
Linear and Sublinear Time Algorithms for the Basis of Abelian

Groups

Li Chen∗and Bin Fu†

Abstract

It is well known that every finite Abelian group G can be represented as a product of cyclic groups:
G = G1×G2×· · ·Gt, where each Gi is a cyclic group of size pj for some prime p and integer j ≥ 1. If ai is
the generator of the cyclic group of Gi, i = 1, 2, · · · , t, then the elements a1, a2, · · · , at are the basis of G.
In this paper, we first obtain an O(n)-time deterministic algorithm for computing the basis of an Abelian
group with n elements. This improves the previous O(n2) time algorithm found by Chen [1]. We then
derive an O((

∑t

i=1
p

ni−1
i n2

i log pi)(log n)(log log n))-time randomized algorithm to compute the basis of
Abelian group G of size n with factorization n = p

n1
1 · · · pnt

k , which is also a part of the input. This
shows that for a large number of cases, the basis of a finite Abelian group can be computed in sublinear

time. For example, it implies an O(n1− 1
d (log n)3 log log n)-time randomized algorithm to compute the

basis of an Abelian group G of size n = p
n1
1 · · · pnt

t , where d = max{ni|i = 1, · · · , t}. It is a sublinear
time algorithm if max{ni|i = 1, · · · , t} is bounded by a constant. It also implies that if n is an integer in
[1, m]−G(m, c), then the basis of an Abelian group of size n can be computed in O((log n)c+3 log log n)-
time, where c is any positive constant and G(m, c) is a subset of the small fraction of integers in [1, m]

with |G(m,c)|
m

= O(1

(log m)c/2) for every integer m.

1. Introduction

The theory of groups is a fundamental theory of mathematics. Its applications can be found throughout entire
mathematics and theoretical physics especially quantum mechanics. In recent years, interest in researching
the computational complexity of groups has raised dramatically due to the ever-increasing significance of
its relationship to quantum computing and its application in elliptic curve cryptography. Since the early
developmental period of computational complexity, computer scientists have shown great interest in the
study of groups.

Abelian groups are groups with commutative property. It is well known that a finite Abelian group
can be decomposed to a direct product of cyclic groups with prime-power order (called cyclic p-groups) [8].
This fundamental theorem is also called the Kronecker decomposition theorem. In quantum computing,
the hidden subgroup problem (HSP) greatly interests scientists. The finite Abelian case was first used to
spectacular effect by Shor and Simon [18, 19]. “If the group G is Abelian, then it is possible to solve the HSP
in polynomial time with bounded error on a quantum computer.” A polynomial time algorithm in quantum
computing means an algorithm whose running time is a polynomial of the logarithm of the size of the group.
There is a polynomial time quantum algorithm for solving HSP over Abelian groups [2, 4, 10, 12, 13, 16, 18, 19].
This is important since the famous Shor’s quantum factoring algorithm is one particular case.

On the other hand, finite Abelian groups have been used in elliptic curve cryptosystems that were
introduced by Miller in 1986 [16]. This system is based on the discrete logarithm problem, which is as
follows: given an element g in a finite group G (over an elliptic curve) and another element h in G, find an
integer x such that gx = h [13]. The advantage of using elliptic curve crypto-systems over other public-key
crypto-systems is that the elliptic curve system may lead to smaller key sizes and better performance with
the similar level of security. Another application can be found in [4]

No polynomial-time algorithm has been found for determining if two general groups are isomorphic. The
group isomorphism problem is related to the graph isomorphism problem and is also easier to solve than
the graph isomorphism problem [15]. Hoffmann published a book in 1982 that presents interesting algebraic
results that relate the graph isomorphism problem to the automorphism groups of the two graphs [6]. The
development can be found in [11]. Tarjan [14] showed an O(nlog n+O(1)) time algorithm for the group
isomorphism problem. Savage [17] claimed the isomorphism between two Abelian groups can be checked in

∗Address: Department of Computer Science, University of District of Columbia, Washington, DC 20008, USA,

Email:lchen@udc.edu. Phone: 202-274-6301.
†Address: Department of Computer Science, University of Texas-Pan American, Edinburg, TX 78539, USA, Email:

binfu@cs.panam.edu. Phone: 956-381-3635. Fax: 956-384-5099.

1

Electronic Colloquium on Computational Complexity, Report No. 52 (2007)

ISSN 1433-8092

O(n2) steps. Vita [20] improved it to O(n) time for the Abelian p-group and O(n log n) time for Abelian
group. Kavitha [9] showed that the Abelian group isomorphism problem can be computed in O(n log log n)
time. Garzon and Zalcstein [5] also discussed that the polynomial time algorithms for the isomorphism
problem of Abelian groups.

Since the basis of an Abelian group fully determines its structure, finding the basis is crucial in computing
the general properties for Abelian groups. Also, finding the basis of an Abelian group is the generalization
of the integer factorization problem, one of the fundamental problems in computer science. For an integer
n > 0, the set {0, 1, 2, · · · , n−1} with the addition (mod n) forms an Abelian group. An algorithm for finding
the basis of an Abelian group can be converted into an algorithm for checking the isomorphism between two
Abelian groups. Therefore, pursing efficient algorithms in the classical computing model for the basis of
Abelian group has fundamental significance.

In this paper, we obtain an O(n)-time deterministic algorithm for computing the basis of an Abelian
group with n elements. This improves the previous O(n2) time algorithm of Chen [1]. We de-
rive a randomized algorithm that computes the basis of G, which has n = pn1

1 · · · pnk

k elements,

in O((
∑k

i=1 pni−1
i n2

i log pi)(log n)(log log n)) running time. It implies a randomized algorithm with

O(n1− 1
d (log n)3 log log n) running time so that given an Abelian group G of size n = pn1

1 · · · pnk

k , it computes
the basis of G, where d = max{ni|i = 1, · · · , k}. It also implies that if n is an integer in [1,m] − G(m, c),
then the basis of an Abelian group of size n can be computed in O((log n)c+3 log log n)-time, where c is any

positive constant and G(m, c) is a subset of small fraction of integers in [1,m] with |G(m,c)|
m = O(1

(log m)c/2)

for every integer m. It is a sublinear time algorithm if d = max{ni|i = 1, · · · , k} is bounded by a constant.
Since saving the multiplication table of a group of size n takes O(n2) space, the multiplication table of the
Abelian group can be accessed as an oracle during the computation.

2. Notations

For two positive integers x and y, (x, y) represents the greatest common divisor (GCD) between them. For
a set A, |A| is the number of elements in A. For a real number x, bxc is the largest integer ≤ x and dxe is
the least integer ≥ x. For two integers x and y, x|y means that y = xc for some integer c.

A group is a nonempty set G with a binary operation “·” that is closed in set G and satisfies the following
properties (for simplicity, “ab” represents “a · b”): 1)for every three elements a, b and c in G, a(bc) = (ab)c;
2)there exists an identity element e ∈ G such that ae = ea = a for every a ∈ G; 3)for every element
a ∈ G, there exists a−1 ∈ G with aa−1 = a−1a = e. A group G is finite if G has only finite elements.
Let e be the identity element of G, i.e. ae = a for each a ∈ G. For a ∈ G, ord(a), the order of a, is
the least integer k such that ak = e. For a ∈ G, define [a] to be the subgroup of G generated by the
element a (in other words, [a] = {e, a, a2, · · · , aord(a)−1}). Let A and B be two subsets of group G, define
AB = A · B = A ◦ B = {ab|a ∈ A and b ∈ B}.

A group G is an Abelian group if ab = ba for every two elements a, b ∈ G. Assume that G is an Abelian
group with elements g1, g2, · · · , gn. For each element gi ∈ G, it corresponds to an index i. A finite Abelian
group G of n elements can be represented as G = G(pn1

1) ◦ G(pn2
2) ◦ · · · ◦ G(pnt

t), where n = pn1
1 pn2

2 · · · pnt
t ,

p1 < p2 < · · · < pt are the prime factors of n, and G(pni
i) is a subgroup of G with pni

i elements (see [7]). We
also use the notation Gpi

to represent the subgroup of G with size pni
i . Any Abelian group G of size pm can

be represented by G = G(pm1) ◦ G(pm2) ◦ · · · ◦ G(pmk), where m =
∑k

i=1 mi and 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk.
Notice that each G(pmi) is a cyclic group.

For, a1, a2, · · · , ak from the Abelian group G, denote [a1, a2, · · · , ak] to be the set of all elements in G
generated by a1, · · · , ak. In other words, [a1, a2, · · · , ak] = [a1][a2] · · · [ak]. An element a ∈ G is independent
of a1, a2, · · · , ak in G if [a1, a2, · · · , ak] ∩ [a] = {e}.

The elements a1, a2, · · · , ak from the Abelian group G are independent if [ai]∩ (
∏

j∈{1,2,···,k}−i[aj]) = {e}
for every i with 1 ≤ i ≤ k. The basis of G consists of independent elements a1, · · · , ak that can generate all
elements of G (in other words, G = [a1, a2, · · · , ak]).

3. Algorithm with O(n log n) Steps

The algorithm in this section has two parts. The first part decomposes an Abelian group into product
G(pn1

1) ◦ G(pn2
2) ◦ · · · ◦ G(pnk

k). To find the subgroup of size pni
i , it is converted to find the set of elements

with the order of pi-power.
The second part finds the basis of each group G(pni

i). Assume that b1, · · · , bh, which satisfy ord(b1) ≥
ord(b2) ≥ · · · ≥ ord(bh), are the elements of a basis of the Abelian group G(pu). We will find another
set of the basis a1, · · · , ah. The element a1 is selected among all elements in G(pu) such that a1 has the

2

largest order ord(a1). Therefore, ord(a1) = ord(b1). Assume that a1, · · · , ak have been obtained such that
ord(a1) = ord(b1), · · · , ord(ak) = ord(bk). We show that it is always possible to find another ak+1 such that
([a1] · · · [ak]) ∩ [ak+1] = {e} and ord(ak+1) = ord(bk+1). The possibility of such an extension is shown at
Lemma 4 and Lemma 6. We maintain a subset M of elements of G(pu) such that M consists of all elements
a ∈ G that are independent of a1, a2, · · · , ak and ord(a) ≤ ord(ak). We search for ak+1 from M by selecting
the element with the highest order. After ak+1 is found, M will be updated.

In this section, we develop an O(n log n) time algorithm to compute the basis of a finite Abelian group.
The algorithm and its proof are self-contained. In section 4, we improve this algorithm to be in linear time
by using a result of Kavitha [9].

Lemma 1. There exists an O(n log n) time algorithm such that given a group G of size n with the factor-
ization n = pn1

1 pn2
2 · · · pnt

t , it computes the order of all elements g with ord(g) = pj
i for some pi||G| and

j ≥ 0.

Proof: Assume n = pn1
1 pn2

2 · · · pnt
t and ni ≥ 1 for i = 1, 2, · · · , t. Given the multiplication table of G, with

O(log m) steps, we can compute am. This can be done by a straightforward divide and conquer method with

the recursion am = a
m
2 · a

m
2 if m is even or am = a · ab

m
2 c · ab

m
2 c if m is odd.

For each prime factor pi of n, compute api for each a ∈ G. Build the table Ti so that Ti(a) = api for
a ∈ G. The table Ti can be built in O(n log pi) steps.

For each a ∈ G and prime factor pi of n, try to find the least integer j, which may not exist, such that

apj
i = e. It takes O(ni) steps by looking up the table Ti. For each pi, trying all a ∈ G takes O(n(log pi +ni))

steps. Therefore, the total time is O(n(
∑t

i=1(log pi + ni)) = O(n log n).

Lemma 2. Assume G is an Abelian group of size n. We have the following two facts: 1) If n = m1m2

with (m1,m2) = 1, G′ = {a ∈ G|am1 = e} and G′′ = {am1 |a ∈ G}, then both G′ and G are subgroups of G,
G = G′ ◦G′′, |G′| = m1 and |G′′| = m2. Furthermore, for every a ∈ G, if (ord(a),m1) = 1, then a ∈ G′′. 2)If

n = pn1
1 pn2

2 · · · pnt
t , then G = G(pn1

1)◦G(pn2
2)◦ · · · ◦G(pnt

t), where G(pni
i) = {a ∈ G|ap

ni
i = e} for i = 1, · · · , t.

Proof: It is easy to verify that G′ is subgroup of G. Assume a1, · · · , as1
, b1, · · · , bs2

are the elements in
a basis of G such that ord(ai)|m1 for i = 1, · · · , s1 and ord(bj)|m2 for j = 1, · · · , s2. It is easy to see that
am1

i = e for i = 1, · · · , s1 and bm1
j 6= e for j = 1, · · · , s2. For each bj , [bj] = [bm1

j] since (m1,m2) = 1 and
ord(bj)|m2. Assume that x = am1 and y = a′m1 . Both x and y belong to G′′. Let’s consider xy = (aa′)m1 .
We still have xy ∈ G′′. Thus, G′′ is closed under multiplication. Since G′′ is a subset of a finite group, G′′

is a group. Therefore, G′′ is a group generated by bm1
1 , · · · , bm1

s2
that is the same as the group generated by

b1, · · · , bs2
. Therefore, G′′ is of size m2. On the other hand, G′ has basis of elements a1, · · · , as1

and is of size
m1. We also have that G′ ∩ G′′ = {e}. It is easy to see that G = G′ ◦ G′′. For a ∈ G with (ord(a),m1) = 1,
[am1] = [a] and am1 6= e. So, we have am1 ∈ G′′, which implies that a ∈ [a] = [am1] ⊆ G′′. Part 2) follows
from part 1).

Lemma 3. Assume G is a group of size n = pn1
1 pn2

2 · · · pnt
t . Given the table of the orders of all elements

g ∈ G with ord(g) = pj
i for some pi and j ≥ 0, with O(n) steps, G can be decomposed as the product of

subgroups G(pn1
1) ◦ · · · ◦ G(pnt

t).

Proof: By Lemma 2, the elements of each G(pni
i) consists of all elements of G with order pj

i for some
integer j ≥ 0. Therefore, we have the following algorithm:

Compute the list of integers p1, p
2
1, · · · , p

n1
1 , p2, p

2
2, · · · , p

n2
2 , · · · , pt, p

2
t , · · · , p

nt
t . This can be done in

O(log n)2 steps because n1 +n2 + · · ·+nt ≤ log n. Also sort those integers p1, p
2
1, · · · , p

n1
1 , p2, p

2
2, · · · , p

n2
2 , · · · ,

pt, p
2
t , · · · , p

nt
t by increasing order. It takes (log n)2 steps because bubble sorting those log n integers takes

O((log n)2) steps. Let q1 < q2 · · · < qm be the list of integers sorted from p1, p
2
1, · · · , p

n1
1 , p2, p

2
2, · · · , p

n2
2 , · · · ,

pt, p
2
t , · · · , p

nt
t .

Set up the array A of n buckets. Put all elements of order k into bucket A[k]. Merge the buckets
A[pi], A[p2

i], · · · , A[pni
i] to obtain G(pni

i). This can be done by scanning the array A from left to right once
and fetching the elements from the array A[] at those positions q1 < q2 · · · < qm.

Lemma 4 ([1]). Let G be an Abelian group of size pt for prime p and integer t ≥ 1. Assume a1, a2, · · · , ak

are independent elements in G and b is also an elements in G with ord(b) ≤ ord(ai) for i = 1, · · · , k. Then
there exists b′ ∈ [a1, · · · , ak, b] with ord(b′)|ord(b) such that (1) a1, · · · , ak, b′ are independent elements in G;

(2) [a1, · · · , ak, b′] = [a1, · · · , ak, b]; and (3)b′ can be expressed as b′ = b
∏k

i=1(a
−tip

ξi−η

i), where η is the least
integer that bpη

∈ [a1, · · · , ak].

3

Proof: Let ord(ai) = pni and ord(b) = pm, ni ≥ m for i = 1, ..., k. Let [a1, · · · , ak]∩ [b] = [c]. We assume
that c 6= e (Otherwise, let b′ = b and finish the proof). Assume,

c = at1pξ1

1 · · · atkpξk

k = bhpη

, (1)

where 0 ≤ ti < pni−ξi and (ti = 0 or (ti, p) = 1) for i = 1, · · · , k and 0 < h < pm−η with (h, p) = 1 and
η < m (because c 6= e).

Since (ti, p) = 1, the order of each atip
ξi

i is pni

pξi
. The order of at1pξ1

1 · · · atkpξk

k is max{pni

pξi
|ti 6= 0, and i =

1, ..., k}. On the hand, the order of bhpη

is pm

pη . So, we have max{pni

pξi
|ti 6= 0, and i = 1, ..., k} = pm

pη .

Therefore, pni−ξi ≤ pm−η for each i = 1, · · · , k. So, we have ni − ξi ≤ m − η. Since (h, p) = 1, we have
[bhpη

] = [bpη

]. Without loss of generality, we assume that h = 1. It is easy to see that η is the least integer
such that bpη

∈ [a1, · · · , ak]. We have ξi ≥ η + (ni − m) ≥ η for i = 1, ..., k. Let

b′ =

k
∏

i=1

(a−tip
ξi−η

i) · b. (2)

Clearly, b′ ∈
∏k

i=1[ai] · [b]. By (1) and the fact h = 1, bpη

= (
∏k

i=1 atip
ξi−η

i)pη

. By (2), we have b′p
η

= e,
which implies ord(b′)|pη. We obtain the following:

[a1, · · · , ak, b] = [a1, · · · , ak, b′].

We now want to prove that [a1, · · · , ak] ∩ [b′] = {e}.

If, on the contrary, [a1, · · · , ak] ∩ [b′] = [c′] and c′ 6= e. We assume c′ = b′p
uη′

for some u with (u, p) = 1.

Since [b′p
uη′

] = [b′p
η′

], let u = 1. There exist integers si, ξ
′
i(i = 1, · · · , k) such that

c′ =

k
∏

i=1

asip
ξ′

i

i = b′p
η′

=

k
∏

i=1

a−tip
ξi−η+η′

i · bpη′

, (3)

where 0 ≤ ξ′i < n, 0 ≤ η′ < η. If η′ ≥ η, we have c′ = e by (1), (2), and (3). This contradicts the assumption
c′ 6= e.

Since c = bpη

6= e, we have bpη′

6= e. Since [a1, · · · , ak] ∩ [b] = [bpη

] and η > η′, we have bpη′

/∈
[a1, · · · , ak] ∩ [b]. By (3),

bpη′

=

k
∏

i=1

asip
ξ′

i

i ·
k

∏

i=1

atip
ξi−η+η′

i (4)

By (4), we also have bpη′

∈ [a1, · · · , ak] ∩ [b]. This contradicts that η is the least integer such that bpη

∈
[a1, · · · , ak] (notice that η′ < η). Thus, [a1, · · · , ak] ∩ [b′] = {e}.

Definition 5. Assume that group G has basis b1, · · · , bt with ord(b1) ≥ · · · ≥ ord(bt).

• Assume that a1, · · · , ak and b are the same as those in Lemma 4. We use b′(a1, · · · , ak, b) to represent
b′ derived in the Lemma 4.

• Let a1, · · · , ak be the elements of G with ord(a1) = ord(b1), · · · , ord(ak) = ord(bk) and (
∏

i6=j [ai]) ∩
[aj] = {e} for every j = 1, · · · , k. Then a1, · · · , ak is called a partial basis of G. If C(a1, · · · , ak) = {a ∈
G|[a1, · · · , ak] ∩ [a] = {e} and ord(a) ≤ ord(ak)}, then C(a1, · · · , ak) is called a complementary space
of the partial basis a1, · · · , ak.

Lemma 6. Let a1, · · · , ak be partial basis of the Abelian G with pi elements for some prime p and inte-
ger i ≥ 0. Then 1)G can be generated by {a1, · · · , ak} ∪ C(a1, · · · , ak); and 2)the partial basis a1, · · · , ak

can be extended to another partial basis a1, · · · , ak, ak+1 with complementary space C(a1, · · · , ak, ak+1) =
{a ∈ C(a1, · · · , ak)|[a1, · · · , ak, ak+1] ∩ [a] = {e} and ord(a) ≤ ord(ak+1)} , where ak+1 is the element of
C(a1, · · · , ak) with the largest order ord(ak+1).

4

Proof: Assume group G has the basis b1, · · · , bt with ord(b1) ≥ · · · ≥ ord(bt). 1) We prove it by using
induction. It is trivial at the case k = 0. Assume that it is true at k. We consider the case at k + 1.
Let a1, · · · , ak, ak+1 be the elements of a partial basis of G. Let the C(a1, · · · , ak) be the complementary
space for a1, · · · , ak. By our assumption, G can be generated by {a1, · · · , ak} ∪ C(a1, · · · , ak). By the
definition of partial basis (see Section 2), it is easy to see that ak+1 ∈ C(a1, · · · , ak). Select a′

k+1 from
C(a1, · · · , ak) such that ord(a′

k+1) = max{ord(a) : a ∈ C(a1, · · · , ak)}. By Lemma 4, b′(a1, · · · , ak, a′
k+1, b) ∈

C(a1, · · · , ak, a′
k+1) for each b ∈ C(a1, · · · , ak). We still have such a property that {a1, · · · , ak, a′

k+1} ∪
C(a1, · · · , ak, a′

k+1) can generate G. So, a1, · · · , ak can be extended into basis of G: a1, · · · , ak, a′
k+1, · · · , a

′
t′

with ord(a1) ≥ ord(a2) ≥ · · · ≥ ord(ak) ≥ ord(a′
k+1) ≥ · · · ≥ ord(at′) by repeating the method above.

Since the decomposition of G has a unique structure (see Lemma 25), we have that t = t′, ord(a1) =
ord(b1), · · · , ord(ak) = ord(bk), ord(a′

k+1) = ord(bk+1), · · · , and ord(a′
t) = ord(bt). Therefore, ord(a′

k+1) =
ord(bk+1) = ord(ak+1). Thus, we can select ak+1 instead of a′

k+1 to extend the partial basis from a1, · · · , ak

to a1, · · · , ak, ak+1.
2) Notice that C(a1, · · · , ak, ak+1) ⊆ C(a1, · · · , ak). It follows from the proof of 1).

Lemma 7. With O(m) steps, one can compute ap for all elements a of a G group with m = pi elements for
some prime p and integer i ≥ 0.

Proof: Initially mark all elements of G − {e} “unprocessed” and mark the unit element e “processed”.
We always select an unprocessed element a ∈ G and compute ap until all elements in G are processed.
Compute ap, which takes O(log p) steps, and its order ord(a) = pj by trying ap, ap2

, · · · , apj

, which takes
O(j2 log p) = O((log pj)2) steps. Process ak according to the order k = 1, 2, · · · , pj , compute (ak)p = (ap)k

in O(pj) steps and mark a, a2, · · · , apj

“processed”. For each k with 1 ≤ k ≤ pj and (k, p) = 1, ak is not
processed before because the subgroups generated by ak and a are the same (In other words, [ak] = [a]).

There are pj − pj−1 ≥ pj

2 integers k in the interval [1, pj] to have (k, p) = 1. Therefore, we process at least
pj

2 new elements ak in O(pj) steps by computing akp from ap. Therefore, the total number of steps is O(m).

Lemma 8. With O(m) steps, one can compute a
ord(a)

p and logp ord(a) for all elements a of a group G with

m = pi elements for some prime p and integer i ≥ 0.

Proof: We first prove that for any two elements a, b ∈ G, if apj

= b for some j ≥ 0 and ord(b) = pt for

some t ≥ 1, then ord(a) = pj+t. Assume that ord(a) = ps. First we should notice the number j for apj

= b

is unique. Otherwise, apk

6= e for any integer k. This contradicts ord(a)|pi. Assume apj1
= apj2

= b 6= e for

some j1 < j2. Then we have (apj1
)pj2−j1

= apj1
6= e. The loop makes apk

6= e for every k ≥ 0.

We have apj+t

= (apj

)pt

= bpt

= e. Therefore, s ≤ j + t. Since apj

= b 6= e and ord(a) = ps, we

have j < s. bps−j

= (apj

)s−j = aps

= e. Since ord(b) = pt, t ≤ s − j and t + j ≤ s. Thus, we have

s = t + j. Therefore, ord(a) = pj+t. This implies that if apj

= b 6= e for some j, then a
ord(a)

p = b
ord(b)

p and
logp(ord(a)) = logp(ord(b)) + j. This fact is used in the algorithm design.

By Lemma 7, we can have a table P with P (a) = ap in O(m) time. Assign flag −1 to each element in the

group G in the first step. If an element a has its values a
ord(a)

p and logp ord(a) computed, its flag is changed

to +1. We maintain the table that always has the property that if a
ord(a)

p and logp ord(a) are available (the

flag of a is +1), then b
ord(b)

p and logp ord(b) are available for every b = apj

for some j > 0. For an element

b of order pt, when computing b
ord(b)

p = bpt−1

, we also compute b
ord(bi)

p

i and logp ord(bi) for bi = bpi

with
i = 1, 2, · · · , t− 1 until it meets some bi with flag +1. The element bi = bp

i−1 can be computed in O(1) steps
from bi−1 since table P is available. It is easy to see that such a property of the table is always maintained.
Thus, the time is proportional to the number of elements with flag +1. The total time is O(m).

Assume the Abelian group G has pj elements. By Lemma 8, we can set up an array U [] of m buckets

that each its position U [gi] contains all the elements a of G with a
ord(a)

p = gi. We also maintain a double
linked list M that contains all of the elements of G with order from small to large in the first step.

Definition 9. Assume a1, a2, · · · , ak, ak+1 are elements of an Abelian group G with pt elements for some
prime p and integer t ≥ 0.

• Define L(a1, · · · , ak) = [a
ord(a1)

p

1 , · · · , a
ord(ak)

p

k] − {e}.

• If A = {a1, · · · , ak}, define L(A) = L(a1, · · · , ak).

5

Lemma 10. Assume a1, a2, · · · , ak, ak+1 are independent elements of G, which has pt elements for some
prime p and integer t ≥ 0. Then 1) L(a1, · · · , ak, ak+1) = L(a1, · · · , ak)∪(L(ak+1)∪(L(ak+1)◦L(a1, · · · , ak))),
and 2) L(a1, · · · , ak) ∩ (L(ak+1) ∪ (L(ak+1) ◦ L(a1, · · · , ak))) = ∅.

Proof: To prove 1) in the lemma, we just need to follow the definition of L(). For 2), we use the condition
[ak+1] ∩ [a1, a2, · · · , ak] = {e} since a1, a2, · · · , ak are independent (see the definition at Section 2).

The procedure of obtaining L is shown in the following algorithm, which is also used to find the basis of
the Abelian group of size power of a prime in Lemma 11.

Algorithm
Input:

an Abelian group G with size pt, prime p and integer t,

a table T with T (a) = a
ord(a)

p for each a 6= e,
a table R with R(a) = j if ord(a) = pj for each a ∈ G,
an array of buckets U with U(b) = {a|T (a) = b}.
a double linked list M that contains all elements a of G with nondecreasing order by ord(a)
(each element a ∈ G has a pointer to the node N , which holds a, in M).

Output: the basis of G;
begin

L = ∅;B = ∅;
repeat

select a ∈ M with the largest ord(a) (a is at the end of the double linked list M);
B = B ∪ {a};
L′ = L(a) ∪ (L(a) ◦ L);
for (each b ∈ L′) remove all elements in U(b) from M ;
L = L ∪ L′;

unitl (
∑

aj∈B R(aj) = t);
output the set B as the basis of G;

end
End of Algorithm

Lemma 11. There is an O(m) time algorithm for computing the basis of an G group with m = pt elements
for some prime p and integer t ≥ 0.

Proof: The algorithm is described above the lemma. By Lemma 7, we obtain the orders of all elements
of G in O(m) time. With another O(m) time for Bucket sorting (see [3]), we can set up the double linked
list M that contains all elements a of G with nondecreasing order by ord(a). By Lemma 8, with O(m) steps,

we can obtain the table T and table R with T (a) = a
ord(a)

p and R(a) = logp ord(a) for each a 6= e in G. With
table R, we can obtain the array of buckets U with U(b) = {a|T (a) = b} for each b ∈ G in O(m) steps by
Bucket sorting. The tables T and R, bucket array U , and double linked list are used as the inputs of the
algorithm.

For every element b ∈ G with b 6= e, ord(b) ≤ min{ord(ai)|i = 1, · · · , k}, and [a1, · · · , ak] ∩ [b] 6= {e} iff

b
ord(b)

p is in L(a1, · · · , ak). When a new ak+1 is found, L(a1, a2, · · · , ak) becomes to L(a1, a2, · · · , ak, ak+1) =
L(a1, a2, · · · , ak) ∪ (L(ak+1) ∪ L(ak+1) ◦ L(a1, a2, · · · , ak)). For each new element gi ∈ L(ak+1) ∪ L(ak+1) ◦
L(a1, a2, · · · , ak) = L(a1, a2, · · · , ak, ak+1) − L(a1, a2, · · · , ak) (see Lemma 10), we obtain the bucket U [gi]

that contains all elements a ∈ G with a
ord(a)

p = gi. Then remove all elements of U [gi] from the double linked
list M . This makes M holds all elements of C(a1, · · · , ak, ak+1) (see Definition 5). Removing an element
takes O(1) time and each element is removed at most once. Therefore, the total time is O(m). It is easy to
check the correctness of the algorithm by using Lemma 6.

Theorem 12. There is an O(n log n) time algorithm for computing the basis of an Abelian G group with n
elements.

Proof: Assume n = pn1
1 · pn2

2 · · · · · pnt
t . By Lemma 1 and Lemma 3, the group G can be decomposed

into product G = G(pn2
1) ◦G(pn2

2) ◦ · · · ◦G(pnt
t) in O(n log n) steps. By Lemma 11, the basis of each G(pni

i)

(i = 1, 2, · · · , t) can be found in O(pni
i) time. Thus, the total time is O(n log n) + O(

∑t
i=1 pni) = O(n log n).

6

4. Algorithm in O(n) Time

In this section, we improve the running time from O(n log n) to O(n) by using a result of Kavitha [9]. We
obtain a linear time group decomposition G = G(pn1

1) ◦ · · · ◦ G(pnt
t), where the Abelian group G has n

elements with n = pn1
1 · · · pnt

t . The technique we use here is the following: For an Abelian group G with
|G| = 2n1m2, where m2 is an odd number. We derive a decomposition of G = G1 ◦ G2 in linear time such
that |G1| = 2n1 and |G2| = m2. Then we apply Kavitha’s theorem to decompose the group G2. In order to
derive the elements of G2, we convert this problem into a search problem in a special directed graph that
each of its nodes has one outgoing edge. The directed graph has all elements of G as its vertices. Vertex
a has edge going to vertex b if a2 = b. Each weakly connected component of such a directed graph has a
unique directed cycle. We show that each node in the cycle can be added to G2. Removing the cycle nodes,
we obtain a set of directed trees. The nodes that have a path of length at least n1 to a leaf node can be also
added to the group G2. Searching the directed graph takes O(n) time. Combining with Kavitha’s theorem,
we obtain the O(n) time decomposition for the graph G. Using the result of section 3, we obtain the O(n)
time algorithm for finding the basis.

Theorem 13 ([9]). Given any group G of n elements, one can compute the orders of all elements in G in
O(n log p) time, where p is the smallest prime non-divisor of n.

An undirected graph G = (E, V) consists a set of nodes V and a set of undirected edges E such that the
two nodes of each edge in E belong to set V . A path of G is a series of nodes v1v2 · · · vk such that (vi, vi +1)
is an edge of G for i = 1, · · · , k − 1. A undirected graph is connected if every pair of nodes is linked by a
path. A graph G1 = (E1, V1) is a subgraph of G = (E, V) if E1 ⊆ E and V1 ⊆ V . A connected component
of G is a (maximal) subgraph G1 = (E1, V1) of G such that G1 is a connected subgraph and G does not have
another connected subgraph G2 = (E2, V2) with E1 ⊂ E2 or V1 ⊂ V2.

A directed graph G = (E, V) consists of a set of nodes V and a set of directed edges E such that each
edge in E starts from one node in V and ends at another node in V . A path of G is a series of nodes
v1v2 · · · vk such that (vi, vi + 1) is a directed edge of G for i = 1, · · · , k − 1. A (directed) cycle of G is a
directed path v1v2 · · · vk with v1 = vk. For a directed graph G = (E, V), let G = (E′, V) be the undirected
graph that E′ is derived from E by converting each directed edge of E into undirected edge. A directed
graph G = (E, V) is weakly connected if G = (E′, V) is connected. A subgraph G1 = (E1, V1) of G = (E, V)
is a weakly connected component of G if (E′

1, V1) is a connected component of (E′, V).
We need the following lemma that shows the structure of a directed graph that each of its nodes has

exactly one edge leaving it. An example about such a kind of graphs is at Figure 1.

Lemma 14. Assume that G = (E, V) is a weakly connected directed graph such that each node has exactly
one outgoing edge that leaves it (and may come back to the node itself). Then the directed graph G = (E, V)
has the following properties: 1) Its derived undirected graph G′ = (E′, V) has exactly one cycle. 2)G has
exactly one directed cycle. 3)Every node of G is either in the directed cycle or has a directed path to a node
in the directed cycle. 4)For every node v of G, if v is not in the cycle of G, then there exists a node v′ in the
cycle of G such that every path from v to another node v′′ in the cycle of G has to go through the node v′.

Proof: Since each node of G has exactly one edge leaving it, the number of edges in G is the same as the
number of nodes. Therefore, G′ can be considered to be formed by adding one edge to a tree. Clearly, G′

has exactly one cycle. Therefore, G has at most one directed cycle.
Now we prove G have at least one directed cycle. We pick up a node from G. Since each node of G has

exactly one edge leaving it, follow the edge leaving the node to reach another node. We will eventually come
back to the node that is visited before since G has a finite number of nodes. Therefore, G has at least one
cycle. Therefore, G has exactly one directed cycle. This process also shows every node of G has a directed
path to a node in the directed cycle.

Assume that v is a node of G and v is not in the cycle. Let v′ be the first node that v has a path to
v′ and the path does not visit any other node in the cycle of G. Let e be the edge leaving v′. Clearly,
H = ((E − e)′, V) is a tree. Therefore, for every node v′′ in the cycle of G, every path in (E − e, V) from v
to v′′ has to go through v′. It is still true when e is added back since e connects v′.

Lemma 15. There exists an O(n) time algorithm such that given an Abelian group G of size n, prime p|n,
and a table H with H(a) = ap, it returns two subgroups G′ = {a ∈ G|apn1

= e} and G′′ = {apn1
|a ∈ G} such

that |G′| = pn1 , |G′′| = m2 and G = G′ ◦ G′′, where n = pn1m2 with (p,m2) = 1 .

7

Proof: It is easy to see that G′ can be derived in O(n) time since we have the table H available. By
Lemma 2, we have G = G′ ◦ G′′. We focus on how to generate G′′ below. For each element a, set up a flag
that is initially assigned −1. In order to decompose the group G into G′ ◦G′′ with |G′| = pn1 and G′′ = m2,
we use Lemma 2 to build up two subsets A and B of G, where A = {a ∈ G|apn1

= e} and B = {apn1
|a ∈ G

and apn1
6= e}. Then let G′ = A and G′′ = B ∪ {e}.

During the construction, we have the table H where H(a) = ap for every a ∈ G. We compute apj

for

j = 1, 2, · · · , n1. If apj

= e for some least j with 1 ≤ j ≤ n1, put a into A and change the flag from −1 to 1.
It is easy to see we can obtain all elements of A in O(n) steps. We design an algorithm to obtain B by

working on the elements in G − A. We build up some trees for the elements in V0 = G − A.
Algorithm
Input:

group G, its size n and p with p|n;
table H() with H(a) = ap for each a ∈ G;

Output: subgroup {apn1
|a ∈ G};

begin
for every a ∈ V0 with ap = b (notice H(a) = ap)
begin

let (a, b) be a directed edge from a to b;
end (for)
form a directed graph (E, V0);
let (E1, V1), (E2, V2), · · · , (Em, Vm) be the weakly connected components of (E, V0);
for each (Ei, Vi) with i = 1, 2, · · · ,m
begin

find the loop Li, and put all elements of the loop into the set B;
for each tree in (Ei, Vi) − Li compute the height of each node;
put all nodes of height at least n1 into B;

end (for)
output B;

end
End of Algorithm
For each component of (E, V0), each node has only one outgoing edge. It has at most one loop in the

component (see Lemma 14 for the structure of such a directed graph). The height of a node in a subtree
tree, which is derived from a weakly connected component by removing a directed cycle, is the length of
longest path from a leaf to it. For each node v in the cycle, clearly, there is a path v0v1 · · · vn1

with vn1
= v

(notice that all the other nodes v0, v1, · · · , vn1−1 are also in the cycle). So, v ∈ B. If v is not in the cycle,
v ∈ B iff there is a path with length at least n1 and the path ends v. Since each node has one outgoing edge,
each node in the cycle has no edge going out the cycle. So, a node is in B iff it has height of at least n1 or
it is in a cycle. Therefore, the set B can be derived in O(n) steps by using the depth first method to scan
each tree.

Lemma 16. There is an O(n) time algorithm such that given a group G of size n, it returns the decom-
position G(pn1

1) ◦ G(pn2
2) ◦ · · · ◦ G(pnt

t), where n has the factorization n = pn1
1 pn2

2 · · · pnt
t and G(pni

i) is the
subgroup of size pni

i of G for i = 1, 2, · · · , t.

Proof: For n = pn1
1 pn2

2 · · · pnt
t , assume that p1 < p2 < · · · < pt. We discuss the following two cases.

Case 1: p1 > 2. In this case, 2 is the least prime that is not a divisor of n. By Theorem 13, we can find
the order of all elements in O(n log p) = O(n) time since p = 2 here. By Lemma 3, we can obtain the group
decomposition in O(n) time.

Case 2: p1 = 2. Apply Lemma 15, we have G = G(2n1) ◦ G′. In the next stage, we decompose G′ into
the production of subgroups G′ = G(pn2

2) ◦ · · · ◦G(pnt
t). Since G′ does not have the divisor 2, we come back

to Case 1. Clearly, the total number of steps is O(n).

Theorem 17. There is an O(n) time algorithm for computing the basis of an Abelian group with n elements.

Proof: The theorem follows from Lemma 16 and Lemma 11.

8

5. Sublinear Time Algorithm for the Basis of Abelian Group

In this section, we present a sublinear time algorithm for finding the basis of a finite Abelian group. For
n = pn1

1 · · · pnk

k , we derive a randomized algorithm with O((
∑k

i=1 pni−1
i ni log pi)(log n)(log log n)) running

time. For this sublinear time algorithm, we always assume that the Abelian group size n and the prime
factorization of n are a part of the input.

We assume that G has n elements a1, · · · , an and each ai is represented by an integer. The integer
representation has the advantage in that those elements have linear order and we can use B-tree to store
them so that finding and inserting can be done in O(log n) steps. We first present a sublinear time algorithm
for computing the basis of a G group, which has pt elements for some integer t ≥ 1 and prime p.

Algorithm
Input: an Abelian group G, its size pt, p and t;
Output: a basis of G;

Phase 0:
If t = 0 then output e as the basis for G and stop the algorithm;
Else

Let H0 = {e};

Let m =
⌈

x+log t
log p

⌉

;

Enter Phase 1;

Phase 1:
Randomly select m elements b1, · · · , bm from G.
Compute the orders of b1, · · · , bm (since each ord(bi) = pηi , we just save logp(ord(bi)) = ηi));
Let a′

1 = bj with the largest order ord(bj) = max{ord(bi)(i = 1, · · · ,m)};.
Let E1 = logp(ord(a′

1));
If (E1 < t) then
Begin

H1 = {aj
1|j = 0, · · · , ord(a1) − 1} (Save all elements of H1 in a B-tree);

Enter Phase 2;
End (then)
Else output a′

1 as the basis of G and stop the algorithm;

Phase s + 1:
Assume that a′

1, · · · , a
′
s have been found at the Phases 1 to s;

Randomly select m elements b1, · · · , bm from G.
For each bi ((i = 1, 2, · · · ,m)
Begin

For each g ∈ Hk

Begin
Let b = gbi;
Compute the order pu for b and the set B = {b, bp, bp2

, · · · , bpu−1

};
(save logp(ord(b)) = u)
If (ord(b) ≤ ord(a′

k) and (B ∩ Hs = ∅)) Then
Begin

Let b′i = gbi;
Goto L;

End (if)
End (for)

L: Continue;
End (for)
Let a′

s+1 = b′j which has the largest order ord(b′j) = max{ord(b′i)(i = 1, · · · ,m)};
Let Es+1 = Es + logp(ord(a′

s+1));
If (Es+1 < t) then
Begin

Hs+1 = {a′j
s+1h|h ∈ Hs and j = 0, · · · , ord(a′

s+1) − 1}
(Save all elements of Hs+1 in a B-tree);
Enter the phase s + 2;

End (Then)

9

Else output a′
1, a

′
2, · · · , a

′
s+1 as the basis for G and stop the algorithm.

End of Algorithm

Lemma 18. There exists a randomized algorithm such that given an Abelian group G of size pt, p, t ≥ 0,

and integer x > 0, it runs in O(pt−1(x+log t)t2 log p) steps, uses at most
⌈

x+log t
log p

⌉

t random elements selected

from G, and computes its basis with a failure probability at most 1
2x .

Proof: Assume that a1, · · · , ak form a basis of G with orders ord(a1) ≥ ord(a2) ≥ · · · ≥ ord(ak). Our
algorithm finds a basis {a′

1, a
′
2, · · · , a

′
k} of G with ord(a′

1) = ord(a1), ord(a′
2) = ord(a2), · · · , and ord(a′

k) =
ord(ak).

If m ≥ x+log t
log p , then m log p ≥ x + log t, which implies that 1

pm ≤ 1
t2x . The algorithm is described right

above the lemma.
Phase 0: If t = 0 then output e as the basis for G and stop the algorithm. Otherwise, let H0 = {e}

and m =
⌈

x+log t
log p

⌉

. Then enter Phase 1. We set m =
⌈

x+log t
log p

⌉

in the algorithm for the number of random

sample elements selected from G to find one element in the basis of G in the coming phases.
Phase 1: Randomly select m elements b1, · · · , bm from G. Assume that bi = aηi

1 ci, where ci ∈ [a2, · · · , ak]
and ηi is an integer in the interval [0, ord(a1) − 1]. If (ηi, p) = 1, then ord(bi) = ord(a1) (notice that
ord(a1) = pj for some integer j ≥ 1 and ord(a1) ≥ ord(a2) ≥ · · · ≥ ord(ak)). Since bi is a random element in
G, ηi is a random number in [0, ord(a1) − 1] and the probability is 1

ord(a1)
that ηi is equal to any integer in

[0, ord(a1)−1]. Assume that ord(a1) = pj1 . There are pj1−1 integers i in [0, ord(a1)−1] with (i, p) 6= 1. With

probability at most pj1−1

pj1
= 1

p , (ηi, p) 6= 1. With probability at most 1
pm , (ηi, p) 6= 1 for every i = 1, · · · ,m.

Therefore, with probability at most 1
pm , max{ord(b1), · · · , ord(bm)} < ord(a1).

Computing the orders of b1, · · · , bm takes O(m·t2 log p) steps. This is because for each bi (i = 1, · · · ,m), we

compute bp
i , b

p2

i , · · · , bpt

i and take O(log pt) steps for each of them. Let a′
1 = bi with ord(bi) = max{ord(bj)|j =

1, · · · ,m}. Clearly, with probability at most 1
pm , ord(a′

1) = ord(a1) is not true. At the end of this phase,

the algorithm checks if G = [a′
1], which is equivalent to ord(a′

1) = pt or logp ord(a′
1) = t. If not, it generates

H1 = [a′
1] (all elements of H1 are stored in a B-tree), and then enter Phase 2.

Phase s + 1: Assume that a′
1, · · · , a

′
s have been obtained such that ord(a′

i) = ord(ai) for i = 1, · · · , s,
a′
1, · · · , a

′
s are independent, and Hs = [a′

1, · · · , a
′
s]. We will find a′

s+1 in this phase. By Lemma 6, there
are a′′

s+1, · · · , a
′′
k such that a′

1, · · · , a
′
s, a

′′
s+1, · · · , a

′′
k form the basis of G with ord(a′

1) = ord(a1), ord(a′
2) =

ord(a2), · · · , ord(a′
s) = ord(as), ord(a′′

s+1) = ord(as+1), · · · , and ord(a′′
k) = ord(ak). If b is a random element

from G, then b = a′′η
s+1c and η is a random integer in [0, ord(a′′

s+1)−1], where c ∈ [a′
1, · · · , a

′
s, a

′′
s+2, a

′′
s+3, · · · , a

′′
k]

and η is an integer in [0, ord(as+1) − 1].
Randomly select m elements b1, · · · , bm from G. Let bi = a′′ηi

s+1ci and ηi be a random integer in
[0, ord(a′′

s+1) − 1], where ci ∈ [a′
1, · · · , a

′
s, a

′′
s+2, a

′′
s+3, · · · , a

′′
k]. Similar to Phase 1, the probability is at most

1
pm that (ηi, p) 6= 1 for every i = 1, · · · ,m.

For each bu, we can always find another g ∈ Hs such that ord(bug) ≤ ord(a′
s) and ([a′

1, · · · , a
′
s])∩ [bug] =

{e}. This is because we can let g = a′−j1
1 · · · a′−js

s when bu = a′j1
1 · · · a′js

s a
′′js+1

s+1 · · · a′′jk

k .

Assume that g ∈ [a′
1, · · · , a

′
s] and [gbu]∩Hs = {e}. Let gbu =

∏s
i=1 a′tip

ξi

i

∏s
j=s+1 a

′′tjpξj

j , where (ti, p) = 1

for i = 1, · · · , k. We claim that (a) max{ord(a′tip
ξi

i)|i = 1, · · · , s} ≤ max{ord(a
′′tjpξj

j)|j = s + 1, · · · , k}; and

(b) ord(gbu) = max{ord(a
′′tjpξj

j)|j = s+1, · · · , k}. Assume (a) is not true. We have that max{ord(a′tip
ξi

i)|i =

1, · · · , s} > max{ord(a
′′tjpξj

j)|j = s + 1, · · · , k}. Let max{ord(a
′′tjpξj

j)|j = s + 1, · · · , k} = pξ. Then

(
∏s

j=s+1 a
′′tjpξj

j)pξ

= e and (
∏s

i=1 a′tip
ξi

i)pξ

6= e. Thus, e 6= (gbu)pξ

∈ Hs (recall Hs = [a1, · · · , as]). This
contradicts that [gbu] ∩ Hs = {e}. Therefore, (a) is true. (b) follows from (a).

If bi = a′′ηi

s+1ci with ci ∈ [a′
1, · · · , a

′
s, a

′′
s+2, a

′′
s+3, · · · , a

′′
k]. We find b′i = gbi such that ord(gbi) ≤ ord(a′

s) and
[gbi] ∩ Hs = {e}. The s + 1-th element a′

s+1 is selected to be b′j with ord(b′j) = max{ord(b′i)(i = 1, · · · ,m)}.

If (ηi, p) = 1, then ord(b′i) = ord(a′′
s+1) = ord(as+1). We already know that the probability is at most 1

pm

that (ηi, p) 6= 1 for every i = 1, · · · ,m. So, with probability at most 1
pm , ord(a′

s+1) 6= ord(as+1). At the end

of this phase, the algorithm checks if G = [a′
1, a

′
2, · · · , a

′
s, a

′
s+1], which is equivalent to that logp(ord(a′

1)) +
logp(ord(a′

2)) + · · · + logp(ord(a′
s+1)) = t. If not, it generates Hs+1 = Hs ◦ [a′

s+1] = [a′
1, · · · , a

′
s, a

′
s+1] (all

elements of Hs+1 are stored in a B-tree) and enter Phase s + 2.
Assume the algorithm stops at Phase z +1. The basis generated by the algorithm is a′

1, · · · , a
′
z, a

′
z+1. So,

H1,H2, · · · ,Hz have been generated with H1 ⊂ H2 ⊂ · · · ⊂ Hz ⊂ G. The size of Hz is strictly less than that
of the group G. It is easy to see that Hi = [a′

1, a
′
2, · · · , a

′
i], which is the subgroup generated by the part of

elements that have been found from Phase 1 to Phase i for (i = 1, · · · , z). Thus, |Hi| =
∏i

j=1 ord(a′
j). The

10

algorithm stops at Phase z + 1, which has found the full basis a′
1, · · · , a

′
z+1 and it does not generate Hz+1

any more. This is why we use less time than linear. It is easy to see that |Hz| ≤ pt−1 and |Hy−1| ≤
|Hy|

p for

y = z, z − 1, · · · , 2, 1. We have |Hz| + |Hz−1| + · · · + |H1| = O(pt−1 + · · · + p2 + p) = O(pt−1
p−1) = O(pt−1).

For each bi, it takes |Hs| steps to generate all b = gbi for all g ∈ Hs. For each b = gbi, it takes

O(t log pt) = O(t2 log p) steps to compute its order ord(b) = pu and the set B = {b, bp, bp2

, · · · , bpu−1

}
in the algorithm. It is easy to see that Hs ∩ [b] = {e} if and only if Hs ∩ B = ∅. It takes another
O(t log pt) = O(t2 log p) steps for checking if B∩Hs = ∅, which needs to use at most t finding operations to a
B-tree with at most pt elements. It takes O(|Hs|t

2 log p) steps to compute one b′i. So, it takes O(|Hs|mt2 log p)
steps to compute all b′is for i = 1, 2, · · · ,m.

The total running time is O(|H1|+· · ·+|Hz)mt2 log p) = O(pt−1(x+log t)t2 log p
log p) = O(pt−1(x+log t)t2 log p).

With probability at most 1
pm , one phase fails. There are at most t phases since each phase generates a

new element in the basis and the group has size pt. The total probability of failure is at most t
pm ≤ 2x by

the setting of m.

Lemma 19. Assume n = pn1
1 · · · pnk

k and G is an Abelian group of n elements. Let mi = n
p

ni
i

for i = 1, · · · , k.

If a is a random element of G that with probability 1
|G| , a is equal to b for each b ∈ G, then ami is a random

element of G(pni
i), the subgroup of G with pni elements, such that with probability 1

p
ni
i

, ami is b for any

b ∈ G(pni
i)

Proof: Let bi,j (j = 1, · · · , ki) be the basis of G(pni
i), i.e. G(pni

i) = [bi,1] ◦ · · · ◦ [bi,k]. Let a be a

random element in G. Let a = (
∏ki

j=1 b
ci,j

i,j)a′, where a′ is an element in
∏

j 6=i G(p
nj

j). For every two
integers x 6= y ∈ [0, pni

i − 1], mix 6= miy(mod pni
i) (Otherwise, mix = miy(mod pni

i) implies x = y because
(mi, pi) = 1). So, the list of numbers mi · 0(mod o(pt

i)),mi · 1(mod o(pt
i)), · · · ,mi(p

t
i − 1)(mod o(pt

i)) is a
permutation of 0, 1, · · · , pt

i − 1. So, if ci,j is a random integer in the range [0, ord(bi,j) − 1] such that with
probability 1

ord(bi,j)
, ci,j = c′ for each c′ ∈ [0, ord(bi,j)−1], then the probability is also 1

ord(bi,j)
that mici,j = c′

for each c′ ∈ [0, ord(bi,j)−1]. Therefore, ami = ((
∏ki

j=1 b
ci,j

i,j)a′)mi =
∏ki

j=1 b
mici,j

i,j , which is a random element

in G(pni
i).

Theorem 20. There exists a randomized algorithm such that given an Abelian group G of size n with
n = pn1

1 · · · pnk

k , the algorithm computes the basis of G in O((
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n) running
time.

Proof: Let x = 3 log log n. Then 1
2x < 1

(log n)2 . It takes O(log n) steps for computing ami for an

element a ∈ G, where mi = n
p

ni
i

. Each random element of G can be converted into a random element of

G(pni
i) by Lemma 19. Each G(pni

i) needs O(x + log ni)ni random elements by Lemma 18. Each G(pni
i)

needs O((x + log ni)ni log n) time to convert the (x + log ni)ni random elements from G to G(pni
i). It takes

O(
∑k

i=1(x+log ni)ni log n)) time to convert random elements of G into the random elements in all subgroups

G(pni
i) for i = 1, · · · , k. For n = pn1

1 · · · pnk

k ,
∑k

i=1 ni log pi = log n. Furthermore, x+log ni = O(log log n). By

Lemma 18, the sum of time for all G(pni
i)s to find basis is O((

∑k
i=1 pni−1

i (log log n+log ni)n
2
i log pi)(log n)) =

O((
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n)
It follows from Lemma 19 and Lemma 18. The group size n has at most log n prime factors. Since each

G(pni
i) has a probability at most 1

2x of failure, the total probability of failure is at most log n
2x ≤ 1

log n .

Corollary 21. There exists a randomized algorithm with O(n1− 1
d (log n)3(log log n)) running time that given

an Abelian group G of size n = pn1
1 · · · pnk

k , it computes the basis of G, where d = max{ni|i = 1, · · · , k}.

Proof: For n = pn1
1 · · · pnk

k ,
∑k

i=1 ni log pi = log n and pni−1
i ≤ n1− 1

d . By Theorem 20, the running time

is O((
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n) = O(n1− 1
d (log n)3(log log n)).

Definition 22. For an integer n, define F (n) = max{pi−1|pi|n, pi+1 6 |n, i ≥ 1, and p is a prime }. Define
G(m, c) as the set of all integers in [1,m] with F (n) ≥ (log n)c and H(m, c) = |G(m, c)|.

Theorem 23. H(m,c)
m = O(1

(log m)c/2) for every constant c > 0.

11

Proof: H(m, c) is the number of integers in G(m, c), which is a subset of integers in [1,m]. We discuss
the three cases.

The number of integers in the interval [1, m
(log m)c/2] is at most m

(log m)c/2 . We only consider the numbers

in the range I = [m
(log m)c/2 ,m]. It is easy to see for every integer n ∈ I, 2(log n)c ≥ (log m)c for all large m

since c is fixed. We consider each number n ∈ I such that pt|n with pt ≥ (log m)c

2 for some prime p.

For each prime number p ∈ [2, (log m)c/2], let t be the least integer with pt ≥ (log m)c

2 . We count
the number of integers n ∈ I such that pu|n for some u ≥ t. The number is at most m

pt + m
pt+1 + · · · ≤

m
pt (1 + 1

2 + 1
22 + · · ·) ≤ 2m

pt ≤ 4m
(log m)c . Therefore, it has at most (log m)c/2 · 2m

(log m)c ≤ 4m
(log m)c/2 integers n ∈ I

to have pt|n with pt ≥ (log m)c

2 .

Let’s consider the cases pt|n for p > (log m)c/2 and t ≥ 2. The number of integers n ∈ I for a fixed
p with p2|n is at most m

p2 + m
p3 + · · · ≤ 2m

p2 . The total number of integers n ∈ I that have p2|n for some

prime number p > (log m)c/2 is at most 2m
(1+(log m)c/2)2

+ 2m
(2+(log m)c/2)2

+ · · · < 2m
((log m)c/2)(1+(log m)c/2)

+

2m
((1+(log m)c/2)(2+(log m)c/2)2

+ · · · ≤ 2m
(log m)c/2 . Combining the cases above, we have H(m,c)

m = O(1
(log m)c/2).

Theorem 20 and Theorem 23 imply the following theorem:

Theorem 24. There exists a randomized algorithm such that if n is in [1,m] − G(m, c), then the basis
of an Abelian group of size n whose prime factorization is also part of the input can be computed in
O((log n)c+3 log log n)-time, where c is any positive constant and G(m, c) is a subset of integers in [1,m]

with |G(m,c)|
m = O(1

(log m)c/2) for each integer m.

6. Conclusion

In this paper, we obtained an O(n)-time deterministic algorithm for computing the basis of an Abelian
group with n elements. We also show that there exists a randomized algorithm such that for each integer
n ∈ [1,m] − G(m, c), the basis of an Abelian group of size n can be computed in (log n)O(1) time where
c is a constant and m is any integer. The subset G(m, c) ⊂ [1,m] only has a small fraction of integers in

[1,m]. We also show that there exists a randomized algorithm with O(n1− 1
d (log n)3 log log n) time complexity

such that given an Abelian group G of size n = pn1
1 · · · pnk

k , the algorithm computes the basis of G, where
d = max{ni|i = 1, · · · , k}. This algorithm is a sublinear time algorithm if d = max{ni|i = 1, · · · , k} is
bounded by a constant. An interesting open problem is to find an O(n1−ε)-time algorithm to compute the
basis of an Abelian group of n elements, where ε is a constant independent of n.

References

[1] L. Chen. Algorithms and their complexity analysis for some problems in finite group. Journal of Sandong
Normal University, in Chinese, 2:27–33, 1984.

[2] K. Cheung and M. Mosca. Decomposing finite abelian groups. Quantum Information and Computation,
1:26–32, 2001.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press, 2001.

[4] Y. G. Desmedt and Y. Frankel. Homomorphic zero-knowledge threshold schemes over any finite abelian
group. SIAM Journal on Discrete Mathematics, 7(4):667–679, 1994.

[5] M. Garzon and Y. Zalcstein. On isomorphism testing of a class of 2-nilpoten groups. Journal of
Computer and System Sciences, 42:237–248, 1991.

[6] C. M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism. Springer-Verlag, 1982.

[7] T. Hungerford. Algebra. Springer-Verlag, 1974.

[8] M. I. Kargapolov and J. I. Merzljako. Fundamentals of the Theory of Groups. Springer-Verlag, 1979.

[9] T. Kavitha. Efficient algorithms for abelian group isomorphism and related problems. In Proceedings
of Foundations of Software Technology and Theoretical Computer Science, Lecture notes in computer
science, 2914, pages 277–288, 2003.

12

[10] A. Y. Kitaev. Quantum computations: Algorithms and error correction. Russian Math. Surveys,
52:1191, 1997.

[11] J. Köbler, U. Schöning, and J. Toran. The Graph Isomorphism Problem: Its Structural Complexity.
Birkhouser, 1993.

[12] C. Lomont. The hidden subgroup problem -review and open problems. http://arxiv.org/abs/quant-
ph/0411037, 2004.

[13] A. Menezes. Elliptic curve cryptosystems. CryptoBytes, 1:1–4, 1995.

[14] G. L. Miller. On the nlog n isomorphism technique. In In proceedings of the tenth annual ACM symposium
on theory of computing, pages 128–142, 1978.

[15] G. L. Miller. Graph isomorphism, general remarks. ournal of Computer and System Sciences, 18:128–
142, 1979.

[16] V. Miller. Uses of elliptic curves in cryptography. In Advances in Cryptology CRYPTO’85, Lecture
Notes in Computer Science, pages 417–426, 1986.

[17] C. Savage. An O(n2) algorithm for abelian group isomorphism. Technical report, North Carolina State
University, January 1980.

[18] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing, 26:14841509, 1997.

[19] D. R. Simon. On the power of quantum computation. SIAM Journal on Computing, 26:1474 1483,
1997.

[20] N. Vikas. An O(n) algorithm for abelian p-group isomorphism and an O(n log n) algorithm for abelian
group isomorphism. Journal of Computer and System Sciences, 53:1–9, 1996.

13

7. Appendix: Uniqueness of Abelian Group Decomposition

It is well known that the decomposition of Abelian group is unique (see [7]). For the self-contained purpose,
we prove the following lemma.

Lemma 25. Let G be an Abelian group of size pm for some prime p and integer m. Let b1, · · · , bt be a basis
of G with ord(b1) ≥ · · · ≥ ord(bt) and b′1, · · · , b

′
t′ be another basis of G with ord(b′1) ≥ · · · ≥ ord(b′t′). Then

t = t′ and ord(b1) = ord(b′1), · · · , ord(bt) = ord(b′t).

Proof: Assume that i be the least integer that ord(bi) 6= ord(b′i). Without loss of generality, we assume
that ord(bi) > ord(b′i). Let h = ord(b′i). Consider the generators set {bh

1 , bh
2 , · · · , bh

t }, which generates a

subgroup of G with
∏i

j=1 pord(bj)−h elements. On the other hand, generator set {b′h1 , b′h2 , · · · , bh
t′}, which

generates a subgroup of G with
∏i

j=1 pord(b′j)−h =
∏i−1

j=1 pord(b′j)−h =
∏i−1

j=1 pord(bj)−h elements. Two sets

both generate the subgroup {ah : a ∈ G}. This is a contradiction.

.

Figure 1: Each node has one outgoing edge

14

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

