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Abstract

Boolean satisfiability problems are an important benchmarkfor questions about complexity, algo-
rithms, heuristics and threshold phenomena. Recent work onheuristics, and the satisfiability threshold
has centered around the structure and connectivity of the solution space. Motivated by this work, we
study structural and connectivity-related properties of the space of solutions of Boolean satisfiability
problems and establish various dichotomies in Schaefer’s framework.

On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be
induced by the solutions of Boolean formulas, as well as for the diameter of the connected components
of the solution space. On the computational side, we establish dichotomy theorems for the complexity
of the connectivity andst-connectivity questions for the graph of solutions of Boolean formulas. Our
results assert that the intractable side of the computational dichotomies is PSPACE-complete, while the
tractable side - which includes but is not limited to all problems with polynomial time algorithms for
satisfiability - is in P for thest-connectivity question, and in coNP for the connectivity question. The
diameter of components can be exponential for the PSPACE-complete cases, whereas in all other cases
it is linear; thus, small diameter and tractability of the connectivity problems are remarkably aligned.
The crux of our results is an expressibility theorem showingthat in the tractable cases, the subgraphs
induced by the solution space possess certain good structural properties, whereas in the intractable cases,
the subgraphs can be arbitrary.

1 Introduction

In 1978, T.J. Schaefer [22] introduced a rich framework for expressing variants of Boolean satisfiability and
proved a remarkabledichotomy theorem: the satisfiability problem is in P for certain classes of Boolean
formulas, while it is NP-complete for all other classes in the framework. In a single stroke, this result
pinpoints the computational complexity of all well-known variants of SAT, such as3-SAT, HORN 3-SAT,
NOT-ALL -EQUAL 3-SAT, and1-IN-3 SAT. Schaefer’s work paved the way for a series of investigations
establishing dichotomies for several aspects of satisfiability, including optimization [6, 8, 14], counting [7],
inverse satisfiability [13], minimal satisfiability [15],3-valued satisfiability [5] and propositional abduction
[9].
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Our aim in this paper is to carry out a comprehensive exploration of a different aspect of Boolean
satisfiability, namely, theconnectivity properties of the space of solutions of Booleanformulas. The so-
lutions (satisfying assignments) of a givenn-variable Boolean formulaϕ induce a subgraphG(ϕ) of the
n-dimensional hypercube. Thus, the following two decision problems, called theconnectivity problemand
thest-connectivity problem, arise naturally: (i) Given a Boolean formulaϕ, isG(ϕ) connected? (ii) Given
a Boolean formulaϕ and two solutionss andt of ϕ, is there a path froms to t in G(ϕ)?

We believe that connectivity properties of Boolean satisfiability merit study in their own right, as they
shed light on the structure of the solution space of Boolean formulas. Moreover, in recent years the structure
of the space of solutions for random instances has been the main consideration at the basis of both algorithms
for and mathematical analysis of the satisfiability problem[2, 21, 20, 18]. It has been conjectured for 3-
SAT [20] and proved for 8-SAT [19, 3], that the solution space fractures as one approachesthecritical region
from below. This apparently leads to performance deterioration of the standard satisfiability algorithms,
such as WalkSAT [23] and DPLL [1]. It is also the main consideration behind the design of the survey
propagation algorithm, which has far superior performanceon random instances of satisfiability [20]. This
body of work has served as a motivation to us for pursuing the investigation reported here. While there has
been an intensive study of the structure of the solution space of Boolean satisfiability problems for random
instances, our work seems to be the first to explore this issuefrom a worst-case viewpoint.

Our first main result is a dichotomy theorem for thest-connectivity problem. This result reveals that the
tractable side is much more generous than the tractable sidefor satisfiability, while the intractable side is
PSPACE-complete. Specifically, Schaefer showed that the satisfiability problem is solvable in polynomial
time precisely for formulas built from Boolean relations all of which are bijunctive, or all of which are Horn,
or all of which are dual Horn, or all of which are affine. We identify new classes of Boolean relations, called
tight relations, that properly contain the classes of bijunctive, Horn, dual Horn, and affine relations. We
show thatst-connectivity is solvable in linear time for formulas builtfrom tight relations, and PSPACE-
complete in all other cases. Our second main result is a dichotomy theorem for the connectivity problem: it
is in coNP for formulas built from tight relations, and PSPACE-complete in all other cases.

In addition to these two complexity-theoretic dichotomies, we establish a structural dichotomy theorem
for the diameter of the connected components of the solutionspace of Boolean formulas. This result asserts
that, in the PSPACE-complete cases, the diameter of the connected components can be exponential, but in all
other cases it is linear. Thus, small diameter and tractability of the st-connectivity problem are remarkably
aligned.

To establish these results, the main challenge is to show that for non-tight relations, both the connec-
tivity problem and thest-connectivity problem are PSPACE-hard. In Schaefer’s Dichotomy Theorem, NP-
hardness of satisfiability was a consequence of anexpressibilitytheorem, which asserted that every Boolean
relation can be obtained as a projection over a formula builtfrom clauses in the “hard” relations. Schae-
fer’s notion of expressibility is inadequate for our problem. Instead, we introduce and work with a delicate
and stricter notion of expressibility, which we callfaithful expressibility. Intuitively, faithful expressibility
means that, in addition to definability via a projection, thespace of witnesses of the existential quantifiers
in the projection has certain strong connectivity properties that allow us to capture the graph structure of the
relation that is being defined. It should be noted that Schaefer’s Dichotomy Theorem can also be proved
using a Galois connection and Post’s celebrated classification of the lattice of Boolean clones (see [4]). This
method, however, does not appear to apply to connectivity, as the boundaries discovered here cut across
Boolean clones. Thus, the use of faithful expressibility orsome other refined definability technique seems
unavoidable.

The first step towards proving PSPACE-completeness is to show that both connectivity and st-connectivity
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are hard for 3-CNF formulae; this is proved by a reduction from a generic PSPACE computation. Next,
we identify the simplest relations that are not tight: theseare ternary relations whose graph is a path of
length 4 between assignments at Hamming distance2. We show that these paths can faithfully express
all 3-CNF clauses. The crux of our hardness result is anexpressibilitytheorem to the effect that one can
faithfully express such a path from any set of relations which is not tight.

Finally, we show that alltight relations have “good” structural properties. Specifically, in a tight relation
every component has a unique minimum element, or every component has a unique maximum element,
or the Hamming distance coincides with the shortest-path distance in the relation. These properties are
inherited by every formula built from tight relations, and yield both small diameter and linear algorithms for
st-connectivity.

Our original hope was that tractability results for connectivity could conceivably inform heuristic al-
gorithms for satisfiability and enhance their effectiveness. In this context, our findings areprima facie
negative: we show that when satisfiability is intractable, then connectivity is also intractable. But our results
do contain a glimmer of hope: there are broad classes of intractable satisfiability problems, those built from
tight relations, with polynomialst-connectivity and small diameter. It would be interesting to investigate if
these properties make random instances built from tight relations easier for WalkSAT and similar heuristics,
and if so, whether such heuristics are amenable to rigorous analysis.

An extended abstract of this paper appears in ICALP’06 [10].

2 Basic Concepts and Statements of Results

A CNF formula is a Boolean formula of the formC1∧· · ·∧Cn, where eachCi is a clause, i.e., a disjunction
of literals. If k is a positive integer, then ak-CNF formula is a CNF formulaC1 ∧ · · · ∧ Cn in which each
clauseCi is a disjunction of at mostk literals.

A logical relationR is a non-empty subset of{0, 1}k , for somek ≥ 1; k is thearity of R. Let S be
a finite set of logical relations. A CNF(S)-formula over a set of variablesV = {x1, . . . , xn} is a finite
conjunctionC1 ∧ · · · ∧ Cn of clauses built using relations fromS, variables fromV , and the constants0
and1; this means that eachCi is an expression of the formR(ξ1, . . . , ξk), whereR ∈ S is a relation of
arity k, and eachξj is a variable inV or one of the constants0, 1. A solutionof a CNF(S)-formulaϕ is
an assignments = (a1, . . . , an) of Boolean values to the variables that makes every clause ofϕ true. A
CNF(S)-formula issatisfiableif it has at least one solution.

The satisfiability problemSAT(S) associated with a finite setS of logical relations asks: given a
CNF(S)-formula ϕ, is it satisfiable? All well known restrictions of Boolean satisfiability, such as3-
SAT, NOT-ALL -EQUAL 3-SAT, and POSITIVE 1-IN-3 SAT, can be cast as SAT(S) problems, for a suit-
able choice ofS. For instance, letR0 = {0, 1}3\{000}, R1 = {0, 1}3\{100}, R2 = {0, 1}3\{110},
R3 = {0, 1}3\{111}. Then3-SAT is the problem SAT({R0, R1, R2, R3}). Similarly, POSITIVE 1-IN-3SAT

is SAT({R1/3}), whereR1/3 = {100, 010, 001}.
Schaefer [22] identified the complexity ofeverysatisfiability problem SAT(S), whereS ranges over all

finite sets of logical relations. To state Schaefer’s main result, we need to define some basic concepts.

Definition 1. LetR be a logical relation.

1. R is bijunctive if it is the set of solutions of a 2-CNF formula.

2. R is Horn if it is the set of solutions of a Horn formula, where a Horn formula is aCNF formula such
that each conjunct has at most one positive literal.
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3. R is dual Hornif it is the set of solutions of a dual Horn formula, where a dual Horn formula is a
CNF formula such that each conjunct has at most one negative literal.

4. R is affine if it is the set of solutions of a system of linear equations over Z2.

Each of these types of logical relations can be characterized in terms ofclosureproperties [22]. A
relationR is bijunctive if and only if it is closed under themajorityoperation; this means that ifa,b, c ∈ R,
thenmaj(a,b, c) ∈ R, wheremaj(a,b, c) is the vector whosei-th bit is the majority ofai, bi, ci. A relation
R is Horn if and only if it is closed under∨; this means that ifa,b ∈ R, thena ∨ b ∈ R, where,a ∨ b is
the vector whosei-th bit isai ∨ bi. Similarly,R is dual Horn if and only if it is closed under∧. Finally,R is
affine if and only if it is closed undera⊕ b⊕ c. Thus there is a polynomial-time algorithm (in fact, a cubic
algorithm) to test if a relation is Schaefer.

Definition 2. A setS of logical relations isSchaeferif at least one of the following conditions holds:

1. Every relation inS is bijunctive.

2. Every relation inS is Horn.

3. Every relation inS is dual Horn.

4. Every relation inS is affine.

Theorem 1. (Schaefer’s Dichotomy Theorem [22])LetS be a finite set of logical relations. IfS is Schaefer,
thenSAT(S) is in P; otherwise,SAT(S) is NP-complete.

Theorem 1 is called a dichotomy theorem because Ladner [16] has shown that ifP 6= NP, then there are
problems in NP that are neither in P, nor NP-complete. Thus, Theorem 1 asserts that no SAT(S) problem is a
problem of the kind discovered by Ladner. Note that the aforementioned characterization of Schaefer sets in
terms of closure properties yields a cubic algorithm for determining, given a finite setS of logical relations,
whether SAT(S) is in P or is NP-complete (here, the input size is the sum of thesizes of the relations inS).

The more difficult part of the proof of Schafer’s Dichotomy Theorem is to show that ifS is not Schaefer,
then SAT(S) is NP-complete. This is a consequence of a powerful result about the expressibility of logical
relations. We say that a relationR is expressible froma setS of relations if there is a CNF(S)-formula
ϕ(x,y) such thatR = {a|∃y ϕ(a,y)}.

Theorem 2. (Schaefer’s Expressibility Theorem [22])Let S be a finite set of logical relations. IfS is not
Schaefer, then every logical relation is expressible fromS.

In this paper, we are interested in the connectivity properties of the space of solutions of CNF(S)-
formulas. Ifϕ is a CNF(S)-formula with n variables, then thesolution graphG(ϕ) of ϕ denotes the
subgraph of then-dimensional hypercube induced by the solutions ofϕ. This means that the vertices of
G(ϕ) are the solutions ofϕ, and there is an edge between two solutions ofG(ϕ) precisely when they differ
in exactly one variable.

We consider the following two algorithmic problems for CNF(S)-formulas.

Problem 1. TheConnectivity ProblemCONN(S):
Given a CNF(S)-formulaϕ, isG(ϕ) connected?

Problem 2. Thest-Connectivity ProblemST-CONN(S):
Given a CNF(S)-formulaϕ and two solutionss andt of ϕ, is there a path froms to t in G(ϕ)?
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To pinpoint the computational complexity of CONN(S) andST-CONN(S), we need to introduce certain
new types of relations.

Definition 3. LetR ⊆ {0, 1}k be a logical relation.

1. R is componentwise bijunctiveif every connected component of the graphG(R) is a bijunctive rela-
tion.

2. R is OR-freeif the relationOR = {01, 10, 11} cannot be obtained fromR by settingk − 2 of the
coordinates ofR to a constantc ∈ {0, 1}k−2. In other words,R is OR-free if(x1∨x2) is not definable
fromR by fixingk − 2 variables.

3. R is NAND-free if the relationNAND = {00, 01, 10} cannot be obtained fromR by settingk − 2 of
the coordinates ofR to a constantc ∈ {0, 1}k−2. In other words,R is NAND-free is(x̄1 ∨ x̄2) is not
definable fromR by fixingk − 2 variables.

We are now ready to introduce the key concept of atight set of relations.

Definition 4. A setS of logical relations istight if at least one of the following three conditions holds:

1. Every relation inS is componentwise bijunctive;

2. Every relation inS is OR-free;

3. Every relation inS is NAND-free.

In Section 4, we show that ifS is Schaefer, then it is tight. Moreover, we show that the converse does not
hold. It is also easy to see that there is a polynomial-time algorithm (in fact, a cubic algorithm) for testing
whether a given relation is tight.

Just as Schaefer’s dichotomy theorem follows from an expressibility statement, our dichotomy theorems
are derived from the following theorem, which we will call the Faithful Expressibility Theorem. The precise
definition of the concept offaithful expressibilityis given in Section 3. Intuitively, this concept strength-
ens the concept of expressibility with the requirement thatthe space of the witnesses to the existentially
quantified variables has certain strong connectivity properties.

Theorem 3. (Faithful Expressibility Theorem)Let S be a finite set of logical relations. IfS is not tight,
then every logical relation is faithfully expressible fromS.

Using the Faithful Expressibility Theorem, we obtain the following dichotomy theorems for the compu-
tational complexity of CONN(S) andST-CONN(S).

Theorem 4. LetS be a finite set of logical relations. IfS is tight, thenCONN(S) is in coNP; otherwise, it
is PSPACE-complete.

Theorem 5. Let S be a finite set of logical relations. IfS is tight, thenST-CONN(S) is in P; otherwise,
ST-CONN(S) is PSPACE-complete.

We also show that ifS is tight, but not Schaefer, then CONN(S) is coNP-complete.
To illustrate these results, consider the setS = {R1/3}, whereR1/3 = {100, 010, 001}. This set is

tight (actually, it is componentwise bijunctive), but not Schaefer. It follows that SAT(S) is NP-complete
(recall that this problem is POSITIVE 1-IN-3 SAT), ST-CONN(S) is in P, and CONN(S) is coNP-complete.
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Consider also the setS = {RNAE}, whereRNAE = {0, 1}3 \ {000, 111}. This set is not tight, hence
SAT(S) is NP-complete (this problem is POSITIVE NOT-ALL -EQUAL 3-SAT), while both ST-CONN(S)
and CONN(S) are PSPACE-complete.

The dichotomy in the computational complexity of CONN(S) and ST-CONN(S) is accompanied by a
parallel structural dichotomy in the size of the diameter ofG(ϕ) (where, for a CNF(S)-formula ϕ, the
diameter ofG(ϕ) is the maximum of the diameters of the components ofG(ϕ)).

Theorem 6. Let S be a finite set of logical relations. IfS is tight, then for everyCNF(S)-formulaϕ, the
diameter ofG(ϕ) is linear in the number of variables ofϕ; otherwise, there areCNF(S)-formulasϕ such
that the diameter ofG(ϕ) is exponential in the number of variables ofϕ.

Our results and their comparison to Schaefer’s Dichotomy Theorem are summarized in the table below.

S SAT(S) ST-CONN(S) CONN(S) Diameter
Schaefer P P coNP O(n)
Tight, non-Schaefer NP-compl. P coNP-compl. O(n)

Non-tight NP-compl. PSPACE-compl. PSPACE-compl. 2Ω(
√

n)

We conjecture that the complexity of CONN(S) exhibits atrichotomy, that is, for every finite setS of
logical relations, one of the following holds:

1. CONN(S) is in P;

2. CONN(S) is coNP-complete;

3. CONN(S) is PSPACE-complete.

As mentioned above, we will show that ifS is tight but not Schaefer, then CONN(S) is coNP-complete.
We will also show that ifS is bijunctive or affine, then CONN(S) is in P. Hence, to settle the above con-
jecture, it remains to pinpoint the complexity of CONN(S) wheneverS is Horn and wheneverS is dual
Horn. In the conference version [10] of the present paper, wefurther conjectured that ifS is Horn or dual
Horn, then CONN(S) is in P. In other words, we conjectured that ifS is Schaefer, then CONN(S) is in P.
This second conjecture, however, was subsequently disproved by Makino, Tanaka and Yamamato [17], who
discovered a particular Horn setS such that CONN(S) is coNP-complete. Here, we go beyond the results
obtained in the conference version of the present paper and identify additional conditions on a Horn set
S implying that CONN(S) is in P. These new results suggest a natural dichotomy withinSchaefer sets of
relations and, thus, provide evidence for the trichotomy conjecture.

The remainder of this paper is organized as follows. In Section 3, we prove the Faithful Expressibility
Theorem, establish the hard side of the dichotomies for CONN(S) and forST-CONN(S), and contrast our
result to Schaefer’s Expressibility and Dichotomy Theorems. In Section 4, we describe the easy side of
the dichotomy - the polynomial-time algorithms and the structural properties for tight sets of relations. In
addition, we obtain partial results towards the trichotomyconjecture for CONN(S).

3 The Hard Case of the Dichotomy: Non-Tight Sets of Relations

In this section, we address thehard side of the dichotomy, where we deal with the more computationally
intractable cases. As with other dichotomy theorems, this is also the harder part of our proof. We define
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the notion of faithful expressibility in Section 3.1 and prove the Faithful Expressibility Theorem in Section
3.2. This theorem implies that for all non-tight setsS andS ′, the connectivity problems CONN(S) and
CONN(S ′) are polynomial-time equivalent; moreover, the same holds true for the connectivity problems
ST-CONN(S) and ST-CONN(S ′). In addition, the diameters of the solution graphs of CNF(S)-formulas
and CNF(S ′)-formulas are also related polynomially. In Section 3.3, weprove that for 3-CNF formulas
the connectivity problems are PSPACE-complete, and the diameter can be exponential. This fact combined
with the Faithful Expressibility Theorem yields the hard side of all of our dichotomy results, as well as the
exponential size of the diameter.

We will usea,b, . . . to denote Boolean vectors, andx andy to denote vectors of variables. We write
|a| to denote the Hamming weight (number of1’s) of a Boolean vectora. Given two Boolean vectorsa and
b, we write |a − b| to denote the Hamming distance betweena andb. Finally, if a andb are solutions
of a Boolean formulaϕ and lie in the same component ofG(ϕ), then we writedϕ(a,b) to denote the
shortest-path distance betweena andb in G(ϕ).

3.1 Faithful Expressibility

As we mentioned in the previous section, in his dichotomy theorem, Schaefer [22] used the following notion
of expressibility: a relationR is expressible froma setS of relations if there is a CNF(S)-formulaϕ so
thatR = {a| ∃y ϕ(a,y)}. This notion, is not sufficient for our purposes. Instead, weintroduce a more
delicate notion, which we callfaithful expressibility. Intuitively, we view the relationR as a subgraph of the
hypercube, rather than just a subset, and require that this graph structure be also captured by the formulaϕ.

Definition 5. A relationR is faithfully expressiblefrom a set of relationsS if there is aCNF(S)-formulaϕ
such that the following conditions hold:

1. R = {a| ∃y ϕ(a,y)};

2. For everya ∈ R, the graphG(ϕ(a,y)) is connected;

3. For a,b ∈ R with |a − b| = 1, there existsw such that(a,w) and(b,w) are solutions ofϕ.

Fora ∈ R, thewitnessesof a are they’s such thatϕ(a,y) is true. The last two conditions say that the
witnesses ofa ∈ R are connected, and that neighboringa,b ∈ R have a common witness. This allows
us to simulate an edge(a,b) in G(R) by a path inG(ϕ), and thus relate the connectivity properties of the
solution spaces. There is however, a price to pay: it is much harder to come up with formulas that faithfully
express a relationR. An example is whenS is the set of all paths of length4 in {0, 1}3, a set that plays
a crucial role in our proof. While 3-SAT relations are easily expressible fromS in Schaefer’s sense, the
CNF(S)-formulas that faithfully express 3-SAT relations are fairly complicated and have a large witness
space.

An example of the difference between a faithful and an unfaithful expression is shown in Figure 3.1.

Lemma 1. LetS andS ′ be sets of relations such that everyR ∈ S ′ is faithfully expressible fromS. Given
a CNF(S ′)-formulaψ(x), one can efficiently construct aCNF(S)-formulaϕ(x,y) such that:

1. ψ(x) ≡ ∃y ϕ(x,y);

2. if (s,ws), (t,wt) ∈ ϕ are connected inG(ϕ) by a path of lengthd, then there is a path froms to t in
G(ψ) of length at mostd;
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Figure 1: Expressing the relation(x1 ∨ x2 ∨ x3) using NOT-ALL -EQUAL relations.
(a) Graph of(x1 ∨ x2 ∨ x3);
(b) Graph of a faithful expression:ϕ(x, y1, y2) = RNAE(x1, x2, y1)∧RNAE(x2, x3, y2)∧RNAE(y1, y2, 1).
(c) Graph of an unfaithful expression:ϕ(x, y1) = RNAE(x1, x2, y1) ∧RNAE(ȳ1, x3, 0) ∧RNAE(y1, x2, 1).
In both cases(x1 ∨ x2 ∨ x3) = ∃y ϕ(x,y), but only in the first case the connectivity is preserved.
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3. If s, t ∈ ψ are connected inG(ψ), then for every witnessws of s, and every witnesswt of t, there is
a path from(s,ws) to (t,wt) in G(ϕ).

Proof. Supposeψ is a formula onn variables that consists ofm clausesC1, . . . , Cm. For clauseCj , assume
that the set of variables isVj ⊆ [n], and that it involves relationRj ∈ S. Thus,ψ(x) is ∧m

j=1Rj(xVj
).

Let ϕj be the faithful expression forRj from S ′, so thatRj(xVj
) ≡ ∃yj ϕj(xVj

,yj). Let y be the vector
(y1, . . . ,ym) and letϕ(x,y) be the formula∧m

j=1ϕj(xVj
,yj). Thenψ(x) ≡ ∃y ϕ(x,y).

Statement(2) follows from(1) by projection of the path on the coordinates ofx. For statement(3), con-
siders, t ∈ ψ that are connected inG(ψ) via a paths = u0 → u1 → · · · → ur = t . For everyui,ui+1,
and clauseCj, there exists an assignmentwi

j to yj such that both(ui
Vj
,wi

j) and(ui+1
Vj
,wi

j) are solu-
tions ofϕj , by condition(2) of faithful expressibility. Thus(ui,wi) and(ui+1,wi) are both solutions ofϕ,
wherewi = (wi

1, . . .w
i
m). Further, for everyui, the space of solutions ofϕ(ui,y) is the product space of

the solutions ofϕj(u
i
Vj
,yj) overj = 1, . . . ,m. Since these are all connected by condition(3) of faithful

expressibility,G(ϕ(ui,y)) is connected. The following describes a path from(s,ws) to (t,wt) in G(ϕ):
(s,ws)  (s,w0) → (u1,w0)  (u1,w1) → · · ·  (ur−1,wr−1) → (t,wr−1)  (t,wt). Here 
indicates a path inG(ϕ(ui,y)).

Corollary 1. SupposeS andS ′ are sets of relations such that everyR ∈ S ′ is faithfully expressible fromS.

1. There are polynomial time reductions fromCONN(S ′) to CONN(S), and fromST-CONN(S ′) to ST-
CONN(S).

2. Given aCNF(S ′)-formula ψ(x) with m clauses, one can efficiently construct aCNF(S)-formula
ϕ(x,y) such that the length ofy isO(m) and the diameter of the solution space does not decrease.

3.2 The Faithful Expressibility Theorem

In this subsection, we prove the Faithful Expressibility Theorem. The main step in the proof is Lemma 2
which shows that ifS is not tight, then we can faithfully express the 3-clause relations from the relations
in S. If k ≥ 2, then ak-clauseis a disjunction ofk variables or negated variables. For0 ≤ i ≤ k, let
Di be the set of all satisfying truth assignments of thek-clause whose firsti literals are negated, and let
Sk = {D0,D1, . . . ,Dk}. Thus, CNF(Sk) is the collection ofk-CNF formulas.

Lemma 2. If setS of relations is not tight,S3 is faithfully expressible fromS.

Proof. First, observe that all2-clauses are faithfully expressible fromS. There existsR ∈ S which is not
OR-free, so we can express(x1 ∨ x2) by substituting constants inR. Similarly, we can express(x̄1 ∨ x̄2)
using a relation that is not NAND-free. The last 2-clause(x1 ∨ x̄2) can be obtained from OR and NAND by
a technique that corresponds to reverse resolution.(x1 ∨ x̄2) = ∃y (x1 ∨ y) ∧ (ȳ ∨ x̄2). It is easy to see
that this gives a faithful expression. From here onwards we assume thatS contains all 2-clauses. The proof
now proceeds in four steps. First, we will express a relationin which there exist two elements that are at
graph distance larger than their Hamming distance. Second,we will express a relation that is just a single
path between such elements. Third, we will express a relation which is a path of length 4 between elements
at Hamming distance 2. Finally, we will express the 3-clauses.

Step 1. Faithfully expressing a relation in which some distance expands.
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Figure 2: Proof of Step 1 of Lemma 2, and an example.

For a relationR, we say that the distance betweena andb expandsif a andb are connected inG(R), but
dR(a,b) > |a−b|. Later on, we will show that no distance expands in componentwise bijunctive relations.
The same also holds true for the relationRNAE = {0, 1}3 \ {000, 111}, which is not componentwise
bijunctive. Nonetheless, we show here that ifR is not componentwise bijunctive, then, by adding2-clauses,
we can faithfully express a relationQ in which some distance expands. For instance, whenR = RNAE, then
we can takeQ(x1, x2, x3) = RNAE(x1, x2, x3) ∧ (x̄1 ∨ x̄3). The distance betweena = 100 andb = 001
in Q expands. Similarly, in the general construction, we identify a andb on a cycle, and add2-clauses that
eliminate all the vertices along the shorter arc betweena andb.

SinceS is not tight, it contains a relationR which is not componentwise bijunctive. IfR containsa,b
where the distance between them expands, we are done. So assume that for alla,b ∈ G(R), dR(a,b) =
|a − b|. SinceR is not componentwise bijunctive, there exists a triple of assignmentsa,b, c lying in the
same component such thatmaj(a,b, c) is not in that component (which also easily implies it is not inR).
Choose the triple such that the sum of pairwise distancesdR(a,b) + dR(b, c) + dR(c,a) is minimized. Let
U = {i|ai 6= bi}, V = {i|bi 6= ci}, andW = {i|ci 6= ai}. SincedR(a,b) = |a − b|, a shortest path does
not flip variables outside ofU , and each variable inU is flipped exactly once. The same holds forV andW .
We note some useful properties of the setsU, V,W .

1. Every indexi ∈ U ∪ V ∪W occurs in exactly two ofU, V,W .
Consider going by a shortest path froma to b to c and back toa. Everyi ∈ U ∪ V ∪W is seen an
even number of times along this path since we return toa. It is seen at least once, and at most thrice,
so in fact it occurs twice.

10



2. Every pairwise intersectionU ∩ V, V ∩W andW ∩ U is non-empty.
Suppose the setsU andV are disjoint. From Property 1, we must haveW = U ∪ V . But then it is
easy to see thatmaj(a,b, c) = b which is inR. This contradicts the choice ofa,b, c.

3. The setsU ∩ V andU ∩W partition the setU .
By Property1, each index ofU occurs in one ofV andW as well. Also since no index occurs in all
three setsU, V,W this is in fact a disjoint partition.

4. For each indexi ∈ U ∩W , it holds thata ⊕ ei 6∈ R.
Assume for the sake of contradiction thata′ = a⊕ei ∈ R. Sincei ∈ U ∩W we have simultaneously
moved closer to bothb and c. Hence we havedR(a′,b) + dR(b, c) + dR(c,a′) < dR(a,b) +
dR(b, c) + dR(c,a). Also maj(a′,b, c) = maj(a,b, c) 6∈ R. But this contradicts our choice of
a,b, c.

Property 4 implies that the shortest paths tob andc diverge ata, since for any shortest path tob the first
variable flipped is fromU ∩V whereas for a shortest path toc it is fromW ∩V . Similar statements hold for
the verticesb andc. Thus along the shortest path froma to b the first bit flipped is fromU ∩ V and the last
bit flipped is fromU ∩W . On the other hand, if we go froma to c and then tob, all the bits fromU ∩W
are flipped before the bits fromU ∩V . We use this crucially to defineQ. We will add a set of 2-clauses that
enforce the following rule on paths starting ata: Flip variables fromU ∩W before variables fromU ∩ V .
This will eliminate all shortest paths froma to b since they begin by flipping a variable inU ∩ V and end
with U ∩W . The paths froma to b via c survive since they flipU ∩W while going froma to c andU ∩ V
while going fromc to b. However all remaining paths have length at least|a − b| + 2 since they flip twice
some variables not inU .

Take all pairs of indices{(i, j)|i ∈ U∩W, j ∈ U∩V }. The following conditions hold from the definition
of U, V,W : ai = c̄i = b̄i andaj = cj = b̄j. Add the 2-clauseCij asserting that the pair of variablesxixj

must take values in{aiaj, cicj , bibj} = {aiaj, āiaj , āiāj}. The new relation isQ = R ∧i,j Cij. Note that
Q ⊂ R. We verify that the distance betweena andb in Q expands. It is easy to see that for anyj ∈ U , the
assignmenta ⊕ ej 6∈ Q. Hence there are no shortest paths left froma to b. On the other hand, it is easy to
see thata andb are still connected, since the vertexc is still reachable from both.

Step 2. Isolating a pair of assignments whose distance expands.

The relationQ obtained in Step 1 may have several disconnected components. Thiscleanupstep isolates
a single pair of assignments whose distance expands. By adding 2-clauses, we show that one can express a
path of lengthr + 2 between assignments at distancer.

Takea,b ∈ Q whose distance expands inQ anddQ(a,b) is minimized. LetU = {i|ai 6= bi}, and
|U | = r. Shortest paths betweena andb have certain useful properties:

1. Each shortest path flips every variable fromU exactly once.
Observe that each indexj ∈ U is flipped an odd number of times along any path froma tob. Suppose
it is flipped thrice along a shortest path. Starting ata and going along this path, letb′ be the assignment
reached after flippingj twice. Then the distance betweena andb′ expands, sincej is flipped twice
along a shortest path between them inQ. Also dQ(a,b′) < dQ(a,b), contradicting the choice ofa
andb.

2. Every shortest path flips exactly one variablei 6∈ U .
Since the distance betweena andb expands, every shortest path must flip some variablei 6∈ U .
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Suppose it flips more than one such variable. Sincea andb agree on these variables, each of them
is flipped an even number of times. Leti be the first variable to be flipped twice. Letb′ be the
assignment reached after flippingi the second time. It is easy to verify that the distance between a

andb′ also expands, butdQ(a,b′) < dQ(a,b).

3. The variablei 6∈ U is the first and last variable to be flipped along the path.Assume the first variable
flipped is noti. Let a′ be the assignment reached along the path before we flipi the first time. Then
dQ(a′,b) < dQ(a,b). The distance betweena′ andb expands since the shortest path between them
flips the variablesi twice. This contradicts the choice ofa andb. Assumej ∈ U is flipped twice.
Then as before we get a paira′,b′ that contradict the choice ofa,b.

Every shortest path betweena andb has the following structure: first a variablei 6∈ U is flipped toāi,
then the variables fromU are flipped in some order, finally the variablei is flipped back toai.

Different shortest paths may vary in the choice ofi 6∈ U in the first step and in the order in which the
variables fromU are flipped. Fix one such pathT ⊆ Q. Assume thatU = {1, . . . , r} and the variables are
flipped in this order, and the additional variable flipped twice isr+1. Denote the path bya → u0 → u1 →
· · · → ur → b. Next we prove that we cannot flip ther + 1th variable at an intermediate vertex along the
path.

4 For 1 ≤ j ≤ r − 1 the assignmentuj ⊕ er+1 6∈ Q.
Suppose that for somej, we havec = uj ⊕ er+1 ∈ Q. Thenc differs froma on{1, . . . , i} and from
b on {i + 1, . . . , r}. The distance fromc to at least one ofa or b must expand, else we get a path
from a to b throughc of length|a−b| which contradicts the fact that this distance expands. However
dQ(a, c) anddQ(b, c) are strictly less thandQ(a,b) so we get a contradiction to the choice ofa,b.

We now construct the path of lengthr + 2. For all i ≥ r + 2 we setxi = ai to get a relation onr + 1
variables. Note thatb = ā1 . . . ārar+1. Takei < j ∈ U . Along the pathT the variablei is flipped before
j so the variablesxixj take one of three values{aiaj, āiaj , āiāj}. So we add a 2-clauseCij that requires
xixj to take one of these values and takeT = Q ∧i,j Cij . Clearly, every assignment along the path lies in
T . We claim that these are the only solutions. To show this, take an arbitrary assignmentc satisfying the
added constraints. If for somei < j ≤ r we haveci = ai but cj = āj , this would violateCij . Hence the
first r variables ofc are of the formā1 . . . āiai+1 . . . ar for 0 ≤ i ≤ r. If cr+1 = ār+1 thenc = ui. If
cr+1 = ar+1 thenc = ui ⊕ er+1. By property 4 above, such a vector satisfiesQ if and only if i = 0 or
i = r, which correspond toc = a andc = b respectively.

Step 3. Faithfully expressing paths of length4.

Let P denote the set of all ternary relations whose graph is a path of length4 between two assignments
at Hamming distance2. Up to permutations of coordinates, there are 6 such relations. Each of them is the
conjunction of a3-clause and a2-clause. For instance, the relationM = {100, 110, 010, 011, 001} can be
written as(x1∨x2∨x3)∧(x̄1∨ x̄3). (It is named so, because its graph looks like the letter ’M’ on the cube.)
These relations are “minimal” examples of relations that are not componentwise bijunctive. By projecting
out intermediate variables from the pathT obtained in Step 2, we faithfully express one of the relations in
P. We faithfully express other relations inP using this relation.

We will write all relations inP in terms ofM(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3), by negating
variables. For exampleM(x̄1, x2, x3) = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄3) = {000, 010, 110, 111, 101}.

Define the relationP (x1, xr+1, x2) = ∃x3 . . . xr T (x1, . . . , xr+1). The table below listing all tuples in
P and their witnesses, shows that the conditions for faithfulexpressibility are satisfied, andP ∈ P.
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x1, x2, xr+1 x3, . . . , xr

a1a2ar+1 a3 . . . ar

a1a2ār+1 a3 . . . ar

ā1a2ār+1 a3 . . . ar

ā1ā2ār+1 a3 . . . ak, ā3a4 . . . ar, ā3ā4a5 . . . ar . . . ā3ā4 . . . ār

ā1ā2ar+1 ā3ā4 . . . ār

Let P (x1, x2, x3) = M(l1, l2, l3), whereli is one of{xi, x̄i}. We can now useP and 2-clauses to
express every other relation inP. GivenM(l1, l2, l3) every relation inP can be obtained by negating some
subset of the variables. Hence it suffices to show that we can express faithfullyM(l̄1, l2, l3) andM(l1, l̄2, l3)
(M is symmetric inx1 andx3). In the following letλ denote one of the literals{y, ȳ}, such that it is̄y if
and only if l1 is x̄1.

M(l̄1, l2, l3) = (l̄1 ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)

= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)

= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3) ∧ (λ̄ ∨ l̄3)

= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧M(λ, l2, l3)

= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧ P (y, x2, x3)

In the second step the clause(λ̄ ∨ l̄3) is implied by the resolution of the clauses(l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3).
For the next expression letλ denote one of the literals{y, ȳ}, such that it is negated if and only ifl2 is

x̄2.

M(l1, l̄2, l3) = (l1 ∨ l̄2 ∨ l3) ∧ (l̄1 ∨ l̄3)

= ∃y (l1 ∨ l3 ∨ λ) ∧ (λ̄ ∨ l̄2) ∧ (l̄1 ∨ l̄3)

= ∃y (λ̄ ∨ l̄2) ∧M(l1, λ, l3)

= ∃y (λ̄ ∨ l̄2) ∧ P (x1, y, x3)

The above expressions are both based on resolution and it is easy to check that they satisfy the properties of
faithful expressibility.

Step 4. Faithfully expressingS3.

We faithfully express(x1∨x2∨x3) fromM using a formula derived from a gadget in [11]. This gadget
expresses(x1 ∨ x2 ∨ x3) in terms of “Protected OR”, which corresponds to our relationM .

(x1 ∨ x2 ∨ x3) = ∃y1 . . . y5 (x1 ∨ ȳ1) ∧ (x2 ∨ ȳ2) ∧ (x3 ∨ ȳ3) ∧ (x3 ∨ ȳ4)

∧M(y1, y5, y3) ∧M(y2, ȳ5, y4) (1)

The table below listing the witnesses of each assignment for(x1, x2, x3), shows that the conditions for
faithful expressibility are satisfied.
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x1, x2, x3 y1 . . . y5

111 00011 00111 00110 00100 01100 01101 01001 11001 11000 10000 10010 10011
110 01001 11001 11000 10000
100 10000
101 00011 00111 00110 00100 10000 10010 10011
001 00011 00111 00110 00100
011 00011 00111 00110 00100 01100 01101 01001
010 01001

From the relation(x1 ∨ x2 ∨ x3) we derive the other 3-clauses by reverse resolution, for instance

(x̄1 ∨ x2 ∨ x3) = ∃y (x̄1 ∨ ȳ) ∧ (y ∨ x2 ∨ x3)

To complete the proof of the Faithful Expressibility Theorem, we show that an arbitrary relation can be
expressed faithfully fromS3.

Lemma 3. LetR ⊆ {0, 1}k be any relation of arityk ≥ 1. R is faithfully expressible fromS3.

Proof. If k ≤ 3 thenR can be expressed as a formula in CNF(S3) with constants, without introducing
witness variables. This kind of expression is always faithful.

If k ≥ 4 thenR can be expressed as a formula in CNF(Sk), without witnesses (i.e. faithfully). We will
show that everyk-clause can be expressed faithfully fromSk−1. Then, by induction, it can be expressed
faithfully from S3. For simplicity we express ak-clause corresponding to the relationD0. The remaining
relations are expressed equivalently. We expressD0 in a way that is standard in other complexity reductions,
and turns out to be faithful:

(x1 ∨ x2 ∨ · · · ∨ xk) = ∃y (x1 ∨ x2 ∨ y) ∧ (ȳ ∨ x3 ∨ · · · ∨ xk).

This is the reverse operation of resolution. For any satisfying assignment forx, its witness space is either
{0}, {1} or {0, 1}, so in all cases it is connected. Furthermore, the only way two neighboring satisfying
assignments forx can have no common witness is if one of them has witness set{0}, and the other one
has witness set{1}. This implies that the first one has(x3, . . . , xk) = (0, . . . , 0), and the other one has
(x1, x2) = (0, 0), thus they differ in the assignments of at least two variables: one from{x1, x2} and one
from {x3, . . . , xk}. In that case they cannot be neighboring assignments. Therefore all requirements of
faithful expressibility are satisfied.

3.3 Hardness Results for3-CNF formulas

From Lemma 2 and Corollary 1, it follows that, to prove the hard side of our dichotomy theorems, it suffices
to focus on3-CNF formulas.

The proof that CONN(S3) andST-CONN(S3) are PSPACE-complete is fairly intricate; it entails a direct
reduction from the computation of a space-bounded Turing machine. The result forST-CONN can also be
proved easily using results of Hearne and Demaine on Non-deterministic Constraint Logic [11]. However,
it does not appear that completeness for CONN follows from their results.

Lemma 4. ST-CONN(S3) andCONN(S3) arePSPACE-complete.
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Proof. Given a CNF(S3) formulaϕ and satisfying assignmentss, t we can check if they are connected in
G(ϕ) with polynomial amount of space. Similarly for CONN(S3), by reusing space we can check for all
pairs of assignments whether they are satisfying and, if they both are, whether they are connected inG(ϕ).
It follows that both problems are in PSPACE.

Next we show that CONN(S3) and ST-CONN(S3) are PSPACE-hard. Consider the following known
PSPACE-complete problem: Given a deterministic Turing machineM = (Q,Σ,Γ, δ, q0, qaccept, qreject) and
n in unary, willM accept the string consisting ofn blanks, without ever leaving itsn tape squares? We give
a polynomial time reduction from this problem toST-CONN(S3) and CONN(S3).

The reduction maps a machineM and integern (without loss of generality, assuming thatn is at least as
large as the description ofM ) to a3-CNF formulaϕ and two satisfying assignments for the formula, which
are connected inG(ϕ) if and only ifM accepts. Furthermore, all satisfying assignments ofϕ are connected
to one of these two assignments, so thatG(ϕ) is connected if and only ifM acceptsw.

Before we show how to constructϕ, we modifyM in several ways:

1. We add a clock that counts from0 to n × |Q| × |Γ|n = 2O(n), which is the total number of possible
distinct configurations ofM . It uses a separate tape of lengthO(n) with the alphabet{0, 1}. Before
a transition happens, control is passed on to the clock, its counter is incremented, and finally the
transition is completed.

2. We define a standard accepting configuration. Wheneverqaccept is reached, the clock is stopped and
set to zero, the original tape is erased and the head is placedin the initial position, always in state
qaccept.

3. Wheneverqreject is reached the machine goes into its initial configuration. The tape is erased, the
clock is set to zero, the head is placed in the initial position, and the state is set toq0 (and thus the
computation resumes).

4. Whenever the clock overflows, the machine goes intoqreject.

The new machineM ′ runs forever ifM does not accept (rejects or loops), and accepts ifM accepts.
It also has the property that every configuration leads either to the accepting configuration or to the initial
configuration. Therefore the space of configurations is connected if and only ifM accepts. Let’s denote by
Q′ the states ofM ′ and byδ′ its transitions.M ′ runs on two tapes, the main one of sizeN and the clock of
sizeNc, bothO(n). The alphabet ofM ′ on one tape isΓ, and on the other{0, 1}. For simplicity we can
also assume that at each transition the machine uses only oneof the two tapes.

Next, we construct an intermediate CNF-formulaψ whose solutions are the configurations ofM ′. How-
ever, the space of solutions ofψ is disconnected.

For eachi ∈ [N ] anda ∈ Γ, we have a variablex(i, a). If x(i, a) = 1, this means that theith tape
cell contains symbola. For everyi ∈ [N ] there is a variabley(i) which is 1 if the head is at positioni.
For everyq ∈ Q′, there is a variablez(q) which is 1 if the current state isq. Similarly for everyj ∈ [Nc]
anda ∈ {0, 1} we have variablesxc(j, a) and a variableyc(j) which is 1 if the head of the clock tape is at
positionj.

We enforce the following conditions:

1. Every cell contains some symbol:

ψ1 =
∧

i∈[N ]

(∨a∈Γ x(i, a))
∧

j∈[Nc]

(

∨a∈{0,1} xc(j, a)
)

.
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2. No cell contains two symbols:

ψ2 =
∧

i∈[N ]

∧

a6=a′∈Γ

(

x(i, a) ∨ x(i, a′)
)

∧

j∈[Nc]

(

xc(j, 0) ∨ xc(j, 1)
)

.

3. The head is in some position, the clock head is in some position, and the machine is in some state:

ψ3 =
(

∨i∈[N ] y(i)
)

∧

(

∨j∈[Nc] yc(j)
)

∧

(∨q∈Q1
z(q)) .

4. The main tape head is in a unique position, the clock head isin a unique position, and the machine is
in a unique state:

ψ4 =
∧

i6=i′∈[N ]

(

y(i) ∨ y(i′)
)

∧

j 6=j′∈[Nc]

(

yc(j) ∨ yc(j′)
)

∧

q 6=q′∈Q′

(

z(q) ∨ z(q′)
)

.

Solutions ofψ = ψ1 ∧ψ2 ∧ψ3 ∧ψ4 are in 1-1 correspondence with configurations ofM ′. Furthermore,
the assignments corresponding to any two distinct configurations differ in at least two variables (hence the
space of solutions is totally disconnected).

Next, to connect the solution space along valid transitionsof M ′, we relax conditions 2 and 4 by intro-
ducing new transition variables, which allow the head to have two states or a cell to have two symbols at the
same time. This allows us to go from one configuration to the next.

Consider a transitionδ(q, a) = (q′, b, R), which operates on the first tape, for example. Fix the position
of the head of the first tape to bei, and the symbol in positioni+ 1 to bec. The variables that are changed
by the transition are:x(i, a), y(i), z(q), x(i, b), y(i+ 1), z(q′). Before the transition the first three are set to
1, the second three are set to 0, and after the transition theyare all flipped. Corresponding to this transition
(which is specified byi, q, a, andc) we introduce a transition variablet(i, q, a, c). We now relax conditions
2 and 4 as follows:

• Replace
(

x(i, a) ∨ x(i, b)
)

by
(

x(i, a) ∨ x(i, b) ∨ t(i, q, a, c)
)

.

• Replace
(

y(i) ∨ y(i+ 1)
)

by
(

y(i) ∨ y(i+ 1) ∨ t(i, q, a, c)
)

.

• Replace
(

z(q) ∨ z(q′)
)

by
(

z(q) ∨ z(q′) ∨ t(i, q, a, c)
)

.

This is done for every value ofq, a, i andc (and also for transitions acting on the clock tape). We add

the transition variables to the corresponding clauses so that for example the clause
(

x(i, a) ∨ x(i, b)
)

could

potentially become very long, such as:
(

x(i, a) ∨ x(i, b) ∨ t(i, q1, a, c1) ∨ t(i, q2, a, c2) ∨ . . .
)

.

However, the total number of transition variables is only polynomial inn. We also add a constraint for every
pair of transition variablest(i, q, a, c), t(i′, q′, a′, c′), saying they cannot be 1 simultaneously:(t(i, q, a, c)∨
t(i′, q′, a′, c′)). This ensures that only one transition can be happening at any time. The effect of adding the
transition variables to the clauses ofψ2 andψ4 is that by settingt(i, q, a, c) to 1, we can simultaneously set
x(i, a) andx(i, b) to 1, and so on. This gives a path from the initial configuration tothe final configuration
as follows: Sett(i, q, a, c) = 1, setx(i, b) = 1, y(i + 1) = 1, z(q′) = 1, x(i, a) = 0, y(i) = 0, z(q) = 0,
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then sett(i, q, a, c) = 0. Thus consecutive configurations are now connected. To avoid connecting to other
configurations, we also add an expression to ensure that these are the only assignments the 6 variables can
take whent(i, q, a, c) = 1:

ψi,q,a,c = t(i, q, a, c) ∨ ((x(i, a), y(i), z(q), x(i, b)), y(i + 1), z(q′)) ∈

{111000, 111100, 111110, 111111, 011111, 001111, 000111}).

This expression can of course be written in conjunctive normal form.
Call the resulting CNF formulaϕ(x,xc,y,yc, z, t). Note thatϕ(x,xc,y,yc, z,0) = ψ(x,xc,y,yc, z),

so a solution where all transition variables are0 corresponds to a configuration ofM ′. To see that we have
not introduced any shortcut between configurations that arenot valid machine transitions, notice that in any
solution ofϕ, at most a single transition variable can be1. Therefore none of the transitional solutions
belonging to different transitions can be adjacent. Furthermore, out of the solutions that have a transition
variable set to 1, only the first and the last correspond to a valid configuration. Therefore none of the
intermediate solutions can be adjacent to a solution with all transition variables set to 0.

The formulaϕ is a CNF formula where clause size is unbounded. We use the same reduction as in the
proof of Lemma 3 to get a 3-CNF formula. By Lemma 1 and Corollary 1, ST-CONN and CONN for S3 are
PSPACE-complete.

By Lemma 2 and Corollary 1, this completes the proof of the hardness part of the dichotomies for
CONN andST-CONN (Theorems 4 and 5).

Finally, we show that3-CNF formulas can have exponential diameter, by inductively constructing a
path of length at least2

n
2 onn variables and then identifying it with the solution space ofa3-CNF formula

with O(n2) clauses. By Lemma 2 and Corollary 1, this implies the hardness part of the diameter dichotomy
(Theorem 6).

Lemma 5. For n even, there is a3-CNF formulaϕn with n variables andO(n2) clauses, such thatG(ϕn)
is a path of length greater than2

n
2 .

Proof. The construction is in two steps: we first exhibit an induced subgraphGn of the n dimensional
hypercube with large diameter. We then construct a 3-CNF formulaϕn so thatGn = G(ϕn).

The graphGn is a path of length2
n
2 . We construct it using induction. Forn = 2, we takeV (G2) =

{(0, 0), (0, 1), (1, 1)} which has diameter2. Assume that we have constructedGn−2 with 2
n−2

2 vertices,

and with distinguished verticessn−2, tn−2 such that the shortest path froms to t in Gn−2 has length2
n−2

2 .
We now describe the setV (Gn). For each vertexv ∈ V (Gn−2), V (Gn) contains two vertices(v, 0, 0)
and(v, 1, 1). Note that the subgraph induced by these vertices alone consists of two disconnected copies of
Gn−2. To connect these two components, we add the vertexm = (t, 0, 1) (which is connected to(t, 0, 0)
and(t, 1, 1) in the induced subgraph). Note that the resulting graphGn is connected, but any path from
(u, 0, 0) to (v, 1, 1) must pass throughm. Further note that by induction, the graphGn is also a path. The
verticessn = (sn−2, 0, 0) andtn = (sn−2, 1, 1) are diametrically opposite ends of this path. The path

length is at least2 · 2
n−2

2 + 2 > 2
n
2 . Also s2 = (0, 0), sn = (sn−2, 0, 0), tn = (sn−2, 1, 1) and hence

sn = (0, . . . , 0), tn = (0, . . . , 0, 1, 1).
We construct a sequence of 3-CNF formulasϕn(x1, . . . , xn) so thatGn = G(ϕn). Let ϕ2(x1, x2) =

x̄1 ∨ x2. Assume we haveϕn−2(x1, . . . , xn−2). We add two variablesxn−1 andxn and the clauses

ϕn−2(x1, . . . , xn−2), x̄n−1 ∧ xn

xn−1 ∨ x̄n ∨ x̄i for i ≤ n− 4 (2)

xn−1 ∨ x̄n ∨ xi for i = n− 3, n− 2 (3)
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Note that a clause in 2 is just the implication(x̄n−1 ∧ xn) → x̄i. Thus clauses 2, 3 enforce the condition
thatxn−1 = 0, xn = 1 implies that(x1, . . . , xn−2) = tn−2 = (0, . . . , 0, 1, 1).

4 The Easy Case of the Dichotomy: Tight Sets of Relations

4.1 Schaefer sets of relations

We begin by showing that all Schaefer sets of relations are tight. Schaefer relations are characterized by
closure properties. We say that ar-ary relationR is closed under somek-ary operationα : {0, 1}k → {0, 1}
if for every a1,a2, . . . ,ak ∈ R, the tuple(α(a1

1, a
2
1, . . . , a

k
1), . . . , α(a1

r , . . . , a
k
r )) is in R. We denote this

tuple byα(a1, . . . ,ak).
We will use the following lemma about closure properties on several occassions.

Lemma 6. If a logical relationR is closed under an operationα : {0, 1}k → {0, 1} such thatα(1, 1, . . . , 1) =
1 and α(0, 0, . . . , 0) = 0 (a.k.a. an idempotent operation) then every connected component ofG(R) is
closed underα.

Proof. Considera1, . . . ,ak ∈ R, such that they all belong to the same connected component ofG(R).
It suffices to prove thata = α(a1, . . . ,ak) is in the same connected component ofG(R). To that end
we will first prove that for anys, t ∈ R if there is a path froms to t in G(R) then there is a path from
α(b1, . . . ,bi−1, s,bi+1, . . . ,bk) to α(b1, . . . ,bi−1, t,bi+1, . . . ,bk) for anyb1, . . . ,bk ∈ R. This ob-
servation implies that there is a path froma1 = α(a1,a1, . . . ,a1) to α(a1,a2,a1, . . . ,a1), from there to
α(a1,a2,a3,a1, . . . ,a1) and so on, toα(a1,a2, . . . ,ak) = a. Thusa is in the same connected component
of G(R) asa1.

Let the path froms to t be s = s1 → s2 → . . . sm = t. For everyj ∈ {1, 2, . . . ,m − 1}, the
tuplesα(b1, . . . ,bi−1, sj,bi+1, . . . ,bm) andα(b1, . . . ,bi−1, sj+1,bi+1, . . . ,bm) differ in at most one
position (the position in whichsj and sj+1 are different) therefore they belong to the same component
of G(R). Thusα(b1, . . . ,bi−1, s1,bi+1, . . . ,bm) andα(b1, . . . ,bi−1, sm,bi+1, . . . ,bm) belong to the
same component.

We are ready to prove that all Schaefer relations are tight.

Lemma 7. LetR be a logical relation.

1. If R is bijunctive, thenR is componentwise bijunctive.

2. If R is Horn, thenR is OR-free.

3. If R is dual Horn, thenR is NAND-free.

4. If R is affine, thenR is componentwise bijunctive,OR-free, andNAND-free.

Proof. The case of bijunctive relations follows immediately from Lemma 6 and the fact that a relation is
bijunctive if and only if it is closed under the ternary majority operationmaj, which is idempotent.

The cases of Horn and dual Horn are symmetric. Suppose a r-aryHorn relationR is not OR-free. Then
there existi, j ∈ {1, . . . , r} and constantst1, . . . , tr ∈ {0, 1} such that the relationR(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1

on variablesx andy is equivalent tox ∨ y, i.e.

R(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1, . . . , tr) = {01, 11, 10}.
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Thus the tuplest00, t01t10, t11 defined by(tab
i , t

ab
j ) = (a, b) and tab

k = tk for everyk 6∈ {i, j}, where
a, b,∈ {0, 1} satisfyt10, t11, t01 ∈ R andt00 6∈ R. However, since every Horn relation is closed under∧,
it follows thatt01 ∧ t10 = t00 must be inR, which is a contradiction.

For the affine case, a small modification of the last step of theabove argument shows that an affine
relation also is OR-free; therefore, dually, it is also NAND-free. Namely, since a relationR is affine if and
only if it is closed under ternary⊕, it follows thatt01 ⊕ t11 ⊕ t10 = t00 must be inR.

Since the connected components of an affine relation are bothOR-free and NAND-free the subgraphs
that they induce are hypercubes, which are also bijunctive relations. Therefore an affine relation is also
componentwise bijunctive.

These containments are proper. For instance,R1/3 = {100, 010, 001} is componentwise bijunctive, but
not bijunctive asmaj(100, 010, 001) = 000 6∈ R1/3.

4.2 Structural properties of tight sets of relations

In this section, we explore some structural properties of the solution graphs of tight sets of relations. These
properties provide simple algorithms for CONN(S) and ST-CONN(S) for tight setsS, and also guarantee
that for such sets, the diameter ofG(ϕ) of CNF(S)-formulaϕ is linear.

Lemma 8. LetS be a set of componentwise bijunctive relations andϕ a CNF(S)-formula. Ifa andb are
two solutions ofϕ that lie in the same component ofG(ϕ), thendϕ(a,b) = |a − b|.

Proof. Consider first the special case in which every relation inS is bijunctive. In this case,ϕ is equivalent
to a 2-CNF formula and so the space of solutions ofϕ is closed under majority. We show that there is a
path inG(ϕ) from a to b, such that along the path only the assignments on variables with indices from
the setD = {i|ai 6= bi} change. This implies that the shortest path is of length|D| by induction on|D|.
Consider any patha → u1 → · · · → ur → b in G(ϕ). We construct another path by replacingui by
vi = maj (a,ui,b) for i = 1, . . . , r, and removing repetitions. This is a path because for anyi vi andvi+1

differ in at most one variable. Furthermore,vi agrees witha andb for everyi for whichai = bi. Therefore,
along this path only variables inD are flipped.

For the general case, we show that every componentF ofG(ϕ) is the solution space of a 2-CNF formula
ϕ′. LetF be the component ofG(ϕ) which containsa andb. LetR ∈ S be a relation with two components,
R1, R2 each of which are bijunctive. Consider a clause inϕ of the formR(x1, . . . , xk). The projection of
F ontox1, . . . , xk is itself connected and must satisfyR. Hence it lies within one of the two components
R1, R2, assume it isR1. We replaceR(x1, . . . , xk) by R1(x1, . . . , xk). Call this new formulaϕ1. G(ϕ1)
consists of all components ofG(ϕ) whose projection onx1, . . . , xk lies inR1. We repeat this for every
clause. Finally we are left with a formulaϕ′ over a set of bijunctive relations. Henceϕ′ is bijunctive and
G(ϕ′) is a component ofG(ϕ). So the claim follows from the bijunctive case.

Corollary 2. LetS be a set of componentwise bijunctive relations. Then

1. For everyϕ ∈ CNF(S) with n variables, the diameter of each component ofG(ϕ) is bounded byn.

2. ST-CONN(S) is in P.

3. CONN(S) is in coNP.
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Proof. The bound on diameter is an immediate consequence of Lemma 8.
The following algorithm solvesST-CONN(S) given verticess, t ∈ G(ϕ). Start withu = s. At each

step, find a variablexi so thatui 6= ti and flip it, until we reacht. If at any stage no such variable exists,
then declare thats andt are not connected. If thes andt are disconnected, the algorithm is bound to fail.
So assume that they are connected. Correctness is proved by induction ond = |s − t|. It is clear that the
algorithm works whend = 1. Assume that the algorithm works ford − 1. If s and t are connected and
are distanced apart, Lemma 8 implies there is a path of lengthd between them inG(ϕ). In particular, the
algorithm will find a variablexi to flip. The resulting assignment is at distanced − 1 from t, so now we
proceed by induction.

Next we prove that CONN(S) ∈ coNP. A short certificate that the graph is not connected is a pair of
assignmentss andt which are solutions from different components. To verify that they are disconnected it
suffices to run the algorithm forST-CONN.

We consider sets of OR-free relations. Define thecoordinate-wise partial order≤ on Boolean vectors
as follows:a ≤ b if ai ≤ bi, for eachi.

Lemma 9. LetS be a set ofOR-free relations andϕ a CNF(S)-formula. Every component ofG(ϕ) contains
a minimum solution with respect to the coordinate-wise order; moreover, every solution is connected to the
minimum solution in the same component via a monotone path.

Proof. We call a satisfying assignment locally minimal, if it has noneighboring satisfying assignments that
are smaller than it. We will show that there is exactly one such assignment in each component ofG(ϕ).

Suppose there are two distinct locally minimal assignmentsu and u′ in some component ofG(ϕ).
Consider the path between them where the maximum Hamming weight of assignments on the path is
minimized. If there are many such paths, pick one where the smallest number of assignments have the
maximum Hamming weight. Denote this path byu = u1 → u2 → · · · → ur = u′. Let ui be an
assignment of largest Hamming weight in the path. Thenui 6= u and ui 6= u′, sinceu and u′ are
locally minimal. The assignmentsui−1 and ui+1 differ in exactly 2 variables, say, inx1 and x2. So
{ui−1

1 ui−1
2 , ui

1u
i
2, u

i+1
1 ui+1

2 } = {01, 11, 10}. Let û be such that̂u1 = û2 = 0, andûi = ui for i > 2. If
û is a solution, then the pathu1 → u2 → · · · → ui → û → ui+1 → · · · → ur contradicts the way we
chose the original path. Therefore,û is not a solution. This means that there is a clause that is violated by
it, but is satisfied byui−1, ui, andui+1. So the relation corresponding to that clause is not OR-free, which
is a contradiction.

The unique locally minimal solution in a component is its minimum solution, because starting from
any other assignment in the component, it is possible to keepmoving to neighbors that are smaller, and the
only time it becomes impossible to find such a neighbor is whenthe locally minimal solution is reached.
Therefore, there is a monotone path from any satisfying assignment to the minimum in that component.

Corollary 3. LetS be a set ofOR-free relations. Then

1. For everyϕ ∈ CNF(S) with n variables, the diameter of each component ofG(ϕ) is bounded by2n.

2. ST-CONN(S) is in P.

3. CONN(S) is in coNP.

Proof. Given solutionss andt in the same component ofG(ϕ), there is a monotone path from each to the
minimal solutionu in the component. This gives a path froms to t of length at most2n. To check ifs and
t are connected, we just check that the minimal assignments reached froms andt are the same.
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Sets of NAND-free relations are handled dually to OR-free relations. In this case there is a maximum
solution in every connected component ofG(φ) and every solution is connected to it via a monotone path.
Finally, putting everything together, we complete the proofs of all our dichotomy theorems.

Corollary 4. LetS be a tight set of relations. Then

1. For everyϕ ∈ CNF(S) with n variables, the diameter of each component ofG(ϕ) is bounded by2n.

2. ST-CONN(S) is in P.

3. CONN(S) is in coNP.

4.3 The Complexity ofCONN for Tight Sets of Relations

We pinpoint the complexity of CONN(S) for the tight cases which are not Schaefer, using a result of Juban
[12].

Lemma 10. For S tight, but not Schaefer,CONN(S) is coNP-complete.

Proof. The problem ANOTHER-SAT(S) is: given a formulaϕ in CNF(S) and a solutions, does there exist
a solutiont 6= s? Juban ([12], Theorem 2) shows that ifS is not Schaefer, then ANOTHER-SAT is NP-
complete. He also shows ([12], Corollary 1) that ifS is not Schaefer, then the relationx 6= y is expressible
from S through substitutions.

SinceS is not Schaefer, ANOTHER-SAT(S) is NP-complete. Letϕ, s be an instance of ANOTHER-SAT

on variablesx1, . . . , xn. We define a CNF(S) formulaψ on the variablesx1, . . . , xn, y1, . . . , yn as

ψ(x1, . . . , xn, y1, . . . , yn) = ϕ(x1, . . . , xn) ∧i (xi 6= yi)

It is easy to see thatG(ψ) is connected if and only ifs is the unique solution toϕ.

We are left with the task to determine the complexity of CONN(S) for the case whenS is a Schaefer set
of relations. In Lemmas 11 and 12 we show that CONN(S) is in P if S is affine or bijunctive. This leaves
the case of Horn and dual Horn, which we discuss in the end of this section.

Lemma 11. If S is a bijunctive set of relations then there is a polynomial time algorithm forCONN(S).

Proof. Consider a formulaφ(x1, . . . , xn) in CNF(S). SinceS is a bijunctive set of relationsφ can be
written as a 2-CNF formula. Since satisfiability of 2-CNF formulas is decidable in polynomial time, it is
easy to decide for a given variablexi whether there exist solutions in which it takes a particularvalue in
{0, 1}. The variables which can only take one value are assigned that value. Without loss of generality we
can assume that the resulting 2-CNF formula isψ(x1, . . . , xm).

Consider the graph of implications ofψ defined in the following way: the vertices are the literals
x1, . . . , xm, x̄1, . . . , x̄m. There is a directed edge from literall1 to literal l2 if and only if ψ contains a
clause containingl2 and the negation ofl1, which we denote bȳl1 (if l1 is a negated variablēx, then l̄1
denotesx). The directed edge represents the fact that in a satisfyingassignment if the literall1 is assigned
true, then the literall2 is also assigned true. We will show thatG(ψ) is disconnected if and only if the graph
of implications contains a directed cycle. This property can be checked in polynomial time.

Suppose the graph of implications contains a directed cycleof literals l1 → l2 → l3 → · · · → lk → l1.
By the construction, the graph also contains a directed cycle on the negations of these literals, but in the
opposite direction:̄lk → l̄k−1 → · · · → l̄2 → l̄1 → l̄k. There is a satisfying assignments in which l1
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is assigned 1, and also a satisfying assignmentt in which l̄1 is assigned 1. By the implications, ins the
literals l1, l2, . . . , lk are assigned 1, and int l̄1, l̄2, . . . , l̄k are assigned 1. Suppose there is a path froms to
t. Then letli be the first literal in the cycle whose value changes along thepath froms to t. Then there
is a satisfying assignment in whichli is assigned0 whereas all other literals on the cycle are assigned 1.
On the other hand, this cannot be a satisfying assignment because the edge(li−1, li) implies that there is a
clause containing onlyli and the negation ofli−1, and this clause is violated by the assignment. This is a
contradiction, therefore there can be no path froms to t.

Next, suppose the graph of implications contains no directed cycle, andG(ψ) is disconnected. Lets and
t be satisfying assignments from different connected components ofG(ψ) that are at minimum Hamming
distance. LetU be the set of variables on whichs andt differ. There are two literals corresponding to each
variable, and letU s andU t denote respectively the literals that are true ins and int. The directed graph
induced byU s in the implications graph contains no directed cycle, therefore there exists a literall ∈ U s

without an incoming edge from a literal inU s. There is also no incoming edge from any other true literal in
s, becauset is also satisfying. Thus the value of the corresponding variable can be flipped and the resulting
assignment is still satisfying. This assignment is in the same component ass but it is closer tot which
contradicts our choice ofs andt.

Lemma 12. If S is an affine set of relations then there is a polynomial time algorithm forCONN(S).

Proof. An affine formula can be described as the set of solutions of a linear system of equations. For any
solution, if only a variable that appears in at least one of the equations is flipped, the resulting assignment is
not a solution. Therefore it suffices to check whether the system has more than one solution (after variables
that don’t appear in any equation are removed), which is easyby checking the rank of the matrix obtained
from the Gaussian elimination algorithm.

We are left with characterizing the complexity of CONN for sets of Horn relations and for sets of dual
Horn relations. In the conference version [10] of the present paper, we had conjectured that ifS is Horn
or dual Horn, then CONN(S) is in P, but this was disproved by Makino, Tamaki and Yamamoto[17].
They showed that CONN({R2}) is coNP-complete, whereR2 = {0, 1}3\{110}, hence there exist Horn
(and by symmetry also dual Horn) sets of relations for which CONN is coNP-complete. Their proof is
via a reduction from POSITIVE NOT-ALL -EQUAL 3-SAT, which as seen earlier is SAT({RNAE}), where
RNAE = {0, 1}3 \ {000, 111}. This problem is also known as 3-Hypergraph 2-colorability,

The relationR2 is a 3-clause with one positive literal. We will describe a natural set of Horn relations
first introduced in [8], which cannot be used to expressR2. We show that for this set there is a polynomial
time algorithm for CONN.

Definition 6. A logical relationR is implicative hitting set-bounded− or IHSB− if it is the set of solutions
of a Horn formula in which all clauses of size greater than 2 have only negative literals. Similarly,R is
implicative hitting set-bounded+ or IHSB+ if it is the set of solutions of a dual Horn formula in which all
clauses of size greater than 2 have only positive literals.

These types of logical relations can be characterized by closure properties. A relationR is IHSB−
if and only if it is closed undera ∧ (b ∨ c); in other words ifa,b, c ∈ R, whereR is of arity r, then
a ∧ (b ∨ c) = (a1 ∧ (b1 ∨ c1) , a2 ∧ (b2 ∨ c2) , . . . , ar ∧ (br ∨ cr)) ∈ R. A relationR is IHSB+ if
and only if it is closed undera ∨ (b ∧ c). While the definition may at first look unnatural, it comes from
Post’s classification of Boolean functions (see [4]). One ofthe consequences of this classification is that
IHSB− relations cannot express all Horn relations, and in particular R2, even in the sense of Schaefer’s
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expressibility. For the purposes of faithful expressibility we can define an even larger class of relations
which cannot faithfully expressR2 (unless P = coNP).

Definition 7. A logical relationR is componentwise IHSB− (IHSB+) if every connected component of
G(R) is IHSB− (IHSB+).

By Lemma 6, every relation that is IHSB− (IHSB+) is also componentwise IHSB− (IHSB+). Of
course, the class of componentwise IHSB− relations is much broader, and in fact includes relations that
are not even Horn, such asR1/3, However in the following lemma we are only considering componentwise
IHSB− (IHSB+) relations which are Horn (dual Horn). We will say that a set of relationsS is component-
wise IHSB− (IHSB+) if every relation inS is componentwise IHSB− (IHSB+).

Lemma 13. If S is a set of relations that are Horn (dual Horn) and componentwise IHSB− (IHSB+), then
there is a polynomial time algorithm forCONN(S).

Proof. First we consider the case in which every relation inS is IHSB−. The formula can be written as a
conjunction of Horn clauses, such that clauses of length greater than 2 have only negative literals. Let all unit
clauses be assigned and propagated—their variables take the same value in all satisfying assignments. The
resulting formula is also IHSB−, and has two kinds of clauses: 2-clauses with one positive and one negative
literal, and clauses of size 2 or more with only negative literals. The assignment of zero to all variables is
satisfying. There is more than one connected component if and only if there is another assignment that is
locally minimal by Lemma 9. A locally minimal satisfying assignment is such that if any of the variables
assigned 1 is changed to 0 the resulting assignment is not satisfying. Thus all variables assigned 1 appear in
at least one 2-clause with one positive and one negative literal for which both variables are assigned 1. We
say that such an assignment certifies the disconnectivity.

To describe the algorithm, we first define the following implication graphG. The vertices are the set of
variables. There is a directed edge(xi, xj) if and only if (xj ∨ x̄i) is a clause in the IHSB− representation.
Let S1, . . . , Sm be the sets of variables in clauses with only negative literals. For every variablexi let Ti

denote the set of variables reachable fromxi in the directed graph. Note that ifxi is set to1, then every
variable inTi must also be set to1. The algorithm rejects if and only if there exists a variablexi such that
xi ∈ Ti andTi does not containSj for any j ∈ {1, . . . ,m}. We show that this happens if and only if the
solution graph is disconnected. Note that the algorithm runs in polynomial time.

Assume that the graph of solutions is disconnected and consider the satisfying assignments that certifies
disconnectivity. LetU be the set of variablesxi such thatsi = 1. Since every variable inU appears in at
least one 2-clause for which both variables are fromU , the directed graph induced byU is such that every
vertex has an incoming edge. By starting at any vertex inU and following the incoming edge backwards
until we repeat some vertex, we find a cycle in the subgraph induced byU . For any variablexi in such a
cycle it holds thatxi ∈ Ti. FurtherTi ⊆ U , since settingxi to 1 forces all variables inTi to be1. Also Ti

cannot containSj for anyj, else the corresponding clause would not be satisfied bys. Thus the algorithm
rejects whenever the solution graph is disconnected.

Conversely, if the algorithm rejects, there exists a variable xi such thatxi ∈ Ti andTi does not contain
Sj for anyj ∈ {1, . . . ,m}. Consider the assignment in which all variables fromTi are assigned 1, and the
rest are assigned 0. We will show that this assignment is satisfying and it is a certificate for disconnectivity.
Clauses which contain only negated variables are satisfied sinceSj 6⊂ Ti for all j. Now consider a clause of
the form(xj ∨ x̄k) and note that there is a directed edge(xk, xj). If xk = 0, this is satisfied. Ifxk = 1 then
xk ∈ Ti, and hencexj ∈ Ti because of the edge(xk, xj). But thenxj is set to1, so the clause is satisfied. To
show that this solution is minimal, consider trying to setxk ∈ Ti to 0. There is an incoming edge(xj , xk)
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for somexj ∈ Ti, and hence a clause(xk ∨ x̄j), which will become unsatisfied if we setxk = 0. Thus we
have a certificate for the space being disconnected.

Next, consider a formulaφ(x1, . . . , xn) in CNF(S). We reduce the connectivity question to one for a
formula with IHSB− relations. Since satisfiability of Horn formulas is decidable in polynomial time and
every connected component of a Horn relation is a Horn relation by Lemma 6, it is easy to decide for a
given clause and a given connected component of its corresponding relation (the relation obtained after
identifying repeated variables), whether there exists a solution for which the variables in this clause are
assigned a value in the specified connected component. If there exists a clause for which there is more
than one connected component for which solutions exist, then the space of solutions is disconnected. This
follows from the fact that the projection ofG(φ) on the hypercube corresponding to the variables appearing
in this clause is disconnected. Therefore we can assume thatthe relation corresponding to every clause has
a single connected component. Since that component is IHSB− the relation itself is IHSB−.

It is still open whether CONN is coNP-complete for every remaining Horn set of relations,i.e. every set
of Horn relations that contains at least one relation that isnot componentwise IHSB−. Following the same
line of reasoning as in the proof of our Faithful Expressibility Theorem we are able to show that one of the
paths of length 4 defined in Section 3.2, namelyM(x̄1, x̄2, x3), can be expressed faithfully from every such
set of relations. Thus the trichotomy would be established if one shows that CONN({M(x̄1, x̄2, x3)}) is
coNP-hard.

5 Discussion and Open Problems

In Section 2, we conjectured a trichotomy for CONN(S). In view of the results established here, what
remains is to pinpoint the complexity of CONN(S) whenS is Horn but not componentwise IHSB−, and
whenS is dual Horn but not componentwise IHSB+.

We can extend our dichotomy theorem forst-connectivity to CNF(S)-formulas without constants; the
complexity of connectivity for CNF(S)-formulas without constants is open. We conjecture that when S is
not tight, one can improve the diameter bound from2Ω(

√
n) to 2Ω(n). Finally, we believe that our techniques

can shed light on other connectivity-related problems, such as approximating the diameter and counting the
number of components.
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