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Abstract

Living cells function according to complex mechanisms that operate in different ways
depending on conditions. Evolutionary theory suggests that such mechanisms evolved
as result of a random search guided by selection and realized by genetic mutations.
However, as some observers have noted, there has existed no theory that would explain
quantitatively which mechanisms can so evolve, and which are too complex. In this
paper we provide such a theory. As a starting point, we relate evolution to the theory of
computational learning, which addresses the question of the complexity of recognition
mechanisms that can be derived from examples. We derive a quantitative notion of
evolvability. The notion quantifies the limited sizes of populations and the limited
numbers of generations that need to be sufficient for the evolution of significant classes
of mechanisms. It is shown that in any one phase of evolution where selection is for one
beneficial behavior, certain specific classes of mechanisms are demonstrably evolvable,
while certain others are demonstrably not.

1 Introduction

We address the problem of quantifying how complex mechanisms, such as those found
in living cells, can evolve into existence without any need for unlikely events to occur.
If evolution merely performed a random search it would require exponential time, much
too long to explain the complexity of existing biological structures. Darwin made this
observation eloquently in the context of the evolution of the eye and suggested selection
as the critical controlling principle. He called the supposition that the eye could evolve “
· · · absurd in the highest possible degree” were it not for the fact that eyes “vary ever so
slightly” and might therefore evolve over time by selection [1].

This paper describes a quantitative theory of the possibilities and limitations of what
selection can achieve in speeding up the process of acquiring complex mechanisms beyond
mere exhaustive search. In particular, we show that, in a defined sense, selection for a
given beneficial behavior can provably support the evolution of certain specific classes of
mechanisms, and provably not support that of certain other classes.
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We approach this problem by viewing mechanisms from the quantitative viewpoint of
the mathematical functions they realize. In particular the subject matter of the field of
computational learning theory [2-5] can be viewed as that of delineating limits on the
complexity of mechanisms that can be acquired with feasible resources without an explicit
designer or programmer. A primary instance studied there is the acquisition of a recognition
algorithm for a function given just positive and negative examples of it. The quantitative
study of computational learning over the last two decades has shown that certain classes
of recognition mechanisms can indeed be learned in a feasible amount of time, while others
encounter apparently intractable computational impediments.

Our goal here is to give a quantitative theory of the evolution of mechanisms. What we
formalize is concerned with four basic notions. First, since the biology of cells consists of
thousands of proteins and operates with circuits with complex mechanisms, we seek mech-
anisms that can evaluate many-argument functions. This permits the behavior of circuits
to vary in complex ways depending on the particular combination of values that a large
number of input parameters take. Second, any particular mechanism or many-argument
function has a measure of performance that is determined by the values of the function
on inputs from a probability distribution over the conditions that arise. By applying the
mechanism to a variety of conditions the organism will enjoy a cumulative expected benefit
that is determined by this performance. Third, for any mechanism only a limited number
of variants can be explored per generation, whether through mutations or recombination,
since the organisms that can exist at any time have a limited population. Fourth, there is
the requirement that mechanisms with significant improvements in performance evolve in
a limited number of generations.

We show that our notion of evolvability is a restricted case of PAC learnability. This
offers a unifying framework for the fields of evolution and cognition. The behavior of a
biological organism is clearly affected both by the results of evolution and those of learn-
ing by the individual. Distinguishing between these two sources of behavior has proved
problematic, and it will perhaps help to have a unifying viewpoint on them.

As far as the evolvability of specific classes of functions we have both positive and
negative results. On the positive side we show that the classes of monotone Boolean con-
junctions and disjunctions are evolvable over the uniform distribution of inputs for the most
natural representation of these functions. On the negative side we show that the class of
Boolean parity functions is not evolvable over the uniform distribution. Since the latter
class is known to be learnable we can conclude that evolvability is more constrainted than
learnability.

Our intention is to leave little doubt that functions in classes that are provably evolvable
in the defined sense, do correspond to mechanisms that can logically evolve into existence
over realistic time periods and within realistic populations, without any need for combi-
natorially unlikely events to occur. Previous quantitative theories of evolution had aims
other than that of quantifying the complexity of the mechanisms that evolved. The major
classical thrust has been the analysis of the dynamics of populations [6-9]. A more recent
development is the study of evolutionary algorithms [10, 11], a field in which the goal is
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to develop good computer algorithms inspired by evolution, usually for optimization, but
not necessarily those that model biological evolution. For example, these algorithms may
choose mutations depending on both the current genome description and the current inputs
or experiences, and may act on exponentially small increases in performance. In our model
the candidate set of mutations is selected only on the basis of the current genome, and
only statistically distinguishable improvements can have an influence. We note that the
term evolvability has been used in a further different sense, that of measuring the intrinsic
capacity of genomes to produce variants [12]

We also observe that while most discussions of evolution emphasize competition and
survival rather than evolution towards targets, such discussions have not yielded quantified
explanations of which mechanisms can evolve.

2 Many-Argument Functions

The structures or circuits that are the constituents of living cells have to respond appropri-
ately to wide variations in the conditions. We shall represent the conditions as the values of
a number of variables x1, · · · , xn, each of which may correspond, for example, to the output
of some previously existing circuit. The responses that are desirable for an organism under
the various combinations of values of the variables x1, · · · , xn we view as the values of an
ideal function f(x1, · · · , xn). This f will have a low value in circumstances when such a
low value is the most beneficial, and a high value in those other circumstances when a high
value is the most beneficial. It will be beneficial to evolve a circuit that behaves as closely
as possible to this f . For simplicity we shall consider the variables xi and the functions f
to take just two possible values, a low value of -1, and a high value of +1.

We shall give here as illustrations two such functions. The first, the parity functions,
will be shown in this paper not to be evolvable. The second, conjunctions, will be shown to
be evolvable.

A parity function is odd or even. An odd (even) parity function f over x1, · · · , xn has
value +1 iff an odd (even) number of the variables in a specified subset of the variables
have value +1. The following table illustrates an odd parity function over {x1, x2, x3, x4}
that has value 1 if an odd number of {x1, x3, x4} have value +1. For example, it has value
+1 if x1 = x2 = x3 = x4 = +1, and value -1 if x1 = x2 = x3 = +1 and x4 = −1.

x3 = −1, x4 = −1 : x3 = −1, x4 = +1 : x3 = +1, x4 = −1 : x3 = +1, x4 = +1 :
x1 = −1, x2 = −1 : − 1 +1 +1 −1
x1 = −1, x2 = +1 : − 1 +1 +1 −1
x1 = +1, x2 = −1 : + 1 −1 −1 +1
x1 = +1, x2 = +1 : + 1 −1 −1 +1

We shall show that for evolving arbitrary parity functions over n variables either the
number of generations or the population size of the generations would need to be exponen-
tially large in terms of n.
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In contrast we shall also show that there are classes with similarly substantial structure
that are evolvable in a strong sense. An example of such a class is that of conjunctions.
An example of a conjunction over x1, x2, x3, x4 is the function that is true if and only if
x1 = +1, and x4 = −1. We abbreviate this function as x1x

′

4. This function is shown below.

x3 = −1, x4 = −1 : x3 = −1, x4 = +1 : x3 = +1, x4 = −1 : x3 = +1, x4 = +1 :
x1 = −1, x2 = −1 : − 1 −1 −1 −1
x1 = −1, x2 = +1 : − 1 −1 −1 −1
x1 = +1, x2 = −1 : + 1 −1 +1 −1
x1 = +1, x2 = +1 : + 1 −1 +1 −1

We denote by Xn the set of all 2n combinations of values that the variables x1, · · · , xn

can take. We define Dn to be a probability distribution over Xn that describes the relative
frequency with which the various combinations of variable values for x1, · · · , xn occur in
the context of the organism. Evolution algorithms that work for all distributions would be
particularly compelling.

Definition 2.1 The performance of function r : Xn → {−1, 1} with respect to ideal func-
tion f : Xn → {−1, 1} for probability distribution Dn over Xn is

Perff (r,Dn) =
∑

f(x)r(x)Dn(x).

x ∈ Xn

The performance is simply a measure of the correlation between the ideal function f and
a hypothesis r we have at hand. The value will always be a real number in the range [-1, 1].
It will have value 1 if f is identical to r on points with nonzero probability in Dn. It will
have value -1 if there is perfect anti-correlation on these points. (In general one could have
a further multiplicative weight function w(x) in this definition that would weight different
conditions differently.)

The interpretation is that every time the organism encounters a condition, in the form
of a set of values x of the variables x1, · · · , xn, it will undergo a benefit amounting to +1
if its circuit r agrees with the ideal f on that x or a penalty -1 if r disagrees with f . Over
a sequence of life experiences (i.e. different points in Xn) the total of all the benefits and
penalties will be accumulated. Organisms or groups for which this total is high will be
selected preferentially to survive over organisms or groups with lower such totals.

An organism or group will be able to test the performance of a function r by sampling
a limited set Y ⊆ Xn of size s(n) of inputs or experiences.

Definition 2.2 For a positive integer s, ideal function f : Xn → {−1, 1} and probability
distribution Dn over Xn the empirical performance Perff (r,Dn, s) of function r : Xn →
{−1, 1} is a random variable that makes s selections independently with replacement ac-
cording to Dn and for the multiset Y so obtained takes value
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∑
f(x)r(x).

x ∈ Y

In our basic definition of evolvability we insist that evolution be able to proceed from
any starting point. Otherwise, if some initialization process is assumed, then proceeding
to the reinitialized state from another state might incur a decrease in performance. We
also insist that at any time any one of the available mutations that gives a measurable
improvement in performance should be acceptable and that the very best is not needed.

The evolution algorithm for conjunctions that we describe in detail in Section 5 behaves
as follows. The learning of the previously described target function x1x

′

4 will be achieved by
an algorithm that maintains a conjunction of a number of literals, a literal being a variable
xi or its negation x′

i. Clearly the aim is to evolve the function x1x
′

4 which has performance
+1 since it is identical with the target, and is the only conjunction with that performance.
The mutations will consist of adding or deleting a single literal for the current conjunction,
or swapping one literal for another. Since there are then about n2 possible mutations at each
step it is feasible to explore the space of all mutations with a population of (polynomial)
size, namely n2.

3 Definition of Evolvability

Given the existence of an ideal function f the question we ask is whether it is possible to
evolve a circuit for a function r that closely approximates f . Roughly, we want to say that
a class C of ideal functions f is evolvable if any f in the class C satisfies two conditions.
(i) From any starting function r0 the sequence of functions r0 ⇒ r1 ⇒ r2 ⇒ r3 ⇒ · · · will
be such that ri will follow from ri−1 as a result of a single step of mutation and selection
in a moderate size population, and (ii) after a moderate number i of steps ri will have a
performance value significantly higher than the performance of r0, so that it is detectable
after a moderate number of experiences. The conditions will be sufficient for evolution to
start from any initial starting function and progress towards f , predictably and inexorably.

While the ideal function may be viewed as an abstract mathematical function, the
hypothesis r needs to be represented concretely in the organism and should be viewed as
a representation of a function. We generally consider C to be a class of ideal functions
and R a class of representations of functions from which the organism will choose an r
to approximate the f from C. We shall assume throughout that the representation R is
polynomial evaluatable in the sense that there is a polynomial u(n) such that given the
description of an r in R and an input x from Xn, the value of r(x) can be computed in
u(n) steps. This reflects the one assumption we make about biology, that its processes can
be simulated in polynomial time on a computer. For brevity, and where it introduces no
confusion, we shall denote by r both the representation as well as the function that that
representation computes. We denote by Cn, Rn, and Dn, the restrictions of C,R, and D to n
variables, but sometimes omit these distinctions where the meaning is clear. Also, we shall
denote by ε the error parameter of the evolution, which describes how close to optimality
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the performance of the evolved representation has to be. We shall be prepared to expend
resources that are polynomial in n, the number of arguments of the ideal function, and also
in 1/ε. Hence our resource bounds will be polynomial functions, such the as p(n, 1/ε) in
the following definition.

Definition 3.1 For a polynomial p(n, 1/ε) and a representation class R a p(n, 1/ε)-neighborhood
N on R is a pair M1,M2 of randomized polynomial time Turing machines such that on input
a number n in unary and representation r ∈ Rn act as follows: M1 first outputs the members
of a set NeighN (r) ⊆ Rn, that contains r and has size at most p(n, 1/ε). Subsequently M2

is run on this output of M1, and outputs each member r1 of NeighN(r) with a probability
PrN (r, r1) ≥ 1/p(n, 1/ε).

The interpretation here is that for each genome the number of variants that can be
searched effectively is not unlimited, because the population at any time is not unlimited,
but is polynomial bounded. One possible implementation, clearly, is to regard R as the set
of possible genomes, restrict mutations to a fixed constant number of base pairs, and regard
the genome length as a polynomial in the relevant n. We consider exponentially many such
variants to be impractical, while modest polynomial bounds such as n or n2 are feasible.
As in other areas of algorithmic analysis it turns out that natural polynomially bounded
processes usually have reasonably modest polynomial bounds, and hence such results are
meaningful [13-14]. The theory, as presented here, aims to distinguish between polynomial
and exponential resources, insisting as it does that population sizes, numbers of generations,
and numbers of computational steps all have to be upper bounded by a polynomial in the
number of variables on which a circuit depends, and in the inverse of the error. Clearly,
using more careful analysis finer distinctions can also be made.

Note that in our model, for each r process M1 is run once and process M2 run possibly
many times. This ensures that from among a polynomial number of mutations, each one
can be produced many times so that its possible superiority can be reliably determined. In
biology this may be implemented either by the same mutation occurring in many individuals,
or by the one mutation being spread by reproduction. Estimates of actual mutation rates
in various organisms are available [15-17].

Definition 3.2 For positive integers n and s, an ideal function f ∈ Cn, a representation
class R with p(n, 1/ε)-neighborhood N on R, a distribution Dn, a representation r ∈ Rn and
a real number t, the mutator Mu(f, p(n, 1/ε), R,N,Dn, s, r, t) is a random variable that on
input r ∈ Rn takes a value r1 ∈ Rn determinded as follows. For each r1 ∈ NeighN (r)
it first computes an empirical value of v(r1) = Perff (r,Dn, s). Let Bene be the set {r1 |
v(r1) ≥ (1 + t)v(r)} and Neut be the set difference {r1 | v(r1) ≥ (1− t)v(r)} – Bene. Then

(i) if Bene 6= φ then output r1 ∈ Bene with probability

PrN (r, r1)/
∑

PrN (r, r1)

r1 ∈ Bene
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(ii) if Bene = φ but Neut 6= φ then output an r1 ∈ Neut, the probability of a
specific r1 being

PrN (r, r1)/
∑

PrN (r, r1)

r1 ∈ Neut

(iii) if Bene = Neut = φ then output an arbitrary member r1 ∈ NeighN (r) with
probability PrN (r, r1).

In this definition a distinction is made between beneficial and neutral mutations as
revealed by a set of s experiments. In the former the empirical performance after the
mutation exceeds that of the current representation r by an additive tolerance of at least t, a
quantity which will, in general, be large enough, in particular some inverse polynomial, that
it can be reliably distinguished from a zero increase in performance. In neutral mutations
no increase in performance is expected, but it is expected that the performance is not
worse than that of the current r by more than t. If some beneficial mutations are available
one is chosen according to the relative probabilities of their generation by N . If none is
available then one of the neutral mutations is taken according to the relative probabilities
of their generation by N . If all mutations have empirical performance less than that of r
by more than t then an arbitrary mutation is made. In practice by including the current
representation r in NeighN (r) and having s a large enough polynomial in comparison
with the inverse of t, we can ensure that the latter possibility occurs with probability
exponentially small in terms of n.

Definition 3.3 For a mutator Mu(f, p(n, 1/ε), R, N, Dn, s, r, t) a t-evolution step on
input r1 ∈ Rn is the random variable Mu(f, p(n, 1/ε), R,N, Dn, s, r1, t). If r2 is so
generated we say r1 → r2 or r2 ← Evolve(f, p(n, 1/ε), R, N, Dn, s, r1, t).

Definition 3.4 For a mutator Mu(f, p(n, 1/ε), R, N, Dn, s, r, t) a t-evolution sequence for
r1 ∈ Rn is a random variable that takes as values sequences r1, r2, r3, · · · such that for all i
ri ← Evolve(f, p(n, 1/ε), R,N,Dn , s, ri−1, t).

We shall find that if we want to evolve to performance very close to one, say 1 − ε, we
shall need numbers of experiments s or numbers of generations g that grow inversely with
ε, and the tolerances t to diminish with ε. We therefore now regard these as functions of n
and ε, and denote them by s(n, 1/ε), g(n, 1/ε) and t(1/n, ε).

Definition 3.5 For polynomials p(n, 1/ε), s(n, 1/ε) and t(1/n, ε), a representation class
Rn, and p(n, 1/ε)-neighborhood N on R, the class C is t(1/n, ε)-evolvable by (p(n, 1/ε),
R, N, s(n, 1/ε)) over distribution D if there is a polynomial g(n, 1/ε) such that for every
positive integer n, every f ∈ Cn, every ε > 0, and every r0 ∈ Rn it is the case that with
probability greater than 1 - ε, a t(n, 1/ε)-evolution sequence r0, r1, r2, · · · , where ri ←
Evolve(f, p(n, 1/ε), R,N,Dn , s(n, 1/ε), ri−1, t(n, 1/ε)), will have Perff (rg(n,1/ε),Dn) > 1 −
ε.
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The polynomial g(n, 1/ε), the generation polynomial, upper bounds the number of gen-
erations needed for the evolution process.

Definition 3.6 A class C is evolvable by (p(n, 1/ε), R, N, s(n, 1/ε)) over D iff for some
polynomial t(1/n, ε), C is t(1/n, ε)-evolvable by (p(n, 1/ε), R, N, s(n, 1/ε)) over D.

Definition 3.7 A class C is evolvable by R over D iff for some polynomials p(n, 1/ε) and
s(n, 1/ε), and some p(n, 1/ε)-neighborhood N on R, C is evolvable by (p(n, 1/ε), R, N, s(n,
1/ε)) over D.

Definition 3.8 A class C is evolvable over D if for some R it is evolvable by R over D.

Definition 3.9 A class C is evolvable if it is evolvable over all D.

Our definition of evolvability is closely related to that of learnability [2-5], but it includes
the extra ingredients that each step of learning (i) chooses from a polynomial size set of hy-
potheses, (ii) improves a performance measure monotonically, and further (iii) the progress
of the algorithm depends on the candidate hypotheses only through their performance on
inputs, and not through their syntax. Note that by allowing neutral mutations we do not
insist on the performance improving strictly monotonically at each step.

Proposition 3.1 If C is evolvable by R over D then C is learnable by R over D. In partic-
ular, if C is evolvable by R then C is learnable by R.

Proof If C is evolvable over D then, by definition, for some polynomials p(n, 1/ε), s(n, 1/ε), g(n, 1/ε)
and t(1/n, ε), some polynomial evaluatable representation R and some p(n, 1/ε)-neighborhood
N on R,C is t(1/n, ε)-evolvable by (p(n, 1/ε), R,N, s(n, 1/ε)) over distribution D with gen-
eration polynomial g(n, 1/ε). The main observation here is that we can replicate this evolu-
tion algorithm exactly in terms of the PAC learning framework. At each stage the evolution
algorithm takes fixed size samples of s(n, 1/ε) labelled examples from the distribution, com-
putes for its current hypothesis the empirical performance, and from that generates the next
hypothesis in a polynomially bounded fashion. But computing this performance is equiv-
alent to computing the fraction of examples on which the hypothesis predicts correctly.
Hence the access required to examples is that of random labelled examples from D, and
every step is a polynomial time computational process. All this is permitted within the
PAC model. Also the final hypothesis of the evolution model satisfies the requirements of
the learning model since it ensures that the performance is at least 1−ε, and hence accurate
on at least 1− ε/2 of D. �

We can strengthen the above statement by observing that evolvability implies learn-
ability in the more restricted sense of statistical queries defined by Kearns [18]. In that
model oracles provide not individual examples but estimates, to within inverse polynomial
additive error, of the fraction of examples that satisfy polynomially evaluatable properties.
This is clearly sufficient for the proof of Proposition 3.1, which therefore supports also the
following.

8



Proposition 3.2 If C is evolvable by R over D then it is efficiently learnable from statistical
queries using R over D.

Evolvability for all D is a very strong and desirable notion. As mentioned previously,
it guarantees evolution independent of any assumptions about the distribution. It also
means that evolution can continue even if the D changes. Of course, a change in D can
cause a reduction in the value of Perf for any one r, and hence may set back the progress
of evolution. However, the process of finding improvements with respect to whatever the
current D is will continue. It remains an open problem as to whether such distribution-free
evolution is possible for a significant class of functions.

Note also that the representation class R may represent a class of functions that differs
from C. For example an R richer than C may be helpful. Alternatively, a weaker class may
still produce good enough approximations and may have better properties for evolution. In
general if we wish to identify or emphasize the class R that supports an evolution algorithm
we say that C is evolvable by R for D, or C is evolvable by R.

One can make variations on the definition of evolvability. One restriction is evolvability
with initialization. In that case in Definition 3.5, instead of requiring convergence from any
starting point r0 ∈ Rn, we require only that there is convergence from one fixed starting
point r0. The more general definition given is more robust, allowing for successive phases
of evolution, each phase responding to new conditions. The evolved representation for one
phase can then serve as the starting representation for the next, without a decrease in
performance at any step. In evolution with initialization, the steps of going from the end
of one phase to a reinitialized new state may suffer a performance decrease.

Another variant is evolvability with optimization. Here we insist that in Definition
3.2 the representation r1 selected is any one with empirical performance within tolerance
t of the best empirical performance in NeighN (r). However, it is easy to see that this
variant is no more powerful than the main definition. One can simulate the search for
the best representation as required by one step of the optimized evolution, in no more
than 6/t basic steps of looking for a representation with an empirical improvement of at
least t/2, each step using a new sample. (Note that the actual performance can increase
cumulatively by at most 2. Using the Hoeffding Bound (Fact 4.2) one can show that the
cumulative empirical performance increase on the different samples can be limited to 3 with
overwhelming probability.) For this simulation we change the representation to i · rM · rP

where i ≤ 6/t is an integer denoting which basic step we are in, rM ∈ R is the representation
that generates the mutations for each of the up to 6/t basic steps, and rP ∈ R is the one
with best performance found so far. (In other words rP is the function this representation is
computing, but the representation also has a memory of rM from which it can generate new
mutations in R, that may not be generatable from rP alone.) After i = 6/t basic steps the
final rP is adopted as the starting rM and rP of the next step of the optimized evolution.
Note that the constructed representation in this reduction is a redundant representation in
the sense that there are many representations that correspond to the same function rP .

Proposition 3.3 If C is evolvable with optimization by R over D, then C is evolvable by
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R over D. If C is evolvable with initialization and optimization by R over D, then C is
evolvable with initialization by R over D.

4 Limits to Evolvability

The obvious question arises as to whether the converse of Proposition 3.1 holds: does
learnability imply evolvability? Our next result answers this in the negative, saying as it
does that for a certain function class there is a distribution that defeats all combinations of
representations and neighborhoods.

We define Linn to be the set of odd parity functions f(x1, · · · , xn) over {−1, 1}n. Each
such f corresponds to some subset of the variables xi[1], · · · , xi[k] ∈ {x1, · · · , xn}. The
function f has value 1 if and only if an odd number of the variables {xi[1], · · · , xi[k]} have
value 1. (Equivalently f specifies a linear subspace of over GF[2]). Clearly there are 2n

functions in Linn. We define U to be the uniform distribution over {−1, 1}n. We note that
the functions in Lin are easy to compute, and further the class is known to be learnable not
only for U but for all distributions [18, 19].

Proposition 4.1 Lin is not evolvable for U by any representation R.

Proof Kearns [20] shows that Lin is not efficiently learnable from statistical queries over U
using any representation. The result then follows from Proposition 3.1 above. �

Another important class of functions that is known to be learnable is that of linear
halfspaces {a.x ≥ b | a ∈ R

n, b ∈ R} in n-dimensional space R
n. This class is learnable for

all distributions by the natural representation of linear halfspaces, even if the coefficients a,
b are represented as rational numbers with n digits of accuracy, by virtue of the existence
of polynomial time algorithms for linear programming [4]. However, if both the class and
its representation is restricted to {0,1} coefficients then we have the following.

Proposition 4.2 If C is the class of Boolean Threshold Functions {a.x ≤ b | a ∈ {0, 1}n, b ∈
R} in R

n and R is the given representation of it, then C is not evolvable by R, unless NP
= RP.

Proof In [3] it is shown that this class is not learnable by its natural representation unless
NP = RP. (The proof there shows that an NP-complete problem, integer programming, can
be mapped to instances of learning Boolean threshold functions for a certain distribution
to accuracy better than 1/n.) The result follows from Proposition 3.1 above. �

Note that the classes considered in the previous two propositions may appear to be
biologically unnatural. This is exactly the prediction of the theory, which asserts that such
structures cannot evolve. The existence of such structures in biology would challenge the
validity of our approach to evolvability.

There appear to be at least four impediments that can be identified to evolvability in
our sense, the first three of which derive from general impediments to learnability, while the
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last is particular to evolvability: (i) A purely information theoretic impediment [21]: the
complexity of the mechanism that is to evolve exceeds the number of experiments. (ii) A
representational limit such as Proposition 4.2 above, where learnability by a fixed represen-
tation would imply solving a computational problem that is believed to be hard. (iii) An
intrinsic complexity limitation [22]: the function class is so extensive that learning it by any
representation would imply an efficient algorithm for a problem believed to be hard to com-
pute. (iv) Limits such as Proposition 4.1 above, that show that for information theoretic
reasons evolvability cannot proceed because no empirical test of a polynomial number of hy-
potheses in a neighborhood can guarantee sufficient convergence in performance. Note that
impediments (i) and (iv) are absolute, requiring no unproven computational assumptions.

5 Some Provably Evolvable Structures

We now describe some basic classes of Boolean functions and distributions that are provably
evolvable. Here disjunction or Boolean “or” is denoted by +, conjunction or Boolean “and”
by the multiplication sign, and Boolean negation of a variable xi by x′

i. In general we shall
have n variables x1, · · · , xn. A q-disjunction is a disjunction of k ≤ q of the n variables or
their negations, while a q-conjunction is a conjunction of k ≤ q of the n variables or their
negations. Thus a q-disjunction is yi[1] + · · · + yi[k] where 1 ≤ i[1], · · · , i[k] ≤ n and yi[j] ∈
{x1, · · · , xn, x′

1, · · · , x
′

n}, and a q-conjunction as yi[1] · · · yi[k]. The uniform distribution over
{−1,+1} will be denoted again by U . A conjunction or disjunction is monotone if it contains
no negated literals. We note that Ros (Section B2.8 in [10]; [23]) has analyzed evolutionary
algorithms for learning conjunctions and disjunctions. However, a step of his algorithm
is allowed to depend not just on the value of his current hypothesis on an input, but on
more detailed information such as the number of bits on which the hypothesis and input
differ. Such computation on the input condition and the hypothesis description we consider
unrealistic for evolution, and is outside our model.

Fact 5.1 Over the uniform distribution U for any conjunction PrU (yi[1] · · · yi[k] = 1) = 2−k

and for any disjunction PrU (yi[1] + · · ·+ yi[k] = 1) = 1− 2−k.

For our probabilistic arguments below it will be sufficient to appeal to the following:

Fact 5.2 (Hoeffding [24]). The probability that the mean of s independent random vari-
ables each taking values in the range [a, b] is greater than or less than the mean of their
expectations by more than δ is at most exp(−2sδ2/(b− a)2), where exp(x) denotes ex.

Fact 5.3 (Coupon Collector’s Problem) Suppose that there is a bucket of n balls and M is
a subset of m of them. Then after j = CC(n, m, η) = n(loge m + loge(1/η)) samples with
replacement the probability that some member of the chosen set M has been missed is less
than η.

Proof This probability is upper bounded by m(1− 1/n)j < m(1− 1/n)jn/n = me−j/n < η.
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Theorem 5.1 Monotone conjunctions and disjunctions are evolvable over the uniform dis-
tribution for their natural representations.

Proof We first note that for our definition of evolvability it is sometimes advantageous for
a local search procedure to introduce literals that do not appear in the ideal function f .
For example, suppose f = x1x2x3 and we start with a hypothesis 1, the conjunction of
zero literals. Then the hypothesis will disagree with f on 7/8 of the distribution, and the
introduction of the literal x4 will be an improvement, reducing this probability from 7/8 to
1/2. Similarly, it is sometimes advantageous to remove such a non-ideal literal.

If we are evolving to accuracy ε with a p(n, 1/ε)-neighborhood N we let q = dlog2(dn/ε)e
for some constant d to be determined later. We choose the effective representation class R
to be montone q-conjunctions. In case the initial conjunction is of length greater then q we
allow for a preliminary evolution phase in the following way. We define the neighborhood
of each such long conjunction to be all the conjunctions obtained by removing one or none
of its literals, each one being generated with equal probability. Clearly the removal from
the hypothesis of a literal not in the true monomial will be always at least neutral and
hence will be always available as a mutation. After this process runs its course, which will
take O(n) stages except with exponentially small probability, either a short conjunction of
length at most q will be reached, or there will be left a long conjunction of length at least
q +1 consisting of literals all from f . The latter will differ from f with probability less than
2−q−1 ≤ ε/(2dn), and hence will have performance at least 1− ε if d ≥ 1.

For the main phase of the evolution it is therefore sufficient to consider that the current
hypothesis r ∈ R consists of the conjunction of the set V of at most q literals. We denote
by r+ and r− the sets of conjunctions containing the literals in V with one literal added,
and with one taken away, respectively. In the case that V has the maximum number q of
literals then r+ is empty. In the case that |V | = 0, r− is empty. Also we define r+− to be
the conjunctions consisting of the literals in V with one further literal added and then one
literal taken away. Clearly r ∈ r+−. We then choose the neighborhood structure N to be
such that

NeighN (r) = r+ ∪ r− ∪ r+−.

Finally r and the members of r+ and r− will each have equal probabilities, so that their
total is 1/2, while the remaining members of r+− will also have equal probabilities, again
totaling 1/2. Clearly N is a p(n, 1/ε)-neighborhood structure where p(n, 1/ε) = O(n2).

The construction will ensure that every mutation in N either causes an improvement in
performance of at least 2−2q or causes no improvement (and a possible degradation.) We
choose the tolerance t(1/n, ε) = 2−2q−1 and the number of samples s(n, 1/ε) = t−3. It will
then follow that the empirical test will, except with exponentially small probability, correctly
identify an available mutation that has true improvement 2t, distinguishing it from one that
gives no improvement in performance. This can be seen by substituting a = −1, b = 1, δ = t
and s = δ−3 in the Hoeffding Bound above to obtain that the probability of s trials each
with expected improvement 2δ will produce a mean improvement of less than t = δ is at
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most exp(−2sδ2/(b−a)2) = exp(−(dn/ε)2). A similar argument also shows that the same
test will not mistakenly classify a mutation with no performance increase with one with
an increase of 2t. In the same way the same tolerance will distinguish a mutation with a
nonnegative performance increase from one whose performance decreases by at least 2t.

In a run of the evolution algorithm there will be g(n, 1/ε) stages, and in each stage up
to p(n, 1/ε) mutations will be tested, where g and p are polynomials. We will want that
in all p(n, 1/ε)g(n, 1/ε) empirical tests the probability of even one failure to make such a
distinction be less than ε/2. But p(n, 1/ε)g(n, 1/ε)exp(−(dn/ε)2) < ε/2 for all n, ε for a
suitable constant d.

Suppose that W is the true set of h literals in the ideal conjunction, and that the current
hypothesis r is the conjunction of a set of k literals V . We claim that:

Claim 5.1 Suppose k ≤ q. Then
(a) If k < q then adding to r any literal z in W - V will increase the performance of r by at
least 21−q.
(b) Removing from r any literal z in V ∩ W will decrease the performance of r by at least
21−q.
(c) Adding to r a literal in W - V and removing from r a literal in V - W will increase the
performance by at least 2−q−h.
(d) Adding to r some literal not in W, and removing from r a literal in V ∩ W will decrease
the performance of r by at least 2−q−h.
(e) Adding to r a literal in W - V and removing from r a literal in V ∩ W will leave the
performance unchanged, as will also adding to r a literal not in W , and removing one in V
- W.
(f) If r contains all the literals in W, then removing a z in V - W will increase the perfor-
mance of r by at least 21−q.
(g) If r contains all the literals in W then adding a z in V - W will decrease the performance
of r by at least 2−q.
(h) If h > q then adding a z to an r of length at most q - 2 will increase performance by at
least 2−q, and removing a z from an r of length at most q − 1 will decrease performance by
at least 21−q.

To verify the above eight claims suppose that r is yi[1] · · · yi[k].
(a) Consider a z in W −V . Then conjoining z to yi[1] · · · yi[k] will change the hypothesis

from +1 to the value of -1 on the points satisfying z′yi[1] · · · yi[k]. Clearly, the ideal function
f takes value -1 at all these points since z = −1. These points will, by Fact 5.1, have prob-
ability 2−(k+1) ≥ 2−q. Hence, the performance will improve by at least twice this quantity,
namely 21−q.

(b) Suppose that z = yi[1]. Removing it from r will change the hypothesis from -1 to the
value of +1 on the points satisfying z′yi[2] · · · yi[k]. Clearly, the ideal function takes value -1

at all these points. These points will, by Fact 5.1, have probability 2−k ≥ 2−q and hence
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the performance will degrade by at least twice this quantity.

(c) Suppose the added literal is z and the removed literal is yi[1]. Then the hypothesis
changes (i) from 1 to -1 on the points where z′yi[1] · · · yi[k] = 1, and (ii) from -1 to +1 on the
points such that zy′i[1]yi[2] · · · yi[k] = 1. Now (i) changes from incorrect to correct at all such

points, and applies with probability 2−(k+1). Also (ii) applies to a set of points with the
same total probability 2−(k+1), but the change on some of the points may be from correct
to incorrect. To show that the net change caused by (i) and (ii) in combination is beneficial
as claimed it is sufficient to observe that (ii) is nondetrimental on a sufficient subdomain.
To see this we consider the literals Z in W that are missing from r but other than z, and
suppose that there are m of these. Then on the domain of points zy′i[1]yi[2] · · · yi[k] = 1 that

specifiy (ii) we note that on the fraction 2−m of these the correct value of the ideal function
is indeed 1. Hence the improvement due to (i) is not completely negated by the degradation
due to (ii). The improvement in performance is therefore at least 2−m−k ≥ 2−h−q.

(d) Suppose the added literal is z and the removed literal is yi[1]. Then the hypothesis
changes (i) from 1 to -1 on the points where z′yi[1] · · · yi[k] = 1, and (ii) from -1 to +1 on
the points such that zy′i[1]yi[2] · · · yi[k] = 1. Now (ii) is an incorrect change at every point

and applies with probability 2−(k+1). Also (i) applies to a set of points with the same total
probability 2−(k+1). To show that the net change caused by (i) and (ii) in combination is
detrimental to the claimed extent, it is sufficient to observe that (i) is detrimental on a
sufficient subdomain. To see this we consider the literals Z in W that are missing from r
but other than z, and suppose that there are m of these. Then on the domain of points
z′yi[1]yi[2] · · · yi[k] = 1 that specifiy (i) we note that on the fraction 2−m of these the correct
value of the ideal function is indeed 1. Hence (i) suffers a degradation of performance on a
fraction 2−m of its domain, and hence the rest cannot fully compensate for the degradation
caused in (ii). The combined decrease in performance is therefore at least 2−m−k ≥ 2−h−q.

(e) Suppose the added literal is z and the removed literal is yi[1]. Then the hypothesis
changes (i) from 1 to -1 on the points where z′yi[1] · · · yi[k] = 1, and (ii) from -1 to +1 on
the points such that zy′i[1]yi[2] · · · yi[k] = 1. Now (ii) is an incorrect change at every point

and applies with probability 2−(k+1). Also (i) applies to a set of points with the same total
probability 2−(k+1) but is a correct change at every point. The second part of the claim
follows similarily. Again each of the two conditions holds with probability 2−k−1. But now
if there are m literals in W missing from r, then over each of the two conditions stated in
(i) and (ii) function f is true on a fraction z−m. Hence the effect of the two changes is again
to cancel and keep the performance unchanged.

(f) Suppose that z = yi[1]. Removing z from yi[1] · · · yi[k] will change the value of the
hypothesis from -1 to +1 on the points satisfying z′yi[2] · · · yi[k]. But all such points have
true value +1 if r contains all the literals in W . Hence this gives an increase in performance
by an inverse polynomial amount 21−k ≥ 21−q.
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(g) Consider a z in V −W . Then conjoining z to yi[1] · · · yi[k] will change the hypothesis
from +1 to -1 on the points satisfying z′yi[1] · · · yi[k] . But all such points have true value +1
if r contains all the literals in W . Hence conjoining z will cause a decrease in performance
by an inverse polynomial amount 2−k ≥ 2−q.

(h) If h > q then the hypothesis equals -1 on a large fraction of at least 1− 2−1−q of the
points. A conjunction of length k ≤ q − 2 will equal -1 on 1 − 2−k ≤ 1 − 21−q points, and
a conjunction of length k + 1 on 1− 2−k−1 ≤ 1− 21−q of the points. Hence the fraction of
points on which the -1 prediction will be made increases by (1− 21−q) − (1− 22−q) ≥ 21−q

with the addition of a literal if k ≤ q − 2, and decreases by at least 21−q with the removal
of one, if k ≤ q − 1. If h > q then the corresponding increase/decrease in the fraction of
points on which predictions are correct is at least 2−q, since the fraction of predicted -1
points changes by twice this quanlity, and the true +1 points amount to at most a half this
quantity.

To prove the proposition, first suppose that the number h of literals in the ideal function
is no more than q. Then the intended evolution sequences will have two phases. First,
from any starting point of length at most q the representation will increase the number
of its literals that are in W by a sequence of steps as specified in Claims (a) and (c).
Interspersed with these steps there may be other steps that cause similar inverse polynomial
improvements, but add or remove non-ideal literals. Once the conjunction contains all the
literals of the ideal conjunction, it enters into a second phase in which it contracts removing
all the non-ideal literals via the steps of Claim(f).

The assertious of the above paragraph can be verified as follows. Claims (a) and (c)
ensure that as long as some ideal literal is missing from r, beneficial mutations, here defined
as those that increase performance by at least 2−2q will be always available and will add a
missing ideal literal. Further, Claims (b), (d) and (e) ensure that mutations that remove
or exchange ideal literals will be deleterious, reducing the performance by at least 2−2q, or
neutral, and hence will not be executed. Some beneficial mutations that add or remove non-
ideal literals may however occur. However, since each literal not already in the conjunction,
will be generated by N with equal probability as a target for addition or swapping in, the
Coupon Collectors model (Fact 5.3) can be applied. If the ideal conjunction contains m
literals then after CC(n,m, ε/2) = O((n log n+n log(1/ε)) generations all m will have been
added or swapped in, except with probability ε/2.

Once r contains all the ideal literals then the only beneficial mutations are those that
remove non-ideal literals (Claims (f)). Adding non-ideal literals (Claim(g)), exchanging
a literal for an ideal literal (Claims (d),(e)), or exchanging for a non-ideal literal (Claim
(e)) are all deleterious or neutral. Hence in this second phase after O(n) steps the ideal
conjunction with perfect performance will be reached.

We conclude that in the case that the number of literals h in the ideal conjunction
is at most q then the evolution will reach the correct hypothesis in the claimed number
of stages, except with probability ε, which accounts for both the empirical tests being
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unrepresentative, as well as the evolution steps failing for other reasons.
Finally we consider the alternative case that the number h of literals in the ideal conjunc-

tion is more than q. Then in the evolution beneficial steps (h) that add literals will be always
available until the hypothesis becomes of length q−1. Further, steps (h) that remove literals
will be never taken since these are deleterious. Once length q−1 is achieved the literals in it
may churn, but the performance will be at least 1−2(21−q +2−h) = 1−5.2−q = 1−5ε/(dn).

The result for conjunctions therefore follows with g(n, 1/ε) = O(n log(n/ε)) .
The claimed result for disjunctions follows by Boolean duality: Given an expression

representing a Boolean function, by interchanging “and” and “or” operators and negating
the inputs will yield the negation of the original function. �

The algorithm as described above may be applied to conjunctions with negated variables,
but will then fail sometimes. For example, if the starting configuration contains many
literals that are negations of literals in the ideal function, then it may have high performance
because it predicts -1 everywhere. However, it would appear difficult in that case to find
an improved hypothesis by local search.

If initialization is allowed then the above results can be obtained much more easily, and
then also allow negations.

Proposition 5.1 Conjunctions and disjunctions are evolvable with initialization over the
uniform distribution.

The reader can verify this by considering conjunctions with initial representation 1. If
the hypothesis is of length k and consists only of literals that occur in the true conjunction
of length h > k, then adding a literal from the true conjunction will increase performance by
2−k, while adding one not in the true conjunction will increase performance by 2−k − 21−h.
If h = k then adding a literal will decrease performance by at least 2−k. Then if we let q =
log2(d/ε) for an appropriate constant d, choose tolerance 2−q−1, have a neighborhood that
either adds a literal or does nothing, and stop adding new literals if the conjunction reaches
length q, then evolution with optimization will proceed through conjunctions of literals
exclusively from W until performance at least 1−ε is reached. It follows that this evolution
algorithm will work with optimization and initialization, and hence, by Proposition 3.3 it
is evolvable with initialization alone, but for a redundant representation.

6 Discussion

We have introduced a framework for analyzing the possibilities of and limitations on the
evolution of mechanisms. Our definition of evolvability has considerable robustness. It
can be weakened in several ways, separately and in combination, to yield notions that
impose less onerous requirements. First, one can entertain the definition for just one specific
distribution as we did for our positive results in Section 5. The question whether significant
classes are provably evolvable for all distributions is perhaps the most important question
that our formulation raises. Second, the requirement of having the performance be able
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to approach arbitrarily close to the best possible can be relaxed. This permits processes
where computations are feasible only for obtaining approximations to the best possible.
Third, the starting point need not be allowed to be arbitrary. There may be a tradeoff
between the robustness offered by allowing arbitrary starting points, and the complexity of
the mechanisms that can evolve. Wider classes may be evolvable in any of these less onerous
senses than in the most robust sense. We can equally study, in the opposite direction, the
quantitative tradeoffs obtained by constraining the model more, by disallowing, for example,
neutral mutations or redundant representations.

Our result that some structures, namely montone conjunctions and disjunctions are
evolvable over the uniform distribution, we interpret as evidence that the evolution of sig-
nificant algorithmic structure is a predictable and analyzable phenomenon. This interpreta-
tion is further supported by the observation that the theory, analogously to learning theory,
analyzes only the granularity of the structure that can evolve in a single phase with a sin-
gle ideal function. If multiple phases and ideal functions are allowed in succession then
arbitrarily complex structures can evolve. For example, in response to various initial ideal
functions some set of conjunctions and disjunctions may evolve first. At the next phase the
outputs of these functions can be treated as additional basic variables, and a second layer
of functionality can evolve on top of these in response to other ideal functions. This process
can proceed for any number of phases, and build up circuits of arbitrary complexity, as long
as each layer is on its own beneficial.

A unified theory for learning and evolution is of potential significance to the studies of
cognition and of its emulation by machine. A major challenge in understanding cognition
is that in biological systems the interplay between the knowledge that is learned through
experience by an individual and the knowledge inherent in the genes, is complex, and
it is difficult to distinguish between them. In attempts to construct computer systems
for cognitive functions, for example for vision, this challenge is reflected in the difficulty
of providing an effective split between the preprogrammed and the learning parts. The
unification of learning and evolution suggests that cognitive systems can be viewed as pure
learning systems. The knowledge and skills a biological organism possesses can be viewed
as the accumulation of what has been learned by its ancestors over billions of years, and
what it has learned from its individual experience since conception. Robust logic [25]
is a mathematical framework based on learning that aims to encompass cognitive tasks
beyond learning, particularly reasoning. The pragmatic difficulty of finding training data
for systems to be built along such principles has been pointed out [26]. By acknowledging
that the training data may also need to cover knowledge learned through evolution one is
acknowledging what happens in existing cognitive systems, namely the biological ones. It
is possible that learning is the only way of guaranteeing sufficient robustness in large-scale
cognitive systems. In that case it would follow that the construction of cognitive systems
with human level performance should be conceptualized as a learning task that encompasses
knowledge acquired in biological systems through evolution as well as experience.

We have shown that with regard to the acquisition of complex mechanisms evolvability
can be viewed as a restricted form of learnability. While evolvability may be technically the
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more constrained, it is not inherently more mysterious.
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