure Nash equilibrium in a special class of games. For
a particular circuitC with inputs M = {1, . . . ,m}, we define a gameΓ with playersN = M and actions
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A = {a0
i ,a

1
i | i ∈ M }. An action profiles of Γ where #(a0

i ,s)+ #(a1
i ,s) = 1 for all i ∈ M, i.e., one where

exactly one action of each paira0
i , a1

i is played, directly corresponds to an assignmentc of C , the ith bit ci

of this assignment beingj ∈ {0,1} if a j
i is played. We can thus distinguish between the action profiles of

Γ corresponding to a satisfying assignment ofC , those corresponding to a non-satisfying assignment, and
those not corresponding to an assignment at all.

Theorem 12 Deciding whether a weakly anonymous game has a pure Nash equilibrium is NP-complete,
even if the number of actions is linear in the number of players and there is only a constant number of
different payoffs.

Proof: If the number of players and actions is polynomial in the input size, and if the payoff function is
computable in polynomial time,membershipin NP is immediate. We can simply guess an action profile and
verify that it satisfies the equilibrium condition.

To showhardness, we reduceCSAT to the problem at hand by mapping a particular circuitC with inputs
M = {1, . . . ,m} to a gameΓ with playersN = M, actionsA = {a0

i ,a
1
i | i ∈ M}, and payoff functionspi as

follows:

• If scorresponds to asatisfyingassignment ofC , we letpi(s) = 2 for all i ∈ N.

• If scorresponds to an assignment that does not satisfyC , we let

– p1(s) = 2, p2(s) = 1 if |{ i ∈ M | #(a0
i ,s) > 0}| is even,i.e., an even number of 0-actions is

played by at least one player, and

– p1(s) = 1, p2(s) = 2 if this number is odd.

– For all i ∈ N\{1,2}, we letpi(s) = 2.

• If sdoes not correspond to an assignment ofC , we letpi(s) = 1 if #(a0
i ,s)+#(a1

i ,s) > 0, andpi(s) = 0
otherwise.

We observe the following:

• Γ (e.g., Boolean circuits that computepi) can be constructed fromC in polynomial time.

• For all of the above cases, the payoff of playeri only depends on the number of players playing certain
actions. If two players exchange actions, the payoff to all other players remains the same. Hence,Γ
is weakly anonymous.

• Clearly, every action profiles corresponding to a satisfying assignment ofC is a Nash equilibrium,
because in this case all players receive the maximum payoff of 2.

• In any other case,s cannot be a Nash equilibrium. Ifs corresponds to a non-satisfying assignment
of C , either player 1 or player 2 can change his action to get a higher payoff, depending on whether
the number of actionsa0

i played by at least one player is even or odd. Ifs does not correspond to an
assignment ofC , there existsi ∈ M such that #(a0

i ,s)+#(a1
i ,s) = 0, so playeri can change to either

a0
i or a1

i to get a higher payoff.

Hence, there is a direct correspondence between satisfyingassignments ofC and Nash equilibria ofΓ. This
completes the reduction. �

Theorem 13 Deciding whether a strongly symmetric game has a pure Nash equilibrium is NP-complete,
even if the number of actions is linear in the number of players and there is only a constant number of
different payoffs.
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Proof: Under the same conditions as in the previous theorem,membershipin NP is immediate.
Forhardness, we again provide a reduction fromCSAT, mapping a circuitC with inputsM = {1, . . . ,m}

to a gameΓ with playersN = M, actionsA = {a0
i ,a

1
i | i ∈ M}, and payoff functionspi as follows:

• If scorresponds to a satisfying assignment ofC , we letpi(s) = 3 for all i ∈ N.

• If sdoes not correspond to a satisfying assignment ofC , we let

– pi(s) = 2 if si = a1
j for some j ∈ M, #(a0

j ,s) > 0, and #(a1
j ,s) > 0,

– pi(s) = 1 if si = a0
j for some j ∈ M, #(a0

j ,s) > 0, and #(a1
j ,s) = 0, and

– pi(s) = 0 otherwise.

We observe the following:

• Γ (e.g., Boolean circuits that computepi) can be constructed fromC in polynomial time.

• For all of the above cases, the payoff of playeri only depends on his own action and on the num-
ber of players playing certain other actions. If two playersexchange actions, their payoffs are also
exchanged. Hence,Γ is strongly symmetric.

• Clearly, any action profile corresponding to a satisfying assignment ofC is a Nash equilibrium, be-
cause in this case all players receive the maximum payoff of 3. In turn, if s does not correspond to a
satisfying assignment, we have one of two cases, in both of which s is not a Nash equilibrium:

– If #(a0
j ,s) = 1 for all j ∈M, playeri ∈N can change to somea1

m such thatsi 6= a0
m to get a higher

payoff.

– Otherwise, there has to be some playeri ∈N who gets payoff 0, and, by the pigeonhole principle,
somej ∈ M such that #(a0

j ,s−i) = #(a1
j ,s−i) = 0 . Then, playeri can change toa0

j to get a higher
payoff.

Again, there is a direct correspondence between Nash equilibria ofΓ and satisfying assignments ofC . This
completes the reduction. �

By each of the previous two theorems and by the inclusion relationships between the different classes of
symmetric games, we also have the following.

Corollary 14 Deciding whether a weakly symmetric game has a pure Nash equilibrium is NP-complete,
even if the number of actions is linear in the number of players and there is only a constant number of
different payoffs. �

In the proofs of Theorems 12 and 13, every satisfying assignment of circuitC corresponds to a certain
number of pure Nash equilibria of gameΓ. This allows us to show that counting the number of Nash
equilibria in these games is hard.

Corollary 15 For weakly symmetric, weakly anonymous, and strongly symmetric games, counting the num-
ber of pure Nash equilibria is #P-complete, even if the number of actions is linear in the number of players
and there is only a constant number of different payoffs.
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Proof: Recall that in the proof of Theorem 12, actions of the gameΓ are identified with inputs of the
Boolean circuitC . As a direct consequence of anonymity or symmetry, it does not matter which player
plays a particular action to assigns a value to the corresponding gate. Every satisfying assignment ofC thus
corresponds ton! equilibria of Γ, so the number of satisfying assignments can be determined by counting
the number of Nash equilibria, of which there are at most 2nn!, and dividing this number byn!. Division
of two m-bit binary numbers can be done using a circuit with bounded fan-in and depthO(logm) (Beame
et al., 1986). Form= log(2nn!) = O(n2), we have depthO(logn2) = O(logn), so the above division can
be carried out in NC1. We have thus found a reduction of the problem #SAT of counting the number
of satisfying assignments ofC , which is #P-complete (see,e.g., Papadimitriou, 1994), to the problem of
counting the Nash equilibria ofΓ. The same line of reasoning applies to the proof of Theorem 13. By
Corollary 14, #P-completeness extends to weakly symmetricgames. �

As we have already outlined above, every strongly anonymousgame possesses a pure Nash equilibrium.
Theorem 11 states that finding even a social-welfare-maximizing one is very easy as long as the number of
actions is bounded by a constant. If now the number of actionsis growing but polynomial in the size of
the input, an assumption we have made throughout the paper, we can start at an arbitrary action profile and
check in polynomial time whether some player can change his action to increase the (common) payoff. If
this is not the case, we have found an equilibrium. Otherwise, we can repeat the process for the new profile,
resulting in a procedure calledbest-response dynamicsin game theory. Since the payoff strictly increases
in every step, we are guaranteed to find a Nash equilibrium in polynomial time if the number of different
payoffs is polynomial. In turn, we will show that, given a strongly anonymous game with a growing number
of actions and an exponential number of different payoffs, finding a Nash equilibrium is at least as hard as
finding alocally optimalsolution to an NP-hard optimization problem. For this, we formally introduce the
class of search problems for which a solution is guaranteed to exist by a local optimality argument.

Definition 16 (local search, PLS)A local search problemis given by (i) a setI of instances, (ii) a set
F (x) of feasible solutions for each x∈ I , (iii) an integer measureµ(S,x) for each S∈ F (x), and (iv) a
setN (S,x) of neighboring solutions for each S∈ F (x). A solution islocally optimal if it does not have
a strictly better neighbor,i.e., one with a higher or lower measure depending on the kind of optimization
problem.

A local search problem is in the class PLS ofpolynomial local searchproblems (Johnson et al., 1988)
if for every x∈ I there exist polynomial time algorithms for (i) computing aninitial feasible solution in
F (x), (ii) computing the measureµ(S,x) of a solution S∈F , and (iii) determining that S is locally optimal
or finding a better solution inN (S,x).

A problem P in PLS is PLS-reducibleto another problem Q in PLS if there exist polynomial time com-
putable functionsΦ and Ψ mapping (i) instances x of P to instancesΦ(x) of Q and (ii) solutions S of an
instanceΦ(x) of Q to solutionsΨ(S,x) of the corresponding instance x of P such that locally optimal so-
lutions are mapped to locally optimal solutions. A PLS reduction from P to Q is calledtight (Scḧaffer and
Yannakakis, 1991) if for any instance x of P there exists a setR ⊆ F (Φ(x)) with the following properties:

1. R contains all local optima ofΦ(x).

2. For every p∈ F (x), a solution q∈ R satisfyingΨ(q,x) = p can be computed in polynomial time.

3. Consider q0, . . . ,q` ∈ F (Φ(x)) such that q0,q` ∈ R, qi 6∈ R for all 0 < i < `, qi+1 ∈ N (qi ,Φ(x))
for all i < `, and µ(qi) > µ(q j) if i > j. Let p= Ψ(q0,x), p′ = Ψ(q`). Then, either p= p′ or
p′ ∈ N (p,x).
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Theorem 17 The problem of finding a pure Nash equilibrium in a strongly anonymous game is PLS-
complete, even if the number of actions is linear in the number of players.

Proof: Neighborhood among action profiles is given by a single player changing his action. If the number
of players and actions is polynomial in the input size, and ifthe payoff function is computable in polynomial
time,membershipin PLS is immediate.

For hardness, consider a Boolean circuitC with inputs M = {1, . . . ,m} and ` outputs. Finding an
assignment such that the output interpreted as an`-bit binary number is a local maximum under the FLIP
neighborhood (i.e., changing a single input bit) is known to be PLS-complete (see Johnson et al., 1988;
Schäffer and Yannakakis, 1991). We provide a PLS reductionto the problem of finding a Nash equilibrium
in a strongly anonymous game by mapping a particular circuitC as described above to a gameΓ with
playersN = M, actionsA = {a0

i ,a
1
i | i ∈ M }, and a (common) payoff functionp as follows:

• If s corresponds to an assignmentc of C , we let p(s) = n+C (c), whereC (c) denotes the output of
C for input c, interpreted as a binary number.

• Otherwise, we letp(s) = |{ i ∈ M | #(a0
i ,s)+ #(a1

i ,s) > 0}|. That is, the payoff is at mostn−1 and
decreases in the minimum number of players that would have tochange their action in order to make
scorrespond to an assignment ofC .

We observe the following:

• Obviously,Γ is a common payoff game. Sincep is invariant under any permutation of the players in
both of the above cases,Γ is strongly anonymous.

• Γ (e.g., a Boolean circuit that computesp) can be constructed fromC in polynomial time. Hence,
there exists a polynomial time computable function that maps instances of FLIP to instances of the
problem under consideration.

• An action profilea that does not correspond to a valid assignment ofC cannot be a Nash equilibrium
of Γ. In this case there always existi, j ∈ M such thata0

i anda1
i are played by more than one player

while no one playsa0
j or a1

j . If one of the players playing the former changes to the latter, he gets a
higher payoff (actually, all players do).

• There is a direct correspondence between the FLIP neighborhood ofC and a single player changing
betweena0

i anda1
i for somei ∈M. Furthermore, changing to an action profile that does not correspond

to an assignment ofC will get the player strictly less payoff. Thus, there is a direct correspondence
between Nash equilibria ofΓ and local maxima ofC under the FLIP neighborhood. Obviously,
the assignment corresponding to an action profile can be computed in polynomial time (if such an
assignment exists). The conditions of Definition 16 do not require that we map solutions ofΓ that are
not locally optimal to solutions ofC that are not locally optimal. This means that action profilesnot
corresponding to an assignment can simply be mapped to an arbitrary assignment.

We observe that this satisfies the properties of a PLS reduction. �

Implicit in the definition of PLS is astandard algorithmfor finding a locally optimal solution for a given
input x∈ I : start with an arbitrary feasible solutionS∈ F (x) and repeatedly find a strictly better neighbor
until a locally optimal solutionT ∈ F (x) has been found. Thestandard algorithm problemcan be phrased
as follows: givenx, find the locally optimal solutionT output by the standard algorithm on inputx. By the
above proof, we can draw some additional conclusions about the worst-case running time of the standard
algorithm and about the hardness of the standard algorithm problem.
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Corollary 18 The standard algorithm for finding Nash equilibria in strongly anonymous games has an
exponential worst-case running time. The standard algorithm problem is NP-hard.

Proof: To show tightness of the reduction used in the proof of the previous theorem, chooseR to be the set
of actions profiles ofΓ that correspond to an assignment ofC . Obviously,R contains all optimal solutions,
and a payoff profile corresponding to a particular assignment can be computed in polynomial time. The third
condition is trivially satisfied because the measure of any solution insideR is strictly greater than that of any
solution outside ofR. The corollary then follows directly from Lemma 3.3 in (Sch¨affer and Yannakakis,
1991). �

By a slight modification of the proof of Theorem 17, PLS-completeness, exponential worst-case running
time of the standard algorithm, and NP-hardness of the standard algorithm problem can also be shown for
general (i.e., not necessarily symmetric) common payoff games withk = 2. This fact nicely illustrates the
influence of symmetry on the hardness of finding (or deciding the existence of) a Nash equilibrium.

5 Threshold Symmetries

In order to extend the basic concept of symmetry as the indistinguishability of players, we will now consider
games where the players cannot even observe the exact numberof players playing a certain action, but only
whether this number reaches certainthresholds. Let Γ = (N,(Ai)i∈N,(pi)i∈N) be a normal-form game andA
a set of actions such thatAi = A for all i ∈ N. ForT ⊆ {1, . . . ,n}, let ∼T⊆ AN ×AN be defined as follows:
s∼T t if for all a ∈ A and allx ∈ T, #(a,s) < x if and only if #(a, t) < x. ∼T naturally extends to action
profiles for subsets ofN. The following is easily verified.

Fact 19 For any T⊆ {1, . . . ,n}, ∼T is an equivalence relation on the set AM of action profiles for players
M ⊆ N.

Based on∼T , we can give a more general version of Definition 2.

Definition 20 (threshold symmetry) Let Γ = (N,(Ai)i∈N,(pi)i∈N) be a normal-form game, A a set of ac-
tions such that Ai = A for all i ∈ N. Let T⊆ {1, . . . ,n}. Γ is called

• weaklyT-symmetricif pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with si = ti and s−i ∼T t−i,

• stronglyT-symmetricif pi(s) = p j(t) for all i , j ∈ N and all s, t ∈ AN with si = t j and s−i ∼T t− j ,

• weaklyT-anonymousif pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with s∼T t, and

• stronglyT-anonymousif pi(s) = p j(t) for all i , j ∈ N and all s, t ∈ AN with s∼T t.

For T = {1, . . . ,n}, these classes are equivalent to those of Definition 2. This is immediate from Fact 4.
Moreover, we obtainBoolean symmetry, where payoffs only depends on thesupportof an action profile
(i.e., the actions that are played by at least one player), forT = {1}. In general, we call a gamethreshold
symmetric(for one of the above classes) if it isT-symmetric for someT (and the corresponding class).

Obviously, the number of payoffs that need to be written downfor each player to specify a general
weakly T-symmetric game is exactly the number of equivalence classes of ∼T for action profiles of the
other players.
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Fact 21 A weakly T-symmetric game can be represented using at most n· k · |An−1/ ∼T | numbers, where
X/∼ denotes the quotient set of set X by equivalence relation∼. For Boolean weak symmetry, the number of
equivalence classes equals the number of k-bit binary numbers where at least one bit is1, i.e., 2k−1. More
generally, there cannot be more than(|T|+1)k equivalence classes if|T| is bounded by a constant (since for
every action, the number of players playing this action mustbe between two thresholds), while for T= {n}
there are as few as k+ 1. Hence, any T-symmetric game with constant|T| is succinctly representable if
k = O(logn).

Theorem 22 For threshold symmetric games with k= O(logn) and a constant number of thresholds, de-
ciding the existence of a Nash equilibrium is in P.

Proof: Like in the proof of Lemma 8, we provide an algorithm that checks whether there is a Nash equilib-
rium in a particular quotient setAN/∼T of the set of payoff profiles. Since fork = O(logn) and|T|= O(1),
the cardinality ofAN/∼T is polynomial inn, it suffices to show that the algorithm requires only polynomial
time for every such set.

For a particular elementX ∈ AN/ ∼T , the algorithm is again divided into two phases: (i) computing the
set of best responses for each player underX, and (ii) checking whether there is a particular action profile
s∈ X where each player plays a best response.

In the first phase, and unlike the caseT = {1, . . . ,n} covered by Lemma 8, the actiona played by player
i ∈ N may or may not yield a different element ofAN\{i}/ ∼T against whicha should be a best response.
Instead of just looking for best responses under elements ofTN, we thus look for best responses under those
of UN, whereU = {u≤ n | u∈ T or (u−1) ∈ T }. Since the cardinalities of bothUN and of the set possible
best responses is polynomial if|T| = O(1) andk = O(logn), the first phase requires only polynomial time.

As for the second phase, we recall that it can be reduced to deciding the existence of a feasible flow
in a homologous flow network withO(2k) nodes. Since this problem is in P if the number of nodes is
polynomial (see,e.g., Greenlaw et al., 1995), observing that 2k is polynomial ifk = O(logn) completes the
proof. �

In turn, it is easily verified that all the games defined in the proofs of Theorems 12, 13, and 17 are
Boolean. Action profiles corresponding to an assignment of acircuit trivially satisfy the conditions of
Definition 20, since each action is played by either zero or one players. For all other action profiles, the
conditions have to be checked individually. In the proof of Theorem 12, for example, the payoff of playeri
only depends on whethera0

i or a1
i is played by at least one player. We thus have the following corollary.

Corollary 23 Deciding the existence of a pure Nash equilibrium is NP-complete for threshold weakly
symmetric, threshold weakly anonymous, and threshold strongly symmetric games, even if thresholds are
Boolean, the number of actions is linear in the number of players, and there is only a constant number of
different payoffs. For the same classes, counting the number of pure Nash equilibria is #P-complete.

For threshold strongly anonymous games, finding a pure Nash equilibrium is PLS-complete, even if
thresholds are Boolean. �

6 Conclusion and Future Work

In this paper, we have introduced four notions of symmetry instrategic multi-player games and investigated
the computational complexity of finding pure Nash equilibria. This problem has been shown tractable for
games with a constant number of actions, but intractable if the number of actions is linear in the number of
players. It is worth noting that, for games with a constant number of actions, the Nash equilibrium problem
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k = O(1) k = O(n)

weakly symmetric
TC0-complete

NP-completeweakly anonymous

strongly symmetric
in AC0

strongly anonymous PLS-complete

Table 2: Complexity of Nash equilibrium in symmetric games

happens to lie in NC1 for all types of symmetry and is thus open to parallel computation. For games in
which the number of actions grows slowly (e.g., logarithmically) in the number of players, the complexity
remains open. The main results are summarized in Table 2.

In future work, it would further be interesting to investigate the notion of aplayer typeto obtain efficient
algorithms for more general classes of games. For example, games where indistinguishability holds only
for players of the same type can be obtained by restricting Definition 2 to permutations that map players
from a certain subset to players of the same set. We conjecture that using the algorithm of Lemma 8,
pure Nash equilibria can still be found in polynomial time ifthe number of player types is constant. A
different notion, such that players of the same type have identical payoff functions, does not seem to provide
additional structure. As we have already shown, only two different payoff functions suffice to make the
Nash equilibrium problem TC0-hard for a constant number of actions and NP-hard for a growing number
of actions. More generally, one might investigate games where payoffs are invariant under particular sets
of permutations. Von Neumann and Morgenstern (1947) regardthe number of permutations under which
the payoffs of a game are invariant as a measure for the degreeof symmetry. The question is in how far the
computational complexity of solving a game depends on the degree of symmetry.
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