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Abstract

Satisfiability algorithms have become one of the most practical and successful approaches for solving
a variety of real-world problems, including hardware verification, experimental design, planning and
diagnosis problems. The main reason for the success is due tohighly optimized algorithms for SAT
based on resolution. The most successful of these isclause learning, a DPLL scheme based on caching
intermediate clauses that are “learned” throughout the backtrack search procedure. The main bottleneck
to this approach is space, and thus there has been a tremendous amount of research aimed at identifying
good heuristics for deciding what information to cache. Haken first suggested a formal approach to this
issue, and Ben-Sasson [3] posed the question of whether there is a time/space tradeoff for resolution.

Our main result is an optimal time/space tradeoff for resolution. Namely, we present an infinite
family of propositional formulas whose minimal space proofs all have exponential time, but if just three
extra units of storage are allowed, then the formulas can be proved in linear time.

We also prove another related theorem. Given an unsatisfiable formulaF and an integerk, the
resolution space problem is to determine ifF has a resolution proof which can be verified using spacek.
We prove that this problem is PSPACE complete.
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1 Introduction

The satisfiability problem (SAT) has become a viable and widespread approach for solving real-world prob-
lems. SAT procedures are now a standard tool for solving problems in hardware verification, circuit di-
agnosis, experimental design, planning and diagnosis problems. Surprisingly, the best SAT algorithms are
highly optimized variants of DPLL which is nothing more thana backtrack search for a tree-like resolution
refutation. The most successful variant,clause learning, employs a very clever type of caching scheme. It
underlies all state-of-the art complete algorithms for solving SAT. Moreover, clause learning seems capable
of solving notoriously hard generalizations of SAT as well,including QSAT [11].

The basic idea behind clause learning is very simple: while performing the backtrack search, store
intermediate clauses that are learned along the way, in order to potentially prune the remaining search space.
This idea was first suggested in 1973 by Stephen Cook, who referred to it as “Method I” [5]. However it
took many years to develop this idea to actually make it work.The main issue stems from the fact that
in reality there is only a finite amount of space available. Therefore, all clauses simply cannot be stored,
and the difficulty is in obtaining a highly selective and efficient, yet effective caching scheme. This has
inspired a great deal of research into methods and heuristics for caching schemes, resulting in state-of-the
art algorithms for SAT. [1].

Underlying most of this empirical work is an assumption thatthere is asmooth, nearly linear tradeoff
between time and space. For example,anyspacealgorithms have been developed for SAT and #SAT where
a given implementation can use as much space as is currently available [6]. They used empirical results on
certain distributions of inputs to suggest that for most ranges of parameters, the tradeoff between runtime
and space is nearly linear. In this paper we present theoretical results that run counter to this belief. That is,
we demonstrate a family of examples where the runtime (of clause learning algorithms) is linear, but jumps
to exponential if the space utilization drops by a constant amount.

As discussed above, while time/space issues for resolution-based satisfiability algorithms has been of
central importance for many years, it was only in the late nineties when the formal study of space as a
complexity measure for propositional proof systems was initiated. In 1999, Esteban and Toran [7] proposed
a definition of space complexity for resolution, calledclause space, that measures the number of clauses
that need to be kept simultaneously in memory in order to verify the resolution refutation. This model is
similar to a Turing machine computation with a special read-only input tape from which the axioms can be
downloaded from working memory whenever they are needed, and erased from working memory as many
times as necessary. This model captures resolution-based SAT algorithms, such as clause learning.

Alekhnovich et al. [2] address the question of how to measurethe memory content for more general
propositional proof systems. While the most obvious choiceis “bit space,” [2] introduce the related notion
of variable space, which counts the number of variable occurrences that must simultaneously be kept in
memory. They argue that variable space and bit space are within a logarithmic factor of one another, but
variable space makes the model substantially cleaner. Thuswe view variable space as the right space mea-
sure to study: it applies to a variety of proof systems, and captures in a natural and clean way the space
utilization of a broad range of complete algorithms for SAT.

In 2001, Ben-Sasson [4] was the first to study formal time/space tradeoffs for resolution.1 He asked if
there are formulas that have optimal proofs with respect to any one of the parameters, but where optimizing
one parameter must cost an increase in the other parameter. He proved that this is the case for tree-like
resolution. That is, he showed that there are formulas that have linear tree-like resolution proof size, and
that also have constant-sized clause space, but on the otherhand, he showed that it is not possible to achieve
both (linear size and constant clause space) simultaneously.

However, for general resolution the problem remained open.Our main result is an answer to this ques-
1In the algorithms literature, this tradeoff is viewed as a time/space tradeoff, whereas from a proof complexity point ofview, the

tradeoff would be more accurately called a size/space tradeoff. Size and time are equated because the runtime of a resolution-based
SAT algorithm is tightly connected to the size of the underlying resolution proof.

1



tion, showing that in a very strong sense it is not possible tooptimize both size and space simultaneously.
We exhibit formulas that require exponential size to refuteif restricted to a minimal variable space resolution
implementation, but with just three more units of space, theproof size drops to linear! In light of our earlier
discussion, this result is surprising, as it runs counter tothe belief is that there is a smooth almost linear
tradeoff between space and time.

We also prove a related theorem. Given a CNF formulaf , the resolution space problem is to determine
the minimal-space resolution proof off . We prove that the resolution space problem is PSPACE complete,
affirming that memory management for resolution-based SAT algorithms is a complex issue. The complexity
of resolution space is known to be related to the complexity of black-white pebbling games in the following
sense [8, 3]. Given a monotone circuitG , a pebbling formula canPeb

�
G � be associated withG . Intuitively,

the associated formula asserts that all of the source vertices are ”true”; the sink vertex is ”false”, and the
intermediate gates are consistent with the values of their children. Ben-Sasson proved that from a resolution
proof ofPeb

�
G �, one can extract a black-white pebbling strategy forG , where the pebbling space is related

to the resolution space. Unfortunately the converse is not true in general.
In our work, we construct special formulasG that allow us to prove a converse relationship. Using this

construction we show that the complexity of resolution space is essentially equivalent to the complexity of
black-white pebbling of monotone circuits, which we show are both PSPACE-complete. In a related paper
[10], the complexity of the classical black-white pebblingproblem fordirected acyclic graphs(dags) is
resolved. We note that this result for dags subsumes the PSPACE completeness of black-white pebbling
of monotone circuits. However, in order to obtain the resolution space results we need to use a simpler
construction that seems possible only for monotone circuits.

2 Overview of Main Results

Essentially all complete algorithms for satisfiability, used in practice, are resolution-based. LetC1 andC2

be arbitrary clauses not involving the variablex. Then the resolution rule allows the derivation of the clause�
C1 �C2� from

�
C1 � x� and

�
C2 � �x� by resolving awayx. A resolution proof of a CNF formulaf is a

sequence of clauses, such that each clause is either a clausefrom f , or follows from two previous clauses
by the resolution rule, and such that the final clause is the empty clause. Thesizeof a resolution derivation
is the total number of clauses in the proof.

A general implementation of a SAT algorithm based on resolution proceeds by deriving clauses in some
way, until eventually either the empty clause is derived, inwhich case we reportunsatisfiable, or the al-
gorithm finds a satisfying assignment. Thus thetime of a resolution-based implementation for SAT is at
least the size of the underlying resolution proof produced.The space, intuitively, should be the size of the
intermediate clauses that are stored in memory during the process of looking for a resolution proof. In order
to formally define space we give the followingconfiguration-styledefinition of a resolution proof from [4].

DEFINITION 2.1 (Configuration-style resolution proof) A configurationC is a set of clauses. Iff is a CNF
formula, then the sequence of configurationsπ � C �0� �C �1� � ����C �k� is a	
� proof ofC from F if C �0� � /0,
C � C �k�, and for eachi  k, C �i � 1� is obtained fromC �i� by one of the following rules: (1) deleting one or
more clauses from the current configuration; (2) add the resolvent of two clauses ofC �i�; (3) download an
axiom (clause) off . If /0 � C�k�, thenπ is a proof of f .

DEFINITION 2.2: Thevariable spaceof a proofπ is the maximum size of any configurationC in π. The
variable spaceof an unsatisfiable CNF formulaf is the minimum space over all proofs off . Unless
specified otherwise, space in this paper will refer to variable space. Given a CNF formulaf and a number
k, the resolution space problem asks whether there is a spacek resolution proof off .

Our first theorem settles the complexity of the resolution space problem. Our second theorem, which is quite
surprising, shows that allowing even 3 extra units of storage can have drastic consequences for resolution-
based SAT algorithms.�������

1: The resolution space problem isPSPACE-complete.
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�������
2 (Time/Space Tradeoff) There exist CNF formulas such that any minimal space proof ofthese

formulas requires exponential size, but that can be refutedin linear size, with 3 more units of space.

Both of these results are fundamentally tied to generalizedblack-white pebbling:

DEFINITION 2.3 (Pebbling games on monotone circuits) LetG be an unbounded-fanin monotone circuit
over AND/OR gates, with one distinguished output gate,s. A generalized black-white pebbling strategy
for G is a sequence of pebbling moves. Initially the graph contains no pebbles. At any point a black pebble
can be removed from, or a white pebble can be placed on, any node. Further, black pebbles can always be
place on and white pebbles can always be removed from source nodes. The goal is to end with a single black
pebble onsand no other pebbles on the graph. The rules for pebbling AND/OR nodes are as follows.

1) For any AND-nodev, if all of v’s predecessors have pebbles on them, then a black pebble canbe
placed onv, or a black pebble can be slid from a predecessoru to v. For any AND-nodev with a white
pebble on it, the pebble can be slid to a predecessoru if all other predecessors are pebbled, or the white
pebble can be removed if all predecessors are pebbled.

2) For any OR-nodev, if at least 1 of av’s predecessors is pebbled, thenv can be black pebbled, or a
black pebble can be slid from a predecessoru to v. For any OR-nodev with a white pebble on it, the white
pebble can be slid fromv to any predecessoru of v, or the white pebble can be removed ifu is pebbled.

GivenG with target nodesand a numberk, the generalized black-white pebbling problem asks whether
there is a pebbling strategy fors which uses at mostk pebbles. In order to prove Theorem 1, we will start
by proving that generalized black-white pebbling is PSPACEcomplete, and see how to modify the proof in
order to obtain a proof of Theorem 1.

In order to prove the PSPACE completeness of generalized black-white pebbling, we reduce from QSAT.
Start with a QBF formulaψ. Fromψ, we create a graphG with the property thatψ is QSAT if and only if
G has a 3n� 1 black-white pebbling strategy. Our construction is similar to [9], where they create a graph
from a QBF formula with the property that the formula is QSAT if and only if the graph has a small all-black
pebbling strategy. The general idea is to give a small black pebbling of the graph whenever the formula is
QSAT, where the pebbling corresponds to the natural (exponential-time but small space) procedure that
verifies thatψ is QSAT.

Unfortunately, the graphs used in all earlier constructions are easy to pebble with white pebbles even if
the original formula is not QSAT. Thus, we need to alter the graphs in order to impose extra structure soas
to prohibit white pebbles from being useful. The idea will beto carefully add extra edges and widgets to the
graph so that there will never be any extra “slack”—that is, at almost all times, the number of black pebbles
on the graph is at full capacity in order to carry out the upperbound, thereby rendering white pebbles useless
if we do not want to exceed our capacity. This will allow us to argue in the lower bound, that no pebbling
strategy using only 3n� 1 pebbles can do anything other than the upper bound strategy, even with white
pebbles available. Our argument is based on local indegree properties of the graph.

Our reduction and proof will possess two crucial properties. (1) First, the optimal black-white pebbling
strategy forG will be equal to the optimal black pebbling strategy forG . That is, our graphG will have
the important property that white pebbles will not help at all. (2) Secondly, ifψ is QSAT, then any optimal
strategy using 3n� 1 pebbles will require exponential time in the number of universal quantifiers. But if we
let the strategy use just 3 more pebbles, then the graphG can be pebbled in linear time, whether or notψ is
QSAT. This result forms the building block for our more complicated results for resolution.

With the above ideas in mind, we will now try to prove the PSPACE completeness of resolution (The-
orem 1). Once again we will reduce from QSAT. Start with a QBF formulaψ, and create the graphG as
above. Now fromG , we define an associated “pebbling formula”,Peb

�
G �, defined below.

DEFINITION 2.4: (Pebbling formulas)[3] LetG be a monotone circuit.Peb
�
G � is a set of clauses, with one

variablevi for each vertex inG , and containing the following (Horn) clauses: (1) For each source vertex
v, we have the clause

�
v�; (2) For each AND vertexv with predecessorsu1 � � � � �ul , we have the clauses
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��u1 � �u2 � � � � � ul � v�; (3) Finally for each OR vertexv and each predecessoru of v, we have the clause��u� v�. By a resolution proof ofPeb
�
G �, we mean a resolution derivation of the clause

�
s� from Peb

�
G �.

As mentioned earlier, [3] showed that from a resolution proof of Peb
�
G �, we can extract a black-white

pebbling strategy forG , where the pebbling space is related to resolution space. Unfortunately, the converse
does not hold because of the white pebbles; it is not hard to see that from apureblack pebbling strategy for
G , we do obtain a corresponding space-preserving resolutionproof. Now intuitively, since white pebbles do
not help for our graphsG , by special property (1) of our reduction, the converse relationship should for our
special graphs, even with the addition of white pebbles.

This is the high-level idea behind the argument. However, significant technical difficulties arise when
carrying out the proof. The problem comes from the fact that in order to mimic the black pebbling strategy,
the axioms need to be downloaded, and this download uses morespace (in the resolution simulation) than
was needed in the pebbling. This “slack space” causes difficulties in proving the lower bound, since we need
to argue that the lower bound still holds even with this extraslack space. This is tricky because it is exactly
slack space that allows white pebbles to sneak in and gain advantage over all-black pebbling strategies.

To solve this problem, we further modifyG to obtainG ��� . G ��� is similar toG but has even more
structure which serves to “fill up” the slack space. Even withthis modification, our argument is substantially
more complicated than before. We again argue that at each step, the only way for the resolution proof
to proceed is to follow the pebbling strategy–however now wewill need to use a global graph-theoretic
argument, whereas before we essentially argued locally. Our main theorem thus shows that the QBF formula
ψ is QSAT if and only ifPeb

�
G ��� � has a space 6n� 3 resolution derivation. Moreover, the above two special

properties continue to hold in this context. In particular,our reduction satisfies (2’): Ifψ is QSAT, then any
space 6n� 3 resolution proof ofPeb

�
G ��� � requires exponential size. However, with 6n� 6 space, for any

ψ, the associated formulaPeb
�
G ��� � has a linear-space proof.

Once equipped with Theorem 1 and special property (2’), the proof of Theorem 2 is easy. Start with
any totally universally quantified QBF formulaψ � �

x1 � � ��xnF, which is QSAT, and corresponding graph
G ��� . Sinceψ is QSAT, by the properties of our reduction,Peb

�
G ��� � has a resolution proof of space 6n� 3

which requires exponential size, but there are linear size proofs using 6n� 6 space.

3 The Reductions

QSAT to Circuit G . To show that the generalized black-white pebbling game is PSPACE-complete, we
reduce from QSAT. Given a QBFψ, we produce a monotone circuitG whose target nodes can be black-
white pebbled using at most 3n� 1 pebbles if and only ifψ is QSAT. Our monotone circuit is composed of
three types of widgets: universal widgets, existential widgets, and clause widgets. The construction of the
quantifier widgets relies on a subwidget we call ani-slide, which is designed to severely restrict the player’s
pebbling strategies. Once the bottom nodes of ani-slide are all black-pebbled, ani-slide strategy, where the
bottom pebbles are slid up to the top nodes in the appropriateorder, is the only (frugal) way to black-pebble
the top nodes without using more thani pebbles. An example of a 4-slide is given in Figure 1.

DEFINITION 3.1: An i-slide is a pair of sets
�
V�U � together with a set of edges that satisfy the following

properties.V is a set ofi nodesv1 �v2 � � � � �vi andU is a set ofi nodesu1 �u2 � � � � �ui . The edges are as follows.
(1) v j is the predecessor of all nodesvk such thatk � j; (2) u j is the predecessor of all nodesuk such that
k � j; (3) u j is the predecessor of all nodesvk such thatk � j; (4) u j has at leasti � j � 1 predecessors from
outside ofV or U .

We can now describe our reduction which, givenψ � Qnxn � � �Q1x1F with m clauses overn variables,
outputsG . As in [9], each universally quantified variable is associated with a universal widget and each
existentially quantified variable is associated with an existential widget. Each clause ofψ is also associated
with a clause widget. These descriptions are meant to be readwith the accompaniment of Figures 1, 2, 3,
and 4.
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The universal widget is depicted in Figure 3. For everyi, 1 � i � n, if widget i is a universal widget, it is
composed of 4 groups of nodes,�x̄i � x̄�i �di �xi �x�i �, Gi�1 � �g1

i�1 � � � � �g3i�2
i�1 �, �ai �bi �, andGi � �g1

i � � � � �g3i�1
i �.

These are connected as follows.x�i has 3i � 1 source nodesy1
xi

throughy3i�1
xi

as predecessors,di has 3i source
nodesy1

di
throughy3i

di
as predecessors, and ¯x�i has 3i � 1 source nodesy1

x̄i
throughy3i�1

x̄i
as predecessors. The

sole predecessor ofxi is x�i and the sole predecessor of ¯xi is x̄�i . The subgraph
��g1

i � � � � �g3i�2
i � �Gi�1� forms an

3i � 2 slide. The nodebi is a successor of every node inGi�1, and the nodeai is a successor of every node
in Gi�1 � �bi �. Finally, x̄�i is a predecessor of every node in�g1

i � � � � �g3i�1
i �, x̄i is a predecessor ofbi , di is a

predecessor of both nodes in�bi �ai �, x�i is also a predecessor of both nodes in�bi �ai �, xi is a predecessor
of every node in�g1

i � � � � �g3i
i �, andai is a predecessor of every node in�g1

i � � � � �g3i�1
i �. There will be a

correspondence between pebbles being placed onx�i , di , andx̄i and an assignment of False to variablexi , and
a correspondence between pebbles being placed onxi , ai , andx̄�i and an assignment of True to variablexi .

The existential widget is depicted in Figure 4. For everyi, 1 � i � n, if widget i is an existential
widget, it is composed of 4 groups of nodes,�x̄i � x̄�i �di �xi �x�i �, Gi�1 � �g1

i�1 � � � � �g3i�2
i�1 �, � fi �ei �ci �, and

Gi � �g1
i � � � � �g3i�1

i �. As in the universal widget,x�i has 3i � 1 source nodesy1
xi

throughy3i�1
xi

as prede-
cessors,di has 3i source nodesy1

di
throughy3i

di
as predecessors, and ¯x�i has 3i � 1 source nodesy1

x̄i
through

y3i�1
x̄i

as predecessors. The sole predecessor ofxi is x�i and the sole predecessor of ¯xi is x̄�i . The subgraph��g1
i � � � � �g3i�3

i � � �g1
i�1 � � � � �g3i�3

i�1 �� forms a 3i � 3 slide. The nodeei is a successor to every node inGi�1,
as is fi . Also, ci is an OR-node which is the only successor ofei and fi . And every node in�g1

i � � � � �g3i�2
i �

is a successor ofci . Finally, x̄�i is a predecessor ofei , x̄i is a predecessor offi as well as every node in
�g1

i � � � � �g3i�1
i �, di is a predecessor of every node in�g1

i � � � � �g3i
i �, x�i is a predecessor offi , andxi is a prede-

cessor ofei as well as every node inGi. There will be a correspondence between pebbles being placed on
x�i , di , andx̄i and an assignment of False to variablexi , and a correspondence between pebbles being placed
on xi , di , andx̄�i and an assignment of True to variablexi .

For everyi, i � 1, Gi is common to widgetsi andi � 1. Also, every member ofGn is a predecessor of the
target nodes. Each clause widget contains 8 nodes. Consider the clause widget for clauseCj . It contains an
OR-nodezj which has 7 predecessors,pabc

j , abc� �0�1�3 � �000� � each with indegree 7. The superscript
abc indicates one of the ”true” settings to the literals underlying the clause. Recall that for each variable
xi of F, there is a group of four associated nodes:xi , x�i , x̄i , and x̄�i , which are used to encode whetherxi

is true or false. The three groups of nodes corresponding to the variables inCj will be inputs to thepabc
j

nodes. Figure 1 shows an example of widget for a clause
�
x1 � x2 � x3�. The 7th predecessor of eachpabc

j is
zj�1. Nodez0 is a special source node and is a predecessor of eachpabc

1 . Finally, the last clause widget is
connected to the quantifier widgets via the only node ofG0, g1

0, which is the same node aszm.

Construction of G ��� . The graphG ��� is constructed almost exactly likeG except for the following
changes. For everyi, 1 � i � n, x�i has 6i � 1 source nodesy1

xi
throughy6i�1

xi
as predecessors,di has 6i � 1

source nodesy1
di

throughy6i�1
di

as predecessors, and ¯x�i has 6i � 3 source nodesy1
x̄i

throughy6i�3
x̄i

as predeces-
sors. There is also a target nodeswhich has all 3n� 1 nodes ofGn as predecessors.

We also add newslack nodes, each of which is an OR-node, as predecessors to almostevery node in the
graph. For alli, 1 � i � n, every nodev of Gi � �x�i � x̄�i �di � has 3

�
n� i� additional OR-nodes as predecessors,

O
�
v�x j �, O

�
v� x̄ j �, andO

�
v�d j � for eachi  j � n. O

�
v�x j � hasx j andx�j as its sole predecessors,O

�
v� x̄k� has

x̄ j andx̄�j as its sole predecessors, andO
�
v�d j � hasd j anda j as its sole predecessors if widgetj is universal,

and hasd j as its sole predecessor if widgetj is existential. For alli, 1 � i � n, if widget i is universal, every
nodev of �bi �ai � also has 3

�
n� i � addition OR-nodes as predecessors,O

�
v�x j �, O

�
v� x̄ j �, andO

�
v�d j � for

eachi  j � n, which are set up the same way as those forGi. For all i, 1 � i � n, if widget i is existential,
every nodev of �ei � fi � also has 3

�
n� i � addition OR-nodes as predecessors,O

�
v�x j �, O

�
v� x̄ j �, andO

�
v�d j �

for eachi  j � n, which are set up the same way as those forGi.
Finally, for every j, 1 � j � m, and everyabc� �0�1�3 � �000�, pabc

j has 3n� 6 additional OR-nodes
as predecessors. For each variablex which does not appear in clausej, we include the nodesO

�
pabc

j �x�
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andO
�
pabc

j � x̄�. And for everyi, 1 � i � n, we include the nodeO
�
pabc

j �di �. Each of these is set up with
predecessors in the same way as the other OR-nodes which werejust described.

4 Upper Bounds
���� �

3: If ψ is QSAT, then the target nodesof G can be pebbled with 3n� 1 pebbles.

DEFINITION 4.1: Let the set of all truth assignments over variablesxi�1 � � � � �xn be denoted byAi. Thus each
αi in Ai is a partial assignment that sets the outermostn� i variables ofQnxn � � �Q1x1F. For any assignment
to αi , defineBαi to be the pebbling configuration ofG consisting of black pebbles on the following nodes:
For each universally quantified variablex j , j � i � 1 if αi

�
x j � � 0, thenx�j � Bαi , d j � Bαi , and

�
x̄ j � x̄�j � � Bαi .

Otherwise, ifαi
�
x j � � 1, then ¯x�j � Bαi , a j � Bαi and

�
x j �x�j � � Bαi . The pebbling configurations for any

existentially quantified variablex j , j � i � 1 are defined almost identically except that ifαi
�
x j � � 1, then

x̄�j � Bαi , d j � Bαi and
�
x j �x�j � � Bαi .

DEFINITION 4.2 (Black clamping interval)Let t0 � t j � tk � tend. Let S be a set of nodes. We say that
S� �ta �tb� if all nodes fromSmust be black pebbled during every configuration from timeta through timetb.
We say that

�
u�v� � �ta �tb� if eitheru or v is black pebbled during every configuration from timeta to timetb.

Lemma 3 follows from the following more general lemma by setting i � n.
���� �

4: For all i, αi � Ai, suppose the graphG is initially in configurationBαi . If ψ is QSAT, then we
can black pebbleGi at some timet � 1 using 3n� 1 pebbles, while keepingBαi clamped (i.e.,Bαi � �1�t�.)

Proof: The proof is by induction oni from 0 to n. The base case is wheni � 0. Let α0 be any
assignment inA0. Suppose thatQnxn � � �Q1x1F �α0 is QSAT. Then clearlyF �α0� 1, so some literal in every
clause must be set to true. This implies that for eachzj , 1 � j � m, all the predecessors exceptzj�1 of some
pabc

j are all black pebbled inCα0. We can therefore black pebbleG0 as follows. Place a black pebble on
the source nodez0. This pebbles the final unpebbled predecessor of somepabc

1 . We can therefore slide the
black pebble fromz0 to pabc

1 and then toz1. This allows us to pebblez2 in the same way. Inductively, it is
clear that we can slide the black pebble all the way tozm which isg1

0. Note that this strategy uses only black
pebbles. We now prove the induction step in which we will showthat if ψ �αi is QSAT, then we can black
pebbleGi � �g1

i � � �g3i�1
i � using no more than 3i � 1 pebbles without moving any pebbles inBαi .

Case 1: Qi is a universal quantifier. In this case, bothψ �αi ��xi � andψ �αi��x̄i � are QSAT. We begin in
configurationBαi with 3i � 1 free pebbles. Black pebblex�i , followed bydi , and then ¯xi �. Then move the
pebble from ¯xi � to x̄i . At this point we have 3i � 2 pebbles free and can apply the induction hypothesis to
black pebbleGi�1. Then slide the black pebble from ¯xi to bi , then the black pebble fromdi to ai . Remove all
pebbles from widgeti except for the ones onai andx�i . Then slide the black pebble fromx�i to xi and black
pebble ¯x�i again. Now apply the induction hypothesis to simultaneously black pebbleGi�1 again. Next, use
the i-slide strategy to slide all ofGi�1’s pebbles up tog1

i to g3i�2
i . Then slide ¯x�i ’s black pebble tog3i�1

i , and
thenxi ’s black pebble tog3i

i . Finally, slide the black pebble fromai to g3i�1
i .

Case 2: Qi is an existential quantifier. In this case, eitherψ �αi��xi � or ψ �αi ��x̄i � is QSAT. As in the
universal case, we begin inBαi with 3i � 1 free pebbles. Black pebblex�i , followed bydi , and then ¯xi �. If
ψ �αi ��xi � is QSAT, move the black pebble fromx�i to xi . Then apply the induction hypothesis to black pebble
Gi�1. Next, slide the black pebble fromg3i�2

i�1 to ei and then toci . Then move the black pebble from ¯x�i to
x̄i . If ψ �αi ��xi � is not QSAT andψ �αi ��x̄i � is, move the black pebble from ¯x�i to x̄i . Then apply the induction
hypothesis to black pebbleGi�1. Next, slide the black pebble fromg3i�2

i�1 to fi and then toci . Then move the
black pebble fromx�i to xi . In either case there are now black pebbles ong1

i�1 to g3i�3
i�1 , ci , xi , di , andx̄i . Use

the i-slide strategy to slide all the black pebbles ong1
i�1 throughg3i�3

i�1 to g1
i throughg3i�3

i . Then slide the
black pebble fromci to g3i�2

i , followed by the black pebble from ¯xi to g3i�1
i , and then the black pebble from

di to g3i
i . Finish by sliding the black pebble fromxi to g3i�1

i . �

6



���� �
5: There is a black pebbling strategy forG which pebbless in time O

� �
G

�� and uses 3n� 4
pebbles, regardless of whetherψ is QSAT.

Proof: Begin by pebblingx�i , di , x̄�i from i � n down to i, thereby assigning “double” false to every
variable. This uses 3n space. We can now pebbleG0 using only 4 more pebbles. Begin by pebbling the
source nodez0. Then place a pebble on the positive node of one of the literals in clause 1. If this literal is
x̄ j , then we now have black pebbles onx�j , d j , x̄ j , andx̄�j . Do this to each literal of the clause. This uses 3
pebbles so we have 3n� 4 pebbles on the circuit, equaling the space bound. But one can now pebblep111

1 by
sliding the pebble fromz0 to it. Then slide the pebble fromp111

1 to z1. Pick up the three extra black pebbles
which were placed on the positive literals’ nodes. At this point there are 3n� 1 pebbles on the circuit, 3n
to assign double false to each variable and a black pebble onz1. Continue this process inductively until 3n
pebbles assign double false to each variable and one pebble is onzm � g1

0.
We must now pebble through each quantifier widget. We can pebble through each existential widget as

in Lemma 3. We require an extra pebble for the universal widgets, to avoid black pebblingGi�1 a second
time. To do so, put the extra pebble on ¯xi right after pebblingGi�1 to have black pebbles onGi�1, di , x�i ,
and both ¯x�i andx̄i . Now pebblebi andai sliding pebbles from ¯xi to bi and thendi to ai . Remove the extra
pebble frombi . At this point, the maximum number of pebbles used in the widget is 3n� 2 right beforeai

was pebbled, and there are black pebbles on every node ofGi�1, x̄�i , ai , andx�i . Slide the pebble fromx�i to xi

and continue as in Lemma 3. Since we only have to pebble each clause widget and each quantifier widget
once, the whole process takesO

�
n� m� time and uses no more than 3n� 4 pebbles. �

Finally, we prove the pebbling strategies given above forG can be mimicked in resolution, to give small
space resolution derivations forPeb

�
G ��� �.

���� �
6: Thek-pebble,t-time black pebbling strategies of Lemmas 3 & 5 for the targetnodesof G � im-

ply the existence of spacek� d resolution derivations ofpu
�
Gn� in Peb

�
G ��� � which take time polynomial

in t, whered is the maximum size of any axiom ofPeb
�
G ��� �.

Proof: We will derive the positive unit clauses for each variable ofG � in the same order as the nodes of
G are black pebbled, and remove positive unit clauses from memory when the corresponding black pebbles
are removed. Simulating the slide move requires a little attention. Suppose a black pebble is slid from node
u to v in widget i. In this case we want to derivepu

�
v� and removepu

�
u� from memory. We first download

ax
�
v�. This is where we encounter the maximum space. We then resolve the positive unit clauses ofv’s

predecessors withax
�
v� and then removepu

�
u�. Note that whenever a node is first black pebbled, all of its

assignment variables are clamped. This means that their positive unit clauses are in our current resolution
configuration. So we can follow the removal ofpu

�
u� by downloading, for eachj � i, the appropriate axiom

for each variableO
�
v�x j �, O

�
v�d j �, O

�
v� x̄ j � and resolve each with the corresponding positive unit clause,

and then resolve the result withax
�
v�. This will yield pu

�
v�, and we will once again be in a state in which

the resolution configuration corresponds to the black pebbling configuration. �

5 Lower Bounds

In this section we will prove the following theorem, which shows that generalized black-white pebbling is
PSPACE complete. We present this result first since it is simpler, and forms the basis for the analogous
result for resolution (Theorem 10). The proof of Theorem 10 follows.�������

7: Let ψ be a QBF, and letG be the corresponding monotone circuit. IfG has a 3n� 1 pebbling,
thenψ is QSAT, and any pebbling strategy using 3n� 1 pebbles requiresΩ

�
2k� steps, wherek is the number

of universal quantifiers inψ.

The above theorem follows from the following more general theorem.
�������

8: For all αi � Ai, if there exists timest �, t �� such thatBαi � �t � �t �� �, then black pebblingGi at
t �� from Bαi using no more than 3n� 1 pebbles, requires thatψ is QSAT and requiresΩ

�
2k� units of time

betweent � andt ��, wherek is the number of universal quantifiers among thei inner most quantifiers.
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The following lemma will be used repeatedly. In particular,it implies that for anyi-slide
�
V�U �, in order

to pebbleV using no more thani pebbles,U must first be black pebbled at some earlier time.

���� �
9: If a nodev hask predecessors and there are 3n� 1� k other nodes in�t � �t �� � andv is not white

pebbled att ��, thenv can be black pebbled at most once and can never be white pebbled betweent � andt ��.
Proof: If v is white pebbled, then its white pebble can only be discharged once it has contributed toward

placing a black pebble beyond it. The existence of this extrablack pebble means that there are at mostk� 1
free pebbles to pebble all ofv’s k predecessors. So the space bound must be exceeded to discharge the white
pebble. The same argument forbids a second black pebbling.�

Proof: [of Theorem 8] The proof is by induction oni from 0 to n. The base case is wheni � 0.
Let α0 be any assignment inA0 and suppose there exist timest � and t �� such thatBα0 � �t � �t �� �. We will
show that simultaneously black pebblingG0 at t �� without ever exceeding 3n� 1 pebbles requires thatψ is
QSAT.Suppose for sake of contradiction thatψ �α0 is not QSAT. In order to black pebbleG0 using 1 pebble,
we can clearly never use a white pebble, since by frugality wewill have to place a black beyond it while it
is still on the circuit, which will require at least 2 pebbles. Therefore, it is clear that the black pebble onG0

must be slid up fromzm. Also, it is clear that the black pebble must be slid tozm from somepabc
m . Since,Bα0

does not includezm�1, the black pebble must have been used to pebblezm�1. Inductively, we can see that
the black must slide through each clause widget, and must have first been placed on the circuit atz0. But
if F �α0 is not QSAT then there is some clause nodezj such that some predecessor of eachpabc

j , other than
zj�1, is unpebbled byBα0. Then pebblingzj will require two pebbles, one onzj�1 and one on the unpebbled
predecessor of somepabc

j . Since we only have 1 pebble at our disposal, this is impossible. For the inductive
step, there are two cases. Either theith quantifier is universal or existential.

Case 1: Qi is a universal quantifier.We will show that in order to black pebbleGi we must necessarily
pass through a number of all-black configurations, including black pebblingGi�1 twice, once with black
pebbles onx�i , di , and either ¯xi or x̄�i (the false configuration), and once with black pebbles on ¯x�i , ai , and
eitherxi or x�n� i�1 (the true configuration). We prove this by pointing out 14 important partial configurations
B0 to B13, which occur at timest0 to t13 respectively, whereB0 is Bαi andB13 hasGi black pebbled.

We appeal to Lemma 9 to conclude that no node inGi � �ai �bi �x�i � can be white pebbled and each can
only be black pebbled once betweent0 andt13. Sincex�i has 3i � 1 source nodes as predecessors, our first
action within widgeti must be to black pebblex�i and it must stay in place until its successorx�i is pebbled
for the last time. Then a pebble must remain onxi until all of its successors are pebbled for the last time,
because we can never repebble/dischargexi oncex�i is empty. Lett6 be the time thatai is pebbled and lett11

be the timeg3i
i is pebbled. Thenx�i � �t1 �t6 � 1� and

�
xi �x�i � � �t6 �t11 � 1�.

Our argument now divides into two sections. In order to simultaneously black pebbleGi we must black
pebbleg3i�1

i , which requires that bothai and �g1
i � � � � �g3i

i � be pebbled. In the first part of the argument
we prove that in order to black pebbleai , ψ �αi ��x̄i � must be QSAT and thatΩ

�
2k� units of time must pass

betweent0 and t6, wherek is the number of universally quantified variables among the inner mosti � 1
variables ofψ. In the second part of the argument, we argue thatg1

i � � � � �g3i
i must also be simultaneously black

pebbled in order to black pebbleg3i�1
i and that pebbling them without exceeding our bound necessitates that

ψ �αi ��xi � is QSAT and thatΩ
�
2k� units of time pass between timest6 and t13 � 1. This will allow us to

conclude that black pebblingGi requires thatψ �αi is QSAT and requiresΩ
�
2k� � time, wherek� � k� 1 is the

number of universally quantified variables among the inner most i variables ofψ.
Sinceai can only be black pebbled once and is needed to pebble each node of Gi, ai � �t6 �t13 � 1�. In

order to black pebbleai at timet6 we must pebblebi at some timet5, beforet6. Again, we know thatbi

can only be black pebbled once int0 to t13, sobi � �t5 �t6 � 1�. Also, di is a predecessor of bothai andbi

and must be pebbled at timest5 � 1 andt6 � 1. Sincex�i is in �t1 �t6�, by Lemma 9 we can conclude thatdi

cannot be white pebbled and can only be black pebbled once in this interval. Also, since it has in-degree 3i,
di must be black pebbled att2, immediately aftert1 as in Lemma 3, sodi � �t2 �t6 � 1�. The same argument
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can be made to argue that
�
x̄i � x̄�i � � �t3 �t5 � 1�, wheret3 is after t2. In order to black pebbleai or bi , we

must first pebbleGi�1 at some timet4 beforet5. This whole time the nodesx�i , di , and
�
x̄i � x̄�i � are clamped.

We can therefore apply Lemma 9 to conclude thatGi�1 must be black pebbled at some timet4 betweent3
andt5 . We can now apply the induction hypothesis to conclude that black pebblingGi�1 requiresψ �αi ��x̄i �
to be QSAT and black pebblingGi�1 from B�t3� requires timeΩ

�
2k�, wherek is the number of universally

quantified variables among the inner mosti � 1 variables ofψ.
We now proceed with the second phase of the argument. We know that each node inGi cannot be white

pebbled and can only be black pebbled once. So when we black pebble g3i�1
i at timet13, all the rest ofGi

must already be black pebbled. Considerg3i
i . In order to black pebble it at timet12 beforet13, we must first

black pebbleg3i
i�1 at timet11. In order to black pebbleg3i

i�1 at timet11 we must first black pebbleg1
i � � � � �g3i�2

i .
But we must also pebble ¯x�i . Note that ¯x�i must be empty att6 sinceai has 3i � 1 predecessors, none of which
is x̄�i . Also, x̄�i must be empty again byt12 � 1, sinceg3i

i has 3i � 1 predecessors, none of which is ¯x�i . We can
therefore apply Lemma 9 to conclude that betweent6 andt13, x̄�i cannot be white pebbled and can only be
black pebbled once. We must therefore repebble ¯x�i at some timet7 after t6 whenai and

�
xi �x�i � are clamped

andx̄�i � �t7 �t11 � 1�. Since ¯x�i is a predecessor of every node ing1
i � � � � �g3i�2

i , these nodes can only be black
pebbled at some timet10, with g1

i being pebbled first att9, aftert7. Every node ofGi�1 is a predecessor ofg1
i .

Since the three nodes�x̄�i �ai � �xi �x�i �� � �t6 �t10� we can apply Lemma 9 to conclude thatGi�1 must be black
pebbled att8 betweent7 andt9. Since�x̄�i �ai � �xi �x�i �� is the true assignment for variablexi we can apply our
induction hypothesis to conclude thatψ �αi ��xi � must be QSAT and black pebblingGi�1 from B�t7� requires
time 2k, wherek is the number of universally quantified variables among the inner mosti � 1 variables ofψ.

Thus we have shown that any 3n� 1 pebbling must black pebbleGi�1 twice betweent0 andt15, once
implying thatψ �αi��x̄i � is QSAT, and once implying thatψ �αi��xi � is QSAT. Each time requiresΩ

�
2k� time,

wherek is the number of universally quantified variables among the inner mosti � 1 variables ofψ. There-
fore, black pebblingGi requires timeΩ

�
2k�1�, and implies thatψ �αi is QSAT.

Case 2: Qi is an existential quantifier. We prove this by pointing out 12important partial configurations
B�t0� to B�t11�, which occur at timest0 to t11 respectively, whereB�t0� is Bαi andB�t11� hasGi black pebbled.

By Lemma 9, no node inGi can be white pebbled betweent0 andt11, and each can be black pebbled at
most once. Based on which nodes ofGi are predecessors to others, we can conclude thatg3i�1

i must be black
pebbled last, at timet11, g3i

i must be black pebbled before that at timet10, g3i�1
i must be pebbled before that

at timet9, g3i�2
i must be pebbled before that at timet8, andg3i�3

i must be black pebbled at some timet7,
beforet8. In order to do this,g1

i must be black pebbled at some timet6, beforet7. And since each can only
be pebbled once, they are all clamped throught11.

We now argue thatxi must be black pebbled att11 � 1. All of g3i�1
i ’s 3i other predecessors are clamped

until t11, sog3i�1
i must receive its black pebble by sliding it from its single other predecessorxi . Furthermore,

we can apply Lemma 9 to show thatxi ’s predecessor,x�i , cannot be white pebbled and can only be black
pebbled once betweent0 andt11. Sincex�i has 3i � 1 source nodes as predecessors, our first action within
widget i must be to black pebblex�i and it must stay in place until all of its successors are pebbled for the
last time. Then a pebble must remain onxi until all of its successors are pebbled for the last time, because
we can never repebble/dischargexi oncex�i is empty. So

�
xi �x�i � � �t1 �t11 � 1�.

Once we know that at least one node ofxi andx�i is pebbled throughout the time period, we can use a
similar argument to show thatdi � �t2 �t10 � 1�, wheret2 comes aftert1, and then, once at least two nodes
are clamped

�
x̄i � x̄�i � � �t3 �t9 � 1�, wheret3 comes aftert2. Also, by Lemma 9, neitherei nor fi can be white

pebbled betweent0 andt11 and each can be black pebbled at most once betweent0 andt11.
We now considerg1

i to g3i�2
i , which require that the OR-nodeci is pebbled. We know thatci must be

black pebbled becauseg3i�2
i has in-degree 3i � 1, and all of its other predecessors are clamped. Therefore,

it must have received its black pebble by sliding it fromci . Soci must hold a black pebble at some timet5,
beforet8. We can also prove thatt5 occurs beforet6. We know this becauseg1

i must be black pebbled att6
and att6 � 1 all 3i � 1 of g1

i ’s predecessors must be black pebbled. This means that the rest of the widget,
including fi andei must be empty. But we already know that they can only be black pebbled once between

9



t0 andt11 and that had to have occurred at some timet4, beforet5. This means that we cannot repebbleci

afterg1
i is pebbled, because it requires eitherei or fi to be pebbled. Therefore,ci � �t5 �t8 � 1�.

At t4 eitherei or fi is black pebbled. Ifei is black pebbled att4, thenGi�1 � �xi �di � x̄�i � must be pebbled
at timet4 � 1. If fi is black pebbled att4, thenGi�1 � �x�i �di � x̄i � must be pebbled at timet4 � 1. We now
want to prove that in either case,Gi�1 must be simultaneously black pebbled att4 � 1. To do this, note
that widgeti always contains at least 4 pebbles fromt4 until t11. This means that aftert4 we cannot black
pebble or discharge a white pebble from any nodeGi�1 since they all have in-degree 3i � 2. This means
thatg1

i�1 to g3i�3
i�1 must all be in�t4 � 1�t6� since they are needed again to black pebbleg1

i . This means that
the only one of eitherei or fi ’s 3i � 1 predecessors which is unclamped att4 � 1 is g3i�2

i�1 . Therefore either
ei or fi must have received its black pebble fromg3i�2

i�1 via a slide move. The rest ofGi�1 must also be
black becauseg1

i�1 to g3i�3
i�1 form a 3i � 3-slide withg1

i to g3i�3
i when 3n� 1�

�
3i � 3� nodes are unclamped

betweent5 andt6. So by Lemma 9 and the fact that they can never be repebbled betweent4 andt11, g1
i�1

to g3i�3
i�1 must be simultaneously black pebbled att4 � 1. Therefore, ifei is black pebbled att4, then we can

apply the induction hypothesis to conclude thatψ �αi ��xi � is QSAT and that simultaneously black pebbling
Gi�1 from B�t3� required time 2k, wherek is the number of universally quantified variables among the inner
most i � 1 variables ofF. And if fi is black pebbled att4, then we can apply the induction hypothesis to
conclude thatψ �αi ��x̄i � is QSAT and simultaneously black pebblingGi�1 from B�t3� required time 2k, where
k is the number of universally quantified variables among the inner mosti � 1 variables ofF. In either case,
ψ �αi is QSAT and simultaneously black pebblingGi�1 from B�t3� requires time 2k, wherek is the number of
universally quantified variables among the inner mosti variables ofψ. �
�������

10: Let ψ be a QBF, and letGRESbe the associated graph. Then ifpu
�
s� can be derived from

Peb
�
GRES� using no more than 6n� 3 space, thenψ is QSAT, and any 6n� 3 space proof requiresΩ

�
2k�

steps, wherek is the number of universally quantified variables inψ.

The rest of this section is devoted to the proof of the above theorem. We begin with some definitions.

DEFINITION 5.1: We partition some of the nodes and their associated variables into three sets,assignment
nodes and variables,entry point nodes and variables, andinternal nodes and variables. We refer to the
nodes in

�n
i�1�xi �x�i � x̄i � x̄�i �ai �di � as assignment nodes, and the associated variables as assignment variables.

We refer to the nodes in�g1
0� � �n

i�1�x�i � x̄�i �di � as entry point nodes, and the associated variables as entry
point variables. For universal widgets, we refer to

�n
i�1

�
Gi � �ai �bi �� as internal nodes, and the associated

variables are internal variables. And for existential widgets, we refer to
�n

i�1
�
Gi � �ei � fi �� as internal nodes.

The target nodes is also an internal node ofG .
Each entry point nodev has a dual,dual

�
v�, wheredual

�
g1

0� � g1
0, and for eachi, 1� i � n, dual

�
x̄�i � � x̄i ,

anddual
�
x�i � � xi . If widget i is universal, thendual

�
di � � ai and if it is existential thendual

�
di � � di . The

initial clause ofPeb
�
G � containingx positively is calledax

�
x�, and the positive unit clause forx is pu

�
x�. We

refer to the set of clauses containingx positively aspos
�
x�. For any set of variablesX, pu

�
X� � �pu

�
x� �

x �
X�.
DEFINITION 5.2: A clamping interval �t j �tk� is the set of clauses which must be in memory at all times
betweent j andtk inclusive. LetC1 �C2 be two clauses. We say that

�
C1 �C2� � �t j �tk� if eitherC1 or C2 is in

memory during every configuration from timet j through timetk inclusive. We say thatpos
�
x� � �t j �tk� if for

each configurationC �t � �, t j � t � � tk, some clause ofpos
�
x� is in C �t � �. We say thatan assignment variable x

is clamped from configurationC �t j � to configurationC �tk� if either pos
�
x� � �t j �tk� or pos

�
dual

�
x�� � �t j �tk�.

We say that a nodev’s assignment variables are clamped within an interval, if for every one ofv’s slack
nodesO

�
v�z�, the assignment variablez is clamped in that interval.

DEFINITION 5.3: We say that a nodez is downstream of another nodey if there is a path fromy to z. We
say that a nodez is downstream of another nodey in a path ρ if there a subpath ofρ from nodey to nodez.
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We say that a nodey is upstream of another nodez if z is downstream ofy and we say thaty is upstream of
z in a pathρ if z is downstream ofy in ρ.

DEFINITION 5.4: Letρ be a path from nodey to nodez. We say that a clauseC blocks ρ at nodeb, if b � ρ,
b �� y and the variable associated withb appears positively inC and no variable associated with any node
on the subpath ofρ from y to b appears negatively inC. If the current resolution configuration contains a
clause which blocksρ at some node, then we say thatρ is blocked. Otherwise we say thatρ is unblocked.
For a given pathρ from nodey to some nodez, for any nodeb � ρ �b �� y we use the notation̄ρ

�
b� to refer

to the set of all clauses derivable fromPeb
�
G � which containb positively and no node betweeny andb in ρ

negatively. Intuitively, these are all the derivable clauses which can blockρ atb. A blocking set B between
a set of nodesSand a nodez in G is a minimal set of clauses in the current resolution configuration which
blocks every path from any member ofS to z. Note that according to the definition of an unblocked path,S
is not a blocking set betweenSandz.

We first point out a few useful facts aboutPeb
�
G �. First, Peb

�
G � is Horn and for every variablex,

the only initial clause which containsx positively isax
�
x�. Therefore, in order for memory to contain any

clause containingx positively, ax
�
x� must first be downloaded. Also, sincePeb

�
G � is Horn, every clause

can contain at most one positive literal. Also, since all ofPeb
�
G �’s initial clauses contain a positive literal,

it is impossible to derive a purely negative clause.

���� �
11: If there exists an unblocked pathρ from nodey to z in configurationC �t1�, then in order to

derive some clauseC in ρ̄
�
z� at timet f � t1, some clause frompos

�
y� must be in configurationC �t2� for

somet2, t1 � t2  t f .

Proof: The proof is by strong induction on the length of the subpath of ρ from y to z.
For the base case, suppose there exists an unblocked path from y to z at timet1 and we want to derive

ρ̄
�
z� whenz is the immediate successor ofy. Either some clause frompos

�
z� is already in memory, or

not. If it is, we know that it must contain�y becauseρ is unblocked. Otherwise, we must downloadax
�
z�

which also contains�y in order to derivēρ
�
z�. In both cases, we must resolve away�y in order to deriveC.

Therefore, we must have a clause frompos
�
y� in memory.

Now suppose that the statement is true for all nodesb which are up to distancek� 1 away fromy along
ρ; we want to prove that the statement holds for nodez which is distancek away fromy alongρ. Consider
the last action,A �t f � in the derivation of some clauseC in ρ̄

�
z�. This action must be a resolution on some

nodeb which appears beforez in ρ (because otherwise an earlier clause would be inρ̄
�
z�.) Assume thatC

is derived at actionA �t f � from clausesC1 andC2, whereC1 containsz and�b, andC2 containsb. Because
C does not contain any literals of nodes upstream ofz in ρ, C2 also does not contain any literals of nodes
upstream ofb in ρ. Therefore,C2 is in ρ̄

�
b�. BecauseC2 blocksρ, it must have been derived at some timet3,

betweent1 andt f Thus by the inductive hypothesis, some clause frompos
�
y� must be in some configuration

C �t2�, wheret1 � t2 � t3 � t f , completing the proof. �
���� �

12: For every entry point variabley, if ax
�
y�’s assignment variables are clamped, then in order to

derive any unit clause fromax
�
y� without using more than 6n� 3 space, there must be some point between

downloadingax
�
y� and using it for the first time, when the resolution configuration contains only clamped

assignment variables ofax
�
y� and at most one negative literal ofax

�
y�.

Proof: The entry point variabley is eitherg1
0 or y is one ofx�i , di , or x̄�i for somei � �1�n�.

� Case 1: The entry point variabley is g1
0. Sinceg1

0 is the OR-nodezm, it has 7 axioms (1 for each
predecessorpabc

0 ), each of which has the following form:
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ax
�
g1

0� �
�

n�
j�1

�
O
�
g1

0 �x j � � O
�
g1

0 �d j � � O
�
g1

0 � x̄ j �� � pabc
0 � � g1

0

Therefore
�
ax

�
g1

0�
� � �

3n� � 1� 1. Note that the size of the current clamping is 3n.

� Case 2: The entry point variabley is x�i . The initial clauseax
�
x�i � has the following form:

ax
�
x�i � �

�
n�

j� i�1

�
O
�
x�i �x j � � O

�
x�i �d j � � O

�
x�i � x̄ j �� �

6i�1�
j�1

y
x�i
j � � x�i

Therefore
�
ax

�
x�i �

� � �
3n� 3i � � �

6i � 1� � 1 � 3n� 3i � 2. Note that the size of the current clamping
is 3n� 3i.

� Case 3: The entry point variabley is di . The initial clauseax
�
di � has the following form:

ax
�
di � �

�
n�

j� i�1

�
O
�
di �x j � � O

�
di �d j � � O

�
di � x̄ j �� � O

�
di �xi � �

6i�1�
j�1

ydi
j � � di

Therefore
�
ax

�
di � � � �

3n � 3i � � 1� �
6i � 1� � 1 � 3n� 3i � 1. Note that the size of the current

clamping is 3n� 3i � 1.

� Case 4: The entry point variabley is x̄�i . The initial clauseax
�
x̄�i � has the following form:

ax
�
x̄�i � �

�
n�

j� i�1

�
O
�
x̄�i �x j � � O

�
x̄�i �d j � � O

�
x̄�i � x̄ j �� � O

�
x̄�i �xi � � O

�
x̄�i �di � �

6i�3�
j�1

y
x̄�i
j � � x̄�i

Therefore
�
ax

�
x̄�i � � � �

3n� 3i � � 2� �
6i � 3� � 1 � 3n� 3i. Note that the size of the current clamping

is 3n� 3i � 2.

So in all cases, whenax
�
y� is downloaded our space usage is at least 6n� 2 and we have at most one

unit of space left to use. In order to resolve anything away from ax
�
y� without exceeding our space limit,

this space must be filled with some negative literal ofax
�
y�.

����� �����
13: Let y be any entry point node and letz1 and z2 be any pair of internal nodes such that

configurationC �t1� satisfies:

1. there is an unblocked path fromy to z2 and fromz2 to z1;

2. no clause frompos
�
z2� is in C �t1�; and

3. all of the assignment variables ofax
�
y� are clamped.

Also suppose that the next action,A �t1 � 1�, is a download ofax
�
z2�. Then in order to derivepu

�
z1�, while

keeping all assignment variables ofax
�
y� clamped (without exceeding 6n� 3 space), some clause inpos

�
y�

must be inC �t1�.
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Proof: Assumepu
�
z1� is derived at actionA �t f �, t f � t1. Since there is an unblocked path fromy to

z2 andz2 to z1 and there is no clause frompos
�
z2� in C �t1�, then there is an unblocked path fromy to z1 in

C �t1�. Sincepu
�
z1� � ρ̄

�
z1�, by Lemma 11, some clause inpos

�
y� must be in configurationC �t2�, for some

t2, t1 � t2  t f . If t1 � t2 then we are done. Otherwise, we must derive some clauseC in pos
�
y� at timet2,

t1  t2  t f . Therefore,ax
�
y� must be downloaded at some timet3, t1  t3  t2. Now by Lemma 12, at

configurationC �t3�, the positive literalz1 cannot appear in memory. This is a contradiction because we must
still have a clause frompos

�
z1� in memory untilpu

�
z1� is derived. �

DEFINITION 5.5: For each entry point nodev we useγ
�
v� to refer tov’s position in an ordering which is

defined as follows:,γ
�
g1

0� � 0 and for eachi � �1�n�: γ
�
x̄�i � � 3i � 2, γ

�
di � � 3i � 1, andγ

�
x�i � � 3i

Informally, the following lemma states that if there is an unblocked path fromy j (an entry point node in
widget j) to z, but all nodes belowy j are blocked, then we must have a blocking set of size 3j, one for each
blocked entry point node belowy j .

���� �
14: Let y j be an entry point node of widgetj which hasb other entry points of widgetj after it in

γ, and letz be any internal node such that the current configurationC �t � satisfies the following conditions:

1. there is an unblocked pathρ from y j to z; and

2. for every entry point nodev such thatγ
�
v�  γ

�
y j � there is no unblocked path fromv to z.

Then for at least 3j � b nodesv which are either not reachable fromy j or are immediate successors ofy j ,
some clause frompos

�
v� must be in memory atC �t �.

Proof: The proof hinges on the observation that blocking every pathfrom any entry point nodev
such thatγ

�
v�  γ

�
y j � to z but not blockingρ requires a blocking set of size at least 3j � b. Furthermore,

the nodes which comprise the blocking set must occur downstream of any suchv and upstream of the first
internal node ofρ. If widget j is a universal widget, then we can break the proof into three cases, each with
two subcases. Eithery j is x̄�j andb � 2, y j is d j andb � 1, ory j is x�j andb � 0. In each of these cases either
ρ leavesy j and traverses up through the left side of widgetj or it traverses up through the right side of the
widget. We will see that each of these six cases is either impossible, or requires the current configuration
to hold some clause frompos

�
v� for at least 3j � b nodesv which are either not downstream ofy j or are

immediate successors ofy j .

Case 1: (y j is x̄�j andb � 2):

Right Side: In this caseρ leaves ¯x�j via x̄ j . We now show that ifρ leaves ¯x�j via x̄ j and thenb j , then
there can be no unblocked paths from entry point nodes in widget j � 1 which join ρ at some unblocked
node ofb j because this would form an unblocked path from them toz. There must therefore be a blocking
setB between any entry point in widgetj � 1 andz which does not blockρ. Any such blocking set must
separate any lower entry points from any node onρ. We argue that this set must have size 3j �2. A potential
blocking set would be all of the predecessors ofb j not in �d j �x�j � x̄ j �. Either all ofb j ’s predecessors that are
not in �d j �x�j � x̄ j � are inB or at least one is not. If they are, then we are done because this set has size 3j � 2.
Otherwise, there is some predecessorv of b j not in �d j �x�j � x̄ j � that is not inB which is furthest upstream.

Either widget j � 1 is universal or existential. Suppose it is universal. Thenthe nodev is eitherg3 j�2
j�1

or g3 j�3
j�1 . Every other member ofG j�1 is an immediate successor of ¯x�j�1. If v is one of these, we could

reachz from x̄�j�1 by crossing the edge from ¯x�j�1 to v, then tob j , and from there we could use the nodes

of ρ downstream ofv to reachz. Sincev is one ofg3 j�2
j�1 or g3 j�3

j�1 thenB must include every node of

�g1
j�1 � � � � �g3 j�4

j�1 � since each of these nodes is an immediate successor of an entry point node of widget

13



j � 1. Also, eitherg3 j�3
j�1 or a j�1 must be inB , and eitherg3 j�2

j�1 or x j�1 must be inB . SoB has the required
size of 3j � 2.

Suppose it is existential. Then the nodev must beg3 j�2
j�1 since every other node ofG j�1 is an immediate

successor ofd j�1. ThereforeB must include every node of�g1
j�1 � � � � �g3 j�3

j�1 �. Also, it is clear that either

g3 j�2
j�1 must be inB or x j�1 must be. SoB has the required size of 3j � 2.

Left Side: In this caseρ leaves ¯x�j via some (furthest upstream) nodev of �g1
j � � � � �g3 j�1

j �. Let gl1
j be the

furthest upstream predecessor ofv that is not inB (or v itself if there is none). SoB must have size at least
l1 � 1. Butgl1

j�1 � � � �g3 j�2
j�1 are all predecessors ofgl1

j . If widget j � 1 is universal, then by the same argument

as used for the right sideB must include every node of�gl1
j�1 � � � � �g3 j�4

j�1 � and eitherg3 j�3
j�1 or a j�1 must be in

B , and eitherg3 j�2
j�1 or x j�1 must be inB . SoB has the required size of 3j � 2. If widget j � 1 is existential,

then by the same argument as used for the right sideB must include every node of�gl1
j�1 � � � � �g3 j�3

j�1 � and

eitherg3 j�2
j�1 or x j�1 must be inB . SoB has the required size of 3j � 2.

Case 2: (y j is d j andb � 1):

Right Side: In this caseρ leavesd j via �b j �a j �.
We now show that ifρ leavesd�j via �b j �a j � there can be no unblocked paths from ¯x�j which join ρ

at some unblocked node of�b j �a j � because this would form an unblocked path from ¯x�j to z. There must
therefore be a blocking setB between ¯x�j (or any entry point in lower widgets) andz which does not block
ρ. Any such blocking set must separate any lower entry points from any node onρ. Note thatρ must pass
througha j . All 3 j � 1 nodes ofG j�1 � �b j � are predecessors ofa j . Either all of these nodes are inB or
at least one is not. If they are all inB , thenB has the size required. Widgetj � 1 is either universal or
existential. If it is universal, then every node in�g1

j�1 � � � � �g3 j�4
j�1 � is an immediate successor of an entry

point node of widgetj � 1, so each must be inB . Therefore onlyg3 j�3
j�1 , g3 j�2

j�1 , or b j might not be inB . As

we pointed out for the right side of case 1, eitherg3 j�3
j�1 or a j�1 must be inB , and eitherg3 j�2

j�1 or x j�1 must

be inB . If widget j � 1 is existential, then every node in�g1
j�1 � � � � �g3 j�3

j�1 � is an immediate successor of

d j�1 so they must all be inB , and it is also easy to see that eitherg3 j�2
j�1 or x j�1 must also be inB . So in

either case the size ofB is at least 3j � 2. Finally, eitherb j or x̄ j must also be inB , so it has the required
size of 3j � 1.

Left Side: This case is impossible sincedi ’s only successors are on the right side of the widget.

Case 3: (y j is x�j andb � 0):

Right Side: In this caseρ leavesx�j via �b j �a j �.
This case is impossible since bothb j anda j are immediate successors of the entry point noded j , so any

unblocked path fromx�j to zwould also be an unblocked path fromd j to z.

Left Side: In this caseρ leavesx�j via x j .
We now show that ifρ leaves viax j and then some node(s) ofG j , then there must be a blocking setB of

size at least 3j to ensure that there are no unblocked paths from ¯x�j or d j to z. Observe thatρ cannot use any

node ofg1
j throughg3 j�1

j because each of those nodes is an immediate successor of ¯x�j . Therefore,ρ must

leavex j via g3 j
j . But g1

j throughg3 j�1
j are all predecessors ofg3 j

j and as we noted, they are all successors of
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x̄�j . They must all therefore be inB . Therefore,B must have size at least 3j � 1. Sincea j is an immediate
successor of the entry point noded j , a j must also be included inB , increasing its size to the desired 3j.

Suppose, on the other hand that widgetj is an existential widget. Then the proof breaks into three cases:
eithery j is x̄�j andb � 2, y j is d j andb � 1, ory j is x�j andb � 0.

Case 1: (y j is x̄�j andb � 2):

In this caseρ must include some nodeu of �g1
j � � � � �g3i�1

j �. We can ignore any ofu’s predecessors in

�x̄ j �d j �x j �. Let gl1
j be u’s furthest upstream predecessor not inB (or u itself if there is none). ThenB

contains at leastl1 � 1 members, namely all ofgl1
j ’s predecessors inG j . But gl1

j also hasc j as a predecessor

as well as each node in�gl1
j�1 � � � � �g3 j�3

j�1 �. Either widgetj � 1 is a universal widget or an existential widget.

Suppose widgetj � 1 is universal. The nodegl1
j�1 to g3 j�4

j�1 must all be inB since each is an immediate

successor of ¯x�j�1. Also eitherg3 j�3
j�1 or x j�1 must be inB . This brings the size ofB to at least 3j � 3. We

now turn our attention togl1
j ’s other predecessor,c j . If c j , ej , f j , g3 j�2

j�1 , anda j�1 are all not inB then there

is an unblocked path fromd j�1 to z, crossing fromd j�1 to a j�1, then tog3 j�2
j�1 , and then toej , c j , gl1

j�1, and
then tou at which point we can use the node ofρ downstream ofu to reachz.

Suppose widgetj � 1 is existential. The nodegl1
j�1 to g3 j�3

j�1 must all be inB since each is an immediate

successor ofd j�1. This brings the size ofB to at least 3j � 3. We now turn our attention togl1
j ’s other

predecessor,c j . If c j , ej , f j , g3 j�2
j�1 , andx j�1 are all not inB then there is an unblocked path fromx�j�1 to z,

crossing fromx�j�1 to x j�1, then tog3 j�2
j�1 , and then toej , c j , gl1

j�1, and then tou at which point we can use
the node ofρ downstream ofu to reachz.

Case 2: (y j is d j andb � 1):
This case is just like case 1, except that we must also block any path fromx̄�j to z by includingx̄ j .

Case 3: (y j is x�j andb � 0):
This case is very easy since every node that is an immediate successor ofx j or x�j is also an immediate

successor ofd j except forg3 j�1
j . Also, every predecessor ofg3 j�1

j is an immediate successor ofd j . So in

order to block any paths fromd j to zi without blockingρ, ρ must useg3 j�1
j and all ofg3 j�1

j s 3j predecessors
must be inB .

In all cases which can occur, for at least 3j � b nodesv which are either not downstream ofy j or are
successors ofy j , some clause frompos

�
v� must be in memory atC �t �. �

Let zi be an internal node in widgeti. Informally, the following lemma states that when we download
ax

�
zi � (with zi ’s assignment variables clamped), then in order to derive something fromax

�
zi �, we must start

in the “full” configuration.

���� �
15: Let zi be any internal node of widgeti and letz be any internal node such that configuration

C �t1� satisfies:

1. no clause frompos
�
zi � is in C �t1�;

2. all of the assignment variables ofax
�
zi � are clamped; and

3. there is an unblocked path fromzi to z;

Also suppose that the next action,A �t1 � 1�, is a download ofax
�
zi �. Then in order to derivepu

�
z� at some

time t2 after t1 (without exceeding 6n� 3 space), there must be 6n� 3�
�
ax

�
zi � �� X positive unit clauses

in memory att1, whereX is the number of assignment variables ofzi , for nodes which are upstream ofzi ,
including every entry pointv such that there is an unblocked path fromv to zi .
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Proof:
Either there is an unblocked path from some entry point node to zi or not. Suppose not–so all paths

from entry point nodes tozi are blocked. Then there must be some blocking set which separates all entry
point nodes upstream ofzi from zi . We will show that every such blockingB set has size at least 6n� 3��
ax

�
zi � �� X. If all entry point nodes tozi are blocked, then no entry point node can be a predecessor ofzi .

Therefore, if widgeti is a universal widget, then the only possibilities forzi areg3i
i andg3i�1

i and if i is an
existential widget, then the only possibility forzi is g3i�1

i .
Suppose widgeti is a universal widget. Case 1)zi is g3i

i . The nodeg3i
i has 6n� 3 �

�
ax

�
zi � � � X �

1 predecessors inGi which are successors of ¯x�i , so they must all be included inB . It also hasxi as a
predecessor, which in turn is a successor ofx�i . So therefore,xi must be inB . So

�
B
� � 3i � 6n� 3 ��

ax
�
zi � ��X. Case 2)zi is g3i�1

i . This is very much like the previous case, except thatg3i�1
i also hasai as a

predecessor, and it is a successor ofx�i . So it must also be inB . So
�
B
� � 3i � 1 � 6n� 3�

�
ax

�
zi � ��X.

Suppose on the other hand that widgeti is an existential widget. Thenzi is g3i�1
i . The nodeg3i�1

i has
6n� 3 �

�
ax

�
zi � � � X � 1 predecessors inGi which are successors ofdi , so they must all be included in

B . It also hasxi as a predecessor, which in turn is a successor ofx�i . So therefore,xi must be inB . So�
B
� � 3i � 1 � 6n� 3�

�
ax

�
zi � �� X.

Suppose, on the other hand that there is an unblocked path from some entry point node tozi . Let y j be
the earliest entry point node inγ which has an unblocked path tozi . Supposey j is in widget j, j � i and
widget j containsb other entry points aftery j in γ. Then clearly, for every entry point nodev such that
γ
�
v�  γ

�
y j � there is no unblocked path fromv to zi .

Suppose thatzi hasa other entry points of widgeti after it in γ, 0 � a � 2. Thenzi has 3n � 3i � a
clamped assignment variables (i.e.X � 3n� 3i � a), and has 3i � 1� a internal nodes as predecessors in
widget i. At the moment whenax

�
zi � is downloaded there is therefore at most 3i � 1� a available space in

memory before we exceed 6n� 3.
We can apply Lemma 14 to conclude that the current configuration must hold a set of 3j � b clauses

whose positive variables are associated with nodes that areeither not downstream ofy j or are successors
of y j . (We will see later that this set must be composed of exactly 3j � b positive unit clauses for those
nodes.) We therefore have at most 3i � 1� a� 3 j � b space left when we downloadax

�
zi �. Note that there

are exactly 3i � a� 3 j � b entry points upstream ofzi such thatγ
�
v� � γ

�
y j �. We will show that for each

of these entry points, either some clause frompos
�
v� or pos

�
dual

�
v�� must be in the current configuration.

This will leave us with at most 1 space left, which we will showmust be used bypu
�
y j �. During the proof

we will only count each clause (except forax
�
zi �) as using 1 space, and we will still reach our maximum of

6n� 3. We will therefore conclude that each clause (except forax
�
zi �) must be a positive unit clause, which

will complete the proof.
During this process we followρ from zi down toy j . We show that given our space bound, it is impossible

to keep entry points along the way from connecting toρ and thereby forming unblocked paths tozi . The
pathρ must pass through each widgetk, i � k � j. There are two cases depending on whether widgetk is a
universal or an existential widget.

Suppose widgetk is a universal widget. Thenρ can either pass through widgetk’s right side or straight
up. Supposeρ traverses the right side of widgetk. Thenρ must includeak, which has bothdk andx�k as
predecessors. No clause frompos

�
ak� can be in memory sinceρ is unblocked, therefore by Corollary 13 a

clause ofpos
�
dk� and a clause ofpos

�
x�k� must be. Also,ak hasbk as a predecessor, which in turn hasxk as

a predecessor, so a clause of eitherpos
�
bk� or pos

�
x̄k� must be in memory, or else by Corollary 13 a clause

of pos
�
x̄�k� must be. So in all cases at least three units of space are used in widgetk.

Supposeρ traverses straight up the widgetk. Thenρ must include some node ofg1
k throughg3k�2

k . Every
node ofg1

k throughg3k�2
k hasxk as a predecessor. So either some clause frompos

�
xk� is in B or we can

create a new unblocked path fromx�k to zi by crossing an edge fromxk to the node whichρ uses inGk. We
can then apply Corollary 13 to conclude that some clause frompos

�
x�k� must be clamped until afterax

�
zi �

is downloaded. So either some clause frompos
�
xk� is in memory, or some clause frompos

�
x�k� is. Also,
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sincex̄�k is a predecessor of every node ing1
k throughg3k�2

k , by Corollary 13, some clause frompos
�
x�k� must

also be in memory. Finally, sinceak is also a predecessor of every node ing1
k throughg3k�2

k anddk is a
predecessor ofak, it is not hard to see that either some clause frompos

�
ak� or some clause frompos

�
dk�

must also be in memory. So in all cases, if widgetk is universal andρ traverses its left side, then at least
three units of space are used in widgetk.

Suppose, on the other hand, that widgetk is an existential widget. Theρ must include some node
of g1

k throughg3k�2
k . Each one of these nodes hasxk, dk, and x̄k as immediate predecessors. So we can

therefore apply Corollary 13 to conclude that some clause from pos
�
dk� must be clamped until afterax

�
zi �

is downloaded. Also, if there is no clause ofpos
�
xk� in memory, then we can apply Corollary 13 to conclude

that some clause frompos
�
x�k� must be clamped until afterax

�
zi � is downloaded. The same is true for ¯xk.

Since we only have 3k� 1�3 j � b�1 space free, the only way we can block all the paths fromdk to the
node of�g1

k � � � � �g3k�2
k � used byρ is either to have some clause frompos

�
ak� in memory which would use

1 extra space. If no clause frompos
�
ak� is in memory, there must be an unblocked path fromdk to zi . We

can then apply Corollary 13 to conclude that some clause frompos
�
dk� must be clamped until afterax

�
zi �

is downloaded. So either some clause frompos
�
dk� is in memory, or some clause frompos

�
ak� is. Finally,

every node of�g1
k � � � � �g3k�2

k � hasx̄�k as a predecessor. So we can create a new unblocked path from ¯x�k to zi

by crossing an edge from ¯x�k to the node whichρ uses inGk. We can now apply Corollary 13 to conclude
that some clause frompos

�
x̄�k� must be clamped until afterax

�
zi � is downloaded. �

���� �
16: Let zbe an internal node ofG and lett � andt �� be times such that variablezdoes not appear in

any clause ofC �t � � and all ofz’s assignment variables are clamped during the interval�t � �t �� �. Then in order
to derivepu

�
z� at some timet2, t � � t2 � t �� without exceeding 6n� 3 space,pu

�
y� must be in memory, for

all internal predecessorsy of zat timet1, t � � t1  t2 whenax
�
z� is downloaded.

Proof: At the moment whenax
�
z� is downloaded, suppose for the sake of contradiction that for at least

one internal predecessory of z, pu
�
y� is not in memory. By Lemma 15 we must use 6n� 3 space atax

�
z�’s

download and all the clauses in memory at that time are eitherax
�
z�, clamped assignment variables ofz, or

unit clauses not involvingy, so there can be no clause ofpos
�
y� in memory. We must therefore download

ax
�
y� to resolve away the negative literal ofy from ax

�
z�. When we downloadax

�
y�, if one ofy’s assignment

variables is not clamped, then it will have to be downloaded at sometime when memory still holds a positive
clause for a node which is downstream ofy. By Lemma 12 this would exceed 6n� 3 space. We therefore
know that all ofy’s assignment variables are clamped whenax

�
y� is downloaded. We can therefore apply

Lemma 15 to conclude that after we’ve downloadedax
�
y�, 6n� 3 units of memory must be filled with the

union of 1)ax
�
y�, 2) ax

�
y�’s clamped assignment variables, 3) positive unit clauses which are upstream of

y. But at this point we must still have a clause in memory which was derived fromax
�
z� and has size at least

2 since it must at least containy negatively andz positively. So we exceed 6n� 3 space. All ofz’s internal
predecessors must therefore be in memory whenax

�
z� is downloaded. �

���� �
17: If an internal nodez of widget i hask predecessors and there are 3n� 1 � k units of space

clamped in�t � �t �� �, thenax
�
z� can be downloaded at most once betweent � andt ��.

Proof: By Lemma 15,ax
�
z� cannot be downloaded while a clause frompos

�
z� is in memory. Therefore,

in order to downloadax
�
z� for a second time, every clause ofpos

�
z� must be removed from memory. By

frugality, a clauseC of pos
�
z� can only be removed from memory if a sub-clause ofC exists in memory

or afterC has been resolved with a clause ofpos
�
v� for somev downstream ofz. This means that once

all clauses frompos
�
z� have been removed from memory, a clause containing a positive literal of a node

downstream ofzmust be in memory. This means that there are at least 3n� 1� k� 1 units of space clamped
after the first timeax

�
z� has been downloaded, so trying to download it again would exceed the space bound.

�
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DEFINITION 5.6: For any assignmentαi � Ai, we defineCαi as the resolution configuration ofPeb
�
G �

consisting of the following clauses for eachj, j � n� i: If αi
�
x j � � 0, thenpu

�
x�j � � Cαi , pu

�
d j � � Cαi , and

either pu
�
x̄ j � � Cαi or pu

�
x̄�j � � Cαi . Otherwise, ifαi

�
x j � � 1, thenpu

�
x̄�j � � Cαi , pu

�
a j � � Cαi , and either

pu
�
x�j � Cαi � or pu

�
x j � � Cαi .

To prove Theorem 10, we first observe that by Lemma 16 the derivation of pu
�
s� requires the derivation

of pu
�
Gn�. Therefore, Theorem 10 follows from the following theorem,wheni � n.

�������
18: For everyi, 0 � i � n, for everyαi � Ai, if there exist timest � andt �� such thatCαi � �t � �t �� �,

then derivingpu
�
Gi � at t �� from Cαi at timet �, using no more than 6n� 3 space, requires thatψ �αi is QSAT

and requires that there areΩ
�
2k� units of time betweent � and t ��, wherek is the number of universally

quantified variables among the inner mosti variables ofF.

Proof: Now that we have proven the above Lemmas, the proof of our maintheorem is very similar
to the proof of Theorem 7, and proceeds by induction oni. We will essentially argue that the only 6n� 3
space refutation must follow the upper bound, and hence willimply that the formula is QSAT.

The basis is wheni � 0. In this caseCα0 has size 3n and we must show that derivingpu
�
g1

0� without
exceeding 6n� 3 space requires at leastΩ

�
1� time. We show that the derivation requiresΩ

�
m� time, where

m is the number of clauses isF.
We first prove thatpu

�
zj�1� must be in memory when we downloadax

�
zj �, for each 1� j � m. With

Cαi clamped in memory, we have 3n� 3 units of space to use to derivepu
�
zm� � pu

�
g1

0�. But eachax
�
pxyz

j �
has size exactly 3n� 2. This means that there is one unit of space left over. If thisspace is not filled
with pu

�
zj�1�, then the negative literal ofzj�1 cannot be resolved away until one of the 7 axioms ofzj�1

is downloaded. But since it is impossible to derive an entirely negative clause, the clauseC containing
the negative literal ofzj�1 must be accompanied by a positive literal as well, so it must have size at least
2. Note that at this point we cannot download anyax

�
pxyz

j�1� because we would exceed our space bound.
But if we download any of the axions ofzj�1 and resolve them withC, the resolvent will still have size 2,
now containing the negative literal of somepxyz

j�1, and some clause of size 2 containingpxyz
j�1 will remain in

memory untilax
�
pxyz

j�1� is downloaded. We must therefore exceed the space bound.
Now suppose for the sake of contradiction thatQnxn � � �Q1x1F �α0 is not QSAT, which means thatα0

falsifiesF. In that case, there must be some clauseCk of F which is falsified byα0. In order to derive
pu

�
zm� we must derivepu

�
zm�1�, which in turn requirespu

�
zm�2�, etc. Therefore, at some point we must

derive pu
�
zk� and pu

�
zk�1� must be in memory when we download the axiom ofzk which we will use to

derive pu
�
zk�. But sinceCk is falsified byα0, for eachpxyz

k , Cα0 will be missing the positive unit clause of
some entry point node. In order to remove its negative literal from ax

�
pxyz

k �, the axiom for that entry point
will have to be downloaded and used. Clearly, by Lemma 12 thiscannot be done within the space bound
given the size of the clamped set of clausesCα0.

Induction Step: We will show that in order to derivepu
�
Gi � without removing any clauses fromCαi we

must necessarily pass through a number of resolution configurations, each of which can have at most one
non-unit clause. This will necessarily involve derivingCαi�1 twice, the first time whenαi�1 � αi � �x̄i � and
the second whenαi�1 � αi � �xi �.

We first observe that by Lemma 15, for every internal variablez or widgeti, no variable upstream ofz,
which is not an assignment variable ofz, can be in memory at the time whenax

�
z� is downloaded without

exceeding the space bound of 6n� 3. We will use this observation numerous times in our proof.

Case 1: Qi is a universal quantifier, soGi is part of a universal widget.

We will show that in order to derivepu
�
Gi � we must necessarily pass through a number of partial

configurations, including derivingpu
�
Gi�1� twice, once whilepu

�
x�i �, pu

�
di �, and eitherpu

�
x̄i � or pu

�
x̄�i �

18



(the false configuration) are in memory, and once whilepu
�
x̄�i �, pu

�
ai �, and eitherpu

�
xi � or pu

�
x�n� i�1� (the

true configuration) are in memory. We prove this by pointing out 12 important partial configurationsC �t0�
to C �t11�, which occur at timest0 to t11 respectively, whereC �t0� is Cαi andC �t11� containspu

�
Gi �.

In order to derivepu
�
Gi � at timet11, we must download the axiom of each member ofGi � �ai �bi �x�i �,

sinceCαi does not contain any of their positive literals. In fact, it contains no positive literal for any node
in any widget j, j � i. Therefore, we will need to download the axiom of any positive literal we need from
this region of the circuit. Also, by Lemma 17, the axioms of any node inGi � �ai �bi �x�i � can be downloaded
at most once betweent0 andt11.

Let t10 be the timeax
�
g3i�1

i � is downloaded. Clearly,t10  t11 and pos
�
g3i�1

i � � �t10�t11�. Also, by
Lemma 16,pu

��g1
i � � � � �g3i

i �� � �ai � � C �t10�. Let t9 be the timeax
�
g3i

i � is downloaded. Clearly,t9  t10 and
pos

�
g3i

i � � �t9 �t11�. Also, by Lemma 16 and Corollary 13,pu
��g1

i � � � � �g3i�1
i � � �ai � �xi �x�i ��� � C �t9�. Let t8

be the timeax
�
g3i�1

i � is downloaded. Clearly,t8  t9 and pos
�
g3i�1

i � � �t8 �t11�. Also, by Lemma 16 and
Corollary 13,pu

��g1
i � � � � �g3i�2

i � � �ai � �xi �x�i � � x̄�i �� � C �t8�. Let t7 be the timeax
�
g1

i � is downloaded. Clearly,
t7  t9 andpos

�
g1

i � � �t7 �t11�. Also, by Lemma 16 and Corollary 13,pu
�
Gi�1 � �ai � �xi �x�i � � x̄�i �� � C �t7�.

Our argument now breaks into two parts. In the first part, we consider what steps are necessary to derive
pu

�
ai � by t7. In the second part, we consider what steps are necessary to derive pu

�
Gi�1� and pu

�
x̄�i � by

t7. We will see thatpu
�
Gi�1� will have to be derived twice. Once in order to derivepu

�
ai �, and then again

immediately beforet7.
Let t5 be the timeax

�
ai � is downloaded. Clearly,t5  t8 andpos

�
ai � � �t5 �t11�. Also, by Lemma 16 and

Corollary 13,pu
�
Gi�1 � �bi �x�i �di �� � C �t5�. Let t4 be the timeax

�
bi � is downloaded. Clearly,t4  t5 and

pos
�
bi � � �t4 �t5�. Also, by Lemma 16 and Corollary 13,pu

�
Gi�1 � �x̄i �x�i �di �� � C �t4�.

Let t1 be the timeax
�
x�i � is downloaded. By Lemma 12,t1 must occur when no other positive literal

of any widget j, j � i is in memory. Furthermore, some clause ofpos
�
x�i � must stay in memory until its

successorx�i is downloaded for the last time. Thenpu
�
xi � must stay in memory until all of its successors are

downloaded for the last time, because we can never derivepu
�
xi � once every occurrence ofx�i is removed

from memory. Thereforepos
�
x�i � � �t1 �t5� andpos

��
xi �x�i �� � �t5 �t9�.

By Lemma 17,ax
�
di � can only be downloaded once betweent1 andt11 since there is always at least 1

unit of memory used betweent1 andt11. Let t2, t2 � t1 be the timeax
�
di � is downloaded. By Lemma 12,t2

must occur when no other positive literal of any widgetj, j � i is in memory, except for
�
xi �x�i �. Therefore

pos
�
di � � �t2 �t5�.

By Lemma 17,ax
�
x̄�i � can only be downloaded once betweent1 andt5 since there are always at least 2

unit of memory used betweent2 andt5. Clearly,ax
�
x̄�i � must be downloaded within this time frame since it

is required to derivepu
�
bi � by t5. Therefore, lett3, t5 � t3 � t2 be the timeax

�
x̄�i � is downloaded within this

interval. By Lemma 12,t3 must occur when no other positive literal of any widgetj, j � i is in memory,
except for

�
xi �x�i � and

�
di �ai �. Furthermore, some clause ofpos

�
x̄�i � must stay in memory until its successorx�i

is downloaded for the last time. Thenpu
�
xi � must stay in memory until all of its successors are downloaded

for the last time, because we cannot derivepu
�
xi � during t1 to t5 once every occurrence ofx�i is removed

from memory. Thereforepos
��

x̄i � x̄�i �� � �t3 �t4�.
So

�
x̄i � x̄�i � �di �x�i are clamped from a time when no other positive literals of anywidget j, j � i are

in memory, until at leastt4. But at t4, pu
�
Gi�1� must also be derived. So

�
x̄i � x̄�i � �di �x�i must be clamped

throughout the derivation ofpu
�
Gi�1�. We can therefore apply the induction hypothesis to conclude that

deriving pu
�
Gi�1� requires thatψ �αi��x̄i � is QSAT and requiresΩ

�
2k� resolution configurations to occur

betweent3 and t4, wherek is the number of universally quantified variables among the inner mosti � 1
variables ofψ.

We now proceed with the second half of the argument in which weinvestigate the necessities of deriving
pu

�
Gi�1� andpu

�
x̄�i � by t7.

Clearly,t7 � t5 sincepu
�
ai � must necessarily be in memory whenax

�
g1

i � is downloaded att7. But att5,
no occurrence of the positive literal of ¯x�i can be in memory since its inclusion att5 would exceed our space
bound. We must therefore downloadax

�
x̄�i � again at some timet6, aftert5 andpos

�
x̄�i � � �t6 �t8�. By Lemma
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12, att6 only pu
�
ai � and pu

��
x�i �xi �� can be in memory among all the variables associated with any widget

j, j � i. In particular, no space can be devoted to any literal of any node inGi�1 at this time. Since we must
derivepu

�
Gi�1� by t7, this necessitates thatpu

�
Gi�1� must be derived a second time at some point between

t6 andt7. Sincepos
�
x̄�i �, pos

�
ai �, and pos

��
x�i �xi �� are all clamped throughout this time, we can apply the

induction hypothesis to conclude that derivingpu
�
Gi�1� requires thatψ �αi��xi � is QSAT and requiresΩ

�
2k�

resolution configurations to occur betweent6 andt7, wherek is the number of universally quantified vari-
ables among the inner mosti � 1 variables ofψ.

Case 2: Qi is an existential quantifier, soGi is part of an existential widget.

We will show that in order to derivepu
�
Gi �, we must necessarily pass through a number of configura-

tions, including derivingpu
�
Gi�1�, either withpu

�
x�i �, pu

�
di �, and eitherpu

�
x̄i � or pu

�
x̄�i � (the false config-

uration) in memory, or withpu
�
x̄�i �, pu

�
di �, and eitherpu

�
xi � or pu

�
x�i � (the true configuration) in memory.

We prove this by pointing out 12 important partial configurations C �t0� to C �t11�, which occur at timest0 to
t11 respectively, whereC �t0� is Cαi andC �t11� containspu

�
Gi �. occurring in the partial configuration must

stay in place during a certain interval.
In order to derivepu

�
Gi � at timet11, we must download the axiom of each member ofGi � �ai �bi �x�i �,

sinceCαi does not contain any of their positive literals. In fact, it contains no positive literal for any node
in any widget j, j � i. Therefore, we will need to download the axiom of any positive literal we need from
this region of the circuit. Also, by Lemma 17, the axioms of any node inGi � �ei � fi �x�i � can be downloaded
at most once betweent0 andt11.

Let t10 be the timeax
�
g3i�1

i � is downloaded. Clearly,t10  t11 and pos
�
g3i�1

i � � �t10�t11�. Also, by
Lemma 16,pu

��g1
i � � � � �g3i

i �� � � �xi �x�i �� � C �t10�. Let t9 be the timeax
�
g3i

i � is downloaded. Clearly,t9  t10

andpos
�
g3i

i � � �t9 �t11�. Also, by Lemma 16 and Corollary 13,pu
��g1

i � � � � �g3i�1
i � � �di � �xi �x�i ��� � C �t9�. Let

t8 be the timeax
�
g3i�1

i � is downloaded. Clearly,t8  t9 and pos
�
g3i�1

i � � �t8 �t11�. Also, by Lemma 16 and
Corollary 13,pu

��g1
i � � � � �g3i�2

i � � �di � �xi �x�i � �
�
x̄i � x̄�i ��� � C �t8�.

Let t1 be the timeax
�
x�i � is downloaded. By Lemma 12,t1 must occur when no other positive literal

of any widget j, j � i is in memory. Furthermore, some clause ofpos
�
x�i � must stay in memory until its

successorx�i is downloaded for the last time. Thenpu
�
xi � must stay in memory until all of its successors are

downloaded for the last time, because we can never derivepu
�
xi � once every occurrence ofx�i is removed

from memory. Thereforepos
��

xi �x�i �� � �t1 �t10�.
By Lemma 17,ax

�
di � can only be downloaded once betweent1 andt11 since there is always at least 1

unit of memory used betweent1 andt11. Let t2, t2 � t1 be the timeax
�
di � is downloaded. By Lemma 12,t2

must occur when no other positive literal of any widgetj, j � i is in memory, except for
�
xi �x�i �. Therefore

pos
�
di � � �t2 �t9�.

By Lemma 17,ax
�
x̄�i � can only be downloaded once betweent1 andt11 since there are always at least

2 units of memory used betweent2 andt11. By Lemma 12,t3 must occur when no other positive literal of
any widget j, j � i is in memory, except for

�
xi �x�i � anddi . Furthermore, some clause ofpos

�
x̄�i � must stay

in memory until its successorx�i is downloaded for the last time. Thenpu
�
xi � must stay in memory until all

of its successors are downloaded for the last time, because we cannot derivepu
�
xi � again duringt1 to t11 if

every occurrence ofx�i is removed from memory. Therefore
�
x̄i � x̄�i � � �t3 �t8�.

Let t7 be the timeax
�
g3i�2

i � is downloaded. Clearly,t7  t8 and pos
�
g3i�2

i � � �t7 �t11�. Also, by Lemma
16 and Corollary 13,pu

��g1
i � � � � �g3i�3

i � � �di � �xi �x�i � � �x̄i � x̄�i ��� � C �t7�. This leaves exactly one unit of space
left in memory att7. We will show that this memory must either be filled withpu

�
ci � or one ofpu

�
ei � or

pu
�
fi �. If all three of those clauses are not in memory att7 then it is easy to see that there must be unblocked

paths at that time from at least two of the three entry points of widget i � 1 tog3i�2
i , since we can use at most

one unit of space to block any paths from the entry points of widgeti � 1 tog3i�2
i . By Corollary 13, clauses

containing their variables positively must occur in memoryat t7. Since we have at most 1 space free att7,
this exceeds our space bound.
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If pu
�
ci � � C �t7�, let t6 be the last time beforet7 such thatC �t6� does not containpu

�
ci �. In order to derive

pu
�
ci � at timet6, either the axiom

�
ēi � ci � or the axiom

�
f̄i � ci � must have been downloaded at some time

t5 beforet6.
Suppose

�
ēi � ci � was downloaded at timet5. Thenax

�
ei � must be downloaded at some timet4 beforet5.

By Lemma 17,ax
�
ei � can be downloaded at most once betweent0 andt11 and by an argument very similar

to the proof of Lemma 16pu
��g1

i�1 � � � � �g3i�2
i�1 � � �x̄�i �di � �xi �x�i ��� � C �t4�. Sox̄�i �di � �xi �x�i � are clamped from

a time when no other positive literals of any widgetj, j � i are in memory, until at leastt4. But at t4,
pu

�
Gi�1� must also be derived. So ¯x�i �di � �xi �x�i � must be clamped throughout the derivation ofpu

�
Gi�1�.

We can therefore apply the induction hypothesis to concludethat derivingpu
�
Gi�1� requires thatψ �αi ��xi �

is QSAT and requiresΩ
�
2k� resolution configurations to occur betweent3 andt4, wherek is the number of

universally quantified variables among the inner mosti � 1 variables ofψ.
Suppose on the other hand that

�
f̄i � ci � was downloaded at timet5. Thenax

�
fi � must be downloaded

at some timet4 beforet5. By Lemma 17,ax
�
fi � can be downloaded at most once betweent0 andt11 and

by an argument very similar to the proof of Lemma 16pu
��g1

i�1 � � � � �g3i�2
i�1 � � � �x̄i � x̄�i � �di �x�i �� � C �t4�. So�

x̄i � x̄�i � �di �x�i are clamped from a time when no other positive literals of anywidget j, j � i are in memory,
until at leastt4. But att4, pu

�
Gi�1� must also be derived. So

�
x̄i � x̄�i � �di �x�i must be clamped throughout the

derivation ofpu
�
Gi�1�. We can therefore apply the induction hypothesis to conclude that derivingpu

�
Gi�1�

requires thatψ �αi ��x̄i � is QSAT and requiresΩ
�
2k� resolution configurations to occur betweent3 and t4,

wherek is the number of universally quantified variables among the inner mosti � 1 variables ofψ.
If pu

�
ci � �� C �t7�, but pu

�
ei � is, then the argument is very similar to the argument above when

�
ēi � ci � is

downloaded att5. If pu
�
fi � is, then the argument is very similar to the one when

�
ḡi � ci � is downloaded at

t5.
�

6 Putting it all together

Theorem 1: The resolution space problem isPSPACE-complete.

Proof: Every unsatisfiable formula has a spacen resolution proof, and thus there is a nondeterministic
PSPACEalgorithm guessing a spacen proof. By Savitch’s theorem, this implies a deterministic PSPACE
algorithm. To showPSPACE-hardness, from a QBF formulaψ, we construct the associated CNF formula
Peb

�
G ��� �. By Theorem 3 and 6, ifψ is QSAT, then there is a resolution derivation ofpu

�
Gn� from

Peb
�
G ��� � which uses 6n� 3 space. Conversely, by Theorem 10, if there is a resolution derivation of

pu
�
Gn� from Peb

�
G ��� � using 6n� 3 space, thenψ is QSAT. �

Theorem 2: There exist CNF formulas which have linear size resolution proofs that can be verified in space
k� 3, but whose smallest resolution proofs that can be verified in spacek have exponential size.

Proof: Let ψ � �
xn
�

xn�1 � � ��x1F be any totally universally quantified QBF which is QSAT, and let
G ��� be the graph obtained fromψ. Sinceψ is QSAT, by Theorem 10, there exists a space 6n� 3 resolution
proof of Peb

�
G ��� �, and any space 6n� 3 derivation ofPeb

�
G ��� � requiresΩ

�
2n� steps. By Lemmas 5 &

6, there exists a space 6n� 6 derivation ofPeb
�
G ��� � which only requiresO

� �
Peb

�
G ��� � �� steps. �

7 Open Problems

We have shown that resolution space complexity is PSPACE complete. However, can the space be well-
approximated? To what extent do our results hold for other proof systems such as the Polynomial Calculus
and Cutting Planes systems?
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