
A Simple Biased Distribution for Dinur’s Construction

Charanjit S. Jutla
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598-704

September 14, 2006

1. Introduction

The Dinur construction [Din05] achieves gap amplification, by repeatedly applying first a power-
ing construction – which increases the gap, but also increases the alphabet size – and then applying
a construction to reduce the alphabet size (which diminishes the gap but not by too much). The
latter construction is based on long codes and is not the focus of the current paper.

It is the powering construction which will be of interest to us. Essentially, the powering con-
struction works by taking a constraint graph, and building a t-fold power graph, which collects all
paths of length t emanating from a node. The proof (i.e. the labelling of the constraint graph) now
must supply versions of labels of nodes collected at each composite node – of course, the constraints
between the composite nodes have accordingly multiplied.

This is akin to doing a parallel repetition theorem (as proven by Raz [Raz98]), but there are subtle
differences, leading to considerable difference in analysis. Currently, to obtain the best parameters
for the PCP theorem, it must use the Ben-Sasson Sudan construction [BSS06] along with the Dinur
construction.

Our simplified construction, apart from obviously using ideas from Dinur’s construction, also
uses some ideas from Jaikumar’s alternate proof [Rad05], and its latest extension [RS06]. Like
Jaikumar’s proof, we obtain better bounds (even better than Jaikumar-Sudan). Instead of using
binomial distributions (as in Dinur) and various properties of lazy random walks (as in Jaikumar),
our proof uses a simple biased distribution and invokes the expander property only to bound the
variance.

In Dinur’s construction [Din05], t log d bits of randomness are required to choose the constraints
in the t-fold powering of a Σ-Constraint graph, while the amplification factor is about

√
t/|Σ|2. In

[RS06], 5t(log t + log d) bits of randomness are required, while the amplification factor is about t.
In our construction, 2 log t + t log d bits of randomness are required to achieve an amplification of
about t.

2. Powering Using a Biased Distribution

A Σ-Constraint graph G = (V,E,C) comes with a function C : E × Σ × Σ→{0, 1}. An edge
e = (u, v) is called consistent w.r.t. an assignment σ : V →Σ if the corresponding constraint, i.e.
C(e, σ(u), σ(v)), evaluates to one. Given such a graph, the Constraint Satisfaction Problem is to
find an assignment σ : V →Σ for the vertices, such that all edges e ∈ E are consistent w.r.t. σ. The
Constraint Maximization Problem is to find an assignment σ : V →Σ which maximizes the number
of consistent edges.

1

Electronic Colloquium on Computational Complexity, Report No. 121 (2006)

ISSN 1433-8092

Given a d-regular Σ-Constraint graph G = (V,E,C), we define a Σdt

-Constraint graph Gt =
(V,E′, C ′) as follows. The vertices of Gt will be V itself. Let the set of paths in G be called Ê.
The edges E′ in Gt will be paths in G (with the terminal vertices of the path being the incident
vertices of the edge), but with a distribution to be specified below. In effect, the distribution on Ê
assigns a multiplicity to each path, and hence the set of edges E′ can be considered as (multiple, and
sometimes zero) copies of paths of G, with each copy having the same constraint. The distribution
on edges in Gt will be defined differently from [Din05].

The constraints C ′ : Ê ×Σdt ×Σdt→{0, 1} of Gt are defined as follows. It is easier to just define
when an edge ê ∈ Ê is inconsistent with an assignment σ̂ : V →Σdt

. Given a label l ∈ Σdt

of a
vertex v, it can be viewed as a labelling by Σ of each vertex u that can be reached from v by a path
in G of length at most t (as G is a degree d regular graph). The (Σ-)projection of the Σdt

-label l
to this node u will be called lu. Given an edge in Ê, i.e. a path 〈u1, u2, ..., us〉, it is inconsistent

w.r.t. σ̂ if either (i) there is a vertex ui on the path, and σ̂(u1)ui
6= σ̂(us)ui

, or (ii) there is an edge
e = 〈ui, ui+1〉 on the path such that C(e, σ̂(u1)ui

, σ̂(us)ui+1
) = 0.

Let T2 stand for [−t/2..t/2], T4 stand for [−t/4..t/4], and T8 stand for [−t/8..t/8].

Let D be the distribution assigning probability (t/2 − |l|+ 1)/(t/2 + 1)2 to l ∈ T2. (We remark
here that the distribution D gives a weight to l ∈ T2 in proportion to the number of ways l can be
written as j1 + j2 (with order) with j1, j2 in T4.) The distribution on the edges of Gt, i.e. Ê, is
defined as follows: first pick l according to D, and then uniformly pick a path of length t+ l (nodes).

We will show that given any d-regular Σ-Constraint graph G = (V,E,C) with λ = λ(G) (the
second largest eigenvalue), if for every assignment σ : V →Σ at least a fraction ε of the edges are
inconsistent, then in the graph Gt defined above, for every assignment σ̂ : V →Σdt

at least a fraction
min{1/256, tε ∗ (1 − λ/d)/2048} of the edges are inconsistent.

3. Proof Idea

Experts in the field may safely skip this section.

Ideally, a uniform distribution on length t paths ought to suffice, as it does if we were interested
in amplifying the success probability of a randomised algorithm from ε to tε. However, the additional
universal quantifier in the game (i.e. for-all assignments) makes the analysis difficult, unless a biased
distribution is used.

To illustrate, the proof usually works by considering an assignment σ̂ of vertices in Gt. Each
vertex u has a label σ̂ ∈ Σdt

, which is considered as a version of Σ-labels of all vertices v reachable
from u by length t paths. If for each vertex v, the versions of its Σ-labels kept at all the vertices are
identical, then we are dealing with a simple t-fold parallel assignment checking, albeit on a path on a
d-regular expander. Standard techniques show that this indeed leads to about a t-fold amplification
of inconsistency. If the versions of Σ-labels of a vertex kept at different vertices are different, the
standard trick it to consider an assignment σ : V →Σ obtained from σ̂ by defining the label of a vertex
to be its version which is kept at maximum number of vertices. Thus, Pr[σ(v) = σ̂(u)v] ≥ 1/|Σ|,
for u chosen uniformly from vertices reachable by length (≤) t paths from v (as these are the only
vertices u which keep a version of v).

However, if one has uniformly chosen a path of length t (to be a constraint in Gt), and is
interested in showing that the path is inconsistent in Gt given that the i-th edge e = 〈ui, ui+1〉 on
the path is inconsistent w.r.t. σ, one needs to show C(e, σ̂(u1)ui

, σ̂(ut)ui+1
) = 0 (see definition

2

above). This would follow if σ̂(u1)ui
= σ(ui) and σ̂(ut)ui+1

= σ(ui+1). This happens with good
probability if u1 was chosen uniformly as above, but if u1 is not chosen in a way which is close
to uniform, our analysis becomes weak. However, given ui to be an i-th node on a random path
starting at u1, makes the distribution of u1 as nodes reachable by (exact) i length paths.

The trick is to not to try to show the i-th edge on the path to be inconsistent, but one of a range
of edges on the path to be inconsistent. Instead of trying to maximize the probability over this range,
one proves that the average inconsistency is high (a standard trick in probabilistic combinatorics).
Further, σ : V →Σ is now defined by not maximizing over all vertices reachable by (≤) t paths, but
by paths of length close to t.

To obtain this range of edges, the Dinur construction considers length (exact) t paths over a
graph with self loops. The Jaikumar paper considers random walks which stop early with some
probability (lazy random walks). In this paper we attempt to capture what is exactly required, at
least in the method outlined above, and hence obtain a simpler proof with better bounds.

4. Proof

We first define a distribution A on Ê×T4 by augmenting the above distribution on Ê as follows.

1. Pick l according to D from T2, and then uniformly pick a path of length t + l steps (nodes),
say 〈u1, ..., ut+l〉

2. Pick j1 uniformly from [max(l − t/4, −t/4)..min(l + t/4, t/4)]. Note, if l ≥ 0, j1 is picked
uniformly from [l − t/4..t/4], and if l ≤ 0, j1 is picked uniformly from [−t/4..t/4 − |l|]. Thus
regardless, j1 is in T4.

3. For technical reasons, define j2 = l − j1. For a given l, the range for j2 can be seen to be
same as that for j1.

The path 〈u1, ..., ut+l〉 and the value j1 specified above is in Ê × T4, and the above sampling
procedure defines a distribution on Ê × T4.

We next show that the above distribution A is also identical to each of the following distributions
Bi on Ê × T4, for i ∈ T8.

1. Uniformly pick a random edge 〈u, v〉 from E.

2. Uniformly pick j1 from T4.

3. Uniformly pick j2 from T4.

4. Uniformly pick a random path of t/2+ i+ j1 steps originating at u and terminating at say u1.

5. Uniformly pick a random path of t/2 − i + j2 steps originating at v and terminating at say
ut+j1+j2.

The claim that the two distributions A and Bi are identical would follow if for all a, b ∈ T4,
PrA[j1 = a ∧ j2 = b] is 1/|T4|2. But, this is same as PrA[j1 = a ∧ l = a + b], which is same as

1

t/2 − |a + b| + 1
· t/2 − |a + b| + 1

(t/2 + 1)2

3

Given a labelling σ̂ of Gt, we now define a majority function to define a labelling σ : V →Σ for
the vertices in G. Let

pu = maxa∈Σ Pr[σ̂(w)u = a]

where the probability is over first choosing a length s uniformly in [t/2 − t/8..t/2 + t/8], and then
choosing a path of length s steps starting at u and terminating at, say w. Then, σ(u) is defined to
be an a (say, least in Σ) which attains this maximum probability pu. Let F be edges in G which
are inconsistent w.r.t. the newly defined assignment σ.

For i ∈ T8, we say that an event Ai happens (with indicator variable Xi) on a path 〈u1, ..., ut+l〉
(l ∈ T2) and value j ∈ T4 if

1. 〈ut/2+i+j , ut/2+i+j+1〉 is (defined and) in F (call this edge 〈u, v〉),

2. (a) σ̂(u1)u = σ(u) and σ̂(ut+l)v = σ(v), OR

(b) σ̂(u1)u 6= σ̂(ut+l)u, OR

(c) σ̂(u1)v 6= σ̂(ut+l)v.

In [Din05] and [Rad05] only conditions (1) and 2(a) were considered. The more advanced
condition above is from [RS06], and we borrow portions of the analysis in the next paragraph also
from [RS06].

For each fixed i ∈ T8, the cardinality of the range of values of t/2 + i + j1 in Bi is t/2 + 1.
Further, [t/2 − t/8..t/2 + t/8] is contained in this range. The latter set has size t/4 + 1. Thus, the
probability under Bi, that t/2 + i + j1 falls in [t/2 − t/8..t/2 + t/8] is at least 1/2, as j1 is picked
uniformly. Thus, PrBi

[σ̂(u1)u = σ(u)] ≥ 1/2 ∗ pu. Similarly, PrBi
[σ̂(ut+l)v = σ(v)] ≥ 1/2 ∗ pv.

Moreover, these two events are independent, as j1 and j2 are chosen independently, and u1 only
depends on u, and ut+j1+j2 only depends on v (and thus also independent of 〈u, v〉 being in F).
Thus for each i, probability of (1) and 2(a) is at least pupv|F |/(4|E|). We claim that probability
of (1) and 2(b) is at least (1 − pu)|F |/(2|E|). As before, the probability of t/2 + i + j1 falling in
[t/2− t/8..t/2 + t/8] is at least 1/2. Conditioned on this, and for any fixed value, say b, of σ̂(ut+l)u,
the probability of σ̂(u1)u not being equal to b is at least the probability of σ̂(u1)u not being equal
to the majorizing value, i.e. σ(u), and the claim follows because of independence as before. Thus,

PrBi
[Xi > 0] ≥ |F |

4|E| ∗ max{pupv, 2(1 − pu), 2(1 − pv)} ≥
√

3 − 1

4

|F |
|E| ≥ |F |

8|E|

Thus by linearity of expectation (since each Bi is same as A),

EA[(Σi∈T8Xi)] ≥
t

32
· |F |
|E|

We now upper bound EA[(
∑

i∈T8 Xi)
2]. For this it is more convenient to use the distribution

(or sampling procedure) A. We just bound
∑

i<i′ EA[XiXi′]. Choose ê, j1 using distribution A.
Then EA[XiXi′] is upper bounded by

L=t/2∑

L=−t/2

∑

J1∈T4

p(ê, j1, i, i′) ∗ PrA[j1 = J1 ∧ l = L]

4

where p(ê, j1, i, i′) is the probability of both the (t/2 + i + j1)th and the (t/2 + i′ + j1)th edge of
the path ê being in F (notice that (t/2 + i + j1) and (t/2 + i′ + j1) are both less than t + l). This
probability p(ê, j1, i, i′) is upper bounded by (|F |/|E|) ∗ (|F |/|E| + (λ/d)i

′
−i) (see e.g. Prop. 2.4

in [Din05]). Thus, EA[XiXi′] is upper bounded by same.

Thus,

EA[(ΣiXi)
2] ≤ EA[ΣXi] + 2(t/4) · |F |

|E| ·
1

1 − (λ/d)
+ (t/4)2 · |F |2

|E|2

Hence PrA[(
∑

Xi) > 0] ≥ E[(
P

Xi)]
2

E[(
P

Xi)2] ≥ min{1/256, t ∗ (|F |/2048|E|) ∗ (1 − λ/d)}
Now consider constraints in the composite graph to be not just paths in Ê, but elements of

Ê × T4, and such constraints picked according to A. Recall that a path 〈u1, ..., ut+l〉 is inconsistent
if either (i) there is a w on the path, and σ̂(u1)w 6= σ̂(ut+l)w, or (ii) there is an edge 〈w, z〉 on the
path such that σ̂(u1)w and σ̂(ut+l)z are inconsistent as labels of edge 〈w, z〉 in G. But, this is implied
by conditions ((1) and (2a)) or (2b) or (2c) above holding on the chosen path for any i ∈ T8. Thus
it is implied by (

∑
i Xi) > 0. However, in picking an element of Ê × T4 (when picking constraints),

the picking of j1 can be ignored, as it has no effect on whether the path is inconsistent. 2

As an added bonus, the amount of randomness required to pick the composite constraints is
only 2 log t + t log d bits (first term for picking l, and second for picking a path of average length t),
whereas in [RS06] the randomness required is 5t(log t + log d).

References

[BSS06] Eli Ben-Sasson and Madhu Sudan. Short PCPs with poly-log rate and query complexity.
In Sympsium on Theory of Computation, 2006.

[Din05] Irit Dinur. The PCP Theorem by Gap Amplification. In ECCC Reports TR05-046, 2005.
Also in STOC 2006.

[Rad05] Jaikumar Radhakrishnan. Gap Amplification Using Lazy Random Walks. In ECCC Reports

TR05-046, 2005. Also in ICALP 2006.

[Raz98] Ran Raz. A Parallel Repetition Theorem. SIAM Journal of Computing, 27(3):763–803,
1998.

[RS06] Jaikumar Radhakrishnan and Madhu Sudan. On Dinur’s Proof of the PCP Theorem. In
to appear in Bulletin of AMS, 2006.

5

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

