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Abstract

We show that for each k > 0, MA/1 (MA with 1 bit of advice) doesn’t have circuits of size
nk. This implies the first superlinear circuit lower bounds for the promise versions of the classes
MA, AM and ZPP

NP

‖ .
We extend our main result in several ways. For each k, we give an explicit language in

(MA ∩ coMA)/1 which doesn’t have circuits of size nk. We also adapt our lower bound to
the average-case setting, i.e., we show that MA/1 cannot be solved on more than 1/2 + 1/nk

fraction of inputs of length n by circuits of size nk. Furthermore, we prove that MA does not
have arithmetic circuits of size nk for any k.

As a corollary to our main result, we obtain that derandomization of MA with O(1) advice
implies the existence of pseudo-random generators computable using O(1) bits of advice.

1 Introduction

Proving circuit lower bounds within uniform complexity classes is one of the most fundamental and
challenging tasks in complexity theory. Apart from clarifying our understanding of the power of
non-uniformity, circuit lower bounds have direct relevance to some longstanding open questions.
Proving super-polynomial circuit lower bounds for NP would separate P from NP. The weaker result
that for each k there is a language in NP which doesn’t have circuits of size nk would separate BPP

from NEXP, thus answering an important question in the theory of derandomization.
However, as of now, there is no superlinear circuit lower bound known for any language in

NP. Researchers have attempted to understand the difficulty of proving lower bounds by formal-
izing “obstacles” to traditional techniques, such as the relativization obstacle [BGS75] and the
naturalness obstacle [RR97].

Given these obstacles, we are forced to temper our ambitions. There are two distinct lines
of research which have made incremental progress over the years toward the ultimate goal of a
non-trivial circuit lower bound for NP. In the first line of research, lower bounds were proved
in restricted circuit models [Ajt83, FSS84, H̊as86, Raz85, Raz87, Smo87]. The hope is that by
gradually easing the restrictions on the circuit model, we will ultimately achieve a lower bound in
the general model. This line of research has made little progress in the last decade and more, with
many of the commonly used techniques unable to circumvent the naturalness obstacle.

A second line of research has had more success in recent years. The aim here is to “approach NP

from above” by proving fixed polynomial size circuit lower bounds in the general model for smaller
and smaller classes containing NP. To compare with the first line of research, we are satisfied with
fixed polynomial size lower bounds rather than superpolynomial lower bounds, for languages that
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are computable in classes not “too far above” NP, but we insist that the lower bounds hold in
the model of general Boolean circuits. This line of research was initiated by Kannan [Kan82] who
showed that for each k, there is a language in Σ2 ∩ Π2 which doesn’t have circuits of size nk. This
was improved by Kobler and Watanabe [KW98], who used the learning algorithm of Bshouty et al.
[BCG+96] to prove nk size circuit lower bounds for ZPP

NP, which is contained in Σ2 ∩ Π2. This
was further improved to a lower bound for the class S2P by Cai [Cai01], based on an observation by
Sengupta. Both S2P and ZPP

NP are believed to equal PNP, under a strong enough derandomization
assumption.

An incomparable result was recently obtained by Vinodchandran [Vin05], who showed nk size
lower bounds for the class PP of languages accepted by probabilistic polynomial time machines
with unbounded error. Aaronson [Aar05] gave a different proof of the same result.

The logical next step would be to prove circuit lower bounds for the class MA, the probabilistic
version of the class NP. Such lower bounds would be of interest because MA equals NP under
a widely believed derandomization assumption, and hence they could be construed as making
substantial progress towards proving circuit lower bounds for NP. Moreover, such a result would
simulataneously strengthen all known lower bounds in this line of research, since it is known that
MA ⊆ S2P [RS98, GZ97] and that MA ⊆ PP [Ver92]

In the present work, we do not quite achieve this, but we achieve something very close. We show
nk size lower bounds for languages accepted by Merlin-Arthur machines running in polynomial time
and using just one bit of non-uniformity.

Theorem 1. For each k, MA/1 6⊆ SIZE(nk).

Theorem 1 implies that for each k there is a promise problem (Y,N) in MA (where Y,N ⊆ {0, 1}∗,
Y ∩ N = ∅ and the Merlin-Arthur machine is required to accept on instances in Y , reject on
instances in N and may have arbitrary behavior on other instances), which does not have circuits
of size nk. To the best of our knowledge, this is the first natural example of a circuit lower bound
for a promise problem in a class which does not immediately imply a corresponding lower bound
for a language in the class. We discuss this issue further in Section 2.

We now briefly discuss previous techniques in this line of research and indicate in what respect
our approach is novel.

Suppose we wish to prove a lower bound for a class C, where NP ⊆ C. First, we observe
that a language without nk size circuits can be computed in the polynomial hierarchy (PH) di-
rectly using diagonalization. Then we argue based on whether NP ⊆ SIZE(poly) or not. If
NP 6⊆ SIZE(poly), since NP ⊆ C, we already have a super-polynomial lower bound for a lan-
guage in C. If NP ⊆ SIZE(poly), we try to show that this implies a collapse of PH to our class C,
and hence the diagonalizing language is in C, implying a lower bound.

Thus the strength of the result we obtain is directly related to the strength of the collapse
consequence of NP having small circuits. Karp and Lipton [KL82] showed that NP ⊆ SIZE(poly)
implies PH ⊆ Σ2 ∩ Π2 - this yields Kannan’s result [Kan82]. Strengthenings of the Karp-Lipton
theorem [BCG+96, Cai01] yield the lower bounds for ZPP

NP and S2P respectively. Thus the natural
way to get lower bounds for MA would be to show a Karp-Lipton style collapse of PH to MA.

However, this is a notoriously difficult problem that has long been open; also, unlike known
Karp-Lipton style consequences of NP ⊆ SIZE(poly), such a collapse would not relativize [BFT98].
We circumvent this problem entirely and adopt a different, somewhat counter-intuitive approach.
Instead of reasoning based on whether NP ⊆ SIZE(poly), we reason based on whether C ⊆
SIZE(poly) for a “large” complexity class C that contains MA - in our proof, C = PSPACE. The
advantage of doing this is that for such “large” complexity classes, a Karp-Lipton style collapse
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to MA is known, following from work on interactive proofs [LFKN92, Sha92, BFL91]. In the case
PSPACE ⊆ SIZE(poly), we are done, since PSPACE = MA in this case, and PSPACE ⊇ PH contains
languages of circuit complexity at least nk.

However, the case PSPACE 6⊆ SIZE(poly), which was easy when we were arguing about NP

instead, is now far from straightforward. We do not know if PSPACE ⊆ MA, and indeed this is
very unlikely, so we cannot conclude directly that MA doesn’t have polynomial-size circuits. Our
main contribution is to show how to use a stronger “parametrized” version of a Karp-Lipton style
collapse in this case also. Remarkably, a single bit of advice to an MA machine gives us enough
power to get a circuit lower bound in this case.

We use variations of our technique to make progress on other problems in the area of fixed
polynomial circuit lower bounds. One interesting question is to find explicit languages with circuit
lower bounds - this is known for the case of Σ2 [CW04] but not for any lower class. We improve
the situation considerably for promise problems, by giving explicit promise problems in MA∩ coMA

with circuit lower bounds.

Theorem 2. For each k, there is an explicit promise problem (Y,N) in MA ∩ coMA such that
(Y,N) doesn’t have circuits of size nk.

We also give stronger average-case circuit lower bounds than were known previously. Since we
don’t know an average-case to worst-case reduction for NP, arguments based on whether NP ⊆
SIZE(poly) are not particularly well-suited to showing average-case lower bounds. Before this, the
best known average-case lower bounds were for languages in PΣ2 . We show average-case circuit
lower bounds for (MA ∩ coMA)/1 and for Σ2.

Theorem 3. For each k, (MA ∩ coMA)/1 6⊆ heur1/2+1/nk − SIZE(nk).

Given the difficulty of proving Boolean circuit lower bounds, there’s been a lot of work on using
the structure inherent in algebraic domains to prove arithmetic circuit lower bounds, which tend
to be weaker. Scott Aaronson [Aar06] pointed out to us that our technique could be adapted to
show arithmetic circuit lower bounds for MA without any advice. In this context, we say that MA

doesn’t have arithmetic circuits of size nk if either MA doesn’t have Boolean circuits of size nk or
there is some sequence of polynomials p of low degree over Z such that the graph of p is computable
in MA and p doesn’t have arithmetic circuits of size nk.

Theorem 4. For any k > 0, MA doesn’t have arithmetic circuits of size nk over Z.

Theorem 1 also has applications in the theory of derandomization. It can be used to show
that any derandomization of MA/1 implies a pseudo-random generator computable using 2 bits of
advice, as well as a “gap theorem” for MA/O(1).

Finally, we note that the techniques we use neither relativize nor naturalize, and hence there is
no negative evidence that they cannot be pushed to yield Boolean circuit lower bounds for uniform
MA or even for NP. This issue is discussed in more detail in Section 7.

2 Preliminaries

2.1 Complexity Classes, Promise Problems and Advice

We assume a basic familiarity with complexity classes such as P, RP, BPP, NP, MA, AM, Σ2,PP,
]P and PSPACE. The Complexity Zoo (http://qwiki.caltech.edu/wiki/Complexity Zoo) is an
excellent resource for basic definitions and statements of results.
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Given a complexity class C, coC is the class of languages L such that L̄ ∈ C. Given a function
s : N → N, SIZE(s) is the class of Boolean functions f = {fn} such that for each n, fn has Boolean
circuits of size at most s(n). Given a language L and an integer n, L|n = L ∩ {0, 1}n.

In order to deal with promise classes in a general way, we take as fundamental the notion of a
complexity measure. A complexity measure CTIME is a mapping which assigns to each pair (M,x),
where M is a time-bounded machine (here a time function tM (x) is implicit) and x an input, one of
three values “0” (accept), “1” (reject) and “?” (failure of CTIME promise). We distinguish between
syntactic and semantic complexity measures. Syntactic measures have as their range {0, 1} while
semantic measures may map some machine-input pairs to “?”. The complexity measures DTIME

and NTIME are syntactic (each halting deterministic or non-deterministic machine either accepts
or rejects on each input), while complexity measures such as BPTIME and MATIME are semantic
(a probabilistic machine may accept on an input with probability 1/2, thus failing the bounded-
error promise). For syntactic measures, any halting machine defines a language, while for semantic
measures, only a subset of halting machines define languages.

A promise problem is a pair (Y,N), where Y,N ⊆ {0, 1}∗ and Y ∩ N = ∅. We say that a
promise problem (Y,N) belongs to a class CTIME(t) if there is a machine M halting in time t on
all inputs of length n such that M fulfils the CTIME promise on inputs in Y ∪ N , accepting on
inputs in Y and rejecting on inputs in N .

Note that for a syntactic complexity measure CTIME, a circuit lower bound for a promise
problem implies the same lower bound for a language, since the machine M deciding the promise
problem also defines a language in this case.

For a complexity class C, Promise−C is the class of promise problems which belong to C. Some-
times, when C is a syntactic class, we abuse notation and use C and Promise − C interchangeably.

A language L is in CTIME(t)/a if there is a machine M halting in time t taking an auxiliary
advice string of length a such that for each n, there is some advice string bn, |bn| = a such that M
fulfils the CTIME promise for each input x with advice string bn and accepts x iff x ∈ L.

2.2 Average-Case Complexity

We define a notion of what it means for a language to be solvable on average under the uniform
distribution.

Definition 5. Given a language L and functions s : N → N and q : N → [0, 1], L ∈ heurq −SIZE(s)
if for each n, there is a circuit Cn of size at most s(n) that solves L|n on at least a q(n) fraction of
inputs.

Random self-reducibility is a property of a language which ensures that its worst case complexity
is not too much greater than its average case complexity. We require a slightly more general notion.

Definition 6. A language L is piecewise random self-reducible with nb queries and piecewise density
at least 1/nc if for each n, there is a partition S1 . . . Sk of {0, 1}n such that for each i, |Si| >

2n/nc, and there are query functions q(x, j, r), j = 1 . . . nb, |r| 6 poly(|x|) and combiner function f
computable in deterministic polynomial time such that the following hold:

1. For each i, 1 6 i 6 k, for any x ∈ Si, each query function q(x,j,r) is distributed uniformly
over Si when r is chosen at random.

2. For each x, L(x) = f(L(q(x, 1, r)), L(q(x, 2, r)) . . . L(q(x, nb, r))) with probability at least 1 −
2−|x| over the choice of r.
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2.3 Arithmetic Complexity

An arithmetic circuit C with variables x1, x2 . . . xn over an integral domain I is a node-labelled
directed acyclic graph in which each vertex has indegree 2 or 0. Each of the sources (nodes of
degree 0) is labelled with xi, for some 1 6 i 6 n, or with a constant in I. Each of the interior nodes
is labelled with ’*’, ’+’ or ’-’. We interpret each node as computing a polynomial over I. A source
node labelled xi computes the polynomial xi; a source node labelled with a constant c computes
the polynomial c. Polynomials computed by interior nodes are defined by induction (over the sum
of the depths of the node’s predecessors). If the predecessors of a node v labelled ’*’ compute p1

and p2 respectively, then v computes p1 ∗ p2, and analogously for nodes labelled ’+’ and ’-’. There
is a distinguished sink node called the output node; the polynomial computed by the output node
is defined to be the polynomial pC defined by the circuit. The size of a circuit C is the number of
nodes in the graph, and is denoted by size(C).

There are two possible definitions for whether a polynomial p is computed by an arithmetic
circuit C - p is the same as pc as a sum of monomials (modulo the order of monomials), or p agrees
with pC over all inputs in In. We only consider infinite domains I, in which case the two definitions
are equivalent.

A sequence p = pn of polynomials, where each pn is on n variables, has arithmetic circuits
of size s(n) over I if for each n, there is an arithmetic circuit Cn computing pn of size at most
s(n). We say p is of feasible degree if the degree of pn is at most poly(n). We will work only with
polynomials of feasible degree.

Given an arithmetic circuit, a natural algorithmic task is Arithmetic Circuit Identity Testing
(ACIT) - testing if the circuit computes the zero polynomial. The Schwartz-Zippel lemma [Sch80,
R.E79] can be used to show that ACIT over Z is in coRP.

Lemma 7. [IM83] ACIT over Z is in coRP.

One of the most well-studied polynomials is the permanent, which is conjectured not have
polynomial-size arithmetic circuits [Val79a]. The permanent PER is defined on n2 variables {xij}, i =

1 . . . n, j = 1 . . . n as follows: PER(~x) =
∑

π

n
∏

i=1

xiπ(i), where the sum is taken over all permutations

π on {1 . . . n}. We also define 0-1-PER, which is PER restricted to inputs in {0, 1}.
Apart from its significance in algebraic complexity, the permanent has interesting properties

in the Boolean setting, such as being complete for the class of functions counting the number of
accepting paths of a non-deterministic machine.

Theorem 8. [Val79b] 0-1-PER over Z is complete for ]P .

Kabanets and Impagliazzo [KI04] showed that checking if an arithmetic circuit computes PER
over Z is many-one reducible to ACIT over Z, and is hence in coRP, using Lemma 7.

Lemma 9. [KI04] The language {〈C, 1n〉|C computes PER on n2 variables over Z} is in coRP.

We require a notion of computing a sequence of polynomials in a uniform complexity class.

Definition 10. Given a family of functions f = {fn}, where each fn : Z
n → Z, the graph of f is

the language Gh(f) = {〈~x, v〉|f(~x) = v}

Definition 11. A sequence of polynomials p = {pn} is said to be computable in MA if Gh(p) ∈ MA.
We say MA does not have arithmetic circuits of size s(n) if either MA does not have Boolean circuits
of size s(n) or there is a sequence of polynomials p of feasible degree computable in MA such that
p does not have arithmetic circuits of size s(n).
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A couple of remarks are in order here. First, the definition can clearly be generalized to any
uniform complexity class, but we will only be concerned with MA in this paper. Second, the clause
that “MA does not have Boolean circuits of size s(n)” may seem a bit unnatural initally. However,
we regard Boolean circuit lower bounds as harder than arithmetic circuit lower bounds, and hence
we are satisfied if we obtain Boolean circuit lower bounds for a Boolean function in MA, even if it
is unclear how to extend the function to a polynomial whose graph is in MA.

3 Main Result

In this section, we prove Theorem 1.
We need the following technical result which follows from work on interactive proofs [LFKN92,

Sha92, TV02, FS04]. In the jargon of program checking [BK95], the result states that there is
a PSPACE-complete language with function-restricted interactive proofs where the prover only
answers questions of the same length as the input.

Lemma 12. There is a PSPACE-complete language L and a probabilistic polynomial-time oracle
Turing machine M such that for any input x:

1. M only asks its oracle queries of length |x|.

2. If M is given L as oracle and x ∈ L, then M accepts with probability 1.

3. If x 6∈ L, then irrespective of the oracle given to M , M rejects with probability at least 1/2.

If the restriction on length of oracle queries is removed, the above result holds for any PSPACE-
complete language - this was used to show the Karp-Lipton style result that if PSPACE ∈ SIZE(poly),
then PSPACE = MA [LFKN92, Sha92]. We sketch the proof. Let L be a PSPACE-complete language
with polynomial-size circuits, and M a probabilistic polynomial-time oracle machine implementing
the function-restricted interactive protocol for L. The Merlin-Arthur protocol for L on input x
proceeds as follows. Merlin sends Arthur polynomial-size circuits corresponding to all possible
lengths of oracle queries of M on input x. Since M is a polynomial-time machine, it can only
query polynomially many input lengths, and this is in sum a polynomial amount of information.
Arthur simulates M , using the circuits to answer the oracle queries of M . Since by assumption,
L has polynomial-size circuits, Merlin can get Arthur to accept with probability 1 on an input
x ∈ L by sending the correct circuits for L on all the required input lengths. Conversely, if x 6∈ L,
Merlin commits to a specific oracle by sending circuits to Arthur, and hence Arthur rejects with
high probability.

In the proof of Theorem 1, we need a smooth parametrization of the above argument. Namely,
we need to show that if the PSPACE-complete language L has circuits of size s, then L has a Merlin-
Arthur protocol which runs in time poly(s). The same argument as before comes close to achieving
that, except that on inputs of length n, the Merlin-Arthur protocol takes time poly(s(poly(n)))
rather than time poly(s(n)). This is not good enough for our purposes since we cannot make
any a priori assumptions on the behavior of the function s. In particular, we cannot assume that
s(poly(n)) = O(poly(s(n))). By using Lemma 12, where there is a constraint on the length of the
oracle queries, we get around this problem, and running the same argument as before gives us what
we need.

Now we choose s(n) to be the minimum circuit size of the language L. For this choice of s, we
have that L ∈ SIZE(s) but L 6∈ SIZE(s−1). By the argument sketched in the previous paragraph, we
have that L ∈ MATIME(poly(s)) but L 6∈ SIZE(s− 1). If s were, say, nk+1, then this would already
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give us Theorem 1. However, we have no control over the behavior of the function s. There are two
kinds of problems that arise. These problems are analogous to those that arise when trying to show
hierarchy theorems for BPTIME, and are dealt with in much the same way [Bar02, FS04, GST04].
If s is small, say s is linear, then we do not obtain anything non-trivial about the hardness of the
language L. However, in this case, by using the unparametrized Karp-Lipton argument, we obtain
that PSPACE = MA, and since PSPACE doesn’t have nk size circuits, neither does MA. The other
problem is when s is super-polynomial. In this case, we use a translation argument to scale the
separation MATIME(poly(s)) 6⊆ SIZE(s−1) downward. The translation argument is not completely
uniform because of our lack of information about the function s, however we do the translation
advice-efficiently and derive Theorem 1.

We now give the formal proof.
Proof of Theorem 1.

Let L be a PSPACE-complete language as in the statement of Lemma 12. We argue two different
ways, based on whether L ∈ SIZE(poly) or not.

If L ∈ SIZE(poly), then since L is PSPACE-complete, PSPACE ⊆ SIZE(poly), and hence
PSPACE = MA [LFKN92, Sha92]. Since, by a simple diagonalization argument, PSPACE doesn’t
have circuits of size nk, we get in this case that MA 6⊆ SIZE(nk).

Now assume L 6∈ SIZE(poly). We define the following padded version of L:

L′ = {x1y |x ∈ L, y > |x| > 0, y is a power of 2, the minimum circuit size of L||x| is between (y+|x|)k+1

and (2y + |x|)k+1}

We show that L′ ∈ MA/1 but L′ 6∈ SIZE(nk).
First we argue the upper bound. We define a machine M ′ with one bit of advice such that when

the advice is set to the right value, M ′ operates in Merlin-Arthur polynomial time and decides
correctly whether its input belongs to L′.

Let x′ be an input of length m. The advice bit for length m will be set to 1 if m is of the form
y + n, where y > n is a power of 2, and the minimum circuit size of L|n is between (y + n)k+1 and
(2y + n)k+1.Otherwise the advice bit is set to 0. Note that if m is of the above form, then y and
n are determined uniquely, and hence the required property of the minimum circuit size depends
solely on m.

The machine operates as follows: if the advice bit is set to 0, it immediately rejects. If the
advice bit is set to 1, then it first checks if x′ is of the form x1y, where |x| = n. If not, it rejects. If
yes, in the Merlin (non-deterministic) phase, it guesses a size s between (n+ y)k+1 and (n+2y)k+1

and a circuit C of size s with n input bits. Then, in the Arthur (probabilistic) phase, it simulates
the oracle machine M from Lemma 12, using the circuit to answer the oracle queries. Since the
circuit is of polynomial size in m, the simulation takes only polynomial time.

If x′ ∈ L′, then x ∈ L and hence when M ′ guesses the circuit for L|n correctly, it accepts x′ with
probability 1. Conversely, if x′ 6∈ L′, then either x′ does not satisfy the conditions on n and y, in
which case the advice bit is 0 and M ′ rejects, or x′ is not of the form x1y for some |x| = n, in which
case also M ′ rejects, or x 6∈ L. If x 6∈ L, then by guessing a circuit in the non-deterministic phase,
M ′ commits to an oracle for the simulation of M , and by Lemma 12, M ′ rejects with probability
at least 1/2. Thus M ′ accepts if and only if x′ ∈ L′, which proves the upper bound on complexity
of L′.

Next we argue the lower bound. Assume, for the sake of contradiction, that L′ ∈ SIZE(mk).
Let Cm,m = 1 . . .∞, be a series of circuits for L′ such that Cm decides L′ correctly at length m
and |Cm| 6 mk.
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Let s(n) be the mininum circuit size of Ln. Since L 6∈ SIZE(poly), there is an infinite sequence
of input lengths I such that for any input length n ∈ I, s(n) > (n + 1)k+1. Now consider the
following sequence of circuits C ′

n, n ∈ I for deciding L on input lengths in I. Given an n ∈ I, the
unique value y such that y is a power of 2 and (n + y)k+1 6 s(n) < (n + 2y)k+1 is hardcoded into
C ′

n. Since 2n > s(n) > (n + 1)2k, such a value y exists. Given input x of length n, C ′
n pads x

with y 1’s and simulates Cn+y on x1y. It follows from the definition of L′ that C ′
n decides correctly

if x ∈ L. The size of C ′
n is at most the size of Cn+y, which is at most (n + y)k < s(n). Thus

|C ′
n| < s(n), which is a contradiction to the definition of s(n) as the minimum circuit size of Ln.

�

Theorem 1 implies circuit lower bounds for the promise version of MA. Intuitively, an MA

machine with small advice induces a promise problem when we consider the advice as part of the
input. If the language decided by the advice-taking machine is hard, so is the promise problem
induced by the machine.

Lemma 13. If MA/O(n) 6⊆ SIZE(nk), then Promise − MA 6⊆ SIZE(O(nk)).

Proof. Let L be a language in MA/O(n) such that L 6∈ SIZE(nk). M be an MA machine taking cn
bits of advice on inputs of length n, for some constant c > 0, and {bi}, i = 1 . . .∞, |bi| = ci be a
sequence of advice strings such that M with advice bn decides L|n correctly.

We use M to define a promise problem X = (ΠY ES,ΠNO). The promise is considered not to
hold on input lengths not of the form (c + 1)n for some integer n, i.e., inputs of such lengths are
not in ΠY ES ∪ ΠNO . Any input y of length (c + 1)n for some n is broken up as xb, where |x| = n
and |b| = cn. y ∈ ΠY ES if M accepts on x with advice b; y ∈ ΠNO if M rejects on x with advice b.
If M doesn’t satisfy the MA promise on x with advice b, then y 6∈ ΠY ES ∪ ΠNO.

We show that X doesn’t have circuits of size mk/2(c+1)k on inputs of length m. Assume for the
purpose of contradiction that there is a sequence of circuits {C ′

m},m = 1 . . .∞, |C ′
m| 6 mk/2(c+1)k

deciding X on input length m. We construct a sequence of circuits {Cn}, |Cn| 6 nk/2 deciding
L|n. On input x of length n, Cn pads x with the correct advice bn and then simulates C ′

(c+1)n on

input xbn. The key point is that all inputs of the form xbn, |x| = n are in ΠY ES ∪ ΠNO - if x ∈ L,
the input is in ΠY ES, otherwise it is in ΠNO. Since the circuit C ′

(c+1)n correctly decides inputs
in ΠY ES ∪ ΠNO, the circuit Cn correctly decides if its input x ∈ L. The size of Cn is the size of
C ′

(c+1)n, which is at most nk/2. Thus we derive that L has circuits of size nk/2, a contradiction.
�

Combining Lemma 13 with Theorem 1 we obtain:

Theorem 14. For each k > 0, Promise − MA 6⊆ SIZE(nk).

Since Promise−MA ⊆ Σ2, Theorem 14 strengthens Kannan’s classic circuit lower bound [Kan82]
for Σ2. Since Promise−MA ⊆ PP [Ver92], Theorem 14 strengthens Vinodchandran’s recent circuit
lower bound [Vin05] for PP. Theorem 14 does not strictly strengthen the best known circuit lower
bound in a uniform complexity class - Cai’s lower bound [Cai01] for S2P because S2P is not a
syntactic class. However, since Promise − MA ⊆ Promise − S2P, Theorem 14 does imply that
Promise − S2P doesn’t have circuits of size nk for any constant k.

In addition, Theorem 13 implies circuit lower bounds for several promise classes which were not
known to require superlinear circuit size. Babai showed that MA ⊆ AM and indeed his technique
shows that Promise − MA ⊆ Promise − AM, hence Theorem 14 shows that Promise − AM requires
circuits of size nk, for each k > 0. It is also known that Promise − MA ⊆ Promise − ZPP

NP

‖
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[NW94, AK97, GZ97] and that Promise − MA ⊆ BPPpath [HHT97]. Thus Theorem 14 also yields
circuit lower bounds for Promise−ZPP

NP

‖ and Promise−BPPpath. In fact, for each of these classes,
the natural analogue of Theorem 1 holds, i.e., the language for which we show a circuit lower bound
is decidable with a single bit of advice.

4 Extensions

In this section, we give several extensions of Theorem 1. We show that circuit lower bounds can in
fact be obtained for explicit languages in (MA∩ coMA)/1, and that the lower bounds can be made
to hold on average rather than just in the worst case.

To prove these results, we need the following strengthened version of Lemma 12 which follows
from work of Trevisan-Vadhan and Fortnow-Santhanam [TV02, FS04], together with a couple of
tricks.

Lemma 15. There is a paddable and piecewise random self-reducible PSPACE-complete language
L and probabilistic oracle machines M and M ′ such that on input x of length n:

1. M and M ′ only ask questions to their oracle of length n.

2. If M (resp. M ′) is given L as oracle and x ∈ L (resp. x 6∈ L), M (resp. M ′) accepts with
probability 1.

3. If x 6∈ L (resp. x ∈ L), then irrespective of the oracle, M (resp. M ′) rejects with probability
at least 1/2.

Lemma 15 is stronger than Lemma 12 in three respects. The PSPACE-complete language L is
required to be downward self-reducible and random self-reducible. Also, both L and L̄ are required
to have function-restricted interactive proofs (using the terminology of Blum and Kannan [BK95])
where the prover is only asked questions of the same length as the input, whereas this property
was only required to hold for L in Lemma 12.

Lemma 15 almost immediately implies the following strengthening of Theorem 1:

Theorem 16. For each k > 0, (MA ∩ coMA)/1 6⊆ SIZE(nk).

Proof Sketch.
The proof proceeds along the same lines as the proof of Theorem 1. Consider the language

L in the statement of Lemma 15. If L ∈ SIZE(poly), then PSPACE ⊆ SIZE(poly) and hence
PSPACE = MA ∩ coMA (since PSPACE is closed under complement). In this case, the theorem
follows by direct diagonalization.

If L 6∈ SIZE(poly), we consider the padded language L′ as in the proof of Theorem 1. The proof
that L′ 6∈ SIZE(nk) is the same as before. We must also show that L′ ∈ (MA ∩ coMA)/1. We show
that there is an advice-taking machine M1 solving L′ in MA/1 and an advice-taking machine M2

solving L̄′ in MA/1, where M1 and M2 use the same bit of advice. As before, the advice bit is used
to code information whether the input length satisfies a certain property related to the minimum
circuit size. Since the minimum circuit size of L′ is the same as the minimum circuit size for L̄′,
both machines M1 and M2 can use the same advice bit.

The definition of M1 is the same as before. M2 acts in an analogous way except that it accepts
the input if the advice bit is set to 0 or the input is not of the correctly padded form, and it uses
machine M ′ from Lemma 15 to execute the Merlin-Arthur protocol rather than machine M . �

We use Lemma 15 to strengthen Theorem 1 in various other directions below.
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4.1 Constructivity

When proving a circuit lower bound for a complexity class, we would like to identify an explicit
language in the complexity class for which the lower bound holds. Apart from the philosophical
satisfaction that constructivizing the lower bound gives us, we often gain deeper insight into the
proof which may help in proving a stronger lower bound. For instance, if we could find an explicit
language in MA without linear-size circuits, we could try to prove circuit lower bounds for NP

by derandomizing the MA algorithm for the language, which may be much easier than showing
MA = NP.

Kannan’s original proof [Kan82] that Σ2 doesn’t have circuits of size nk for any k was non-
constructive. Recently, Cai and Watanabe [CW04] found a way to constructivize it. Other lower
bounds such as Cai’s lower bound for S2P [Cai01] and Vinodchandran’s lower bound for PP [Vin05]
are yet to be constructivized.

We show that the proof of Theorem 1 can be constructivized.
It may not be immediately apparent what it means for a language solvable with advice to be

explicit. We say a language solvable with advice is explicit if we can demonstrate an advice-taking
machine accepting the language. This is a general definition which applies to any semantic class
with advice. The definition is natural in the sense that proving an explicit circuit lower bound for
a semantic class with small advice implies an explicit lower bound for any uniform syntactic class
containing the semantic class. Thus, our constructivization implies the result of Cai and Watanabe
[CW04] through a different proof, as well as the new result that for any k there is an explicit
language in PP without circuits of size nk.

Our proof proceeds by defining a single machine to handle both cases in the proof of Theorem
1.

Theorem 17. For each k > 0, there is an explicit language Lk in MA/1 such that Lk 6∈ SIZE(nk).

Proof. We proceed along the lines of the proof of Theorem 1, but handle the two cases together.
Let L be a PSPACE-complete language as in Lemma 15. Let L′ be a language in PSPACE which
doesn’t have circuits of size nk almost everywhere. Such a language can be constructed by direct
diagonalization. Since L is PSPACE-complete, there is a polynomial-time reduction from L′ to L;
since L is paddable, we can assume that there is a polynomial p(n) > n such that all queries are of
length p(|x|) on input x. We define the following language Lk:

Lk = {x|x ∈ L′, |x| is odd , L|n has circuits of size at most (6n)k+1 for all n > |x|}∪

{xx1y|x ∈ L, y > 2|x| > 0, y is a power of 2, the minimum circuit size of L||x| is between (y+2|x|)k+1

and (2y + 2|x|)k+1}

We need to show that Lk 6∈ SIZE(mk), and Lk ∈ MA/1. We show the lower bound first. Either
there is an n0 > 0 such that L|n has circuits of size at most (6n)k+1 for all n > n0, or not. In
the first case, let n1 be such that L′

n does not have circuits of size nk for any n > n1. Then, for
all odd m > max(n0, n1), Lk coincides with L′ on inputs of length m, and hence Lk doesn’t have
circuits of size mk, by the construction of L′. In the second case, there is an infinite set I of input
lengths n such that L|n doesn’t have circuits of size (6n)k+1. This implies that for any input length
n ∈ I, there is a yn which is a power of 2 such that the minimum circuit size of L|n is between
(2n + yn)k+1 and (2n + 2yn)k+1. If Lk had circuits of size mk, we could decide x ∈ L|n by a circuit
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which runs the circuit for Lk on xx1yn . The size of such a circuit would be at most (2n + yn)k,
which is a contradiction to the assumption on yn.

Now we show the upper bound. We define a machine Mk taking one bit of advice that decides
Lk. We discuss odd input lengths and even input lengths separately. If the input length m is odd,
the advice bit is 1 iff L|n has circuits of size at most (6n)k+1 for all n > m. If the advice bit is 0 for
an odd length m, Mk immediately rejects. If the advice bit is 1, it first implements the reduction
from L′ to L on its input x, generating an instance f(x) such that |f(x)| = p(|x|) and f(x) ∈ L
iff x ∈ L′. Since the advice bit is 1 and p(m) > m, we are assured that L|p(m) has circuits of size

at most (6p(m))k+1. Mk now executes a Merlin-Arthur protocol at this input length, guessing a
circuit of size at most (6p(m))k+1 and running the probabilistic oracle machine M from Lemma
15. It uses the guessed circuit to answer any oracle queries made by M . If M accepts, it accepts,
otherwise it rejects. Using Theorem 15, we see that Mk accepts iff f(x) ∈ L iff x ∈ L′ iff x ∈ Lk

(since the advice bit is 1 at this length).
If the input length m is even, the proof of the upper bound is along the same lines as the

second case in the proof of Theorem 1. The advice bit is set to 1 precisely when the input length
m = 2n + y for y > 2n a power of 2, and the minimum circuit size of L|n is between (y + 2n)k+1

and (2y + 2n)k+1. If the advice bit is set to 0, Mk rejects. If the advice bit is set to 1, Mk checks if
its input x′ = xx1y for some string x and integer y, where y is a power of 2 and |y| > 2|x|. If not,
it rejects. If yes, it runs a Merlin-Arthur protocol for checking if x ∈ L, by guessing a circuit with
input length |x| of size between (y + 2n)k+1 and (2y + 2n)k+1, and then running the probabilistic
oracle machine M from Lemma 15 on input x with oracle queries answered by simulating the
circuit. This Merlin-Arthur protocol accepts iff x ∈ L, and runs in polynomial time in the input
length m.

�

Theorem 17 can be strengthened to show that for each k there is an explicit language in
(MA ∩ coMA)/1 without circuits of size nk, just by combining the ideas in the proofs of Theorem
16 and Theorem 17. Together with Lemma 13, this yields Theorem 2.

4.2 Average-Case Hardness

Theorem 1 shows that MA/1 does not have fixed polynomial size circuits in the worst case. It is
natural to ask if we can prove a stronger result showing hardness on the average. Such results are
useful, for instance, in the theory of cryptography. For “high” complexity classes such as PSPACE

and EXP, it is known that hardness on average is equivalent to hardness in the worst case. This is
not known for classes in the polynomial hierarchy; moreover, there has been a lot of work recently
[FF93, BT03, Vio05] showing that natural attempts to show worst-case to average-case reductions
within the polynomial hierarchy are doomed to fail.

Nevertheless, we do manage to extend Theorem 1 to an average-case hardness result. We
accomplish this by taking advantage of the worst-case to average-case connection for the PSPACE-
complete language L in Lemma 15. Intuitively, if L has polynomial-size circuits, then PSPACE =
MA and since PSPACE is average-case hard with respect to circuits of fixed polynomial size, so is MA.
If L does not have polynomial-size circuits, then using the worst-case to average-case reduction for
L, L is solvable in size poly(s) but is average-case hard for size s, where s is some superpolynomial
function. Translating this separation downward as in the proof of Theorem 1 preserves the property
that hardness holds on average. However, this only yields a mild average-case hardness result - in
order to get a stronger one, we amplify hardness further using standard techniques.
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We need the following lemma which follows by applying a standard hardness amplification
[STV01] to a hard language in PSPACE obtained using direct diagonalization.

Lemma 18. For each constant k, PSPACE 6⊆ heur1/2+1/nk − SIZE(nk).

Now we strengthen Theorem 1 to show that (MA ∩ coMA)/1 is mildly average-case hard for
circuits of size nk.

Theorem 19. There is a constant a > 0 such that for each constant k, (MA ∩ coMA)/1 6⊆
heur1−1/na − SIZE(nk).

Proof. The proof is a modification of the proof of Theorem 16. Consider the language L in the
statement of Lemma 15. Let f be a piecewise random self-reduction for L making at most nb

queries for some constant b, and let c be a constant such that the density of each piece of f is at
least 1/nc.

If L ∈ SIZE(poly), then PSPACE = MA ∩ coMA, and in this case the theorem follows from
Lemma 18.

If L 6∈ SIZE(poly), consider the following padded language L′:

L′ = {xz|x ∈ L, |z| > |x|, |z| is a power of 2, L||x| has minimum circuit size between (|x| + |z|)k+1

and (|x| + 2|z|)k+1}

The proof that L′ ∈ (MA∩ coMA)/1 is the same as in the proof of Theorem 16, except that we
allow any pad of an appropriate length in the definition of L′ rather than restricting it to be all 1’s.

Next we show the average-case lower bound. Assume, for the purpose of contradiction, that
L′ ∈ heur1−1/ma − SIZE(mk), where a is a constant to be fixed later. For each m, let Dm be a
circuit correctly deciding at least a 1 − 1/ma fraction of inputs of L′ of length m.

Since L 6∈ SIZE(poly), there is an infinite set I of input lengths such that for each n ∈ I, the
minimum circuit size of L|n is at least (3n)k+1. This implies that for each n ∈ I, there is a unique
integer yn such that yn is a power of 2, yn > n, and the minimum circuit size of L|n is between
(n + yn)k+1 and (n + 2yn)k+1.

We construct circuits of size less than (n + yn)k+1 for solving L|n on certain n ∈ I and thus
derive a constradiction. First we construct randomized circuits and then convert them into de-
terministic circuits. On input x of length n, the randomized circuit C ′

n does the following. It
applies the piecewise random self-reduction f to x to obtain queries q1, q2 . . . ql, l 6 nb of length
n. It then generates random strings r1, r2 . . . rl each of length yn and simulates Dn+yn

on each
of q1r1, q2r2 . . . qlrl in turn to obtain answers a1, a2 . . . al. It then computes f(x, a1, a2 . . . al) and
outputs the answer.

We analyze the success probability and the size of C ′
n. Since the density of each piece of the

piecewise random self-reduction is at least 1/nc, the probability that there is an ai, 1 6 i 6 l
such that ai 6= L(qi) is atmost nbnc/(n + yn)a. This is also an upper bound on the probability
that C ′ makes a mistake on x, by the definition of “piecewise random self-reduction”. Choosing
a = b + c + 1, the probability that C ′

n is wrong is at most 1/n. Also, the size of C ′
n is at most

poly(n) + l(n + yn)k = O(poly(n)(n + yn)k).
Now consider the randomized circuit C ′′

n that runs C ′
n n times independently and outputs the

majority answer. By Chernoff bounds, the probability that C ′′
n makes an error is less than 2−n.

Hence there is some setting of the random bits of C ′′
n to obtain a deterministic circuit Cn which

decides L|n correctly. The size of Cn is atmost nd(n + yn)k for some constant d and large enough
n.
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Since L 6∈ SIZE(poly), there is an infinite subset I ′ of I such that for each n ∈ I ′, yn > nd. This
implies that for large enough n ∈ I ′, the size of Cn is less than (n+yn)k+1, which is a contradiction
to the definition of yn.

�

Next we amplify the hardness of the average-case hard language in Theorem 19. Any language
is solvable on at least 1/2 the inputs of any length by constant-sized circuits, since we can define
the circuit on input length n to just output 1 if at least half of the inputs of that length are in
the language, and 0 otherwise. However, we can hope to obtain hardness close to 1/2. The tool
we use for this purpose is the celebrated Yao XOR Lemma [Yao82], which states that if a Boolean
function is mildly hard, then the parity of the function values on several independent inputs is hard
to predict with probability significantly more than 1/2.

Lemma 20. Let f⊕t denote the Boolean function which on input of the form x1x2 . . . xt, |x1| =
|x2| . . . = |xt| = n, outputs the parity of f(x1), f(x2) . . . f(xt), and outputs 0 on all other inputs.
For any constants a, k > 0, there exists constants k′ and l such that if f 6∈ heur1−1/na − SIZE(nk′

),

then f⊕nl

6∈ heur1/2+1/mk − SIZE(mk), where m = nl+1 is the input size of f⊕nl

.

We apply the lemma to the hard Boolean function in Theorem 19. The key observation is that
if the original function is in (MA ∩ coMA)/1, so is the new function.
Proof of Theorem 3. To derive the hardness, we apply Lemma 20 to the hard Boolean function
in Theorem 19. Let a be the constant in the statement of Theorem 19. Let k′ and l be the
corresponding constants from Lemma 20. Theorem 19 gives us a Boolean function f 6∈ heur1−1/na−

SIZE(nk′

). By Lemma 20, f⊕nl

6∈ heur1/2+1/mk − SIZE(mk), where m is the input length of f⊕nl

.

This gives us the required lower bound, now we need to show that f⊕nl

∈ (MA ∩ coMA)/1 if
f ∈ (MA∩coMA)/1. Let M1 and M ′

1 be MA machines deciding f and ¬f respectively with a shared

bit of advice. We define MA machines M2 and M ′
2 deciding f⊕nl

and ¬f⊕nl

respectively with a
shared bit of advice. For an input length m which is not of the form nl+1 for some integer n, M2

and M ′
2 ignore their advice - M2 rejects and M ′

2 accepts.
Now consider an input length m = nl+1 for some integer n. The advice bit for M2 and M ′

2

at length m is the same as the advice bit for M1 and M ′
1 at length n. An input x of length m is

interpreted as x1x2 . . . xt, where t = nl and each xi, 1 6 i 6 t is of length n. In its non-deterministic
phase, M2 guesses a partition of {x1, x2 . . . xt} into two sets S and S′ such that |S| is odd. It also
guesses, for each input y ∈ S, a proof by M1 that f(y) = 1, and for each input y ∈ S′, a proof
by M ′

1 that f(y) = 0. It then executes the probabilistic phase of M1 to confirm the proofs of the
strings in S, and the probabilistic phase of M ′

1 to confirm the proofs of the strings in S′; it only
accepts if all these probabilistic computations accept. If f⊕t(x) = 1, then there is some correct
partition into an odd-sized set S and a set S′ and correct proofs for each of the strings in these
sets, hence the probabilistic phase of M2 will accept with probability 1. On the other hand, if
f⊕t(x) = 0, there is no correct partition, and hence atleast one of the proofs must be wrong, which
implies M2 will accept with probability at most 1/2. Note that since t is polynomially bounded,
M2 runs in polynomial time.

The construction of M ′
2 is exactly analogous, except that it guesses a partition where the size

of the set S is even. The proof that M ′
2 decides ¬f⊕t follows along the same lines.

Thus we have MA machines M2 and M ′
2, sharing a bit of advice, which decide f⊕t and ¬f⊕t

respectively. This shows that f⊕t ∈ (MA ∩ coMA)/1. �
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The proof technique of Theorem 19 can be used to show average-case circuit lower bounds for Σ2

(without advice). First, we observe that since MA/1 ⊆ Σ2/1, Theorem 19 implies an average-case
circuit lower bound for Σ2/1. Now, we can define a language in Σ2 that is mildly hard using the
idea in the proof of Theorem 14 of appending the advice to the input. Because Σ2 is a syntactic
class, implementing this idea yields a language rather than a promise problem.

Lemma 21. There is a constant c such that for each k, Σ2 6⊆ heur1−1/nc − SIZE(nk).

Proof. Fix k. It follows from Theorem 19 that there is a constant a and a language L ∈ Σ2/1 such
that L 6∈ heur1−1/(n+1)a − SIZE((n + 1)k). Let M be the advice-taking Σ2 machine deciding L.

We define the following language L′: xb ∈ L′ if and only if M accepts x when given advice bit
b. We claim that L′ 6∈ heur1−1/2na − SIZE(nk). Suppose, to the contrary, that there is a family

of circuits {C ′
n} such for each n, C ′

n is of size at most nk and decides L′|n correctly on at least
1−1/2na fraction of inputs.We define circuits {Cn} for L as follows. For each n, Cn has the correct
advice bit bn for M on inputs of length n hard-coded into it.On input x, it runs C ′

n+1 on input
xbn, accepting if C ′

n+1 accepts and rejecting if C ′
n+1 rejects. Since by assumption, C ′

n+1 decides
at least 1 − 1/2(n + 1)a fraction of all inputs of length n + 1 correctly, it must decide at least
a 1 − 1/(n + 1)a fraction of inputs of the form xbn correctly. Hence Cn succeeds on at least a
1 − 1/(n + 1)a fraction of inputs of length n and has size at most (n + 1)k, which contradicts the
assumption on the hardness of L.

By setting c = a + 1, we have that L′ 6∈ heur1−1/nc − SIZE(nk), since na+1 > 2na for all n > 1.
Also L′ ∈ Σ2 by construction, thus proving the lemma. �

We amplify the hardness of the language L′ in the proof of Lemma 21 using monotone hardness
amplifiers as in the work of O’Donnell [O’D04]. O’Donnell focusses on hardness amplification within
NP but his results relativize and yield hardness amplification within Σ2.

Lemma 22. [O’D04] For any constants k > 0 and a > 0 there is a constant k′ such that if
Σ2 6⊆ heur1−1/na − SIZE(nk′

), then Σ2 6⊆ heur1/2+1/
√

n − SIZE(nk).

Combining Lemma 21 and Lemma 22, we derive our main average-case hardness result for Σ2.

Theorem 23. For every k, Σ2 6⊆ heur1/2+1/
√

n − SIZE(nk).

5 An Arithmetic Circuit Lower Bound

In this section, we prove arithmetic circuit lower bounds for MA, without advice.
We argue based on the non-uniform complexity of PER, rather than the language L in Lemma

15. If PER over Z has polynomial-sized arithmetic circuits, then it also has polynomial-size Boolean
circuits. In this case, we can show that PPP = MA, and it follows from results of Toda [Tod89] and
Kannan [Kan82] that MA doesn’t have Boolean circuits of size nk for any k.

If PER over Z doesn’t have polynomial-size arithmetic circuits, then we use a translation ar-
gument as in the proof of Theorem 1. The key point is that we do not need a bit of advice to tell
us whether the pad length is sufficient, because we can use Lemma 9 to keep the MA promise even
when the pad length is insufficient. Instead of using a Karp-Lipton style argument for showing
the padded function is computable in MA, we guess an arithmetic circuit of the appropriate size
for PER and verify that it works. If the verification succeeds, we compute PER using the circuit,
otherwise we compute the zero polynomial.
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Proof of Theorem 4. Fix an arbitrary k. We consider two cases. If PER over Z has polynomial-size
arithmetic circuits, then 0-1-PER over Z has polynomial-size Boolean circuits 1. Using Theorem
8, we get that ]P ⊆ SIZE(poly), and hence PPP = P]P ⊆ SIZE(poly). By a Karp-Lipton style
argument using function-restricted interactive proofs for PPP [LFKN92], we get that PPP ⊆ MA.
Toda [Tod89] showed that PH ⊆ PPP, hence we get that PH ⊆ MA. Kannan [Kan82] exhibited a
language in PH without circuits of size nk, thus we derive that MA 6⊆ SIZE(nk).

In the other case, there are infinitely many values n = t2 such that PER on n inputs does not
have arithmetic circuits of size 4kn2k over Z. For each n = t2, let s(n) be the size of the smallest
arithmetic circuit for PER on n inputs over Z. By Ryser’s formula, we know s(n) 6 n2

√
n.

We define a sequence of polynomials p = {pm} such that Gh(p) ∈ MA and p does not have
arithmetic circuits of size mk over Z. For each m, decompose m = m1 + m2, where 1 6 m1 6 m2

and m2 is a power of 2. Such a decomposition exists for each m and is unique. If m1 6= t2 for some
t, then we set pm to be the zero polynomial. If m1 = t2 for some t, we define pm depending on
whether (m1 + m2) > s(m1)

1/2k. If yes, we set pm to be Permanent defined on the first m1 of its
m inputs, otherwise we set pm to be the zero polynomial. Clearly p is of feasible degree.

First we show that Gh(p) ∈ MA and then that p does not have arithmetic circuits of size mk.
We define a Merlin-Arthur machine M running in polynomial time which accepts Gh(p). Given
an input 〈~x, v〉, M sets m = |~x|, and then decomposes m = m1 + m2 as described earlier. If m1 is
not a perfect square, M accepts if v = 0 and rejects otherwise. if m1 is a perfect square, M uses
its non-deterministic phase to guess an arithmetic circuit C of size m2k. In its probabilistic phase,
it first simulates the coRP machine M ′ corresponding to Lemma 9 on 〈C, 1t〉 to test if the circuit
computes PER over m1 variables correctly or not. If m2k > s(m1), i.e., if m1 + m2 > s(m1)

1/2k,
then there is some guessed circuit C for which M ′ accepts with probability 1, otherwise M ′ rejects
with probability close to 1. If M ′ accepts, M evaluates C on ~x modulo a large enough random
prime (so that the evaluation can be done in polynomial time) to obtain a value v′. If M ′ rejects,
M accepts if v = 0, and rejects otherwise. In the other case, If v′ = v, it accepts, otherwise it
rejects. The machine M runs in polynomial time. If m2k > s(m1), there is some guessed circuit
C such that M accepts with probability close to 1 on 〈~x, v〉 such that v equals the Permament on
first m1 variables of ~x, and rejects with probability close to 1 on all guessed circuits for other v. If
m2k < s(m1), for each guessed circuit, M accepts with probability close to 1 if v = 0 and rejects
with probability close to 1 otherwise. The probabilistic phase of M has two-sided error, but MA

with 2-sided error equals MA with 1-sided error, thus we are done.
Next, we show that p does not have arithmetic circuits of size mk. Suppose, to the contrary,

that p does have arithmetic circuits of size mk. For each m, let Cm be a circuit of size at most mk

computing p. Then we can solve PER on n variables over Z with arithmetic circuits of size less
than s(n) for infinitely many n, as follows. Let m2 be the least power of 2 such that n 6 m2 and
n + m2 > (s(n))1/2k. Such an m2 exists and is unique, since s(n) 6 n2

√
n. Now add m2 dummy

variables to the input, and simulate Cn+m2 on the new input set. By definition of p and assumption
on C, Cn+m2 computes PER on n variables. The size of Cn+m2 is atmost (2(n + s(n)1/2k))k <
(2n)k

√

s(n). This is less than s(n) for any value of n for which s(n) > 4kn2k. By assumption,
there are infinitely many such values, hence we have a constradiction to the definition of s(n) as
the minimum arithmetic circuit size for each n.

�

1We replace the arithmetic gates with the corresponding Boolean circuits. To make sure that intermediate values

do not get too large, we do all the computations modulo a large enough random prime, which is representable in a

polynomial number of bits and can be coded into the circuit
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6 Implications for Derandomization

Much of the work on derandomizing probabilistic classes such as BPP and MA focusses on the
construction of pseudo-random generators. Pseudo-random generators suffice for derandomization;
a natural question is whether they are also necessary. Impagliazzo, Kabanets and Wigderson
[IKW02], and Kabanets and Impagliazzo [KI04] show results of the form that derandomization
implies circuit lower bounds, but the circuit lower bounds obtained are not strong enough to yield
pseudo-random generators. In this section, we use Theorem 1 to show that derandomizing MA does
imply the existence of pseudo-random generators, modulo a constant amount of advice.

Definition 24. A function Gn : {0, 1}s(n) → {0, 1}n is a pseudo-random generator (PRG) with seed
length s for size n if for each circuit C of size at most n, |Prx∈{0,1}n [C(x) = 1]−Pry∈{0,1}s(n) [C(Gn(y)) =
1]| < 1/n.

A family G = {Gn}, n = 1 . . .∞ of such functions is a PRG with seed length s if for each n,
Gn is a PRG with seed length s for size n. G is an i.o.PRG if for infinitely many n, Gn is a PRG
for size n.

G is a strong non-deterministic PRG if the function fG : (x, i) → G(x)i, where x ∈ {0, 1}s(n) and
1 6 i 6 n, can be computed in NTIME(2O(s(n)))∩coNTIME(2O(s(n))). G is a strong non-deterministic
PRG using advice a(n) if fG can be computed in (NTIME(2O(s(n))) ∩ coNTIME(2O(s(n))))/a(n).

Nisan and Wigderson [NW94] showed how to construct PRGs from hard functions.

Theorem 25. [NW94] If (NE∩coNE)/a(n) 6⊆ i.o.SIZE(poly) (resp. (NE∩coNE)/a(n) 6⊆ SIZE(poly)),
then for each ε > 0 there is a strong nondeterministic PRG (resp. a strong nondeterministic
i.o.PRG) with seed length nε using advice a(s(n)).

Strong non-deterministic PRGs can be used to derandomize MA (even with advice).

Proposition 26. If there is a strong non-deterministic PRG (resp. a strong non-deterministic
i.o.PRG) with seed length s using advice a(n), then for any advice length function b(n), MA/b(n) ⊆
NTIME(2O(s(n)))/(a(poly(n)) + b(n)) (resp. MA/b(n) ⊆ NTIME(2O(s(n)))/(a(poly(n)) + b(n) +
O(log(n))).

We will show a partial converse to Proposition 26, namely that a non-trivial derandomization
of MA/1 implies a strong non-deterministic PRG with non-trivial seed length using 2 bits of advice.

Lemma 27. If MA/1 ⊆ NE/1, then (MA ∩ coMA)/1 ⊆ (NE ∩ coNE)/2. If MA/O(1) ⊆ NE/O(1),
then (MA ∩ coMA)/O(1) ⊆ (NE ∩ coNE)/O(1).

Proof. We show the first implication. The second implication follows along analogous lines.
Assume MA/1 ⊆ NE/1. By complementing both sides, it follows that coMA/1 ⊆ coNE/1.

Therefore (MA∩coMA)/1 ⊆ MA/1∩coMA/1 ⊆ NE/1∩coNE/1. Now NE/1∩coNE/1 ⊆ (NE∩coNE)/2
- the NE ∩ coNE computation uses its first bit of advice for the non-deterministic part of the
computation, and the second bit of advice for the co-nondeterministic part. Recall that in the
model of advice we are using, the computation needs to satisfy the promise only when the advice
is correct. �

Theorem 28. If MA/1 ⊆ NE/1, then for each ε > 0, there is a strong nondeterministic i.o.PRG
with seed length nε using 2 bits of advice. If MA/O(1) ⊆ NE/O(1), then for each ε > 0, there is a
strong nondeterministic i.o.PRG with seed length nε using O(1) bits of advice.
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Proof. Again we show the first implication, and the second follows analogously.
If MA/1 ⊆ NE/1, then by Lemma 27, (MA ∩ coMA)/1 ⊆ (NE ∩ coNE)/2. By Theorem 16, for

each k, there is a language in (NE ∩ coNE)/2 which doesn’t have circuits of size nk. By Theorem
25, it follows that for each ε > 0, there is a strong nondeterministic i.o.PRG with seed length nε

using 2 bits of advice. �

In terms of advice, the previous best known result was by Impagliazzo, Kabanets and Wigderson
[IKW02], who showed that derandomization of MA implies the existence of a strong nondetermin-
istic PRG using nε bits of advice for arbitrarily small ε > 0.

There are two directions in which Theorem 28 can be improved. First, we could hope to derive
a PRG from the derandomization assumption, rather than just an i.o.PRG. This would imply an
equivalence between strong non-deterministic PRGs with sub-polynomial seed length using O(1)
bits of advice and simulation of MA/O(1) in NE/O(1). We would obtain this result if we could
prove that for each k, MA/1 6⊆ i.o.SIZE(nk), i.e., if we could get a circuit lower bound that works
on all input lengths rather than just infinitely many of them.

Second, we could hope to eliminate the advice and derive a PRG from the assumption that
MA ⊆ NE. Such a result using our methodology would involve obtaining circuit lower bounds in
MA rather than in MA/1.

Theorem 28 implies a “gap theorem” for MA/O(1), in that a mild derandomization of this class
implies an even stronger derandomization.

Corollary 29. If MA/O(1) ⊆ NE/O(1), then MA/O(1) ⊆ i.o.NSUBEXP/O(1)).

Proof Sketch. By Theorem 28, if MA/O(1) ⊆ NE/O(1), then for each ε > 0 there is a strong
nondeterministic i.o.PRG with seed length nε using O(1) bits of advice. Now Proposition 26 gives
that MA/O(1) ⊆ i.o.NSUBEXP/O(log(n)). By slightly modifying the proof of Theorem 1 and
analyzing input lengths on which the padded language is hard, it is possible to get a simulation in
i.o.NSUBEXP/O(1). The details are rather technical, and we omit them here. �

7 Discussion and Further Work

Any successful technique showing circuit lower bounds for a complexity class must evade two
classic “obstacles” - the relativization obstacle [BGS75] and the naturalness obstacle [RR97]. The
first obstacle applies to techniques that relativize, i.e., the technique works even when the circuits
and the machines defining the complexity class are given access to the same oracle. Wilson [Wil85]
constructed an oracle relative to which NP has linear size circuits, hence no successful techique
showing circuit lower bounds for NP can relativize. The second obstacle applies to techniques
which attempt to show lower bounds by defining a “natural” property of Boolean functions which
holds for most functions on a given number of bits, is efficiently verifiable and implies circuit
lower bounds for any function satisfying it. Razborov and Rudich [RR97] observed that all known
techniques proving circuit lower bounds against restricted class of circuits implicitly define natural
properties, and showed that any natural property implying nontrivial circuit lower bounds against
general circuits can be used to break cryptographic protocols that are widely believed to be secure.
Between them, the relativization obstacle and the naturalness obstacle rule out most of the lower
bound techniques that have been developed to date.

Our proof of Theorem 1 evades both obstacles. Aaronson [Aar05] constructed an oracle relative
to which PP has linear-size circuits, and hence so does Promise − MA. Thus there can be no
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relativizing proof of Theorem 1. Our proof technique also uses diagonalization in an essential
way, and diagonalization is an inherently non-natural proof technique. Also, our lower bounds
are proved for certain appropriately translated versions of complete problems for high complexity
classes - completeness is a property of uniform Boolean functions which holds only in exceptional
cases, in contradiction to what we require of a natural property.

There are earlier examples of lower bound techniques which use a similar combination of ingre-
dients [BFT98, Vin05, Aar05] and evade both obstacles. However, our technique is the first of this
kind to establish non-trivial circuit lower bounds for a class that is close to NP. Given the paucity
of candidate techniques, it would be worthwhile to investigate if our technique can be extended to
prove circuit lower bounds for NP.

In an orthogonal direction, it would be very interesting to investigate further obstacles and
limitations for lower bound techniques. The diagonalization and naturalness obstacles often serve
to create the impression that circuit lower bounds are fundamentally difficult to prove. However,
our proof is not technically complex. This suggests that we must either revise our intuitions about
the difficulty of proving circuit lower bounds, or find new evidence to back these intuitions.

In terms of potential technical improvements of Theorem 1, the obvious one is to eliminate
the bit of advice and obtain a lower bound for uniform MA. Other natural improvements include
deriving a circuit lower bound that works on all input lengths rather than just on infinitely many
of them, and showing that MAE doesn’t have circuits of size 2εn for some ε > 0. Thus far, it is only
known that MAE doesn’t have circuits of polynomial size [BFT98].
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