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Abstract

We consider the problem of generalising boolean formulas in conjunctive

normal form by allowing non-boolean variables, where our goal is to main-

tain combinatorial properties. Requiring that a literal involves only a single

variable, the most general form of literals is given by the well-known “signed

literals”, however we will argue that only the most restricted form of gener-

alised clause-sets, corresponding to “sets of no-goods” in the AI literature,

maintains the essential properties of boolean conjunctive normal forms. We

start our investigations by building up a solid foundation for (generalised)

clause-sets, including the notion of autarky systems, the interplay between

autarkies and resolution, and basic notions of (DP-)reductions. As a basic

combinatorial parameter of generalised clause-sets, we introduce the (gener-

alised) notion of deficiency, which in the boolean case is the difference between

the number of clauses and the number of variables. We obtain fixed parameter

tractability (FPT) of satisfiability decision for generalised clause-sets, using as

parameter the maximal deficiency (over all sub-clause-sets). Another central

result in the boolean case regarding the deficiency is the classification of min-

imally unsatisfiable clause-sets with low deficiency (MU(1), MU(2), ...). We

generalise the well-known characterisations of boolean MU(1). The proofs

for FPT and MU(1) are not straight-forward, but are obtained by an in-

terplay between suitable generalisations of techniques and notions from the

boolean case, and exploiting combinatorial properties of the natural trans-

lation of (generalised) clause-sets into boolean clause-sets. Of fundamental

importance here is autarky theory, and we concentrate especially on matching

autarkies (based on matching theory). A natural question considered here is

to determine the structure of (matching) lean clause-sets, which do not ad-

mit non-trivial (matching) autarkies. Special lean clause-sets are minimally

unsatisfiable (generalised) clause-sets, and we consider the generalisation to

irredundant clause-sets, so that also satisfiable clause-sets can be taken into

account, with a special emphasise on hitting clause-sets (which are irredun-

dant in a very strong sense) and the generalisation to multihitting clause-sets.
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1 Introduction

Satisfiability problems with constraint variables having more than two values oc-

cur naturally at many places, for example in colouring problems. Translations into

boolean satisfiability problems are interesting and useful (see [18, 47, 2] for various

techniques), and may even improve performance of SAT solving, however they hide

to a certain degree the structure of the original problem, which causes these trans-

lations typically to be not very well suited for theoretical studies on the structure of

the original problem. In this article1) we study non-boolean satisfiability problems

closest to boolean conjunctive normal form, namely satisfiability of what is called

generalised clause-sets (or sets of “no-goods”). Combining suitable generalisations

of boolean techniques with suitable translations into the boolean case we obtain

non-trivial generalisations of fundamental theorems on autarkies and minimally

unsatisfiable formulas.

Three aspects of clauses (as combinations of literals) make processing of boolean

clause-sets especially efficient:

(i) When the underlying variable of a literals gets a value, then the literal is either

true or false (this enables efficient handling of literals).

(ii) Only by assigning a value to all the variables in a clause can we falsify the

clause, and for each variable the value here is uniquely determined (this makes

a tight connection between partial assignments and clauses, and enables “con-

flict learning” by clauses).

(iii) By giving just one variable a right value we are always able to satisfy a clause

(this enables simple satisfaction-based heuristics).

Taking these properties as axiomatic, a “generalised clause” should be a disjunction

of generalised literals, and a “generalised literal” should have exactly one possibility

to become false, while otherwise it should evaluate to true. We arrive naturally at

the following concept for generalised literals (the earliest systematic use seems to

1)based on [37]
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be in [3]): A variable v has a domain Dv of values, and a literal is a pair (v, ε) of the

variable and a value ε ∈ Dv such that the literal becomes true under an assignment

ϕ iff ϕ sets v to a value different than ε (i.e., ϕ(v) ∈ Dv \ {ε}); to express this

interpretation, often when displaying formulas we will write “v 6= ε” for the literal

(v, ε). In case of Dv = {0, 1} variable v becomes an ordinary boolean variable with

the literal (v, 0) representing the positive literal. We remark here, that a fourth

property of boolean clauses, namely that if all literals except of one are falsified,

that then the value for the variable in the remaining literal is uniquely determined,

which is the basis for the ubiquitous unit-clause propagation, is necessarily lost

here. In this article we investigate the basic combinatorial properties of generalised

clause-sets, concentrating on the theory of autarkies and on structural properties of

minimally unsatisfiable generalised clause-sets.

1.1 Generalising the notion of deficiency

Using c(F ) for the number of clauses in a boolean clause-set, and n(F ) for the

number of variables, in [17] the deficiency δ(F ) := c(F )−n(F ) has been introduced

and made fruitful for the study of minimally unsatisfiable boolean clause-sets as

well as for the introduction of a new polynomial time decidable class of “matched”

satisfiable (boolean) clause-sets:

• Let MUSAT denote the class of minimally unsatisfiable clause-sets (unsatis-

fiable clause-sets, where each strict sub-clause-set is satisfiable). For boolean

F ∈ MUSAT the property ∀F ′ ⊂ F : δ(F ′) < δ(F ) has been shown; using

δ∗(F ) := maxF ′⊆F δ(F
′) for the maximal deficiency we get δ∗(F ) = δ(F ) as

well as “Tarsi’s lemma” δ(F ) ≥ 1 (since for the empty clause-set > ⊂ F we

have δ(>) = 0).

• Considering only boolean clause-sets (for now), let the class MSAT of “match-

ing satisfiable” clause-sets F be defined by the condition δ∗(F ) = 0. All

matching satisfiable clause-sets are in fact satisfiable, since by Hall’s theorem

the bipartite graph B(F ) contains a matching covering all variables, where

the vertices of B(F ) are the clauses of F on the one side and the variables

of F on the other side, while an edge joins a variable and a clause if that

variable appears in the clause (positively or negatively). Or, using Tarsi’s

lemma, one argues that if F ∈ MSAT would be unsatisfiable, then F would

contain some minimally unsatisfiable F ′ ⊆ F , for which δ(F ′) ≥ 1 would hold,

contradicting δ∗(F ) = 0.

The study of the levels MUSAT (k) of minimally unsatisfiable boolean clause-

sets F with δ(F ) ≤ k has attracted some attention. In [1] (where also Tarsi’s lemma

has been proven) the class SMUSAT of “strongly minimally unsatisfiable clause-

sets” has been introduced, which are minimally unsatisfiable clause-sets such that

adding any literal to any clause renders them satisfiable, and a nice characterisation

of SMUSAT (1) = {F ∈ SMUSAT : δ(F ) = 1} has been given (yielding polyno-

mial time decision of SMUSAT (1)). Then in [10] a (poly-time) characterisation

of MUSAT (1) has been obtained, followed by a characterisation of MUSAT (2)

in [5], while in [52] some subclasses of MUSAT (3) and MUSAT (4) have been

shown to be poly-time decidable. For arbitrary (constant) k ∈ N it has been shown

in [4] that for F ∈ MUSAT (k) there is a tree resolution refutation using at most

2k−1 · n(F )2 steps, and thus the classes MUSAT (k) are in NP. In [4] it has been

conjectured that in fact all classes MUSAT (k) are in P.
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This conjecture has been proven true in [26], using tools from matroid the-

ory. Actually the classes SAT (k), consisting of all satisfiable clause-sets F with

δ∗(F ) ≤ k, have been shown poly-time decidable, from which immediately poly-

time decision of the classes MUSAT (k) and SMUSAT (k) follows. Regarding the

method used, more precisely the classes USAT (k) of unsatisfiable clause-sets F with

δ∗(F ) ≤ k have been shown poly-time decidable by improving the “splitting theo-

rem” from [10], yielding tree resolution refutations for F using at most 2k−1 · n(F )

steps and of a simple recursive structure, so that these refutations can be found

in polynomial time by means of enumeration of the circuits of the transversal ma-

troid T (F ) associated to the bipartite graph B(F ), where the independent subsets

of T (F ) are the matching satisfiable sub-clause-sets of F . Independently also in

[15] poly-time decision of the classes MUSAT (k) has been derived by extending

techniques from bipartite matching theory to directed bipartite graphs. Improving

the proofs from [15], the present author joint the team in [14]. Actually refining the

techniques from [26], in [49] fixed-parameter tractability of SAT (k) is shown (all

this for the boolean case).

After setting syntax and semantics for generalised clause-sets, the first main task

tackled in the present paper is to transfer these results regarding the deficiency to

generalised clause-sets. After suitably generalising the notion of deficiency and

matching satisfiability (which is not completely straight-forward; in Subsection 4.5

an earlier version is discussed, which doesn’t seem to have the right properties),

in Corollary 4.10 the “satisfiability-based” approach from [14] yields polynomial

time satisfiability decision for generalised clause-sets with bounded maximal de-

ficiency. Generalising fixed-parameter tractability turns out not to be straight-

forward (again), and only by combining the generalised approach with a suitable

translation into the boolean case we arrive in Theorem 5.5 at fixed parameter

tractability also for generalised clause-sets. The general framework for our consid-

erations is autarky theory as started in [29], with emphasise on matching autarkies

as introduced in [31].

A key point for structural investigations in (generalised) clause-sets is to un-

derstand the effects of applying partial assignments (see for example [6, 8], where

splitting of minimally unsatisfiable boolean clause-sets is studied in some depth),

and in this paper we consider the basic questions regarding irredundant and min-

imally unsatisfiable generalised clause-sets (which leads in a natural way to the

study of hitting clause-sets and generalisations). The well-known classifications of

the simplest case of minimally unsatisfiable clause-sets, namely boolean clause-sets

of deficiency 1, finds a natural generalisation in Theorem 6.16 (where again the proof

is not straight-forward, caused by the breakdown of the “saturation method”).

1.2 Examples for translations: Colourings and homomor-
phisms

Given a hypergraph G and a set C of “colours”, a C-colouring of G is a map

f : V (G) → C such that no hyperedge H ∈ E(G) is “monochromatic” (that is,

there must be vertices v, w ∈ H with f(v) 6= f(w)). Translating this colouring

problem into a generalised satisfiability problem FC(G) is straightforward2), using

2)This translation directly generalises the well-known translation of graph 2-colouring problems
into boolean CNF; if we add the translation from generalised clause-sets into boolean clause-
sets via the standard translation (see Section 5), then the given translation also generalises the
well-known standard translation of (arbitrary) graph colouring problems into boolean CNF.
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the vertices of G as variables with (uniform) domain C: For each hyperedge H ∈
E(G) and each colour ε ∈ C form the clause {v 6= ε : v ∈ H}, and FC(G) is

the set of all these clauses (thus n(FC(G)) = |V (G)| and c(FC(G)) = |C| · |E(G)|).
Obviously the C-colourings of G correspond 1-1 to the (total) satisfying assignments

for FC(G). Interesting examples of hypergraph colouring problems are given by the

diagonal van der Waerden problems and the diagonal Ramsey problems. Computing

van der Waerden numbers has been considered in [12, 25, 21], and it seems that

SAT solvers are performing quite well on them, and that SAT solvers can help to

compute new van der Waerden numbers3), so here is the problem:

Consider natural numbers k,m, n ∈ N, and let the hypergraph WH(m,n) have

vertex set {1, . . . , n}, while the hyperedges of WH(m,n) are the subsets H ⊆
{1, . . . , n} of size m which form an arithmetic progression (that is, for every H

there exist a, d ∈ {1, . . . , n} with H = {a + i · d : i ∈ {0, . . . ,m − 1}}); now

the van der Waerden number NW(k,m) is the minimal n such that WH(m,n) is

not k-colourable. The corresponding generalised clause-sets are FW(k,m, n) :=

F{1,...,k}(WH(m,n)), and if FW(k,m, n) is satisfiable, then NW(k,m) > n, while

if FW(k,m, n) is unsatisfiable, then NW(k,m) ≤ n; for k = 2 we obtain boolean

clause-sets (I would like to point out how natural the translation is — no auxil-

iary variables are involved4)). The only known precise van der Waerden numbers

(besides the trivial values for k = 1 or m ≤ 2) are NW(2, 3) = 9, NW(2, 4) = 35,

NW(2, 5) = 178, NW(3, 3) = 27 and NW(4, 3) = 76, and all these numbers can be

easily calculated using most current SAT solvers; recently in [24] finally by (exten-

sive) SAT-computations NW(2, 6) = 1132 has been confirmed (as conjectured by

[25]). Directly expressing the problem instance as a generalised clause-set, in this

way also the non-diagonal versions of van der Waerden- and Ramsey problems can

be immediately translated into generalised clause-sets (see [42]). For further appli-

cations of the mapping G 7→ FC(G) from hypergraphs to clause-sets see [37, 38].

For the more general list-hypergraph colouring problem, for each vertex v a list

L(v) of allowed colours is given; this can be translated into a generalised clause-set

FC(G,L) by just restricting the domain of v to L(v). At this point it is worth

noticing that also the still more general list-hypergraph-homomorphism problem has

a direct (structure-preserving) translation into a satisfiability problem for gener-

alised clause-sets. Given two hypergraphs G1, G2 and for each vertex v ∈ V (G1)

a non-empty set L(v) ⊆ V (G2) of allowed image vertices, the problem is to find a

map f : V (G1) → V (G2) with f(v) ∈ L(v) for all v ∈ V (G1) such that for each

hyperedge H ∈ E(G1) we have f(H) ∈ E(G2). Note that if we take for G2 the

hypergraph GC with vertex set C and hyperedges all subsets of C with at least two

elements, then the homomorphisms from G1 to G2 are exactly the C-colourings for

G1. For the translation of the list-hypergraph-homomorphism problem we use the

set V (G1) of vertices as the set of variables, while the domain of v is Dv = L(v),

and for each hyperedge H ∈ E(G1) and for each map f : H → V (G2) such that

for each v ∈ H we have f(v) ∈ L(v) and such that f(H) /∈ E(G2) holds, we

have a clause CH,f := {v 6= f(v) : v ∈ H}. Now satisfying assignments of the

generalised clause-set F (G1, G2, L) consisting of all clauses CH,f are exactly the

hypergraph homomorphisms from G1 to G2 respecting the restrictions given by L.

Note that the translation of hypergraph colouring problems is a special case via

3)On the other hand, the problem sizes of formulas related to unknown Ramsey numbers are
likely too big to be manageable by any (current) SAT solver.

4)The translation is the core of two translations discussed in [12] — the additional constraints
used in [12] just express the structural property of a generalised clause-set, that every variable
gets exactly one value of its domain.
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FC(G,L) = F (G,GC , L).

The colourings considered above are also called “weak hypergraph colourings”,

to distinguish them from strong hypergraph colourings of hypergraph G by a set C

of colours, which is a map f : V (G) → C such that for all hyperedges H ∈ E(G)

and all v, w ∈ H , v 6= w, we have f(v) 6= f(w). Collecting all such binary clauses

{f(v) 6= ε, f(w) 6= ε} for ε ∈ C we obtain a generalised clause-sets whose satisfying

(total) assignments correspond 1-1 to the strong colourings of G. To conclude

our list of translations for colouring problems we mention that mixed hypergraph

colouring as studied in [51] takes a pair G1, G2 of hypergraphs with V (G1) = V (G2),

and the “mixed colourings” using colour-set C are (weak) colourings of G1 which

are not strong colourings of G2; the most natural translation of this problem seems

to consist of a pair of a generalised CNF (the translation of the (weak) colouring

problem) and a generalised DNF (the negation of the translation of the strong

colouring problem), using “monosigned literals” (see the next subsection), that is,

allowing for inequalities “v 6= ε” as well as equalities “v = ε”.

In the same vein as for hypergraph homomorphisms we can also translate ho-

momorphism problems for relational structures: Let A = (A, (Ri)i∈I) and B =

(B, (R′
i)i∈I) be two compatible finite relational structures, that is, A,B as well as

I are finite sets, the Ri are relations (of arbitrary arity) on A and the R′
i are re-

lations on B, while Ri has the same arity as R′
i. We want to express the set of

homomorphisms f : A → B, defined by the property that for i ∈ I and all ~x ∈ Ri
we have f(~x) ∈ R′

i, where f is applied componentwise to ~x. For this we choose

A as the set of variables, which all have the same domain B, and for each i ∈ I

and each ~x ∈ Ri and each ~y ∈ Bm \ R′
i, where m is the arity of Ri, we have the

clause Ci,~x,~y := {~xi 6= ~yi : i ∈ {1, . . . ,m}}. We obtain the generalised clause-set

F (A,B) by collecting all these clauses. The size of F (A,B) is polynomial in the

sizes of A,B together with the number of tuples in Ri and the number of tuples

not in R′
i. The requirement that the homomorphism f is injective can be encoded

by the binary clauses {a 6= b, a′ 6= b} for a, a′ ∈ A with a 6= a′ and for b ∈ B.5)

We note that the translations F (G1, G2, L) as well as F (A,B) are “direct” (homo-

morphisms are directly encoded as assignments) and “negative” (we use forbidden

value combinations).

If we wish to have F (A,B) polynomial in the number of tuples in R′
i, then we

can use an “indirect” and “positive” translation as follows: Variables are pairs (i, ~x)

for i ∈ I and ~x ∈ Ri, where the domain of variable (i, ~x) is R′
i; so instead of mapping

elements of A to elements of B, where constraints forbid that allowed tuples are

mapped to disallowed tuples, here now we directly map tuples of relations in A to

tuples in the corresponding relation in B, and the constraints will ensure that this

mapping actually is induced by some mapping from A to B. The constraints are

the unit clauses {(i, ~x) 6= ~y} for variables (i, ~x) and values ~y such that indices k, k′

exist with ~xk = ~xk′ but ~yk 6= ~yk′ , and the binary clauses {(i, ~x) 6= ~y, (i′, ~x′) 6= ~y′}
for variables (i, ~x), (i′, ~x′) and values ~y, ~y′, such that an index k exists with ~xk = ~x′k
but with ~yk 6= ~y′k.

5)On the other hand, to formulate surjectivity of f requires an exponential number of clauses;
one sees that for the good combinatorial properties which can be exploited for problems expressed
in the language of (generalised) clause-sets (which is quite restricted from the constraint program-
ming point of view) we have to pay the price that some natural problems do not have succinct
representations.
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1.3 Signed formulas and resolution

Are there still more general versions of “generalised conjunctive normal forms”

suitable in our context? The most general form of variable-based literals allows

literals of the form “v ∈ S” for some S ⊆ Dv (generalised literals (v, ε) correspond

to S = Dv \ {ε}); see [2], where S is called a “sign”, while literals of the form

“v ∈ S” are called “signed literals”, and clause-sets made of signed literals “signed

CNF formulas”, or see [18] (using the same class for formulas, but calling them “nb-

formulas”). Our generalised clause-sets are “negative monosigned CNF formula”

in the language of [2], while “monosigned CNF formula” allow signs of the form

S = Dv \ {ε} as well as S = {ε}.

So the closest generalisation of our “clause-sets” are “monosigned CNF formu-

las”. Considering this extension is also motived by the fact, that these formulas cor-

respond exactly to their boolean counterpart via the natural translation. However,

monosigned formulas seem to lack the good combinatorial properties which “nega-

tive monosigned formulas” have, which can be seen for example by the fact, that

the boolean translation of monosigned CNF formulas need the “AMO” clauses (ex-

pressing that every (original) variable gets at most one value), making the translated

formula unwieldy, while the AMO clauses are not needed for negative monosigned

CNF (here we can just select some value, if an original variable gets several values,

without destroying the satisfaction relation, which is not possible in the presence of

literals demanding that a variable gets some fixed value).

An important point has been raised in [45], where it has been shown, that

splitting on the boolean translation of generalised clause-sets can have an exponen-

tial speed-up over the (wide) splitting only available when splitting on the original

(“negative”) literals, where one considers |Dv| many branches for splitting on a

variable v, each branch fixing a value of v 6). This seems to be an inherent weak-

ness of using generalised clause-sets for SAT solving, but actually our model of

generalised clause-sets allows the form of binary splitting corresponding to splits on

the boolean translation: Our literals can express only “v 6= ε”, but since we allow

arbitrary variable domains, we can have a binary splitting with a domain collapse

Dv 7→ {ε} in one branch (splitting on the positive literal “v = ε”) and a domain

restriction Dv 7→ Dv \ {ε} in the other branch (i.e., splitting on the negative literal

“v 6= ε”): In the first branch all literals with variable v would become true or false,

while in the second branch possibly the literal stays, and only the domain of v is

restricted (globally).7) Actually, if (Di)i∈I is a partition of Dv then we can split

into |I| branches where in branch i variable v gets the new domain Di; if for a literal

(v, ε) we have ε /∈ Di, then the literal (and thus the clause) becomes true, while

if Di = {ε}, then the literal becomes false, and otherwise just the domain of v is

restricted (globally). The splitting trees for (generalised) clause-sets with domain-

splittings “({ε}, Dv \ {ε})” correspond exactly to the splitting trees for the natural

boolean translations. The price we have to pay however for this more powerful

branching is, that if we stick with (generalised) clause-sets, then we cannot have

(full) clause learning — if we want to use clause learning, in this way reflecting the

search process within the “clause-database”, then at least for recording the learned

clauses we need monosigned clauses to record these binary splittings (and signed

literals for more general domain splittings); this is the reason why in the upcom-

6)the corresponding form of resolution has been studied in some depth in [36] (generalised there
through the use of oracles)

7)That is, since in the second branch we do not assign a value to variable v, we do not get rid
off v in the second branch. As a consequence, we need a global domain management.
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ing OKlibrary, a generic library for generalised SAT solving, a distinction is made

between “input logic” (which might use (generalised) clause-sets) and “branching

logic” (which might use an extension like monosigned clause-sets).8)

1.4 Overview and main results

In Section 2 we present some preliminaries for our study of generalised clause-

sets: Partial assignments for non-boolean variables, and fundamental notions and

notations for graphs. Then in Section 3 generalised clause-sets are introduced

and the main operations associated with them. Autarkies and autarky systems

for generalised clause-sets are reviewed in Subsection 3.5 (a useful result here is

Lemma 3.1, showing how to actually find a non-trivial autarky when just given an

oracle deciding whether a non-trivial autarky exists or not), while resolution for

generalised clause-sets is the subject of Subsection 3.7 (in Theorem 3.2 it is proven,

that a clause can be used in some resolution refutation iff it cannot be satisfied by

some autarky; computation of the lean kernel via “intelligent backtracking solvers”

follows). The most basic polynomial time reductions for generalised clause-sets are

presented in Subsection 3.8, and finally in Subsection 3.9 the conflict graph and

related notions are introduced.

Section 4 on matching autarkies for generalised clause-sets is central for this

paper, and some of the main results are contained in here. First in Subsection 4.1

the notion of matching satisfiable clause-sets (introduced in [17] under the name

of “matched clause-sets”) is generalised in a natural way to generalised clause-sets,

based on the generalised notion of deficiency. From Theorem 4.7 in Subsection 4.2,

the first main result, guaranteeing always the existence of satisfying assignments

“close enough” to matching satisfying assignments, we can derive in Corollary 4.10

poly-time satisfiability decision for generalised clause-sets with bounded maximal

deficiency, generalising and strengthening the approach from [14] (while proving

fixed parameter tractability with respect to the maximal deficiency has to wait

until the next section, where further tools are provided; however we believe that

the approach based on Theorem 4.7 has its own merits). Then in Subsection 4.3

matching autarkies for generalised clause-sets are introduced, and the main prop-

erties are proven. A typical result here is the generalisation of “Tarsi’s Lemma” in

Corollary 4.22 (every generalised minimally unsatisfiable clause-set has deficiency

at least one). In Subsection 4.4 the notions of “expansion” and “surplus” are trans-

ferred from matching theory, yielding a simplified proof of FPT for SAT decision

w.r.t. the parameter δ∗(F ) in the boolean case (however we do not get a proof

for the general case). Finally, in Subsection 4.5 we review the notion of matching

autarkies introduced here, comparing it with an earlier version.

In Section 5 the canonical translation of generalised clause-sets into boolean

clause-sets is studied under the point of view of structure preservation, taking ad-

vantage of the fact, that due to the restriction to “negative literals” we do not need

8)This discussion shows in my opinion a major reason, why generalising boolean reasoning proved
to be difficult in the past, and (boolean) SAT solvers have an edge over constraint solvers: Either
we restrict ourselves to wide branching, which is inherently inefficient, or we use more powerful
branching, and then we have to use a more complicated domain management than in the boolean
case (where there is none), and also finding out whether a literal actually became true or false
becomes considerably more complicated (while it’s trivial in the boolean case). Furthermore, if we
want to use learning, which seems of importance for many “real-world” problems, then we have
to use more complicated literal structures, and domain and literal (occurrence) management gets
further complicated.
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the AMO clauses (incorporating them would destroy the structures the translation

should preserve). Besides preservation of satisfiability, minimal unsatisfiability and

leanness, in Subsection 5.3 we show that also a good deal of the matching structure is

preserved by the translation (including for example the deficiency). Equipped with

these tools, in Theorem 5.5 then we obtain FPT for SAT decision in the maximal

deficiency.

In Section 6 we turn to the study of generalised clause-sets which are minimally

unsatisfiable. Considering the larger class of irredundant generalised clause-sets

(no clause is implied by the others), we study the question when irredundancy is

preserved by applying partial assignments. The class of irredundant clause-sets

which stay irredundant for all partial assignments is characterised in Corollary 6.6

as the class of hitting clause-sets, while in Lemma 6.8 we consider the bigger class of

multihitting (generalised) clause-sets and show, that they have a unique minimally

unsatisfiable core (if they are unsatisfiable). In Subsection 6.3 we then discuss

the process of “saturation” as introduced [16]; for generalised clause-sets we have

to face a considerably more complicated situation here than in the boolean case,

and thus it seems that for generalised clause-sets saturation does not play the role

it does for boolean clause-sets. Without the saturation tool, proving the basic

Lemma 6.15 for the characterisation of MUSATδ=1 needs a different trick; we use

the good properties of the boolean translation. The main result of Subsection 6.4

then follows in Theorem 6.16 (the characterisation of minimally unsatisfiable clause-

sets of deficiency 1), and its two corollaries (the characterisation of saturated and

marginal minimally unsatisfiable clause-sets of deficiency 1). A short review on

properties related to minimal variable occurrences then is given in Subsection 6.5.

Finally we present a collection of open problems in Section 7.

2 Preliminaries

We use N = Z≥1 and N0 = Z≥0. For a set X by SX the group of all bijections from

X to X is denoted, while for n ∈ N0 we set Sn := S{1,...,n}.

2.1 Variables and partial assignments

Fundamental for our considerations is the monoid (PASS , ◦, ∅) of partial as-

signments as introduced in Subsection 2.1 of [36], where the reader can find more

information. Here we just recall the basic definitions.

The universe of variables is denoted by the infinite set VA, while the universe

of domain elements is the infinite set DOM; a (value-)domain is a finite non-

empty subset of DOM, and for each variable v ∈ VA we denote the associated

(value-)domain by Dv; thus variables have fixed (value-)domains, and change of

domain (for example removal of values) must be performed by renaming. For a

domain D by VAD the set of all variables with domain D is denoted; to avoid

running out of variables and to ease renaming, we make the assumption, that for all

domains D the set VAD has the same cardinality as VA itself. A variable v ∈ VA is

called boolean if Dv = {0, 1} (and thus VA{0,1} is the set of all boolean variables).

A partial assignment is a map ϕ with finite domain var(ϕ) := dom(ϕ) ⊆ VA,

such that for all v ∈ var(ϕ) we have ϕ(v) ∈ Dv. The domain size of a partial

assignment ϕ is denoted by n(ϕ) := |var(ϕ)| ∈ N0. A special partial assignment
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is the empty partial assignment ∅. The set of all partial assignments is denoted by

PASS , while for some set VA′ ⊆ VA of variables we denote by PASS(VA′) :=

{ϕ ∈ PASS : var(ϕ) ⊆ VA′} the set of partial assignments for variables from VA′

(thus PASS(VA{0,1}) is the set of partial assignments for boolean variables). We

use the notation 〈v1 → ε1, . . . , vm → εm〉 to denote the partial assignment ϕ with

n(ϕ) = m and ϕ(vi) = εi.

For two partial assignments ϕ, ψ ∈ PASS their composition ϕ ◦ ψ is defined

as the partial assignment ϕ ◦ψ with domain var(ϕ ◦ψ) = var(ϕ)∪ var(ψ) such that

first ψ is evaluated and then ϕ, i.e., (ϕ ◦ψ)(v) = ψ(v) if v ∈ var(ψ) while otherwise

(ϕ ◦ ψ)(v) = ϕ(v). It is (PASS , ◦, ∅) a monoid. An alternative representation of

this structure is obtained as follows: Make each Dv a (“right zero”) semigroup

(Dv, ·) by defining ε1 · ε2 := ε2 for ε1, ε2 ∈ Dv. Adjoin an identity element “∗”

to each Dv, obtaining monoids D∗
v. Now PASS is isomorphic to the direct sum

∑

v∈VAD
∗
v of the monoids (the sub-monoid of the direct product

∏

v∈VAD
∗
v given

by those elements where only finitely many components are different from ∗), where

ϕ ∈ PASS corresponds to the map ϕ∗ ∈
∏

v∈VAD
∗
v with ϕ(v) = ϕ∗(v) for v ∈ var(ϕ)

and ϕ∗(v) = ∗ for v ∈ VA \ var(ϕ). This representation of partial assignments as

total maps with distinguished “undefined” value ∗ actually has certain advantages

over representation using partial maps, since working with total maps is often easier

than working with partial maps, and we get a somewhat richer algebraic structure;

however in this article we stick to the above representation of partial assignments.

2.2 Graphs and matching

A (finite) graph G here is a pair G = (V,E) with finite vertex set V (G) = V and

edge set E(G) = E ⊆
(

V
2

)

, where for a set M and k ∈ N0 by
(

M
k

)

we denote the set

of all subsets T ⊆ M with |T | = k. So graphs here have no parallel edges and no

loops. A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G);

G′ is called a partial subgraph of G if G′ is a subgraph of G and V (G′) = V (G).

A graph G is called a forest if G contains no cycle. A graph G is complete if all

distinct vertices v, w ∈ V (G) are adjacent. G is bipartite, if the chromatic number

of G is at most 2, while G is complete bipartite if G is bipartite and addition of

any edge to G either destroys the graph property (i.e., creates a loop or a parallel

edge) or the bipartiteness property. More generally, G is called complete k-partite

for k ∈ N0 if the chromatic number of G is at most k, and addition of any edge

to G either destroys the graph property or increases the chromatic number. It is

G complete k-partite iff G is the union of at most k independent sets, such that

each pair of vertices from different independent sets is adjacent (equivalently, iff the

complement of G is the disjoint union of at most k cliques).

A function f : S → R, where S is some set system stable under union and

intersection, is called submodular resp. supermodular if for all A,B ∈ S we have

f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) resp. f(A ∪ B) + f(A ∩ B) ≥ f(A) + f(B),

while f is called modular if f is submodular and supermodular. A prototypical

example for a modular function is A ⊆ X 7→ f(A) := |A|, where X is some finite

set. For a graph G and a vertex set A ⊆ V (G) the (closed) neighbourset ΓG(A) is

defined as the set of vertices adjacent to at least one element of A. The function

A ⊆ V (G) 7→ |Γ(A)| is a prototypical example for a submodular function, while the

deficiency δ(A) := |A| − |Γ(A)| ∈ Z is a supermodular function (as the difference of

a modular function and a submodular function).

A matching M in a graph G is a set M ⊆ E(G) of edges such that two distinct
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elements of M are non-adjacent. A matching in G which is of maximal size is called

a maximum matching, and the size of a maximum matching M of G is denoted by

ν(G) := |M |. If G is a bipartite graph with bipartition (A,B) (also called “colour

classes”), then ν(G) = |A| − δ∗(A) = |B| − δ∗(B), where for any S ⊆ V (G) we

set δ∗(S) := maxS′⊆S δ(S
′).9) A maximum matching in a bipartite graph can be

computed in time O(
√

ν(G) · |E(G)|) ≤ O(
√

|V (G)| · |E(G)|) (see Theorem 16.4 in

[48]).10)

A maximal matching M in a graph G is one which can not be extended (that

is, there is no matching M ′ in G with M ⊂ M ′), while the vertices covered by a

matching M are the vertices incident to one of the edges in M . An M -augmenting

path for a matching M in G is a path P of odd length with endpoints not covered

by M and whose edges are alternately out of M and in M (so necessarily start

edge and end edge (which might coincide) are out of M). A new matching M+ is

obtained by adding the edges from P to M , which were not in M , while removing

the other edges of P from M ; we then have |M+| = |M | + 1. A matching M

in a graph G has an augmenting path if and only if M is not maximum (see for

example Theorem 16.1 in [48]). If G is bipartite, then deciding whether M has an

augmenting path and finding one if existent can by done by breadth-first search

in the directed bipartite graph naturally associated with the notion of augmenting

paths (see Section 16.3 in [48]), and so this process takes time O(|E(G)|. Using this

process to construct a maximum matching, starting with the empty matching, would

take time O(ν(G) · |E(G)|) which is worse than the bound given above, however if

a matching M is given of “reasonable size”, then the time O((ν(G)− |M |) · |E(G)|)
it takes to construct a maximum matching, starting with M , might be better.

A vertex cover of a graph G is a set T ⊆ V (G) of vertices such that every edge of

G is incident with (at least) one of the vertices in T ; a vertex cover of minimal size is

called a minimum vertex cover, the size of a minimum vertex cover of G is denoted

by τ(G). For bipartite graphs G we have τ(G) = ν(G), and given a maximum

matching of G, in time O(|E(G)|) a minimum vertex cover can be computed (see

Theorem 16.6 in [48]). A witness for ν(G) ≥ k can always be given by a matching

M in G with |M | ≥ k, while for bipartite graphs G a witness for ν(G) ≤ k can

always be given by a vertex cover T with |T | ≤ k. For our applications, witnesses

using the notion of deficiency are more useful (they will yield autarkies in Lemmas

4.25 and 4.32): Given a bipartite graph G with bipartition (A,B) and vertex cover

T of G, the set A′ := A \ T has deficiency δ(A′) ≥ |A| − |T | (while given A′ ⊆ A,

the vertex cover Γ(A′) ∪ (A \A′) has size |A| − δ(A′)).

3 Generalised (multi-)clause-sets

In this section we review the notion of generalised multi-clause-sets and the basic

facts about them regarding autarkies and resolution.

In Subsection 3.1 we introduce the notion of “generalised multi-clause-sets” and

“generalised clause-sets”, while in Subsection 3.2 (partial) assignments and their

operation on (multi-)clause-sets is discussed. This introduction into “syntax and

9)See for example Theorem 22.2 in [48], where the notion of “transversals” or “systems of distinct
representatives” of a set system is used (not to be mixed up with “transversals” in hypergraphs),
and where the set system is (ΓG({a}))a∈A resp. (ΓG({b}))b∈B .
10)We won’t dwell here on the details of graph representations; however when stating complexity

results for (multi-)clause-sets we will be more precise.
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semantics of generalised clause-sets” is completed in Subsection 3.4 with the discus-

sion of various operations on (multi-)clause-sets F regarding their variable structure

(that is, disregarding the different “polarities”, i.e., disregarding the literal struc-

ture).

Of central importance to our work is Subsection 3.5, where the notion of au-

tarkies (special partial assignments, which satisfy parts of the formula, and leave

the rest untouched) and autarky systems (allowing to tailor the notion of autarkies

for special purposes) for multi-clause-sets are introduced. In Subsection 3.7 then

resolution for generalised clause-sets is discussed, while in Section 3.8 we give the

most basic reductions for generalised clause-sets. Finally in Subsection 3.9 some

very basic notions regarding the conflict structure of generalised clause-sets are

introduced.

For more background information, see [36, 30] for a general, axiomatic framework

for “generalised satisfiability problems”, while in Subsection 2.3 of [36] generalised

clause-sets are discussed, and in Section 2 of [33] boolean multi-clause-sets are

considered (see also [32] for more information). In this paper, when we speak of

“clause-sets” then we always mean “generalised clause-sets”, while clause-sets in

the “traditional” sense are always qualified as “boolean clause-sets”; however in

lemmas, corollaries and theorems we often speak of “generalised clause-sets” to

ease independent access.

3.1 Syntax: The notion of “multi-clause-sets”

A literal is a pair (v, ε) of a variable v ∈ VA and a value ε ∈ Dv; we write

var(v, ε) := v and val(v, ε) := ε. The set of all literals is denoted by LIT , and

for any VA′ ⊆ VA we write LIT (VA′) := {x ∈ LIT : var(x) ∈ VA′} for the

set of literals with variables from VA′ (thus LIT (VA{0,1}) is the set of boolean

literals). For a partial assignment ϕ ∈ PASS and a literal (v, ε) with v ∈ var(ϕ) we

set ϕ((v, ε)) = 1 if ϕ(v) 6= ε, while we set ϕ((v, ε)) = 0 if ϕ(v) = ε; thus a literal

(v, ε) has the meaning “v shall not get value ε”. Accordingly a literal (v, ε) is often

denoted by “v 6= ε”.

A clause C is a finite set of literals not containing “clashing literals”, that is

for literals x, y ∈ C with x 6= y we have var(x) 6= var(y). The set of all clauses is

denoted by CL. For a clause C we set var(C) := {var(x) : x ∈ C}, and for a set

VA′ ⊆ VA we write CL(VA′) := {C ∈ CL : var(C) ⊆ VA′} for the set of clauses

with variables from VA′ (thus CL(VA{0,1}) is the set of boolean clauses). The empty

clause is denoted by ⊥ ∈ CL.

Given a clause C, we obtain the corresponding partial assignment ϕC ∈ PASS
as the partial assignment ϕ with var(ϕ) = var(C) and ϕ(v) = ε for (v, ε) ∈ C; on

the other hand, given a partial assignment ϕ, we obtain the corresponding clause

Cϕ ∈ CL as the clause C with var(C) = var(ϕ) such that for ϕ(v) = ε we have

(v, ε) ∈ C. Using the representation of maps as ordered pairs of arguments and

values, actually ϕC = C and Cϕ = ϕ (and thus CL = PASS); explicitely said, a

clause corresponds to the partial assignment which sets exactly the literals in the

clause to false.11)

11)The motivation is, that with a partial assignment ϕ we restrict the search space, and in case
the partial assignment ϕ is inconsistent with the clause-set F , then the clause Cϕ can be learned
(i.e., follows from F ).
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A (finite) multi-clause-set is a map F : CL → N0 (assigning to each clause its

number of occurrences) such that only for finitely many C ∈ CL we have F (C) 6= 0,

while a (finite)clause-sets is a finite subset of CL. Clause-sets F can be implicitly

converted to multi-clause-sets by setting F (C) := 1 for C ∈ F and F (C) := 0

otherwise, while for a multi-clause-set F the underlying clause-set t̂(F ) is defined

as t̂(F ) = {C ∈ CL : F (C) 6= 0}, and this conversion is only performed if necessary

to apply a definition. We have C ∈ F for a (multi-)clause-set F iff F (C) > 0. For a

(multi-)clause-set F we set var(F ) :=
⋃

{var(C) : C ∈ F}. For a (multi-)clause-set

F and a variable v ∈ VA we define valv(F ) := {ε ∈ Dv | ∃C ∈ F : (v, ε) ∈ C}. We

have var(F ) = {v ∈ VA : valv(F ) 6= ∅}. Finally the empty clause-set as well as the

empty multi-clause-set is denoted by >.

A clause-set F has a uniform domain, if ∀ v, w ∈ var(F ) : Dv = Dw holds.

Boolean clause-sets have uniform domain, and every (generalised) clause-set has

a “domain-uniformisation” by using the union of all relevant domains and adding

unit-clauses to forbid unwanted domain elements; see Subsection 3.3 for details.

We use the following complexity measures for multi-clause-sets F of clauses:

1. #(v,ε)(F ) :=
∑

C∈F,(v,ε)∈C F (C) ∈ N0 measures the number of occurrences

of a literal;

2. #v(F ) :=
∑

ε∈Dv
#(v,ε)(F ) =

∑

C∈F,v∈var(C) F (C) ∈ N0 measures the num-

ber of occurrences of a variable;

3. s(v,ε)(F ) :=
∑

ε′∈Dv\{ε}
#(v,ε)(F ) = #v(F ) − #(v,ε)(F ) ∈ N0 measures the

number of occurrences of literals with variable v and value different from ε

(this is the number of satisfied clauses when assigning value ε to v; see below);

4. n(F ) := |var(F )| ∈ N0 measures the number of variables;

5. c(F ) :=
∑

C∈F F (C) ∈ N0 measures the number of clauses;

6. `(F ) :=
∑

C∈F F (C) · |C| =
∑

v∈var(F ) #v(F ) ∈ N0 measures the number of

literal occurrences.

And for multi-clause-sets F1, F2 we use the following operations and relations:

1. the multi-clause-set F1 + F2 is defined by (F1 +F2)(C) := F1(C) +F2(C) for

clauses C;

2. the multi-clause-set F1 ∪ F2 resp. F1 ∩ F2 is given by setting (F1∪F2)(C) :=

max(F1(C), F2(C)) resp. (F1 ∩ F2)(C) := min(F1(C), F2(C)) for clauses C;

if F1, F2 are clause-sets, then these operations coincide with the ordinary set

operations;

3. if F2 is a clause-set, then the multi-clause-set F1 \ F2 is defined by setting

(F1 \ F2)(C) := 0 for C ∈ F2, while otherwise (F1 \ F2)(C) := F1(C); if also

F1 is a clause-set, then F1 \ F2 is the ordinary set operation;

4. the relation F1 ≤ F2 holds if for all clauses C we have F1(C) ≤ F2(C); we

use F ′ � F for F ′ ≤ F ∧ F ′ 6= F ; if F1, F2 are clause-sets, then F1 ≤ F2 ⇔
F1 ⊆ F2;

5. F1 is called a sub-multi-clause-set of F2 if F1 ≤ F2 holds, while F1 is called

an induced sub-multi-clause-set of F2 if F1 ≤ F2 and ∀C ∈ F1 : F1(C) =

F2(C) holds; every sub-clause-set of a clause-set is induced;

6. if F2 is a sub-multi-clause-set of F1, then the multi-clause-set F1 − F2 is

defined via (F1 − F2)(C) := F1(C) − F2(C) for clauses C.
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The set of all multi-clause-sets is denoted by MCLS, the set of all clause-sets

by CLS, while for a set VA′ ⊆ VA of variables we use MCLS(VA′) := {F ∈
MCLS : var(F ) ⊆ VA′} and CLS(VA′) := {F ∈ CLS : var(F ) ⊆ VA′} (thus

MCLS(VA{0,1}) is the set of boolean multi-clause-sets, and CLS(VA{0,1}) is the

set of boolean clause-sets). If C is a set of multi-clause-sets and f : C → R, then by

Cf≤b for some b ∈ R we denote the set of all F ∈ C with f(F ) ≤ b; analogously we

define Cf=b, Cf≥b and so on. A special function usable here is sat : CLS → {0, 1}
with sat(F ) = 1 ⇔ F ∈ SAT (that is, sat is the characteristic function of the set

of satisfiable clause-sets defined below); we can combine several such indices, and

for typographical reasons we may use then for example MCLSg≤b
′

f≤b .

3.2 Semantics: The operation of partial assignments

Now we define the operation ∗ : PASS×MCLS → MCLS of PASS on multi-clause-

sets, and the (derived) operation ∗ : PASS × CLS → CLS on clause-sets, which in

both cases have the meaning of substituting values for variables and carrying out

the resulting simplifications (viewing a clause as a disjunction of its literals, and a

(multi-)clause-set as a conjunction of its clauses), with the only difference that in

the case of clause-sets contractions in the result are carried out (distinct clauses can

become equal after a substitution). The case of clause-sets is reduced to the case of

multi-clause-sets, using the explicit transformation ť : CLS → MCLS of clause-sets

into multi-clause-sets. For F ∈ MCLS and ϕ ∈ PASS we define ϕ ∗ F ∈ MCLS
by

(ϕ ∗ F )(C) =
∑

C′∈CL
ϕ∗{C′}={C}

F (C′),

for C ∈ CL, where for a clause C we set ϕ ∗ {C} := > ∈ CLS if there exists a literal

x ∈ C with ϕ(x) = 1, while otherwise we set ϕ ∗ {C} := {C \ Cϕ} ∈ CLS (i.e., we

remove the falsified literals from C). And for F ∈ CLS we define ϕ ∗ F ∈ CLS as

ϕ ∗ F := t̂(ϕ ∗ ť(F )).

We have here (where F is a clause-set) ϕ ∗ F =
⋃

C∈F ϕ ∗ {C}. The effect on

the basic measures of applying a partial assignment 〈v → ε〉 to F ∈ MCLS with

v ∈ var(F ) is given by

n(〈v → ε〉 ∗ F ) ≤ n(F ) − 1

c(〈v → ε〉 ∗ F ) = c(F ) − s(v,ε)(F ).

A clause-set F ∈ CLS is satisfiable if there exists a partial assignment ϕ ∈ PASS
with ϕ∗F = >, while otherwise F is unsatisfiable; the set of all satisfiable clause-

sets is denoted by SAT , the set of all unsatisfiable clause-sets by USAT . A

multi-clause-set F ∈ MCLS is called minimally unsatisfiable if F is unsatisfiable,

but every F ′ � F is satisfiable; obviously if F is minimally unsatisfiable, then F

actually is a clause-set. The set of all minimally unsatisfiable clause-sets is denoted

by MUSAT .

It is useful to have some notations for the set of satisfying assignments (“mod-

els”) as well as for the set of falsifying assignments. For a finite V ⊆ VA let

PASS(V ) be the set of ϕ ∈ PASS with var(ϕ) = V . Note that we have

|PASS(V )| =
∏

v∈V

|Dv|.
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Now for a clause-set F ∈ MCLS and for a finite set V of variables with var(F ) ⊆ V

let modV (F ) be the set of ϕ ∈ PASS(V ) with ϕ ∗ F = >, while modV (F ) is the

set of ϕ ∈ PASS(V ) with ⊥ ∈ ϕ ∗ F . Thus F is satisfiable iff modV (F ) 6= ∅; and

for any clause C with var(C) ⊆ V we have

|modV ({C})| = |PASS(V \ var(C))| =
∏

v∈V \var(C)

|Dv|,

that is, the falsifying assignments for a clause C are uniquely determined on vari-

ables from C and arbitrary elsewhere. At this point it might be useful to point

out, that for (multi-)clause-sets typically falsifying assignments are significantly

easier to handle than satisfying assignments (“those elusive idols”). Obviously

modV (F )∩modV (F ) = ∅ and modV (F )∪modV (F ) = PASS(V ). By definition we

have

modV (F ) =
⋃

C∈F

modV ({C}).

For clause-sets F1, F2 we write F1 |= F2 (“F1 implies F2”) if for all ϕ ∈ PASS with

ϕ ∗ F1 = > we have ϕ ∗ F2 = > as well, and for clauses C we write F |= C instead

of F |= {C}. Trivially F is unsatisfiable iff F |= ⊥. Note that F1 |= F2 holds iff for

V := var(F1)∪var(F2) we have modV (F2) ⊆ modV (F1). We call F1, F2 equivalent

if F1 |= F2 and F2 |= F1.

The basic laws for the operation of partial assignments on multi-clause-sets are

as follows, using F, F1, F2 ∈ MCLS and ϕ, ψ ∈ PASS:

∅ ∗ F = F

ϕ ∗ > = >

(ϕ ◦ ψ) ∗ F = ϕ ∗ (ψ ∗ F )

ϕ ∗ (F1 + F2) = ϕ ∗ F1 + ϕ ∗ F2.

These four laws hold also for the operation of partial assignments on clause-sets. If

F1, F2 ∈ CLS, then we have

ϕ ∗ (F1 ∪ F2) = ϕ ∗ F1 ∪ ϕ ∗ F2

(but this does not hold for multi-clause-sets in general). Furthermore for a multi-

clause-set F and a clause-set F ′ we have ϕ ∗ (F \ F ′) ≥ (ϕ ∗ F ) \ (ϕ ∗ F ′).

3.3 Renaming variables

Consider a multi-clause-set F and variables v, w ∈ VA (which might be equal)

together with h : Dv → Dw such that in case of v 6= w we have w /∈ var(F ). Then

replacing v by w using h in F results in the multi-clause-set F ′ where every

occurrence of a literal (v, ε) is replaced by the literal (w, h(ε)). The map h here

is called the value transfer; if Dv ⊆ Dw and h is unspecified, then the canonical

injection is used.

Similarly, replacing v by w using h in a partial assignment ϕ, where in case

of v 6= w we have w /∈ var(ϕ), results in a partial assignment ϕ′ with dom(ϕ′) =

(dom(ϕ) \ {v})∪ {w} such that ϕ′(u) = ϕ(u) for u ∈ dom(ϕ′) \ {w}, while ϕ′(w) =

h(ϕ(v)). Here the value transfer needs to be specified only for the special value

ϕ(v). If v = w, then we just speak of flipping v to ε in ϕ for ε = h(ϕ(v)).
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The replacement of v by w using h in F is injective, if for literals (v, ε), (v, ε′)

occurring in F with ε 6= ε′ we have h(ε) 6= h(ε′). If |Dw| ≥ #v(F ), then there is

always some h : Dv → Dw such that replacing v by w in F using h is injective. For

every injective h, replacing v by w in F using h is injective. Note that injective

replacements alter the “meaning” (the set of models modulo isomorphism) exactly

in the case where a non-pure variable (a variable such that all values occur in

F ; see Subsection 3.8) is rendered a pure variable by using a domain Dw with

|Dw| > #v(F ). Special injective replacements are renamings, where h is a bijection

from Dv to Dw. If we have a renaming of v by w using h in F , resulting in F ′,

then we also have the renaming of w to v using h−1 in F ′, resulting in F . So

the satisfying assignments for F ′ here are exactly the satisfying assignments for F

where v is replaced by w using h. If several variables are renamed simultaneously,

then we require that the same result is obtained by renaming single variables one

after another (in some order).

For a multi-clause-set F a domain-uniformisation of F is F in case of var(F ) =

∅, while otherwise we consider the domain D :=
⋃

v∈var(F )Dv, rename all variables

v in F to v′ with domain D, and add all unit clauses {v′ 6= ε} for ε ∈ D \Dv.

3.4 Three operations of sets of variables on multi-clause-sets

Finally we consider various operations with sets of variables. The operation V ∗ F
is defined for finite V ⊆ VA and F ∈ MCLS via

(V ∗ F )(C) :=
∑

C′∈CL
V ∗C′=C

F (C′),

where for a clause C we set V ∗ C := {x ∈ C : var(x) /∈ V } ∈ CL. That is, V ∗ F
is obtained from F by crossing out all literal occurrences x with var(x) ∈ V . Two

basic properties are

var(V ∗ F ) = var(F ) \ V

c(V ∗ F ) = c(F ).

The operation V ∗ F for F ∈ CLS is defined by

V ∗ F := t̂(V ∗ ť(F )) ∈ CLS.

We have here V ∗ F = {V ∗C : C ∈ F}. The basic laws for F, F1, F2 ∈ MCLS and

finite V, V ′ ⊆ VA are
∅ ∗ F = F

V ∗ > = >

(V ∪ V ′) ∗ F = V ∗ (V ′ ∗ F )

V ∗ (F1 + F2) = V ∗ F1 + V ∗ F2.

Again these four laws also hold for the operation of sets of variables on clause-sets.

If F1, F2 ∈ CLS, then we have

V ∗ (F1 ∪ F2) = V ∗ F1 ∪ V ∗ F2

(again this does not hold for multi-clause-sets in general).

We conclude with different forms of selecting parts of a multi-clause-set. By FV

we denote the induced sub-multi-clause-set of F with C ∈ FV ⇔ var(C) ∩ V 6= ∅;

in other words, FV = F \ {C ∈ F : var(C) ∩ V = ∅}. Basic properties are:
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1. F∅ = > and Fvar(F ) = F \ {⊥}.

2. If V1 ⊆ V2, then FV1 is an induced sub-multi-clause-set of FV2 .

3. FV1∪V2 = FV1 ∪ FV2 .

4. For v ∈ VA we have c(F{v}) = #v(F ).

Finally

F [V ] := (var(F ) \ V ) ∗ FV = ((var(F ) \ V ) ∗ F ) \ {⊥} ∈ MCLS,

which, in analogy to the same process for hypergraphs (using usually also the same

notation, see for example [13]), can be considered as the “restriction of F to V ”.

Basis properties are

1. F [∅] = > and F [var(F )] = F \ {⊥}.

2. c(F [V ]) = c(FV ), var(F [V ]) ⊆ var(FV ).

3. var(F [V ]) = V for V ⊆ var(F ).

To summarise: We obtain V ∗ F from F by keeping all clauses but removing those

literals x from them with var(x) ∈ V , while we obtain FV from F by removing those

clauses C from F with var(C) ∩ V = ∅ (while keeping all clauses intact); finally

F [V ] is obtained from F by first constructing FV , and then crossing out all literal

occurrences for literals x where there exists a clause C ∈ F with var(C) ∩ V = ∅
and var(x) ∈ var(C).

F [V ] is the formula derived from F when we want to consider total assignments

relative to the variable set V , and is basic for the theory of autarkies reviewed in the

subsequent subsection, while V ∗F and FV are fundamental constructions. As an ex-

ample for these operations consider boolean variables a, b, c (the domains of variables

do not matter here), and let C1 := {(a, 0), (b, 1), (c, 0)}, C2 := {(a, 0), (b, 0), (c, 1)},

C3 := {(a, 1), (b, 0), (c, 1)} and C4 := {(b, 1), (c, 1)}, and finally F :=
∑4
i=1{Ci}

(F corresponds to the CNF (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (b ∨ c)). Now

we have F{a} =
∑3

i=1{Ci}, {a} ∗ F = {{(b, 1), (c, 0)}} + 2 · {{(b, 0), (c, 1)}} +

{{(b, 1), (c, 1)}}, while F [{a}] = 2 · {{(a, 0)}} + {{(a, 1)}}.

3.5 Autarkies for generalised multi-clause-sets

Now we review the general properties of autarkies and autarky systems for gen-

eralised multi-clause-sets. See Section 3 in [30] for a general theory of autarkies

and autarky systems, while in Section 4 of [30] autarky systems for generalised

clause-sets have been discussed (easily generalised to autarky systems for gener-

alised multi-clause-sets). General properties of autarkies for boolean clause-sets

are thoroughly investigated in [29], Section 3, while autarky systems for boolean

clause-sets have been introduced in [31] (see Sections 4 and 8 for the general theory).

A partial assignment ϕ ∈ PASS is an autarky for F ∈ MCLS if one (and thus

all) of the following four equivalent conditions is fulfilled:

1. for all clauses C ∈ F we have var(ϕ) ∩ var(C) 6= ∅ ⇒ ϕ ∗ {C} = >;

2. ∀F ′ ≤ F : ϕ ∗ F ′ ≤ F ′;

3. ϕ is a satisfying assignment for Fvar(ϕ);
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4. ϕ is a satisfying assignment for F [var(ϕ)].

Obviously, ϕ is an autarky for F iff ϕ is an autarky for F \{⊥} iff ϕ is an autarky for

the underlying clause-set. The set of all autarkies for F is denoted by Auk(F ); it is

Auk(F ) a sub-monoid of PASS, containing all satisfying assignments for F in case

F is satisfiable, and Auk(F ) = Auk(̂t(F )). If F ′ ≤ F , then Auk(F ) ⊆ Auk(F ′),

and for finite V ⊆ VA we have {ϕ ∈ Auk(V ∗F ) : var(ϕ)∩V = ∅} = {ϕ ∈ Auk(F ) :

var(ϕ) ∩ V = ∅}. Furthermore we have Auk(F1 + F2) = Auk(F1) ∩ Auk(F2). If

ϕ ∈ Auk(F ) and ψ ∈ Auk(ϕ ∗F ), then ψ ◦ϕ ∈ Auk(F ). An autarky ϕ ∈ Auk(F ) is

called non-trivial if var(ϕ) ∩ var(F ) 6= ∅ holds. F is called lean, if F has no non-

trivial autarky; the set of all lean multi-clause-sets is denoted by LEAN . A sum of

lean multi-clause-sets again is lean. If F is lean, so is V ∗ F for V ⊆ VA. Trivially

every F having only variables with trivial domain (i.e., one-element domains) is

lean.

An autarky reduction is a reduction F 7→ ϕ ∗ F for some non-trivial autarky

ϕ for F (note that ϕ ∗ F is satisfiability equivalent to F ). Autarky reduction is

terminating and confluent (generalising Lemma 4.1 in [31], a special case of Lemma

3.7 in [30]), and thus the result of iterated autarky reductions until no further

reductions are possible is uniquely determined; we denote it by NAuk(F ) ≤ F . It

is Na := NAuk a “kernel operator”, that is, Na(F ) ≤ F , Na(Na(F )) = Na(F ), and

F1 ≤ F2 ⇒ Na(F1) ≤ Na(F2); furthermore Na(F ) is satisfiability equivalent to F ,

and Na(F ) = > iff F ∈ SAT . We have Na(F ) ∈ LEAN , and Na(F ) is called the

lean kernel of F ; F is lean iff Na(F ) = F . There exists an autarky ϕ ∈ Auk(F )

with Na(F ) = ϕ∗F (while for all ϕ ∈ Auk(F ) we have Na(F ) ≤ ϕ∗F ). It is Na(F )

the largest lean sub-multi-clause-set of F .

An autark sub-multi-clause-set F ′ of F is an induced sub-multi-clause-set of

F , such that there exists an autarky ϕ ∈ Auk(F ) so that for C ∈ F we have C ∈ F ′

iff ϕ ∗ {C} = > (note that in this case we have F ′ = Fvar(ϕ)). The set of autark

sub-multi-clause-sets of F is closed under union, and contains the smallest element

> and the largest element F \ Na(F ). It is F ′ ≤ F an autark sub-multi-clause-set

of F iff there is V ⊆ var(F ) with FV = F ′ and F [V ] ∈ SAT .

The relation between the lean kernel of F and the largest autark sub-multi-

clause-set of F can be summarised as follows: For F ∈ MCLS there exist induced

sub-multi-clause-sets F1, F2 ≤ F with F1 + F2 = F , such that F1 is lean, while

var(F1) ∗ F2 is satisfiable; in this decomposition F1, F2 are uniquely determined,

namely F1 = Na(F ) is the largest lean sub-multi-clause-set (the lean kernel), while

F2 is the largest autark sub-multi-clause-set.

For an example consider variables a, b, c, d with Da = Db = {0, 1, 2} and Dc =

Dd = {0, 1}, and consider the clause-set

F := F1 ∪ F2

F1 := {{a 6= 0, b 6= 0}, {a 6= 0, b 6= 1}, {a 6= 0, b 6= 2}, {a 6= 1}, {a 6= 2}}

F2 := {{a 6= 0, c 6= 0, d 6= 1}, {b 6= 0, c 6= 1, d 6= 0}}.

To see whether there is an autarky for F invoking exactly one variable we check

satisfiability of F [{v}] for v ∈ {a, b, c, d}; we see that all these clause-sets are un-

satisfiable (e.g., F [{c}] = {{c 6= 0}, {c 6= 1}}), and so the smallest non-trivial

autarky for F (if there is any) must involve at least two variables. Now F [{c, d}] =

{{c 6= 0, d 6= 1}, {c 6= 1, d 6= 0}} ∈ SAT , and thus the two partial assignments

〈c, d → 0〉, 〈c, d → 1〉 are autarkies for F ; applying one of them yields F1, which is
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lean (F1 actually is minimally unsatisfiable), and thus F1 is the lean kernel of F ,

while F2 is the largest autark sub-clause-set of F .

3.6 Autarky systems

After having reviewed the general facts for autarkies for generalised multi-clause-

sets, we now consider “autarky systems”. The motivation for doing so is, that

instead of (computationally infeasible) general autarkies we want to consider re-

stricted autarkies, and under mild assumptions on these restricted autarkies all the

above facts carry over (in generalised form). The monoid (PASS , ◦, ∅) together with

the partial order (MCLS,≤,>) with least element and together with the operation

∗ of PASS on MCLS fulfils all the axioms required in Section 3 of [30], and thus

all the general results there on autarky systems hold here.

An autarky system for generalised multi-clause-sets is a map A, which assigns

to every F ∈ MCLS a sub-monoid A(F ) of Auk(F ), such that for F1 ≤ F2 we have

A(F2) ⊆ A(F1). The elements of A(F ) are called A-autarkies for F . Further

possible restrictions on A are expressed by the following notions:

1. A is iterative, if for ϕ ∈ A(F ) and ψ ∈ A(ϕ∗F ) we always have ψ◦ϕ ∈ A(F ).

2. A is called standardised, if for a partial assignment ϕ ∈ PASS we have

ϕ ∈ A(F ) iff ϕ | var(F ) ∈ A(F ) (where ϕ | var(F ) is the restriction of the map

ϕ to the domain var(ϕ)∩var(F )). (Remark: Thus for a standardised autarky

system A all partial assignments ϕ with var(ϕ) ∩ var(F ) = ∅ are (trivial) A-

autarkies for F . In [30] only the direction “ϕ ∈ A(F ) ⇒ ϕ | var(F ) ∈ A(F )

is required, but now it seems more systematic to me to require also the other

direction.)

3. A is ⊥-invariant, if always A(F ) = A(F + {⊥}) holds (in [30, 31] this was

called “normal”).

4. A is stable under variable elimination, if for finite V ⊆ VA we always

have {ϕ ∈ A(V ∗ F ) : var(ϕ) ∩ V = ∅} = {ϕ ∈ A(F ) : var(ϕ) ∩ V = ∅}.

5. A is invariant under renaming, if for every F ′ obtained from F by renaming

v to w using h (recall Subsection 3.3) and for every autarky ϕ ∈ A(F ) we

have ϕ′ ∈ A(F ′) for the partial assignment ϕ′ obtained from ϕ by renaming

v to w using h.

6. A is stable for unused values, if for ϕ ∈ A(F ), v ∈ dom(ϕ) and for ε ∈ Dv

such that none of the two literals (v, ϕ(v)), (v, ε) occurs in F , also ϕ′ ∈ A(F )

holds, where ϕ′ is obtained from ϕ by flipping v to ε.

An autarky system A is called normal, if it fulfils these six criteria, that is, if it

is iterative, standardised, ⊥-invariant, stable under variable elimination, invariant

under renaming and stable for unused values. Considering the boolean case (where

stability for unused values is covered by the standardisation condition, while invari-

ance under renaming was not considered), in [30, 31] “normal autarky systems” have

been called “strong autarky systems”, but meanwhile the above properties seem

not so strong anymore to me, but quite “normal” (while “ab-normality” is a defect

which can be repaired; see for example Lemma 8.4 in [31], which can be generalised

to generalised clause-sets). Examples for normal autarky systems are the smallest

standardised autarky system F ∈ MCLS 7→ {ϕ ∈ PASS : var(ϕ)∩var(F ) = ∅} and

the largest autarky system F ∈ MCLS 7→ Auk(F ). In this paper our main interest
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is in normal autarky systems, and thus we don’t investigate further the relations

between the above notions and the other properties of autarky systems, but we will

state general results only either for all autarky systems or for all normal autarky

systems.

Consider an autarky system A. An A-reduction is a reduction F 7→ ϕ ∗ F
for some non-trivial ϕ ∈ A(F ). Since multi-clause-sets have finite variable sets, A-

reduction is terminating, and thus by Lemma 3.7 in [30] A-reduction is confluent,

and the result of applying A-reductions as long as possible is uniquely determined,

yielding a normal form NA(F ) ≤ F . As before, the operator NA is a kernel

operator, that is, NA(F ) ≤ F , NA(NA(F )) = NA(F ) and F1 ≤ F2 ⇒ NA(F1) ≤
NA(F2). Multi-clause-sets F with NA(F ) = > are called A-satisfiable, while in

case of NA(F ) = F we call F A-lean; the set of all A-satisfiable multi-clause-sets

is denoted by SATA, the set of all A-lean multi-clause-sets by LEANA. It is

F A-lean iff A(F ) contains no non-trivial autarky. The learn kernel NA(F ) is the

largest A-lean sub-multi-clause-set of F . A sum of A-lean multi-clause-sets again is

A-lean. Finally F is called minimally A-unsatisfiable, if F is not A-satisfiable,

but every F ′ ≤ F with F ′ 6= F is A-satisfiable, while F is called barely A-lean

if F is A-lean, but every F ′ ≤ F with c(F ′) = c(F ) − 1 is not A-lean; for more

on these two notions see [38], while in this article we will consider only some basic

properties of minimal A-unsatisfiability. If F is minimally A-unsatisfiable, then F

is A-lean, and for F 6= {⊥} it is F also barely A-lean. If A is the full autarky

system, then minimal A-unsatisfiability is just normal minimal unsatisfiability.

For the remainder of this subsection now assume that the autarky system A is

normal. Then F is A-satisfiable iff there exists ϕ ∈ A(F ) with ϕ ∗ F = >. More

generally, there always exists ϕ ∈ A(F ) with ϕ ∗ F = NA(F ). If F is A-lean,

then so is V ∗ F for finite V ⊆ VA. The A-autark sub-multi-clause-sets of F , i.e.,

those multi-clause-sets F ′ where there is ϕ ∈ A(F ) with F ′ = Fvar(ϕ), are exactly

those FV for some V ⊆ var(F ) where F [V ] is A-satisfiable. On the other hand,

if F is A-lean, then so is F [V ] (for all finite V ⊆ VA). The set of A-autark sub-

multi-clause-sets of F is closed under union, and contains the smallest element >
and the largest element F \ NA(F ). As before, the relation between the A-lean

kernel of F and the largest A-autark sub-multi-clause-set of F can be summarised

as follows: For F ∈ MCLS there exist induced sub-multi-clause-sets F1, F2 ≤ F

with F1 +F2 = F , such that F1 is A-lean, while var(F1) ∗F2 is A-satisfiable; in this

decomposition F1, F2 are uniquely determined, namely F1 = NA(F ) is the largest

A-lean sub-multi-clause-set (the A-lean kernel), while F2 is the largest A-autark

sub-multi-clause-set.

We finish our review on autarkies and autarky systems by generalising Lemma

8.6 in [31]. The proof can be literally transferred to our generalised context, and

thus is not reproduced here.

Lemma 3.1 Let A be a normal autarky system. Given decision of membership

in LEANA as an oracle, the normal form F 7→ NA(F ) for F ∈ MCLS can be

computed in polynomial time as follows:

1. If F ∈ LEANA then output F .

2. Let var(F ) = {v1, . . . , vn(F )}.

3. Since ∅ ∗ F = F /∈ LEANA and var(F ) ∗ F = c(F ) · ť({⊥}) ∈ LEANA holds,

there is an index 1 ≤ i ≤ n(F ) with

{v1, . . . , vi−1} ∗ F /∈ LEANA and {v1, . . . , vi} ∗ F ∈ LEANA.
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Replace F by the induced sub-multi-clause-set of F given by the clauses of F

not containing variable vi, and go to Step 1.

While the output of this procedure is Na(F ), if V is the set of variables vi selected

in Step 3, then FV is the largest autark subset of F .

The idea behind the algorithm of Lemma 3.1 is, that we want to find a variable v

such that there exists an autarky ϕ for F with v ∈ var(ϕ); if there is no such vari-

able, then F is lean while otherwise we can eliminate all clauses from F containing

variable v. Now the variable vi selected in Step 3 must be such a variable: Consider

a non-trivial autarky ϕi for Fi := {v1, . . . , vi−1} ∗ F with var(ϕi) ⊆ var(Fi). Since

{vi} ∗Fi is lean, it must vi ∈ var(ϕi) be the case, while ϕi is an autarky also for F .

For more on such reductions (for boolean clause-sets and the full autarky system)

see [41].

3.7 Resolution

For autarky systems the number of occurrences of a clause in a multi-clause-set

might make a difference (as it is the case for matching autarkies introduced in

the subsequent section), however for all known resolution systems we do not need

this distinction, and thus only (generalised) clause-sets are considered for resolution

(that is, if multi-clause-sets F ∈ MCLS are to be treated, then they are automati-

cally “downcast” to the underlying clause-set t̂(F )).

The resolution rule for generalised clause-sets is well-known. The most thorough

study for my knowledge in given in [36], where actually resolution is considered for

general “fipa-systems” (systems with finite instantiation by partial assignments) by

reducing resolution for such axiomatic systems to resolution for generalised clause-

sets, which act as “no-goods”, i.e., out of the general system we get the clauses C

belonging to the resolution refutation as clauses Cϕ associated with such partial

assignments, which led to a contradiction. In this subsection the most basic notions

are reviewed, and the interesting connection to autarkies is given.

Consider a variable v ∈ VA. “Parent clauses” C1, . . . , C|Dv | are called resolv-

able with resolution variable v, if valv({C1, . . . , C|Dv |}) = Dv and the resol-

vent R :=
⋃|Dv |
i=1 {v} ∗Ci actually is a clause (contains no clashing literals), that is,

whenever there are literals x ∈ Ci, y ∈ Cj for some i, j ∈ {1, . . . , |Dv|} with x 6= y

and var(x) = var(y), then var(x) = v must be the case. Resolution is a complete

and sound refutation system; see for example Corollary 5.9 in [36], where, trans-

lating branching trees into resolution trees, the existence of a resolution tree with

at most (maxv∈var(F )|Dv|)n(F ) many leaves for unsatisfiable generalised clause-sets

F is shown. Also stated in [36] is the (well-known) “strong completeness” of res-

olution, that is, for a multi-clause-set F ∈ MCLS and a clause C ∈ CL we have

F |= {C} iff there exists a resolution tree with axioms from F deriving a clause

C′ ⊆ C.

In Theorem 3.16 in [29] it was shown for boolean clause-sets, that the lean

kernel of a clause-set F consists exactly of all clauses C ∈ F which can be used in

some resolution refutation of F .12) This theorem can be immediately generalised to

generalised clause-sets, using exactly the proof from [29] (together with the proof

12)Where the resolution refutation may not contain “dead ends”, which can be most easily
enforced by considering only resolution trees.
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transformation tools provided in [36]). In [30], Theorem 4.1 this generalisation is

stated, but without a proof, which we now outline as follows. Consider the set

U(F ) of clauses C ∈ F for which there exists a tree resolution refutation of F

using C as an axiom. The direction, that a clause C ∈ F \ Na(F ) can not be

used in tree resolution refutations of F (i.e., U(F ) ⊆ Na(F )), is easily proved by

induction (an autarky of F satisfying C satisfies also all clauses derived from C

in the tree). For the reverse direction the main technical lemma is, that for each

variable v ∈ var(U(F )) and each ε ∈ Dv the unit-clause {(v, ε)} can be derived

from U(F ) by resolution (this is a little proof-theoretic exercise; see Lemma 3.14 in

[29] for the boolean case). Now it follows, that F \U(F ) is an autark sub-clause-set

of F , since if the clause-set var(U(F )) ∗ (F \ U(F )) would be unsatisfiable, then

there would be a tree resolution refutation T of var(U(F )) ∗ (F \ U(F )), where

the axioms of T could be derived from the clauses in F \ U(F ) and the clauses in

U(F ) by the above technical lemma, and thus we could construct a tree resolution

refutation involving some clause of F \ U(F ), contradicting the definition of U(F )

(compare with Lemma 3.15 in [29] for the boolean case). That F \U(F ) is an autark

sub-clause-set of F means Na(F ) ⊆ U(F ), and altogether we have shown

Theorem 3.2 For any generalised clause-set F ∈ CLS the lean kernel Na(F ) equals

the set U(F ) of clauses of F usable in some (tree) resolution refutation of F . Es-

pecially it is F lean if and only if F = U(F ), that is, if every clause of F can be

used in some (tree) resolution refutation of F .

As shown in Section 6 of [30], Theorem 3.2 yields an algorithm for computing

Na(F ) by using “intelligent backtracking solvers”, which on unsatisfiable instances

can return the set of variables used in some resolution refutation of the input.

Crossing out these variables from the input, removing the empty clause obtained,

and repeating this process, we finally obtain a satisfiable clause-set F ∗, and now

any satisfying assignment ϕ for F ∗ with var(ϕ) ⊆ var(F ∗) is an autarky for F with

ϕ ∗F = F \Na(F ). See [40] for more details on this computation of the lean kernel

(in [40] only boolean clause-sets are considered, but based on the results of the

present article, all (mathematical) results can be generalised in the natural way).

Corollary 3.3 Consider a class C ⊆ CLS of generalised clause-sets, such that for

all unsatisfiable F ∈ C and all V ⊆ VA we have F [V ] ∈ C. Assume furthermore,

that there is an algorithm running for inputs F ∈ C in polynomial time, which

either computes a satisfying assignment for F or computes the set of variables used

in some tree resolution refutation of F . Then for inputs F ∈ C the lean kernel

Na(F ) is computable in polynomial time.

A general source of classes C as required in Corollary 3.3 are the classes Gk(U ,S)

for levels k ∈ N0 and suitable oracles U for unsatisfiability and C for satisfiability,

as introduced in [36] (in this way for example we get poly-time computation of the

lean kernel for generalised Horn clause-sets (using non-boolean variables as well as

considering higher levels k of “Horn-structures”)).

We conclude this subsection by defining the Davis-Putnam operator DP

for generalised clause-sets. Consider a clause-set F ∈ CLS and a variable v ∈
var(F ). Let Fv be the set of all resolvents of parent clauses in F with resolution

variable v. Now we set DPv(F ) := {C ∈ F : v /∈ var(C)} ∪ Fv. From the

completeness results for (generalised) resolution in [36] it follows immediately, that

DPv(F ) is satisfiability equivalent to F , and that F is unsatisfiable if and only if by
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repeated applications of the Davis-Putnam operator we finally obtain the clause-

set {⊥} (while for satisfiable F finally we will obtain the clause-set >). We can

also generalise Lemma 7.6 in [39] about the commutativity of the Davis-Putnam

operator, that is, if G1 is the result of applying first DPv1 , then DPv2 , ..., and finally

applying DPvm
, while G2 is the result of applying first DPvπ(1)

, then DPvπ(2)
, ...,

and finally applying DPvπ(m)
, for some permutation π ∈ Sm, then after elimination

of subsumed clauses in G1 and G2 (see the following subsection) G1 becomes equal

to G2. It follows that for any set of variables V the operator DPV , computed by

running through the variables of V in some order, is uniquely determined up to

subsumption reduction in the result. We always have DPV (F ) = DPV (FV ) ∪ (F \
FV ). If for some V ⊆ var(F ) we have DPV (FV ) = >, then F and F \ FV are

satisfiability equivalent, generalising the elimination of autark sub-clause-sets: If

ϕ ∈ Auk(F ), then DPvar(ϕ)(Fvar(ϕ)) = >, while the reverse direction need not hold,

as the example F = {{v, a}, {v, a}} ∪ F ′, v /∈ var(F ′), with V = {v} shows (for

boolean variables). We see that the Davis-Putnam operator, whose application for

generalised clause-sets is basically the same as existential quantification, yields more

powerful reductions, but this at the cost of potential exponential space usage.

3.8 Reductions

In this subsection we review the most basic polynomial time reduction concepts.

For a thorough discussion in the boolean case, see [39]. We consider only clause-sets

F ∈ CLS, but all results are easily generalised to multi-clause-sets.

The most basic reduction (by which we mean a satisfiability-equivalent trans-

formation, simplifying the clause-set in some sense) is subsumption elimination,

the elimination of subsumed clauses, i.e., the transition F → F \ {C} for C ∈ F

in case there exists C′ ∈ F with C′ ⊂ C. Iterated elimination of subsumed clauses

is confluent, and thus the result of applying subsumption elimination as long as

possible is uniquely determined (namely it is the set of all minimal clauses of F ); if

F has no subsumed clauses, then we call F subsumption-free.

The next reduction can be called the trivial-domain reduction: If there exists

v ∈ var(F ) with |Dv| = 1 (we call such a variable trivial), then for Dv = {ε} reduce

F 7→ 〈v → ε〉 ∗ F . (that is, all literal occurrences with underlying variable v are

removed).

Elimination of “pure literals” is now better called elimination of pure vari-

ables: If there is v ∈ var(F ) with |valv(F )| < |Dv|, that is, one of the values of v is

not used in F , then for some ε ∈ Dv \ valv(F ) reduce F 7→ 〈v → ε〉 ∗F . This is the

basic form of a pure autarky as mentioned in Subsection 4.4 of [30].

Unit-clause elimination for generalised clause-sets is less powerful than in the

boolean case: If F contains a unit-clause {(v, ε)} ∈ F , then in case of Dv = {ε} by

trivial-domain reduction we conclude that F is unsatisfiable, but otherwise we can

only conclude that value ε is to be excluded from the domain of v, and in general we

cannot eliminate the variable v. It seems most convenient here to include trivial-

domain reduction into unit-clause elimination (so that we properly generalise the

boolean case); in our context, where we fixed the domain of each variable (and thus

renaming is needed to achieve a change of domain), unit-clause propagation for

(generalised) clause-sets F is then the following procedure:

1. Apply trivial-domain reduction to F to eliminate all trivial variables.
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2. If ⊥ ∈ F , then reduce F to {⊥}.

3. For {(v, ε)} ∈ F eliminate all clauses containing the literal (v, ε) from F , and

replace variable v in the remaining occurrences by a new variable v′ with

Dv′ = Dv \ {ε} 6= ∅.

4. Repeat Steps 1 - 3 until all trivial variables and all unit-clauses have been

eliminated.

So after unit-clause propagation every variable has a domain with at least two

elements and, except of the case F = {⊥}, every clause contains at least two literals.

Unit-clause propagation for boolean clause-sets is confluent (the final result does

not depend on the order and choice of single reduction steps), while unit-clause

propagation for arbitrary clause-sets is confluent modulo renaming. Generalising

the well-known linear time algorithm for unit-clause propagation in the boolean

case, this normal form (the result of unit-clause propagation) can be computed in

linear time.

Considering clauses C ∈ CL as constraints of scope var(C) (see [11], Subsec-

tion 2.1.1), and thus clause-sets F ∈ CLS as constraint networks (or constraint

satisfaction problems), F is (hyper-)arc-consistent ([11], Definition 3.6) iff for all

C ∈ F \ {⊥} we have |C| ≥ 2, while F is relational arc-consistent ([11], Definition

8.1) iff for all v ∈ var(F ) we have |Dv| ≥ 2. So unit-clause propagation achieves

both hyper-arc-consistency and relational arc-consistency.

Finally we consider the most harmless cases for DP-reductions. In general,

application of DPv to F eliminates #v(F ) =
∑

ε∈Dv
#(v,ε)(F ) clauses and creates

up to
∏

ε∈Dv
#(v,ε)(F ) new clauses (with potential repetitions; less iff some of the

parent clause combinations are not eligible for resolution due to additional clashes).

Thus we have

c(DPv(F )) ≤ c(F ) −
∑

ε∈Dv

#(v,ε)(F ) +
∏

ε∈Dv

#(v,ε)(F ). (1)

Note that equality holds in (1) if v is pure for F (which is equivalent to the product

being zero). If in (1) we have a strict inequality or v is a pure variable for F , then

we call v a degenerated DP-variable w.r.t. F , while otherwise v is called a

non-degenerated DP-variable w.r.t. F . Note that a missing new clause due to

additional clashes is not the only cause of a strict inequality, but it is also possible

that a resolvent is already contained in the rest of F , or that two resolvents coincide

(and thus in both cases contraction occurs). Two trivial cases:

1. If variable v ∈ var(F ) has a trivial domain (i.e., |Dv| = 1), then either we

have a subsumption C,C ∪ {(v, ε)} ∈ F (for some clause C not containing

v), in which case v is a degenerated DP-variable w.r.t. F , or otherwise v is

a non-degenerated DP-variable with c(DPv(F )) = c(F ), and in both cases

DPv(F ) is the result of applying trivial domain reduction to F .

2. If v is pure w.r.t. F , then F is a degenerated DP-variable with c(DPv(F )) =

c(F ) − #v(F ), and DPv(F ) is the result of applying the elimination of pure

variable v to F .

Besides these cases, in this article we consider only one very restricted form of DP-

resolution, characterised by the condition that at most one of the factors in the

product from (1) might be greater than one:
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We call a variable v a singular DP-variable w.r.t. F if there exists ε ∈ Dv

such that for all ε′ ∈ Dv \ {ε} we have #(v,ε′)(F ) = 1, while #(v,ε)(F ) ≥ 1, i.e.,

v is not pure for F . In such a case of a singular DP-variable, application of DPv
eliminates |Dv| − 1 + #(v,ε)(F ) clauses and creates up to #(v,ε)(F ) new clauses, so

that the number of clauses goes down at least by one if |Dv| 6= 1. For a singular

DP-variable v we have:

• If v is a non-degenerated DP-variable w.r.t. F , then we have c(DPv(F )) =

c(F ) − |Dv| + 1.

• If v is a degenerated DP-variable w.r.t. F , then at least one of the clauses in

F containing v can be eliminated satisfiability-equivalently, and we call such

a clause elimination a singular DP-degeneration reduction.

Since a singular DP-degeneration reduction cannot be applied to a minimally un-

satisfiable clause-set, a singular variable w.r.t. a minimally unsatisfiable clause-set

must be non-degenerated. Actually more can be said here:

Lemma 3.4 Consider a generalised clause-set F ∈ CLS and a singular DP-variable

v w.r.t. F . Then the following two conditions are equivalent:

1. F is minimally unsatisfiable.

2. v is a non-degenerated DP-variable w.r.t. F and DPv(F ) is minimally unsat-

isfiable.

Proof: We have already seen, that if F is minimally unsatisfiable, then v is non-

degenerated. If DPv(F ) were not minimally unsatisfiable, then there would be a

clause C ∈ DPv(F ) such that DPv(F ) \ {C} would still be unsatisfiable, and thus

would have a resolution refutation — now it is easy to see that in this case we would

also obtain a resolution refutation of F not using one of the clauses in F .

For the reverse direction assume that v is non-degenerated and that DPv(F ) is

minimally unsatisfiable. By a similar argumentation as for the other direction, if

there would be a resolution refutation of F not using one of the clauses from F ,

then one could construct a resolution refutation of DPv(F ) not using (at least) one

of the clauses from DPv(F ).

We call application of DP-reduction for non-degenerated singular variables non-

degenerated singular DP-reduction. In the boolean case, this form of DP-

reduction is used at many places in the literature (in [26], Appendix B, it is called

“(1,∞)-reduction”); see Lemma 4.30 for more on singular DP-reduction.

We conclude by another reduction arising from the DP-operator. The notion

of blocked clauses for boolean clause-sets (see [27, 28]) can be generalised by

calling a clause C blocked w.r.t. F if there exists a variable v ∈ var(C) with

DPv(F ∪{C}) = DPv(F \{C}). If C ∈ F is blocked w.r.t. F , then F is satisfiability

equivalent to F \ {C}, and such a reduction is called elimination of blocked

clauses. If v is a pure variable for F , then all clauses of F containing variable v

are blocked w.r.t. F . And if v is a degenerated singular DP-variable, then F has at

least one blocked clause containing v, and so singular DP-degeneration reduction is

also covered by elimination of blocked clauses.
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3.9 Conflict structure

A study of the “combinatorics of conflicts” for boolean clause-sets has been initiated

with [32, 33] and continued with [19, 34]. We generalise here only a very few simple

notions used later in this article.

The conflict graph cg(F ) of a clause-set F ∈ MCLS has as vertices the

clauses of F , and edges joining two vertices C,D with a clashing literal between

C and D, that is, there is a literal x ∈ C for which there exists a literal y ∈ D with

var(x) = var(y) and x 6= y. A clause-set F is called a hitting clause-set if the

conflict graph of F is a complete graph, and the hitting degree hd(F ) ∈ N of a

hitting clause-set with at least two clauses is the maximum of the number of edges

joining two different vertices in the conflict multigraph of F . More specifically we

call F a r-regular hitting clause-set for r ∈ N0 if for every two different clauses

in F have exactly r conflicts (thus if F is r-regular hitting for r ≥ 1, then F is

hitting), while a regular hitting clause-set is an r-regular hitting clause-set for

some r ≥ 0, and we denote the set of regular hitting clause-sets by RHIT .13)

More generally a clause-set F is called at most k-multihitting for some k ∈ N0

if the conflict graph of F is complete k-partite, while F is called multihitting if it

is at most k-multihitting for some k; let MHIT denote the set of all multihitting

clause-sets. While “at most k-multihitting” implies that the chromatic number of

the conflict graph is at most k, if we speak of k-multihitting then the chromatic

number of the conflict graph must be equal to k (so that F is hitting iff F is

c(F )-multihitting). For a multihitting clause-set F the multihitting number

mh(F ) ∈ N0 is the unique k such that F is k-multihitting. For a given multihitting

clause-set F there is a unique partition F of F (that is, F is a set of sub-clause-sets

of F which are non-empty and pairwise disjoint, such that their union is F ), so that

for any clauses C1, C2 ∈ F with Ci ∈ Fi ∈ F for i ∈ {1, 2} the clauses C1 and C2

clash if and only if F1 6= F2; we call F the multipartition of F (if F is bihitting,

then F is also called the bipartition of F ).

4 Matching autarkies

In this section we introduce the autarky system for generalised clause-sets given by

“matching autarkies”, and we show various polynomial time procedures. “Matching

autarkies” for clause-sets with non-boolean variables have been introduced in [30],

and some basic properties have been stated regarding the standard translation of

clause-sets with non-boolean variables to clause-sets with boolean variables, but as

we will discuss in Subsection 4.5, this earlier version of the notion is actually too

restrictive (another example which shows, that the generalisations in this paper are

not completely straight-forward but invoke subtleties one needs to get right). An

overview on our results is as follows.

The purpose of Subsection 4.1 is to generalise the notion of deficiency δ(F ),

which has been introduced for boolean clause-sets F in [17] as δ(F ) = c(F )−n(F ).

As for boolean clause-sets we will obtain “matching satisfiable clause-sets” F char-

acterised by the condition δ∗(F ) = 0 (where δ∗(F ) is the maximal deficiency taken

over all sub-clause-sets of F ), which is equivalent to a certain matching situation.

13)Regular hitting clause-sets were called “uniform hitting clause-sets” in [33], but “regular”
seems a better choice, since regularity refers to constant degree, while uniformity typically refers
to constant hyperedge-size, and so should better be used for clause-sets of constant clause-size.
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Whence matching satisfiability can be decided in polynomial time by finding a

maximum matching, which yields also a satisfying assignment (called a “matching

satisfying assignment”) in the positive case.

In Subsection 4.2 we investigate the relation between general satisfiability and

matching satisfiability. We will see that if a clause-set F is satisfiable, then it has a

matching satisfiable sub-clause-set F ′ with at most δ∗(F ) less clauses than F , and

moreover there is a matching satisfying assignment ϕ0 for F ′ which can be extended

to a satisfying assignment ϕ for F using at most δ∗(F ) additional variables. The

proof shows, that every satisfying assignment ϕ for F can be modified (in polynomial

time) to become such an extension by means of flips of (single) variable assignments

such that throughout the whole process we always have a satisfying assignment for

F .14) As an application we obtain in Corollary 4.10 that the hierarchy of clause-sets

given by the parameter δ∗ allows polynomial-time SAT decision for each level; in

Theorem 5.5 we will see that actually this hierarchy is fixed-parameter tractable

by combining the structural results from Subsection 4.3 with the fixed-parameter

tractability of the boolean case.

Having a (restricted) concept C of satisfying assignments, we can “typically”

obtain an autarky system (recall Subsection 3.5) by calling ϕ a “C-autarky” for a

clause-set F if ϕ is a C-satisfying assignment for F [var(ϕ)] (recall Subsection 3.4),

or, equivalently at least for general satisfiability, if ϕ is a C-satisfying assignment

for Fvar(ϕ). We have to leave such a general theory to future work, but in this

article we will consider “matching autarkies” obtained in this way from matching

satisfying assignments in Subsection 4.3. A central notion is the notion of a “tight

sub-clause-set” F ′ of a clause-set F , characterised by the condition δ(F ′) = δ∗(F )

(that is, F ′ realises the maximal deficiency of F ). Translating general results of

matching theory into our setting, the set of tight sub-clause-sets of F form a set-

lattice (i.e, union and intersection of tight sub-clause-sets are again tight), and so

we have a smallest and a largest tight sub-clause-set. In Corollary 4.20 we see that

the smallest tight sub-clause-set of F is identical to the lean kernel of F (obtained

from F by repeated matching-autarky reduction). It follows that if F is matching

lean, then all strict sub-clause-sets of F have a deficiency strictly less than the

deficiency of F (actually, this condition characterises matching leanness, as shown

in Lemma 4.17), and thus, since the empty sub-clause-set has deficiency 0, we obtain

δ(F ) ≥ 1 for non-empty matching lean clause-sets. We remark here, that applying

the general procedure from Lemma 3.1 we obtain polynomial-time computability of

the matching lean kernel (in Corollary 4.19), but that a direct computation using

matching arguments is more efficient (not discussed in this paper, since here we do

not go into algorithmic details).

In Subsection 4.4 the notions of “expansion” and “surplus” are studied, that is, if

we consider arbitrary non-empty sets of variables and all clauses containing at least

one of them, how many more clauses than variables do we have at least? Having

at least a surplus of 1 is by Lemma 4.25 equivalent to being matching lean. One

important application of the surplus is in establishing that by applying a partial

assignment using at most one variable the maximal deficiency must get smaller; this

matter (which leads to fixed-parameter tractability of satisfiability in the maximal

deficiency by the method of “bounded search trees”) is discussed in the remainder

of the subsection.

14)This additional property yields also new information for the boolean case; it is implicitly
contained in the proofs from [14], which are not only generalised here, but also simplified in such
a way, that the construction becomes more lucid.
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Finally, in Subsection 4.5, we reflect on the definition of “deficiency” and “match-

ing autarky” as defined in this article, by comparing it with an earlier version of

these notions (for generalised clause-sets).

Let us close the introduction to this section by two technical remarks:

1. Matching arguments are sensitive to repetition of clauses, and thus in this

section, instead of just using clause-sets we have to use the more general

notion of a multi-clause-set (recall Subsection 3.1).

2. In case of a pure variable v ∈ var(F ) for some F ∈ MCLS (that is, not all

values ε ∈ Dv are used in F ) we assume that Dv contains exactly one value

not used in F (i.e., |Dv| = |valv(F )| + 1); in this way we are not troubled

anymore by the unknown domain size Dv, but we can measure the size of F

just by `(F ), while this modification has no influence on any of the notions

and procedures in this article (all autarky systems studied here are stable for

unused values (recall Subsection 3.6)).

4.1 Matching satisfiable generalised clause-sets

We wish to generalise the notion of “matching satisfiable clause-sets”, introduced

in [31] for boolean clause-sets. Consider a multi-clause-set F together with a de-

composition F = F1 + · · ·+Fm for m ∈ N0 and Fi ∈ MCLS, fulfilling the following

conditions:

(i) for i ∈ {1, . . . ,m} there are variables vi ∈ var(Fi) such that for all clauses

C ∈ Fi we have vi ∈ var(C);

(ii) the variables v1, . . . , vm are pairwise different;

(iii) for all i ∈ {1, . . . ,m} we have |Dvi
| > |valvi

(Fi)|, that is, vi is a pure variable

for Fi.

Given such a decomposition, we see that F is satisfiable, since for each i there exists

εi ∈ Dvi
\ valvi

(Fi), and the assignment 〈vi → εi : i ∈ {1, . . . ,m}〉 is a satisfying

assignment for F (note that none of the variables vi needs to be a pure variable in

F ). If we consider on the other hand an arbitrary partial assignment ϕ satisfying F

with var(ϕ) = {v1, . . . , vm}, and set Fi for i ∈ {1, . . . ,m} as the induced sub-multi-

clause-set of F given by the clauses C ∈ F with vi ∈ var(C) and (vi, ϕ(vi)) /∈ C,

then we obviously fulfil the above conditions, and we see that conditions (i) - (iii)

need to be restricted so that we can obtain a class of satisfiable clause-sets which

is decidable in polynomial time. We observe that c(Fi) ≥ |valvi
(Fi)| is true for

arbitrary multi-clause-sets Fi, and thus condition

(iii)’ for all i ∈ {1, . . . ,m} we have |Dvi
| > c(Fi)

strengthens condition (iii). We call multi-clause-sets F ∈ MCLS having a de-

composition F = F1 + · · · + Fm fulfilling conditions (i), (ii) and (iii)’ matching

satisfiable, and the set of all matching satisfiable (generalised) multi-clause-sets is

denoted by MSAT .

To understand the connection to matching problems, we introduce the bipartite

graph B(F ) for generalised multi-clause-sets F ∈ MCLS:
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• Let
F :=

{

(C, i) : C ∈ F, i ∈ {1, . . . , F (C)}
}

V :=
{

(v, j) : v ∈ var(F ), j ∈ {1, . . . , |Dv| − 1}
}

.

The elements of F are called the clause-nodes, while the elements of V are

called the variable-nodes.

• The vertex set of B(F ) is defined as V (B(F )) := F ·∪ V with canonical bipar-

tition (F , V ).

• The edge set E(B(F )) is the set of all (undirected) edges {(C, i), (v, j)} such

that v ∈ var(C).

In other words, the graph B(F ) has as vertices F (C)-many copies of clauses C ∈ F

together with (|Dv| − 1)-many copies of variables v ∈ var(F ), while edges connect

copies of variables v with copies of clauses C such that v ∈ var(C). We remark that

variables v ∈ var(F ) with trivial domain (i.e., |Dv| = 1) do not occur in B(F ), and

that for boolean clause-sets F the graph B(F ) is the ordinary (bipartite) clause-

variable graph. Consider for example the clause-set F = {C1, C2, C3} with C1 =

{(v1, a), (v2, a)}, C2 = {(v2, b), (v3, b)}, C3 = {(v3, c), (v1, c)}, where Dvi
= {a, b, c}.

Now B(F ) is (suppressing the indices for the clause-copies, since here we just have

a clause-set):

B(F ) = C1

uuuuuuuuu

IIIIIIIII

TTTTTTTTTTTTTTTTTTT C2

uuuuuuuuu

IIIIIIIII

TTTTTTTTTTTTTTTTTTT C3

uuuuuuuuu

cccccccccccccccccccccccccccccccccccccccccccccccccccc

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

(v1, 1) (v1, 2) (v2, 1) (v2, 2) (v3, 1) (v3, 2)

For a set V of variables we obtainB(V ∗F ) from B(F ) by deleting the variable-nodes

(v, j) of B(F ) with v ∈ V , while B(F [V ]) is the induced subgraph of B(F ) given by

the variable-nodes (v, j) of B(F ) with v ∈ V together with their neighbours (those

clause-nodes (C, i) with var(C) ∩ V 6= ∅).

Lemma 4.1 A multi-clause-set F is matching satisfiable iff there exists a matching

in B(F ) covering all vertices of F .

Proof: If F is matching satisfiable, then (using the notations in the definition of

matching satisfiability above) the clause-nodes corresponding to the clause-occur-

rences in Fi can all be covered by the the variable-nodes belonging to vi (since c(Fi)

does not exceed the number of copies of vi), and altogether we obtain a matching

covering all clause-nodes. If (for the other direction) we have a matching in B(F )

covering all vertices of F , then for each variable v involved in the matching consider

a sub-multi-clause-set Fv of F corresponding to the clause-nodes connected via the

matching to the variable-nodes associated with v. These Fv together constitute the

desired decomposition of F .

Using the weighted number of variables wn(F ) :=
∑

v∈var(F )(|Dv| − 1) ∈
N0, the number of vertices of B(F ) is |V (B(F ))| = c(F ) + wn(F ), while the num-

ber of edges is |E(B(F ))| =
∑

v∈var(F ) #v(F ) · (|Dv| − 1). We have wn(F ) =

(
∑

v∈var(F )|Dv|) − n(F ). If F is boolean, then wn(F ) = n(F ).

Let the deficiency of a (generalised) multi-clause-set F be defined as

δ(F ) := c(F ) − wn(F ) ∈ Z,
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while the maximal deficiency is defined as

δ∗(F ) := max
F ′≤F

δ(F ′) ∈ N0

(we have δ∗(F ) ≥ 0 due to δ(>) = 0); by definition we have δ∗(F ) ≤ c(F ). We

remark, that for a domain uniformisation F ′ of F we have δ(F ′) = δ(F ) as well as

δ∗(F ′) = δ∗(F ) (in principle we could consider only multi-clause-sets with uniform

domains here, but the advantages in doing so seem to be negligible).

Considering F ′ ≤ F as a subset of F , the deficiency δ(F ′) of F ′ ≤ F is just the

deficiency of this subset in B(F ) (as we have defined it for arbitrary graphs). By

matching theory the maximal number of nodes of F coverable by some matching

thus is c(F ) − δ∗(F ). Summarising we have (generalising Lemma 7.2 in [31]):

Lemma 4.2 Consider a generalised multi-clause-set F ∈ MCLS.

1. The maximal size of a matching satisfiable sub-multi-clause-set F ′ ≤ F is

c(F ′) = c(F ) − δ∗(F ).

2. F is matching satisfiable if and only if δ∗(F ) = 0.

As an application we can generalise the well-known fact, apparently first men-

tioned in the literature in [50], that if a boolean clause-set F has minimal clause-

length k and maximal variable occurrence k for some k ≥ 1, then F must be

satisfiable (see [22] for recent further developments):

Corollary 4.3 Consider a generalised clause-set F ∈ CLS containing a non-empty

clause. Then

maxv∈var(F ) #v(F )

minC∈F |C|
≤ min

v∈var(F )
|Dv| − 1 =⇒ F ∈ MSAT .

Proof: Assume the condition holds, and consider F ′ ⊆ F . We have to show

δ(F ′) ≤ 0. Let d := minv∈var(F )|Dv|. Then δ(F ′) ≤ c(F ′) − (d − 1)n(F ′), and a

sufficient condition for δ(F ′) ≤ 0 is c(F ′)
n(F ′) ≤ d− 1. Let a := maxv∈var(F ) #v(F ) and

b := minC∈F |C|. We know c(F ′) · b ≤ `(F ′) ≤ n(F ′) · a, and thus c(F ′)
n(F ′) ≤ a

b
.

Since matchings of maximal size can be computed in polynomial time (see Chap-

ter 16 in [48]), we get the following poly-time results:

Lemma 4.4 For every generalised clause-set F ∈ MCLS, in polynomial time in

`(F ) we can compute F ′ ≤ F with F ′ ∈ MSAT such that c(F ′) is maximal. Since

F ′ = F iff F is matching satisfiable, it follows that whether F is matching satisfiable

is decidable in polynomial time. And due to c(F ′) = c(F ) − δ∗(F ) furthermore the

maximal deficiency δ∗(F ) is also computable in polynomial time.

4.2 Satisfying assignments versus matching satisfying assign-
ments

After having established the notion of matching satisfiable (generalised) clause-sets

in the previous paragraph, the first task now, tackled in Subsection 4.2.1, is to in-

troduce and study the corresponding notion of “matching-satisfying assignments”.

For arbitrary clause-sets, matching-satisfying assignments are rare, so we consider
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in Subsection 4.2.2 the question whether at least there are some “good” satisfying

assignments which are matching-satisfying assignments for sub-clause-sets as large

as possible? In Corollary 4.8 we will see that this actually is always the case, and

as a direct application we obtain in Corollary 4.10 polynomial time decidability of

satisfiability for (generalised) (multi-)clause-sets, given that the maximal deficiency

is bounded by some constant. Now in a certain sense this result is superceded by

Theorem 5.5, where we show that satisfiability for (generalised) clause-sets is fixed-

parameter tractable in the maximal deficiency, so what is the point here? I believe

that the underlying method for proving Corollary 4.10 (which is different from the

method underlying Theorem 5.5) is worth further investigations, when considering

the stronger statement in Theorem 4.7 which allows to “repair” arbitrary (partial)

assignments ϕ0 by a sequence of “harmless” variable-flips, obtaining a (partial)

assignment ϕ which satisfies everything which was already satisfied by ϕ0 (and po-

tentially more), while being matching-satisfying for a sub-clause-set of maximal size.

Possible algorithmic applications (for example in the context of local search algo-

rithms) are discussed in Subsection 7.1. The underlying graph-theoretical method,

generalising the augmenting-path method to construct maximum matchings in bi-

partite graphs by allowing “parameterised graphs”, may also be of independent

interest (see Lemma 4.11).

4.2.1 The notion of matching-satisfying assignments

Consider a (generalised) multi-clause-set F ∈ MCLS and a partial assignment

ϕ ∈ PASS . The partial graph Bϕ(F ) of B(F ) is obtained from B(F ) by keeping

(exactly) all edges {(C, i), (v, j)} where ϕ satisfies the literal in C with underly-

ing variable v (while keeping all vertices); in other words, all edges {(C, i), (v, j)}
are eliminated such that for the literal (v, ε) ∈ C we either have v /∈ var(ϕ) or

ϕ((v, ε)) = 0 (i.e., ϕ(v) = ε). So the non-isolated clause-nodes in Bϕ(F ) are (ex-

actly) the clauses satisfied by ϕ, while the isolated variable-nodes in Bϕ(F ) are

(exactly) the variables in F not used by ϕ to satisfy any clause. Now ϕ is called

a matching-satisfying assignment for F if Bϕ(F ) contains a matching covering

all clause-nodes (thus matching satisfying assignments are satisfying assignments).

By Lemma 4.1 we get that F is matching satisfiable iff there exists a matching

satisfying assignment for F , while by computing a maximum matching in B(F ) we

can also efficiently compute a matching-satisfying assignment for matching satisfi-

able multi-clause-sets (compare Lemma 4.4). The following two lemmas give simple

basic properties regarding these notions.

Lemma 4.5 Consider a generalised multi-clause-set F ∈ MCLS and a partial

assignment ϕ ∈ PASS.

1. If ϕ is satisfying for F , then there exists ϕ′ ⊆ ϕ with n(ϕ′) ≤ c(F ) such that

also ϕ′ is satisfying for F . (So for satisfying an arbitrary clause-set we never

need to use more variables than there are clauses.)

2. If ϕ is matching satisfying for F , then there exists ϕ′ ⊆ ϕ with n(ϕ′) = c(F )

such that also ϕ′ is matching-satisfying for F . (So for a matching satisfiable

multi-clause-set there is a matching-satisfying assignment using exactly as

many variables as there are clause-occurrences.)

3. If ϕ is satisfying for F , and there is no ϕ′ ⊆ ϕ with n(ϕ′) < c(F ) such that

ϕ′ is satisfying for F , then ϕ is matching-satisfying for F .
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4. Consider a minimal satisfying assignment ϕ for F w.r.t. the canonical partial

ordering of partial assignments (that is, there is no ϕ′ ⊂ ϕ which still satisfies

F ). Then ϕ is matching-satisfying for F if and only if n(ϕ) = c(F ).

Proof: The partial assignment ϕ′ for Part 1 is obtained by removing edges from

Bϕ(F ) until every clause-node has degree 1, and using then only the variables from

ϕ which are still covered. ϕ′ for Part 2 is obtained in a similar way, only this time

we remove all edges not contained in some (selected) maximum matching of Bϕ(F ).

Part 3 is shown by Hall’s criterion as follows: Assume that there is F ′ ≤ F such that

the number |ΓBϕ(F )(F
′)| of neighbours of F ′ in Bϕ(F ) is strictly smaller than c(F ′),

and let ϕ′ := ϕ | ΓBϕ(F )(F
′) be the restriction of ϕ to these neighbours; by definition

ϕ′ is a satisfying assignment for F ′ with n(ϕ′) < c(F ′). Let F ′′ := F−F ′. With Part

1 there is a satisfying assignment ϕ′′ ⊆ ϕ for F ′′ with n(ϕ′′) ≤ c(F ′′) = c(F )−c(F ′).

Now let ϕ∗ := ϕ′ ∪ ϕ′′; by definition ϕ∗ is a satisfying assignment for F with

n(ϕ∗) ≤ n(ϕ′)+n(ϕ′′) < c(F ′)+c(F )−c(F ′) = c(F ) contradicting the assumption.

Finally Part 4 follows by Parts 2 and 3.

Lemma 4.6 Consider a generalised multi-clause-set F ∈ MCLS and partial as-

signments ϕ, ψ ∈ PASS. If ϕ ◦ ψ is matching-satisfying for F , then ϕ is matching-

satisfying for ψ ∗ F .

Proof: Let M be a matching in Bϕ◦ψ(F ) covering all clause-nodes. The bipartite

graph Bϕ(ψ ∗ F ) is obtained from Bϕ◦ψ(F ) by removing all clause-nodes satisfied

by ψ, removing all variable-nodes assigned by ψ, and finally removing all variable-

nodes where the variable does not occur in ψ ∗ F anymore. Now those edges from

M which are still in Bϕ◦ψ(F ) yield a matching (obviously, since only edges have

been removed) covering all remaining clause-nodes (they were covered before, and

only useless edges have been removed).

4.2.2 Matchings within satisfying assignments

As we already remarked, the matching number ν(B(G)) of the clause-variable graph

of G, the maximum size of a matching in B(G), is ν(G) = c(F ) − δ∗(F ). Obvi-

ously for partial assignments ϕ we have ν(Bϕ(F )) ≤ ν(B(F )); call ϕ matching-

maximum if ν(Bϕ(F )) = ν(B(F )) holds. By Lemma 4.2 we know that there

exists a matching-maximum partial assignment for every clause-set. The main re-

sult of Subsection 4.2 is the following theorem, which states that every partial

assignment can be efficiently repaired by “conservative changes”, so that we obtain

a matching-maximum partial assignment. Here by a conservative change of a

partial assignment ϕ w.r.t. a clause-set F we mean either adding some assignment

v 7→ ε ∈ Dv for some v ∈ var(F ) \ var(ϕ), or performing a conservative flip,

that is, changing the value v ∈ var(ϕ) 7→ ϕ(v) to some ε ∈ Dv \ {ϕ(v)}, obtaining

ϕ′, such that all clauses of F satisfied by ϕ are also satisfied by ϕ′ (note that this

property holds automatically for the first type of change, the extension of ϕ). So

if we have a sequence of conservative changes, then the corresponding sequence of

sub-sets of satisfied clauses is monotonically increasing; especially if we start with

a satisfying assignment, then all partial assignments in the sequence will also be

satisfying assignments.

Theorem 4.7 For a generalised multi-clause-set F ∈ MCLS and a partial assign-

ment ϕ0, in polynomial time a sequence of conservative changes w.r.t. F , starting
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with ϕ0, can be computed such that the finally obtained partial assignment ϕ is

matching-maximum for F .

Before proving this theorem, we derive three corollaries.

Corollary 4.8 For a satisfiable generalised multi-clause-set F ∈ MCLS there ex-

ists a satisfying assignment which is matching-maximum.

We obtain the following generalisation of Theorem 7.16 in [31]:

Corollary 4.9 For every satisfiable generalised multi-clause-set F ∈ MCLS there

exists a partial assignment ϕ ∈ PASS with n(ϕ) ≤ δ∗(F ) such that ϕ∗F is matching

satisfiable.

Proof: By Corollary 4.8 there exists a satisfying assignment ϕ0 for F and F ′ ≤
F with c(F ′) = c(F ) − δ∗(F ), such that ϕ0 is matching-satisfying for F ′. Let

F ′′ := F − F ′. We have c(F ′′) = δ∗(F ) and ϕ0 is satisfying for F ′′, so by Lemma

4.5, Part 1 there exists ϕ ⊆ ϕ0 with n(ϕ) ≤ δ∗(F ) such that ϕ is satisfying for

F ′′. Now ϕ0 = ϕ0 ◦ ϕ is matching-satisfying for F ′, and thus by Lemma 4.6 ϕ0 is

matching-satisfying for ϕ ∗ F ′ = ϕ ∗ F ′ + ϕ ∗ F ′′ = ϕ ∗ (F ′ + F ′′) = ϕ ∗ F .

Corollary 4.10 The satisfiability problem for generalised multi-clause-sets F with

δ∗(F ) ≤ k for constant k ∈ N0 is decidable in polynomial time (and if F is satisfi-

able, then a satisfying assignment can be computed). The algorithm runs through all

partial assignments ϕ with var(ϕ) ⊆ var(F ) and n(ϕ) ≤ δ∗(F ) and checks whether

ϕ∗F is matching satisfiable: If yes then for a matching satisfying assignment ψ for

ϕ∗F we obtain a satisfying assignment ϕ◦ψ for F , while if no matching satisfiable

sub-instance was found in this way, then F is unsatisfiable.

In [49] it was shown, that in the boolean case the satisfiability problem for bounded

maximal deficiency actually is fixed-parameter tractable. By reducing the general

case to the boolean case, we will show fixed-parameter tractability in Theorem 5.5

also for generalised clause-sets.

The remainder of this subsection is devoted to the proof of Theorem 4.7 (gen-

eralising, simplifying and also strengthening the results on “admissible matchings”

in [14]). In order to bring out the general structure of the proof we will present a

more general result (which directly implies Theorem 4.7), exploring “parameterised

maximum matching problems”. We consider the situation where a fixed graph G

is given together with an arbitrary set P 6= ∅ of “parameters” (which in our case

are partial assignments, while G = B(F )) and a mapping ϕ ∈ P 7→ Gϕ, where

Gϕ is a partial graph of G (that is, V (Gϕ) = V (G) and E(Gϕ) ⊆ E(G)). Let us

call this parameterisation matching-optimal, if there exists some ϕ ∈ P such that

ν(Gϕ) = ν(G). A matching-optimal parameterisation does not establish a method

to find some (“good”) ϕ ∈ P where ν(Gϕ) = ν(G) is attained. We consider the

problem that we want to transform some arbitrary starting parameter ϕ0 into such

a good ϕ, and so we assume further that some relation R ⊆ P×P is given such that

a relation ϕRϕ′ indicates an admissible move (in our application ϕRϕ′ holds if ϕ′

results from ϕ by an conservative change). Denoting by R∗ the reflexive-transitive

hull of R (that is, allowing an arbitrary number of admissible moves), we call the

parameterisation strongly matching-optimal, if for every ϕ0 ∈ P there exists ϕ ∈ P
with ϕ0R

∗ϕ and ν(Gϕ) = ν(G).
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In the sequel we only consider bipartite G with a bipartition (A,B). We call the

parameterisation P conditional extensible if for every ϕ ∈ P , every matching M in

Gϕ and every edge e ∈ E(G) \M such that M ′ := M ∪ {e} is a matching in G and

no matching M∗ in Gϕ with M∗ ⊃ M covers the endpoint of e in B, there exists

ϕ′ ∈ P with ϕR∗ϕ′ such that M ′ is a matching in Gϕ′ .

Lemma 4.11 If a parameterised matching problem (G,P) is conditional extensible,

then it is strongly matching-optimal. If furthermore in polynomial time in the size

of G a sequence of admissible moves from ϕ to ϕ′ in any conditional extension can

be found, then in polynomial time (in the size of G) for any ϕ0 ∈ P a sequence of

admissible moves to ϕ ∈ P with ν(Bϕ) = ν(G) can be found.

Before proving Lemma 4.11, we show that in our application, considering B(F )

with the parameterisation by ϕ ∈ PASS 7→ Bϕ(F ) together with R as the relation

of conservative change, the property of conditional extensibility holds true. So we

consider the situation where we have a maximal matching M in Bϕ(F ), where an

edge {C, v} in B(F ) exists with uncovered endpoints, and we show that by just one

conservative change we can extend M by this additional edge.

Lemma 4.12 Consider a generalised multi-clause-set F ∈ MCLS, a partial as-

signment ϕ ∈ PASS, a matching M in Bϕ(F ) and an edge {(C0, i), (v0, j)} ∈
E(B(F )) such that neither C := (C0, i) nor v := (v0, j) is covered by M . We assume

furthermore that no matching M∗ ⊃M in Bϕ(F ) covers v. Let M ′ := M∪{{C, v}}.
By definition M ′ is a matching in B(F ), and furthermore there exists a conservative

change for ϕ w.r.t. F , resulting in ϕ′, such that M ′ is a matching in Bϕ′(F ).

Proof: Let (v0, ε0) ∈ C0. If v0 /∈ var(ϕ), then ϕ′ := ϕ ◦ 〈v0 → ε〉 for any

ε ∈ Dv0 \ {ε0} yields the required conservative change; so assume v0 ∈ var(ϕ). Now

we have ϕ(v0) = ε0, since otherwise M ′ would be a matching in Bϕ(F ) covering

v. Let E be the set of values ε ∈ Dv0 occurring in M , that is, there is some edge

{(C′
0, i

′), (v0, j
′)} ∈ M with (v0, ε) ∈ C′

0. Since v is not covered by M and M is a

matching, M can cover at most (|Dv0 |−1)−1 many variable-nodes with underlying

variable v0, and so we have |E| ≤ |Dv0 | − 2. Thus there is ε′ ∈ Dv0 \ {ε0}. Set

ϕ′ := ϕ◦〈v0 → ε′〉. By definition M ′ is a matching in Bϕ′(F ). Now consider a clause

D ∈ F falsified by ϕ′, and assume that D is not falsified by ϕ. Thus (v0, ε
′) ∈ D, and

the literal (v0, ε
′) is the only literal in D satisfied by ϕ. So no clause-node covered by

M has clause D associated with it. It follows that M∗ := M ∪ {{(D, 1), v}} would

be a matching in Bϕ(F ) extending M and covering v, contradicting the assumption

of the assertion.

Thus by Lemma 4.11 now Theorem 4.7 is proven. In the remainder of this

subsection we prove Lemma 4.11. The reader might recall the preliminaries on

matchings (Subsection 2.2), where the notion of an M -augmenting path P for a

matching M in a graph G is discussed; a larger matching M+ is obtained by adding

the edges from P to M , which are not in M , while removing the other edges of P

from M . In order to perform the “relinking”, necessary for the transition from M

to M+, we show an auxiliary lemma.

Lemma 4.13 As in Lemma 4.11 consider a conditional extensible parameterised

matching problem (G,P), where (A,B) is a bipartition of G. Consider furthermore

ϕ ∈ P, a maximal matching M in Gϕ, an edge e = {a, b} ∈ M with a ∈ A, b ∈ B,

and an edge e′ = {a, b′} ∈ E(G) where b′ is not covered by M . Then by at most
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one conditional-extension-step we obtain a parameter ϕ′ ∈ P with ϕR∗ϕ′ such that

M ′ := (M \ {e}) ∪ {e′} is a matching in Gϕ′ .

Proof: If M ′ is a matching in Gϕ, then we are done. Otherwise we have e′ /∈
E(Gϕ); let M0 := M \ {e}. We want to apply conditional extension to M0 and

M ′ = M0 ∪ {e′} (if we succeed then we are done), so we have to show that there

is no matching M∗
0 in Gϕ covering b′ with M0 ⊂ M∗

0 . Assume the contrary, and

consider the edge {x, b′} ∈M∗
0 : Since G is a graph (no parallel edges) we have x 6= a,

and thus M ∪{{x, b′}} is a matching in Gϕ (using bipartiteness of G) contradicting

maximality of M .

Now we are in a position to prove Lemma 4.11; it suffices to show that for

any given ϕ ∈ P and a matching M in Gϕ with |M | < ν(G), by a polynomial

number of extension steps we can find ϕ′ with ϕR∗ϕ′ and a matching M ′ in Gϕ′

with |M ′| > |M | (by repeating this process we finally obtain a maximum matching

for G). If M is not maximal in Gϕ, then we can add one edge while keeping ϕ

and we are done, so assume that M is maximal in Gϕ. Since M is not a maximum

matching in G, there exists an M -augmenting path P in G. P is of the form

(v0, . . . , vm) for (pairwise) different vertices vi and m odd, such that v0, vm are not

covered by M and such that for 0 ≤ i < m we have {vi, vi+1} /∈ M for even i,

while for odd i we have {vi, vi+1} ∈ M . W.l.o.g. vi ∈ B for all even i. The first

task is for odd i < m to replace the edge {vi, vi+1} by {vi, vi−1}, using Lemma

4.13; we proceed consecutively for i = 1, 3, . . . , where if at some point Lemma 4.13

is not applicable, then we constructed a matching of the same size as M which is

not maximal w.r.t. its parameter, and so we obtain M ′ by enlarging this matching.

Otherwise, if the process goes through, then at the end we obtain a matching M ′
0

in Gϕ′
0

where |M ′
0| = |M | and vm−1, vm are not covered by M ′

0. Again, if M ′
0 is

not maximal, then we get the required larger M ′, while otherwise we can apply

conditional extension, obtaining M ′ := M ′
0 ∪ {{vm−1, vm}}. QED

4.3 Matching autarkies for generalised clause-sets

A partial assignment ϕ is called a matching autarky for F ∈ MCLS if ϕ is

matching-satisfying for Fvar(ϕ), which is equivalent to ϕ being matching-satisfying

for F [var(ϕ)]. The set of all matching autarkies for F is denoted by MAuk(F ).

Generalising Lemma 7.1 and the remarks in Section 8 of [31] we get

Lemma 4.14 It is F ∈ MCLS 7→ MAuk(F ) ⊆ Auk(F ) a normal autarky system.

We denote by Nma := NMAuk the normal form for multi-clause-sets obtained by

eliminating all matching autarkies. According to our general results and definitions

on autarky systems, the set of MAuk-satisfiable multi-clause-sets is just MSAT ,

the set of matching satisfiable multi-clause-sets. The set of MAuk-lean clause-sets

is denoted by MLEAN , its elements are called matching lean multi-clause-sets.

We now seek to characterise MLEAN , and to compute Nma(F ) in polynomial time.

A sub-multi-clause-set F ′ ≤ F of a multi-clause-set F ∈ MCLS is called tight if

δ(F ′) = δ∗(F ) holds. If F ′ is tight for F , then F ′ is an induced sub-multi-clause-set

of F . By supermodularity of the deficiency (for graphs) we immediately get

Lemma 4.15 Union and intersection of tight sub-multi-clause-sets of multi-clause-

sets are again tight. So the tight sub-clause-sets of a clause-set form a set-lattice

with smallest and largest element.
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Generalising Lemma 7.3 in [31], we obtain the fundamental relationship be-

tween tight sub-multi-clause-sets and matching autarkies, namely that application

of matching autarkies does not reduce the deficiency, and application of suitable

matching autarkies also allows to realise the maximal deficiency.

Lemma 4.16 Consider a generalised multi-clause-set F ∈ MCLS.

1. For every autarky ϕ for F we have δ(ϕ ∗ F ) = δ(F ) − δ(F [var(ϕ)]).

2. For every matching autarky ϕ for F we have δ(ϕ ∗ F ) ≥ δ(F ), and thus

δ∗(ϕ ∗ F ) = δ∗(F ).

3. Consider an induced sub-multi-clause-set F ′ of F .

(a) δ∗(var(F ′) ∗ (F − F ′)) ≤ δ∗(F ) − δ(F ′).

(b) If F ′ is tight, then there is a matching autarky ϕ for F with ϕ ∗F = F ′.

Proof: For Part 1 note that by definition we have

c(F ) = c(ϕ ∗ F ) + c(F [var(ϕ)]), n(F ) = n(ϕ ∗ F ) + n(F [var(ϕ)])

due to F = ϕ ∗ F + Fvar(ϕ). Part 2 follows from Part 1. For Part 3a consider

G ≤ var(F ′) ∗ (F − F ′). There exists G0 ≤ F − F ′ with var(F ′) ∗G0 = G. Now

δ∗(F ) ≥ δ(F ′ +G0) = c(F ′ +G0) − wn(F ′ +G0) =

c(F ′) + c(G) − wn(F ′) − wn(G) = δ(F ′) + δ(G),

and thus δ(G) ≤ δ∗(F )− δ(F ′). Now Part 3b follows immediately from Part 3a due

to δ∗(var(F ′) ∗ (F − F ′)) ≤ δ∗(F ) − δ(F ′) = 0, i.e., F − F ′ is a matching autark

sub-multi-clause-set of F .

Generalising Theorem 7.5 in [31], we now can characterise matching lean multi-

clause-sets:

Lemma 4.17 Consider a generalised multi-clause-set F ∈ MCLS. The following

conditions are equivalent:

1. F is matching lean;

2. ∀C ∈ F : δ∗(F − {C}) < δ∗(F );

3. ∀F ′ � F : δ(F ′) < δ(F );

4. F is a tight sub-multi-clause-set of F , and there are no other tight sub-multi-

clause-sets of F .

Proof: From Part 1 follows Part 4 by Lemma 4.16, Part 3b. Obviously, Part 4

implies Part 3, and Part 3 implies Part 2. Finally, Part 1 follows from Part 2 by

Lemma 4.16, Part 2.

By Lemma 4.17, Part 2 we get

Corollary 4.18 It is decidable in polynomial time, whether a generalised multi-

clause-set F ∈ MCLS is matching lean.

Thus by Lemma 3.1:
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Corollary 4.19 The matching lean kernel Nma(F ) for generalised multi-clause-sets

F ∈ MCLS is computable in polynomial time.

By Lemma 4.17, Part 4 together with Lemma 4.16, Part 3b we get

Corollary 4.20 For every generalised multi-clause-set F ∈ MCLS the lean kernel

Nma(F ) is the intersection of all tight sub-multi-clause-sets of F . Thus Nma(F ) is

the smallest tight sub-multi-clause-set of F , and therefore δ∗(F ) = δ(Nma(F )).

Using δ(>) = 0, from Lemma 4.17, Part 3 we get the following generalisation of

“Tarsi’s Lemma” (see [1]):

Corollary 4.21 If the generalised multi-clause-set F 6= > is matching lean, then

δ∗(F ) = δ(F ) ≥ 1.

Obviously MUSAT ⊂ LEAN , and thus:

Corollary 4.22 If a generalised clause-set F ∈ CLS is minimally unsatisfiable,

then we have δ∗(F ) = δ(F ) ≥ 1.

In [9], Theorem 4.5, arbitrary constraints over boolean variables are considered,

and a lower bound on the number of clauses in terms of the number of variables for

minimally unsatisfiable constraint satisfaction problems is derived, which necessarily

is much weaker than Corollary 4.22. Considering minimally unsatisfiable clause-sets

of minimal deficiency, we observe that removing any clause from a matching lean

multi-clause-set F with δ(F ) = 1 yields a matching satisfiable multi-clause-set, and

thus

Corollary 4.23 MUSATδ=1 = MLEANδ=1 ∩ USAT .

The class MUSATδ=1 of minimally unsatisfiable clause-sets of minimal deficiency

is characterised in Theorem 6.16, and so we have a good understanding of the

unsatisfiable elements of MLEANδ=1. The satisfiable elements of MLEANδ=1 on

the other hand seem to have a more complicated nature, where the interest in this

class may be justified by the following property.

Corollary 4.24 The class MLEANδ=1 of matching lean generalised clause-sets of

deficiency 1 is exactly the class of all minimally matching unsatisfiable clause-sets

(clause-sets which are not matching satisfiable, while every strict subset is matching

satisfiable).

We conclude this subsection with an interesting example for a satisfiable boolean

F ∈ MLEANδ=1 with n(F ) = 8, exhibited in Section 5 of [33], whose clause-

variable matrix is as follows (the rows correspond to the clauses, the columns to

the variables, where an entry “±” denotes a positive/negative occurrence, while 0
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denotes non-occurrence):

M(F ) =































+ 0 + 0 0 0 0 +

+ 0 − + 0 0 0 0

− − 0 0 0 + + 0

− − 0 0 − − 0 0

0 + − − − 0 0 0

0 0 0 − + 0 − −
− 0 0 0 + − 0 +

− 0 0 + 0 + − 0

0 + + 0 0 0 + −































.

Obviously δ(F ) = 1. Since every two different rows clash in exactly one element,

F is a 1-regular hitting clause-set. Every column contains at least two − and two

+, and thus every variable occurs at least two times negatively as well as positively

(the purpose of this example was to refute a conjecture of Endre Boros, that every

boolean 1-regular hitting clause-set of deficiency 1 must contain a variable occurring

in one sign only once). To demonstrate that F is matching lean, consider the

following subgraph of B(F ):

c6 v4 c2 v1

c3 v2 c4 v5 c5 v3 c1

AAAAAAAA

~~
~~

~~
~~

c7 v6 c8 v7 c9 v8

Here variable-nodes corresponding to row j are denoted by vj , and clause-nodes

corresponding to row i by ci. This subgraph has the special properties, that it is

a spanning tree, where the variable-nodes all have degree 2. From these properties

by Corollary 4.26 in the next subsection it follows, that F is matching lean.15)

4.4 Expansion and the surplus

In this subsection we generalise the results from [49] related to the notions of “expan-

sion” and “surplus”, yielding also a simplified proof that satisfiability for boolean

multi-clause-sets F is fixed-parameter tractable w.r.t. the parameter δ∗(F ). The

main tool here is a poly-time reduction S : MCLS → MCLS (see Lemma 4.33)

with the properties, that the maximal deficiency is not increased and that we have

for all variables v ∈ var(S(F )) and all ε ∈ Dv the upper bound

δ∗(〈v → ε〉 ∗ S(F )) ≤ δ∗(S(F )) − 1

(see Corollary 4.29). Thus by a trivial DLL branching algorithm, using additionally

only the reduction F 7→ S(F ) at each node, we obtain SAT decision for F in time

15)This can also be seen directly as follows. For a graph G let δ(G) := |E(G)| − |V (G)|. Using
κ(G) for the number of connected components of G, we have that G is a forest iff δ(G) = −κ(G)
(while for every graph G we have δ(G) ≥ −κ(G)). Now consider any non-empty set V ′ of variable-
nodes in the above forest F (that actually we have a tree is irrelevant) together with the induced
sub-graph F ′ given by V ′ ∪ ΓF (V ′). Since also F ′ is a forest we have δ(F ′) ≤ −κ(F ′) ≤ −1,
where |E(F ′)| = 2|V ′| and |V (F ′)| = |V ′| + |ΓF′(V ′)|, and thus |ΓF′ (V ′)| ≥ |V ′| + 1, where
|ΓF′(V ′)| ≤ δ(F [V ′]) + |V ′|, so that δ(F [V ′]) ≥ 1. Since this holds for every non-empty V ′, it
follows that F cannot have a non-trivial matching autarky.
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(maxv∈var(F )|Dv|)δ
∗(F ) · poly(`(F )) (in Theorem 5.5 we actually obtain the upper

bound 2δ
∗(F ) ·poly(`(F )) also for non-boolean clause-sets, exploiting the translation

to boolean clause-sets).

For multi-clause-sets F we have defined the bipartite graph B(F ) together with

its canonical bipartition (F , V ). The general definition of deficiency (for arbitrary

graphs) then yields the deficiency δB(F )(F
′) = |F ′| − |ΓB(F )(F

′)| for sets F ′ ⊆ F

of clause-nodes, as well as the deficiency δB(F )(V
′) = |V ′| − |ΓB(F )(V

′)| for sets

V ′ ⊆ V of variable-nodes. So we have a “clause-based deficiency” as well as a

“variable-based deficiency”. Identifying F ′ with a sub-multi-clause-set of F , we have

|F ′| = c(F ′) and ΓB(F )(F
′) = wn(F ′), and thus δB(F )(F

′) (the graph-theoretical

deficiency of sets of clause-nodes) is the same as the deficiency of multi-clause-sets

as we have defined it in Subsection 4.1. At first sight, the situation for V ′ seems not

to be naturally interpretable on the level of multi-clause-sets, since V ′ may contain

for some variable v only some of the |Dv| − 1 copies of v. To consider this problem,

let V ′′ the the set of variable-nodes obtained from V ′ by adding for (v, i) ∈ V ′ all

(v, j) for j ∈ {1, . . . , |Dv| − 1}. Now we have

δB(F )(V
′′) = −δ(F [V ′

0 ]),

where V0 is the set of variables in V ′ (or V ′′). Since δB(F )(V
′) ≤ δB(F )(V

′′) due

to ΓB(F )(V
′) = ΓB(F )(V

′′), we see that actually, since we are only interested in

maximising the deficiency, also the variable-based deficiency has a sensible inter-

pretation at the (conceptual) level of multi-clause-sets. Now two changes are applied

to the variable-based deficiency, resulting in the notion of “expansion” related to

deficiency of a set of variables (analogous to the deficiency of a (sub-)multi-clause-

set), and in the notion of “surplus” related to the maximal deficiency over all sets

of variables (analogous to the maximal deficiency of a multi-clause-set). The first

change is just to switch signs, so that we can use δ(F [V ′
0 ]) instead of −δ(F [V ′

0 ]).

More substantially, we exclude the empty set of variables for the surplus: The max-

imal deficiency δ∗(F ) of a multi-clause-set is only used to determine the size of a

maximal matching in B(F ), and so negative deficiencies are not of interest (they

indicate that a bigger matching number is possible — if only there would be more

clauses), whence the empty clause-set is taken into account in δ∗(F ) for convenience,

to force the maximal deficiency to be at least 0. But now for the notion of surplus

actually we are only interested in the negative values, that is, in the “surplus” which

cannot be realised, and thus the empty set of variables has to be excluded. After

these motivations, let us now start with the formal definitions.

For a multi-clause-set F and a set V of variables let the expansion be defined

as δ(F [V ]). As explained above, using the deficiency δB(F ) in the (bipartite) graph

B(F ), the expansion equals −δB(F )(V
′), where V ′ is the set of variable nodes of

B(F ) associated with some variable in V . The surplus of F is defined as

σ(F ) :=

{

min∅6=V⊆var(F ) δ(F [V ]) if var(F ) 6= ∅

0 if var(F ) = ∅
.

The surplus of F equals the surplus of B(F ) as defined in Subsection 1.3 of [44]

(but with the sides of the bipartition switched(!)). By definition we have σ(F ) ≤
δ(F [var(F )]) = δ(F ) − F (⊥) ≤ δ(F ). Generalising Lemma 7.7 in [31] we have:

Lemma 4.25 A generalised multi-clause-set F ∈ MCLS \ {>} is matching lean if

and only if σ(F ) ≥ 1. More specifically, for any generalised multi-clause-set F we

have:
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For ∅ 6= V ⊆ var(F ) in case of δ(F [V ]) ≤ 0 it has F [V ] a non-trivial matching

autarky; such a non-trivial matching autarky yields a non-trivial matching autarky

for F , and every non-trivial matching autarky of F can be obtained in this way.

Proof: If F is matching lean, then by Lemma 4.14 for V ⊆ var(F ) also F [V ] is

matching lean, and thus by Corollary 4.21 we get σ(F ) ≥ 1. If on the other hand F

is not matching lean, then there exists ∅ 6= V ⊆ var(F ) such that F [V ] is matching

satisfiable (where V is the variable set of any non-trivial matching autarky), i.e.,

δ∗(F [V ]) = 0, and thus σ(F ) ≤ 0.

By Theorem 1.3.8 in [44] we obtain the following characterisation of matching

lean clause-sets:

Corollary 4.26 A generalised multi-clause-set F is matching lean if and only if

there exists a subgraph F of B(F ) with the following properties:

(i) F is a forest;

(ii) F covers all variable-nodes;

(iii) every variable-node has degree 2 in F .

An example for the application of Corollary 4.26 has been given at the end of

Subsection 4.3. The problem of computing σ(F ) can be solved by Theorem 1.3.6 in

[44] as follows (compare Lemma 15 in [49] for the case of boolean clause-sets):

Lemma 4.27 Consider a generalised multi-clause-set F and a maximum matching

M for B(F ).

1. If M does not cover all variable-nodes, then σ(F ) = |M |−wn(F ) < 0 (that is,

σ(F ) is the number of uncovered variable-nodes, multiplied by −1). Otherwise

we have σ(F ) ≥ 0.

2. Assume σ(F ) ≥ 0, and consider s ∈ N0, s ≤ δ(F ). For v ∈ var(F ) with

|Dv| ≥ 2 (trivial variables are ignored) let Fs,v be the multi-clause-set obtained

from F by adding s new elements to the domain of v (that is, a new variable

v′ with Dv ⊆ Dv′ and |Dv′ | = |Dv| + s is chosen, and Fs,v is obtained by

replacing v by v′ in F ). Let Ms,v be a maximum matching in B(Fs,v). Then

we have:

(a) If Ms,v does not cover all variable-nodes in B(Fs,v), then σ(F ) < s, and

moreover, from Ms,v in linear time in `(F ) a set ∅ 6= V ⊆ var(F ) with

δ(F [V ]) < s can be computed .

(b) If for all v the maximum matching Ms,v covers all variable-nodes in

B(Fs,v), then σ(F ) ≥ s.

Lemma 4.25 together with Lemma 4.27 yields an alternative to the computation

of Nma(F ) as given in Corollary 4.19. The next lemma tackles the problem of giving

a sufficient criterion for δ∗(〈v → ε〉 ∗F ) < δ∗(F ); Part 3 generalises Lemma 7.10 in

[31] (the proof there is technically not fully correct).

Lemma 4.28 Consider a generalised multi-clause-set F ∈ MCLS.
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1. For F ′ ≤ F we have

δ(F ′) = δ(F ) − δ(F [var(F ) \ var(F ′)]) − η(F, F ′)

≤ δ(F ) − δ(F [var(F ) \ var(F ′)]),

where η(F, F ′) := c(F )− c(Fvar(F )\var(F ′))− c(F
′) ≥ 0 is the number of clause

occurrences in F of clauses C with var(C) ⊆ var(F ′) but not occurring in F ′.

2. For F ′ ≤ F we have δ(F ′) ≤ δ(F ) − min(c(F ) − c(F ′), σ(F )).

3. Consider v ∈ var(F ). Then for ε ∈ Dv we have

δ∗(〈v → ε〉 ∗ F ) ≤ δ(F ) − min(s(v,ε)(F ), σ(F )) + |Dv| − 1.

Thus, using mv(F ) := minε∈Dv
s(v,ε)(F ), we obtain

δ∗(〈v → ε〉 ∗ F ) ≤ δ(F ) − min(mv(F ), σ(F )) + |Dv| − 1.

Proof: For Parts 1 and 2 let V := var(F ) \ var(F ′).

The equation in Part 1 follows immediately with δ(F ) = c(F ) − wn(F ) and

δ(F [V ]) = c(F [V ]) − wn(F [V ]), where due to var(F [V ]) = V we have wn(F [V ]) =

wn(F ) − wn(F ′). And that η(F, F ′) ≥ 0 holds follows with the explanation given.

For Part 2 we consider two cases. If n(F ′) = n(F ), then δ(F ′) = δ(F ) −
(c(F ) − c(F ′)). So assume n(F ′) < n(F ) (and thus V 6= ∅). By Part 1 we have

δ(F ′) ≤ δ(F ) − δ(F [V ]), and thus by δ(F [V ]) ≥ σ(F ) we get δ(F ′) ≤ δ(F ) − σ(F ).

For Part 3 consider an induced F ′ ≤ 〈v → ε〉 ∗F , and let F ′′ ≤ F be the unique

sub-multi-clause-set of F with c(F ′′) = c(F ′) and 〈v → ε〉 ∗ F ′′ = F ′. We have

wn(F ′′) ≤ wn(F ′) + |Dv| − 1, and thus δ(F ′′) ≥ δ(F ′) − |Dv| + 1.

By part 2 we get δ(F ′′) ≤ δ(F ) − min(c(F ) − c(F ′′), σ(F )), where c(F ′′) ≤
c(F ) − s(v,ε)(F ), and the assertion follows.

For a matching lean boolean clause-set F , Part 3 of Lemma 4.28 yields the upper

bound δ∗(〈v → ε〉 ∗F ) ≤ δ(F ) for non-pure variables v (using Lemma 4.25); we are

interested in cases where the maximal deficiency actually decreases:

Corollary 4.29 If for a generalised clause-set F and a variable v ∈ var(F ) we

have mv(F ) ≥ |Dv| (using the definition of mv(F ) as in Lemma 4.28, Part 3) and

σ(F ) ≥ |Dv|, then we have δ∗(〈v → ε〉 ∗ F ) ≤ δ(F ) − 1.

It is unclear, whether Corollary 4.29 is best possible — the condition σ(F ) ≥
|Dv| is hard to establish for larger domain sizes. The key seems to be to improve

the estimation used in the proof of Lemma 4.28, Part 3. By singular DP-reduction

we can eliminate cases with mv < |Dv| as follows.

Lemma 4.30 Consider a generalised multi-clause-set F ∈ MCLS and v ∈ var(F ).

1. Assume v is not pure in F . Then v is a singular DP-variable for F if and

only if mv(F ) < |Dv| (where mv(F ) is as defined in Part 3 of Lemma 4.28).

2. Assume v is a singular DP-variable.

(a) δ(DPv(F )) ≤ δ(F ).

(b) If v is non-degenerated, then we have
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i. δ(DPv(F )) = δ(F ).

ii. F is matching lean if and only if DPv(F ) is matching lean.

iii. If F is matching lean, then we have δ∗(DPv(F )) = δ∗(F ).

Proof: The only non-obvious assertion is 2(b)ii (using the remarks made before

Lemma 3.4, and Lemma 4.17). Let Dv = {ε1, . . . , εk} (k = |Dv|), and assume

w.l.o.g. that #(v,εi)(F ) = 1 for i < k; consider C1, . . . , Ck−1 ∈ F with (v, εi) ∈ Ci for

i < k, and let D1, . . . , Dm ∈ F be the clauses containing (v, εk) (m = #(v,εk)(F )).

Thus F{v} = {C1, . . . , Ck−1} +
∑m
i=1{Di}. Now with F ′ := F − F{v} we have

DPv(F ) = F ′ +R,

where R :=
∑m
i=1

{

Ri
}

and Ri := C1 ∪ · · · ∪ Ck−1 ∪ Di for i ∈ {1, . . . ,m}. First

assume that F is matching lean, but that we have a non-trivial matching autarky

ϕ for DPv(F ) with var(ϕ) ⊆ var(DPv(F )) = var(F ) \ {v}. Let V := var(ϕ). If

V ∩ var(R) = ∅, then ϕ would also be a matching autarky for F , since var(R) =

var(F{v}) \ {v}. So assume V ∩ var(R) 6= ∅. If there exists i ∈ {1, . . . ,m} with

var(Di) ∩ V = ∅, then for all j < k we have var(Cj) ∩ V = ∅, and it follows, that ϕ

would also be a matching autarky for F . So assume that for all i ∈ {1, . . . ,m} we

have var(Di)∩V 6= ∅. Now 〈v → εk〉 ◦ϕ is a matching autarky for F , contradicting

matching leanness of F .

For the reverse direction assume that DPv(F ) is matching lean, but that we have

a non-trivial matching autarky ϕ for F . Now it is not hard to see that ϕ is also a

matching autarky for DPv(F ).

Corollary 4.31 There is a polynomial time computable map r : MCLS → MCLS,

such that for a generalised multi-clause-set F we have:

(i) n(r(F )) ≤ n(F ), c(r(F )) ≤ c(F ) and δ∗(r(F )) ≤ δ∗(F ).

(ii) r(F ) is satisfiability-equivalent to F .

(iii) r(F ) is matching lean.

(iv) r(F ) is lean w.r.t. pure autarkies (i.e., r(F ) does not contain pure variables).

(v) r(F ) does not contain singular DP-variables.

Computation of r(F ) is as follows:

1. Apply singular DP-degeneration reduction and reduction by pure autarkies and

matching autarkies as long as possible.

2. If there exists a singular DP-variable, then it must be non-degenerated, thus

applying DP-reduction does not increase the maximal defect by Part 2(b)iii of

Lemma 4.30, so apply this reduction and go to Step 1. Otherwise output r(F )

and stop.

The next lemma contains the main idea for establishing a surplus of two.

Lemma 4.32 Consider a multi-clause-set F ∈ MLEAN , such that for all vari-

ables v ∈ var(F ) we have #v(F ) ≥ |Dv| + 1, and assume that V ⊆ var(F ) is given

with δ(F [V ]) = 1. Then F [V ] is satisfiable, and a satisfying assignment ϕ with

var(ϕ) ⊆ var(F [V ]) can be found in polynomial time. (With ϕ thus we have found

a non-trivial autarky for F .)
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Proof: Assume that F [V ] is unsatisfiable. By Corollary 4.23 thus we have F [V ] ∈
MUSATδ=1 which would contain a variable occurring in all signs exactly once

(see the later Lemma 6.15, whose proof does not make use of the results of this

subsection) contradicting the assumption. So F [V ] is satisfiable, and a satisfying

assignment ϕ can be found by Corollary 4.10.

Strengthening Corollary 4.31 we get now:

Lemma 4.33 There is a polynomial time computable map S : MCLS → MCLS,

such that for a generalised multi-clause-set F we have:

(i) n(S(F )) ≤ n(F ), c(S(F )) ≤ c(F ) and δ∗(S(F )) ≤ δ∗(F ).

(ii) S(F ) is satisfiability-equivalent to F .

(iii) S(F ) is matching lean and lean w.r.t. pure autarkies, and does not contain

singular DP-variables.

(iv) If var(S(F )) 6= ∅, then σ(S(F )) ≥ 2.

Computation of S(F ) is as follows:

1. First reduce F := r(F ) (see Corollary 4.31).

2. If var(F ) = ∅ or σ(F ) ≥ 2 then stop.

3. Otherwise find some ∅ 6= V ⊆ var(F ) with δ(F [V ]) = σ(F ) = 1 by Lemma

4.27, Part 2; by Lemma 4.32 we can now find a non-trivial autarky ϕ for F :

reduce F := ϕ ∗ F , and go to Step 1.

If we only allow boolean clause-sets, then, as explained at the beginning of this

subsection, we obtain fixed-parameter tractability of satisfiability decision w.r.t. the

parameter δ∗(F ) by Lemma 4.33 and Corollary 4.29 (together with Lemma 4.30,

Part 1). Finally we mention, that a good possibility for further improvements is to

generalise and strengthen the approach from [26] based on matroid theory.

4.5 Comparison with an earlier version of “matching au-
tarkies”

In [30] an earlier version of matching autarkies has been introduced, which we will

call here “non-repetitive matching autarkies”: A partial assignment ϕ is called

non-repetitive matching satisfying for a multi-clause-set F ∈ MCLS, if for every

clause-occurrenceC in F (taking multiple occurrences into account) a literal xC ∈ C

can be chosen with ϕ(xC) = 1 such that for different clause-occurrences C,C′ we

have xC 6= xC′ . And ϕ is called a non-repetitive matching autarky for F if ϕ is

non-repetitive matching satisfying for Fvar(ϕ).

Recalling the three conditions (i) - (iii) from Subsection 4.1 and strengthening

condition (i) to

(i)’ for i ∈ {1, . . . ,m} there are variables vi ∈ var(Fi) such that for all clause-

occurrence C in Fi there are literals xC ∈ C with var(xC) = vi, and such that

for different clause-occurrences C,C′ we have xC 6= xC′ ;
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we get that F is non-repetitive matching satisfiable iff F has a decomposition ful-

filling (i)’, (ii) and (iii). By (i)’ we get c(Fi) = |valvi
(Fi)|, and thus from (iii) follows

(iii)’. Whence a non-repetitive matching satisfying assignment ϕ for F is matching

satisfying for F , and a non-repetitive matching autarky for F is also a matching

autarky for F .

For boolean clause-sets non-repetitive matching autarkies are the same as match-

ing autarkies, but in general non-repetitive matching autarkies are more restrictive

than matching autarkies; examples for (multi-)clause-sets F1, F2 which are match-

ing satisfiable but are lean w.r.t. non-repetitive matching autarkies are discussed

in Subsection 5.3. These examples actually show that non-repetitive matching au-

tarkies are preserved by the standard translation of (generalised) clause-sets into

boolean clause-sets, which in general is not the case for matching autarkies, and so

perhaps non-repetitive matching autarkies are preferable over matching autarkies?

The main problem with the notion of non-repetitive matching autarkies is that

it does not seem to support a natural notion of related deficiency (with the same

nice properties as the combination of matching autarkies and (standard) deficiency),

and, related to this problem, it does not seem obvious how to achieve polynomial

time decision of the class of non-repetitive matching lean (multi-)clause-sets. The

whole problem boils down to the point, that non-repetitive matching autarkies do

not seem to be given solely by a matching condition, but require some other form of a

more global condition. Thus, to conclude, the generalisation of (boolean) matching

autarkies together with the generalisation of (boolean) deficiency introduced in this

section seems to be the right choice, as demonstrated by the theory build up in

this section, and as further validated by the results in the following sections on the

standard translation and on minimally unsatisfiable clause-sets of deficiency one.

5 Translating generalised clause-sets into boolean

clause-sets

In this section we investigate translations of generalised clause-sets into boolean

clause-sets. Different from previous research (for an overview see [47]), here we are

not interested in experimental results (and how good different translations perform

in various experiments for different SAT solvers), but we are interest in structure-

preserving translations. At least regarding our focus on (matching) autarkies and

the deficiency, the only reasonable possibility here seems to be what in [47] has been

coined the “multivalued encoding”, which is the “standard translation”, but without

AMO (“at most one”) clauses (since these many binary clauses would destroy the

combinatorial structures we are considering):

• For every literal (v, ε) we consider a boolean variable τ ((v, ε)) expressing that

v shall not get value ε.16)

• Clauses C are translated into (positive) boolean clauses τ(C) by replacing

each literal x ∈ C with the (positive) boolean literal τ(x).

• We add “ALO clauses” requiring that each variable gets at least one value (if

it gets more than one value, then one of the values can be chosen).

16)In the literature typically the variables denote “v shall get value ε”, which results only in
flipping signs here, but as hopefully this articles helps to point out, for conjunctive normal form
falsity is the norm (while for disjunctive normal forms verity is the norm), and thus our choice.
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In [30] in Subsection 4.5 (“An autarky preserving reduction to boolean clause-

sets”) it has already been stated that the standard translation not only preserves

satisfiability, unsatisfiability and minimally unsatisfiability, but also leanness. We

have to expand these results especially regarding the notions of matching autarkies

and deficiency, since in [30] only a restricted notion of “matching autarkies” has

been used (recall Subsection 4.5) without an associated notion of deficiency

Another source relevant here is [2], where “monosigned CNF formulas” are trans-

lated, a generalisation of “generalised clause-sets” allowing also to express that a

variable must get a certain value; in other words, where our literals (v, ε) express

“v 6= ε”, for monosigned formulas also “positive” literals “v = ε” are allowed. This

generalisation can be motivated by the fact, that these formulas are exactly those

which can be translated by the standard translation; however the price which have to

be paid here is that now the AMO clauses are necessary in the standard translation!

This adds further to the point we want to make, that generalised clause-sets in our

definition (allowing only “negative literals”) are the appropriate generalisation of

boolean conjunctive normal forms, while further generalisations (like “monosigned

formulas”) enter new areas, where the combinatorics of clause-sets no longer can

be applied. For a local search algorithm working directly with “monosigned CNF

formulas” see [18] (using the notion of “nb-formulas” (for “non-boolean”)).

It is worth to mention here, that in [45] it has been shown, that resolution

which works only with generalised clause-sets, that is, where in the corresponding

branching approach for a variable v only a branching of width |Dv| assigning in each

branch one of the possible values to v (see [36]) is considered, can be exponentially

worse than resolution on the translation into boolean logic, where now branchings

“v gets value ε” and “v does not get value ε” are possible. From this is follows that

generalised DPLL-algorithms should not be restricted to branchings where in each

branch a variable needs to be fixed to some value; however the focus of this article

is not generalisation of SAT solvers, but generalisation of combinatorial structure,

and thus we do not further pursue these (important) investigations.

5.1 The details of the translation

Formally, the translation proceeds as follows. We consider some bijection τ :

LIT → VA{0,1} from the set of all (generalised) literals to the set of all boolean

variables.17) The intended meaning of the (positive) boolean literal τ ((v, ε)) for a

literal (v, ε) ∈ LIT is the same as the interpretation of the original (generalised) lit-

eral, namely “v shall not get value ε”. We obtain an injection τ : CL → CL(VA{0,1})

by setting τ (C) := {τ(x) : x ∈ C} for C ∈ CL. Actually τ : CL → CL(VA{0,1})

constitutes a bijection from CL to the set of all positive boolean clauses. The

translation τ can be further extended to an injection τ : CLS → CLS(VA{0,1}) by

τ (F ) := {τ(C) : C ∈ F} for F ∈ CLS. Again, τ : CLS → CLS(VA{0,1}) constitutes

a bijection from the set of (generalised) clause-sets to the set of boolean clause-sets

containing only positive clauses. Finally, for v ∈ VA let

ALOv := {τ((v, ε)) : ε ∈ Dv} ∈ CL(VA{0,1})

be the (negative, boolean) clause expressing that v gets assigned at least one of the

values ε ∈ Dv (that is, not all (positive) literals τ((v, ε)) for ε ∈ Dv can be true),

17)Such a bijection exists due to our assumption on VA, since the set of all literals has the same
cardinality as the set of variables, as it is well known from elementary set theory.
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and let the full translation Θ : CLS → CLS(VA{0,1}) (which again is an injection)

by given as

Θ(F ) := τ (F ) ∪ {ALOv : v ∈ var(F )}.

Note that the union in the definition of Θ(F ) is disjoint, since τ(F ) consists only

of positive clauses, while {ALOv : v ∈ var(F )} consists only of non-empty negative

clauses (and thus Θ(F ) is a “PN-clause-set” as defined in [19]). As an example,

consider F =
{

{v 6= 0, w 6= 1}, {v 6= 1, w 6= 0}, {v 6= 2, w 6= 2}
}

for variables

v, w with Dv = Dw = {0, 1, 2}. Now, using aε := τ((v, ε)) and bε := τ((w, ε)) for

ε ∈ {0, 1, 2} (so altogether we get six boolean variables here), we have

Θ(F ) =
{

{a0, b1}, {a1, b0}, {a2, b2}, {a0, a1, a2}, {b0, b1, b2}
}

.

In general we have, that the sub-clause-sets of Θ(F ) not containing pure variables

(recall Subsection 3.8) are exactly the Θ(F ′) for F ′ ⊆ F not containing pure vari-

ables.

5.2 Preservation of general structure

Regarding set-theoretical operations we have, that Θ is an embedding of the semi-

lattice (CLS,∪) into (CLS(VA{0,1}),∪), that is, for F1, F2 ∈ CLS we have

Θ(F1 ∪ F2) = Θ(F1) ∪ Θ(F2).

Thus Θ is also an order embedding, i.e., F1 ⊆ F2 ⇔ Θ(F1) ⊆ Θ(F2). By definition

we have for F ∈ CLS the equalities

c(Θ(F )) = c(F ) + n(F )

n(Θ(F )) =
∑

v∈var(F )

|Dv|

δ(Θ(F )) = c(Θ(F )) − n(Θ(F )) = c(F ) − wn(F ) = δ(F ),

and thus the translation Θ preserves the deficiency of clause–sets as defined in

Subsection 4.1. It follows immediately, that δ∗(Θ(F )) ≥ δ∗(F ) holds for all F ∈
CLS, but inequality can occur here (see Subsection 5.3).

We consider now the relations between partial assignments ϕ ∈ PASS for

F ∈ CLS and partial assignments ψ ∈ PASS(VA{0,1}) for Θ(F ) ∈ CLS(VA{0,1}).

For ϕ ∈ PASS we define the partial assignment τ(ϕ) ∈ PASS(VA{0,1}) by letting

var(τ (ϕ)) := {τ((v, ε)) : v ∈ var(ϕ), ε ∈ Dv} be the set of all boolean variables

corresponding via the translation to literals over the variables in var(ϕ), while

τ (ϕ)((v, ε)) = 0 iff ϕ(v) = ε. If we consider for example the partial assignment

〈v → 1, w → 2〉 for variables v, w with Dv = Dw = {0, 1, 2}, then, using as above

aε := τ((v, ε)) and bε := τ((w, ε)) for ε ∈ {0, 1, 2}, we get

τ(〈v → 1, w → 2〉) = 〈a0 → 1, a1 → 0, a2 → 1, b0 → 1, b2 → 1, b2 → 0〉.

The partial assignments in PASS(VA{0,1}) of the form τ (ϕ) for some ϕ ∈ PASS
are called standard partial assignments (w.r.t. τ). So τ constitutes a bijection

between PASS and the standard partial assignments (which are always boolean),

and standard partial assignments ϕ ∈ PASS(VA{0,1}) are characterised by the

condition, that whenever some τ ((v, ε)) ∈ var(ϕ), then for all ε′ ∈ Dv we have

τ ((v, ε′)) ∈ var(ϕ), and there is exactly one ε0 ∈ Dv with ϕ(τ ((v, ε0))) = 0; for the

corresponding partial assignment τ−1(ϕ) ∈ PASS we then have τ−1(ϕ)(v) = ε0.
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In the following lemma we see that the properties of ϕ regarding touching or

satisfying clauses are well reflected by τ (ϕ), and hence the translation is invariant

regarding the autarky property and the property of satisfying a clause-set.

Lemma 5.1 For ϕ ∈ PASS, C ∈ CL and F ∈ CLS we have

1. ϕ touches resp. satisfies C if and only if τ(ϕ) touches resp. satisfies τ (C).

Thus
τ (Fvar(ϕ)) = τ (F )var(τ(ϕ))

Θ(F [var(ϕ)]) = Θ(F )[var(τ (ϕ))].

2. τ(ϕ) is an autarky for the set of clauses {ALOv : v ∈ VA}.

3. ϕ is an autarky for F if and only if τ(ϕ) is an autarky for Θ(F ).

4. If τ(ϕ) satisfies Θ(F ), then ϕ satisfies F . If on the other hand ϕ satisfies F

and var(ϕ) ⊇ var(F ) holds, then τ (ϕ) satisfies Θ(F ).

Proof: Parts 1, 2 follow directly from the definitions, while Part 3 follows from

Parts 1, 2, and Part 4 follows from Parts 1, 3.

For the reverse direction, from partial assignments in PASS(VA{0,1}) to partial

assignments in PASS , call ϕ ∈ PASS(VA{0,1}) admissible if ϕ is an autarky for

the set of clauses {ALOv : v ∈ VA}, that is, if τ ((v, ε)) ∈ var(ϕ), then there is

ε0 ∈ Dv with ϕ(τ ((v, ε0))) = 0. In words: a partial assignment ϕ for the boolean

variables is admissible iff in case it has some variable τ ((v, ε)) in its domain, then

there exists a value ε0 ∈ Dv such that τ ((v, ε0)) is in the domain of ϕ as well with

ϕ(τ ((v, ε0))) = 0. Note that an autarky ϕ ∈ PASS(VA{0,1}) for Θ(F ) (this includes

satisfying assignments) with var(ϕ) ⊆ var(Θ(F )) is always admissible.

Call a standard partial assignment ψ ∈ PASS(VA{0,1}) a standard comple-

tion of an admissible ϕ ∈ PASS(VA{0,1}) if ψ touches (satisfies) exactly the same

ALO-clauses as ϕ, and if from ψ(τ ((v, ε))) = 0 always follows ϕ(τ ((v, ε))) = 0;

in other words a standard completion ψ of an admissible ϕ is obtained from ϕ

by considering all variables v such that ε ∈ Dv with τ ((v, ε)) ∈ var(ϕ) exists,

choosing ε0(v) ∈ Dv with ϕ(τ ((v, ε0(v)))) = 0, and setting ψ(τ ((v, ε′))) := 1 for

ε′ ∈ Dv \ {ε0(v)}, while ψ(τ ((v, ε0(v)))) := 0.

The purpose of standard completions ψ of admissible partial assignments ϕ is,

that from an autarky ϕ for Θ(F ) we obtain an autarky ψ for Θ(F ), where now ψ is

a standard partial assignment, and so by Lemma 5.1 we obtain from ψ an autarky

for F . The following lemma (with obvious proofs) states the basic properties of

standard completions.

Lemma 5.2 For C ∈ CL and F ∈ CLS, an admissible ϕ ∈ PASS(VA{0,1}) and a

standard completion ψ ∈ PASS(VA{0,1}) of ϕ we have

1. If ϕ touches resp. satisfies τ (C) then ψ touches resp. satisfies τ (C).

2. If ϕ is an autarky for Θ(F ) then ψ is an autarky for Θ(F ).

Lemma 5.3 For a (generalised) clause-set F ∈ CLS we have:

1. F ∈ SAT ⇔ Θ(F ) ∈ SAT .
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2. F ∈ MUSAT ⇔ Θ(F ) ∈ MUSAT .

3. F ∈ LEAN ⇔ Θ(F ) ∈ LEAN .

Proof: If F ∈ SAT then Θ(F ) ∈ SAT with Lemma 5.1, Part 4, and if Θ(F ) ∈
SAT , then F ∈ SAT with Lemma 5.2, Part 1 and Lemma 5.1, Part 4.

If F ∈ MUSAT , but there were some minimally unsatisfiable F ∗ ⊂ Θ(F ),

then there would be F ′ ⊂ F with Θ(F ′) = F ∗ (since F ∗ does not contain pure

variables), and thus F ′ would be unsatisfiable by Part 1. If on the other hand

Θ(F ) ∈ MUSAT , but there were some unsatisfiable F ′ ⊂ F , then Θ(F ′) would be

unsatisfiable as well by Part 1.

Finally, if F ∈ LEAN then Θ(F ) ∈ LEAN by Lemma 5.2, Part 2 and Lemma

5.1, Part 3, and if Θ(F ) ∈ LEAN then F ∈ LEAN by Lemma 5.1, Part 3 (the

other direction).

Parts 1 and 3 have been concluded in Corollary 20 in [30] from the stronger

property Na(Θ(F )) = Θ(Na(F )) (recall that Na is the lean kernel operator); in this

article we do not go further with the study of the translation Θ, but we restrict

ourselves to the minimum required to understand our applications.

5.3 Preservation of matching structure

Lemma 5.4 For ϕ ∈ PASS, C ∈ CL and F ∈ CLS we have

1. If τ(ϕ) matching satisfies Θ(F ), then ϕ matching satisfies F .

2. If τ(ϕ) is a matching autarky for Θ(F ), then ϕ is a matching autarky for F .

Proof: If the partial assignment τ (ϕ) matching satisfies Θ(F ), then (by definition)

for each clause D ∈ Θ(F ) one can choose a literal xD ∈ D with ϕ(xD) = 1, such

that for the variables var(xD) = τ ((vD, εD)) the map D ∈ Θ(F ) 7→ τ ((vD, εD)) is

injective (whence D ∈ Θ(F ) 7→ (vD, εD) is injective). Now the map C ∈ F 7→ vτ(C)

has for each image vτ(C) at most |Dv| − 1 inverse images, since for each ε ∈ Dv

there is at most one D ∈ Θ(F ) with vD = vτ(C) and εD = ε, and exactly one of

these D is the clause ALOvD
.

For Part 2 recall that ϕ is a matching autarky for F iff ϕ matching satisfies

F [var(ϕ)], which by Part 1 follows from τ (ϕ) matching satisfying Θ(F [var(ϕ)]),

where by Lemma 5.1, Part 1 we have Θ(F [var(ϕ)]) = Θ(F )[var(τ (ϕ))], and thus

the latter assertion is equivalent to τ(ϕ) being a matching autarky for Θ(F ).

Lemma 19, Part (1)(d) of [30] rephrased in the terminology of Subsection 4.5

says, that if ϕ is a non-repetitive matching autarky for F then τ (ϕ) is a matching

autarky for Θ(F ); in follows then in Corollary 20 of [30], that if Θ(F ) is matching

lean, then F is lean w.r.t. non-repetitive matching autarkies. These properties do

not hold for matching autarkies in general (in the presence of non-boolean variables),

as the following examples show.

An example, where a matching autarky ϕ for a (generalised) clause-set F ∈ CLS
does not yield a matching autarky τ(ϕ) for Θ(F ), is given for multi-clause-sets by

the multi-clause-set F1 := 2 · {(v, 0)} for a variable v with Dv = {0, 1, 2}: F1 is

matching satisfiable (but note that F1 is lean w.r.t. non-repetitive matching au-

tarkies), while Nma(Θ(F1)) = τ (F1) (via matching autarkies we can only eliminate

the ALO-clause), and thus Θ(F1) is not matching satisfiable. One sees that the
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problem with transferring matching autarkies from generalised (multi-)clause-sets

to their boolean translation lies in the possibility that a matching in the clause-

variable graph B(F ) might use the same literal several times, which is not possible

for the translated literals. To obtain an example using clause-sets, consider addi-

tionally two boolean variables w,w′ and let

F2 =
{

{v 6= 0, w 6= 0}, {v 6= 0, w′ 6= 0}, {w 6= 1}, {w′ 6= 1}
}

.

The partial assignment ϕ := 〈v → 1, w → 0, w′ → 0〉 is matching satisfying for F2

(note that again F2 is lean w.r.t. non-repetitive matching autarkies), but τ (ϕ) is

not a matching autarky for Θ(F2), and moreover the matching lean kernel of Θ(F2)

is Θ(F2)\{ALOv} (again only the ALO-clause for v can be eliminated via matching

autarkies), and thus Θ(F2) is not matching satisfiable. Furthermore we have in this

example δ∗(F2) = 0 and δ∗(Θ(F2)) = δ(Θ(F2) \ {ALOv}) = δ(Θ(F2)) − (1 − 2) =

δ(F2) + 1 = 1.

Now consider the transfer of matching autarkies in the other direction, that is,

we have given a matching autarky ϕ ∈ PASS(VA{0,1}) for Θ(F ), and we want to

obtain some associated matching autarky for F . The problem here is, that ϕ might

use some variable τ ((v, ε)), but not a variable τ ((v, ε′)) for some ε′ ∈ Dv \ {ε},

and such situations cannot be translated back to F . The simplest example for

this phenomenon is (again) given by a multi-clause-set F3 := {(v, 1)} + 2 · {(v, 2)}
for a variable v with Dv = {0, 1, 2}: It is F3 matching lean, but Nma(Θ(F3)) =

τ (2 · {(v, 2)}) (via the matching autarky 〈τ((v, 0)) → 0, τ((v, 1)) → 1〉 for Θ(F3)).

A clause-set F4, where F4 is matching lean but Θ(F4) is not is given by

F4 :=
{

{v 6= 1}, {v 6= 2}, {v 6= 2, w 6= 0}, {w 6= 1}
}

for an additional boolean variable w, since here

Nma(Θ(F4)) = τ ({{v 6= 2}, {v 6= 2, w 6= 0}, {w 6= 1}}) ∪ {ALOw}

via the matching autarky 〈τ ((v, 0)) → 0, τ((v, 1)) → 1〉 for Θ(F4).

As we have seen now, matching autarkies for (generalised) clause-sets F ∈ CLS
and matching autarkies for Θ(F ) ∈ CLS(VA{0,1}) in general are incomparable.

Nevertheless we can use them to show fixed-parameter tractability for generalised

clause-sets w.r.t. the parameter δ∗(F ) as follows.

Theorem 5.5 SAT decision for (generalised) clause-sets F ∈ CLS can be done in

time O
(

2δ
∗(F ) · (

∑

v∈var(F )|Dv|)3
)

Proof: Consider F ∈ CLS and let F ∗ be the result of reducing Θ(F ) w.r.t. match-

ing autarkies and pure autarkies (thus F ∗ is the unique maximal sub-clause-set of F

which is matching lean and does not contain pure variables). We can compute F ∗ in

polynomial time, and F ∗ is satisfiability equivalent to F . Since F ∗ contains no pure

literals, it corresponds to a sub-clause-set of F , and thus we have δ(F ∗) ≤ δ∗(F ),

and since F ∗ is matching lean we have δ∗(F ∗) = δ(F ∗). Theorem 4 in [49] says,

that satisfiability of F ∗ can be tested in time O(2δ
∗(F∗) · n(F ∗)3), where in this

procedure actually already the cost of reducing Θ(F ) to F ∗ is included if we use

n(Θ(F )) instead of n(F ∗) in the big-Oh expression (see Section 5 in [49], or use the

argumentation of Subsection 4.4 of this article), and the theorem follows.
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6 Irredundant and minimally unsatisfiable gener-

alised clause-sets

One of the main motivation for the notion of “lean clause-sets” is, that in this way

we get a “smooth” and flexible generalisation of the “rigid” but fundamental notion

of minimally unsatisfiable clause-sets. In this section we will now consider some

of the basic facts on minimally unsatisfiable clause-sets in our generalised setting.

We start in Subsection 6.1 with a discussion of the notion of “irredundant clause-

sets”, a notion applicable also to satisfiable clause-sets, concentrating on the basic

question of preservation of irredundancy under application of partial assignments.

More detailed studies of irredundant clause-sets in the boolean case can be found

in the following references:

1. [7] (speaking of “clause minimal formula”) focuses on questions related to the

problem (from a complexity theoretical perspective) when for given clause-sets

F,H there exists a clause-set G such that F ∪G is equivalent to H .

2. [43] considers in various forms (also mostly from a complexity-theoretical per-

spective) the problem of finding an irredundant core in a given clause-set.

In Subsection 6.2 we consider the in some sense most extreme case of irredundant

clause-sets, namely “hitting clause-sets” (every two different clauses clash, that

is, have no common falsifying assignment; in other words, the conflict graph is

complete), and the natural generalisation to “multihitting clause-sets” (the conflict

graph is multipartite). In Corollary 6.6 we show that hitting clause-sets are exactly

those clause-sets which are irredundant after application of any partial assignment,

and thus unsatisfiable hitting clause-sets are exactly those clause-sets which are min-

imally unsatisfiable after application of any partial assignment (Corollary 6.7). For

unsatisfiable multihitting clause-sets in Lemma 6.8 it is shown that they have ex-

actly one minimally unsatisfiable sub-clause-set (which can be computed efficiently

by subsumption-elimination), and in Lemma 6.10 we show that the satisfiability

problem for bihitting clause-sets (where the conflict graph is bipartite) is solvable

in quasi-polynomial time (this problem is essentially the same problem as the hy-

pergraph transversal problem).

In Subsection 6.3 “saturated minimally unsatisfiable clause-sets” are discussed;

here we see a concrete example, where generalised clause-sets behave essentially

more complicated than boolean clause-sets. In Subsection 6.4 we characterise min-

imally unsatisfiable generalised clause-sets of deficiency one as well as the special

cases of saturated and marginal clause-sets, while finally in Subsection 6.5 we collect

some observations which might serve for further progress in the characterisation of

minimally unsatisfiable clause-sets.

6.1 Irredundant clause-sets

A clause C ∈ F is called redundant (or unnecessary) for clause-set F ∈ CLS if

F \ {C} |= C holds, while otherwise C is called irredundant (or necessary) for

F . The following conditions are equivalent for a clause C ∈ F :

• C is redundant for F .

• F \ {C} is equivalent to F .
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• The set modvar(F )(C) of falsifying assignments for C is covered by the family

(modvar(F )(C
′))C′∈F\{C} of sets of falsifying assignments for the remaining

clauses.

A (generalised) clause-set F ∈ CLS is called irredundant if all C ∈ F are ir-

redundant for F , otherwise F is called redundant. A clause-set F is minimally

unsatisfiable if and only if F is unsatisfiable and irredundant. Regarding complexity

classifications of decision problems related to (ir)redundancy we have the following:

1. In [46] it is shown that the decision problem whether a (boolean) clause-set is

irredundant is NP-complete, while the decision problem whether a (boolean)

clause-set is minimally unsatisfiable is DP -complete. Trivially these results

also hold for generalised clause-sets.

2. As we have seen in Theorem 5.5, SAT decision for (generalised) clause-sets

is fixed-parameter tractable in the maximal deficiency, and thus also irredun-

dancy decision is fixed-parameter tractable in the maximal deficiency. Since

for minimally unsatisfiable (generalised) clause-sets maximal deficiency and

deficiency coincide (Corollary 4.22), minimally unsatisfiability decision is also

fixed-parameter tractable in the deficiency; however, as shown in Proposition

1 in [7], the decision whether a (boolean) clause-set is irredundant with de-

ficiency k is NP-complete for every fixed k ∈ N (different from minimally

unsatisfiable clause-sets, irredundant clause-sets of deficiency k can contain

sub-clause-sets of arbitrary deficiency). Obviously the same holds for gener-

alised clause-sets.

We are interested here in the question, given a partial assignment ϕ and a clause

C ∈ F with ϕ ∗ {C} 6= > (i.e., C is not satisfied by ϕ), under what circumstances

is the clause ϕ ∗ C = C \ Cϕ redundant for ϕ ∗ F ? We will see, that this question

is closely related to the question, how “much irredundant” C is for F , that is, how

much of modvar(F )(C) is covered by (modvar(F )(C
′))C′∈F\{C}, which can be recast

as the question, whether for some C′ ⊇ C we have F \ {C} |= C′.

Assume that ϕ∗C is redundant for ϕ∗F , that is, (ϕ∗F )\(ϕ∗{C}) |= ϕ∗C holds.

Due to (ϕ ∗ F ) \ (ϕ ∗ {C}) ⊆ ϕ ∗ (F \ {C}) it follows ϕ ∗ (F \ {C}) |= ϕ ∗C, which

is equivalent to F \ {C} |= C ∪Cϕ. Let us call C ϕ-redundant for F if F \ {C} |=
C ∪ Cϕ holds, and otherwise ϕ-irredundant. In other words, C is ϕ-redundant

for F iff the part of modvar(F )(C) which consists of assignments compatible with ϕ

is covered by (modvar(F )(C
′))C′∈F\{C}. Obviously, C is redundant for F iff C is ∅-

redundant for F , and if C is ϕ-redundant for F , then C is also ϕ′-redundant for F for

every partial assignment ϕ′ with ϕ ⊆ ϕ′. For an example consider boolean variables

a, b and the irredundant clause-set F = {{a}, {b}}: {b} is 〈a→ 0〉-redundant for F .

If C is ϕ-irredundant for F , then ϕ ∗C is irredundant for ϕ ∗F , but the reverse

direction is not true in general due to the fact, that there might be other clauses

C′ ∈ F with ϕ ∗ C′ = ϕ ∗ C. To repair this, let us call clause C contraction-ϕ-

redundant for F if

F \ {C′ ∈ F : ϕ ∗ {C′} = ϕ ∗ {C}} |= C ∪ Cϕ,

while otherwise we call C contraction-ϕ-irredundant for F . We summarise (and

extend) the foregoing discussion in Lemma 6.1, whose proof should be obvious by

now.
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Lemma 6.1 Consider a generalised clause-set F ∈ CLS, a clause C ∈ F and a

partial assignment ϕ ∈ PASS such that ϕ ∗ {C} 6= >.

1. ϕ∗C is (ir)redundant for ϕ∗F if and only if C is contraction-ϕ-(ir)redundant

for F .

2. (a) If C is ϕ-irredundant for F , then C is contraction-ϕ-irredundant for F .

(b) If there is no clause C′ ∈ F \ {C} with ϕ ∗ {C′} = ϕ ∗ {C} (that is, C is

“contraction-free” in F w.r.t. ϕ), then also the reverse direction holds,

that is, if C is contraction-ϕ-irredundant for F then C is ϕ-irredundant

for F . It is C contraction-free in F w.r.t. ϕ in the following cases:

(i) n(ϕ) = 0 (i.e., ϕ is the empty partial assignment);

(ii) n(ϕ) = 1 and F is subsumption-free;

(iii) C clashes with every C′ ∈ F \ {C}.

Corollary 6.2 Consider a generalised clause-set F ∈ CLS which is subsumption-

free, a clause C ∈ F and a variable v ∈ VA together with ε ∈ Dv such that for all

ε′ ∈ Dv \ {ε} we have (v, ε′) /∈ C. Then 〈v → ε〉 ∗ C = C \ {(v, ε)} is irredundant

for 〈v → ε〉 ∗F if and only if C is 〈v → ε〉-irredundant for F , that is, iff F \ {C} 6|=
C ∪ {(v, ε)}.

Obviously irredundant clause-sets are subsumption-free, and from Corollary 6.2

we get immediately:

Corollary 6.3 Consider an irredundant generalised clause-set F ∈ CLS, a clause

C ∈ F and a variable v ∈ VA together with ε ∈ Dv.

1. If there exists ε′ ∈ Dv \ {ε} with (v, ε′) ∈ C, then clause C vanishes when

applying 〈v → ε〉 to F (and in that sense it becomes redundant in 〈v → ε〉).
So assume valv({C}) ⊆ {ε} in the sequel.

2. If (v, ε) ∈ C, then 〈v → ε〉 ∗ C = C \ {(v, ε)} is irredundant for 〈v → ε〉 ∗ F .

3. If (v, ε) /∈ C, then C is irredundant for 〈v → ε〉 ∗ F if and only if C is

〈v → ε〉-irredundant for F , i.e., iff F \ {C} 6|= C ∪ {(v, ε)}.

Considering a clause C ∈ F , we called C redundant for F iff F \ {C} |= C; now

for arbitrary clauses C we can call C “dependent” on F if F |= C holds (that is,

if the set of falsifying assignments of F covers the set of falsifying assignments of

C), and otherwise “independent”. If C ∈ F , then C is dependent on F , while C is

redundant for F iff C is dependent on F \ {C}. The relation of C depending on F

allows two dimensions for minimisation: Considering a minimal clause C which is

dependent on F we arrive at the notion of a prime implicant of F , while considering

a minimal clause-set F such that C depends on F we arrive at a “minimal premise

set” for C. The following lemma states the relation between minimal premise sets

and minimally unsatisfiable clause-sets.

Lemma 6.4 Consider a generalised clause-set F ∈ CLS and a clause C ∈ CL.

Then the following assertions are equivalent:

1. F is a minimal premise set for C.

2. ϕC ∗ F is minimally unsatisfiable, no clause of F is satisfied by ϕ, and F

is ϕ-contraction free, that is, there are no clauses C,C′ ∈ F , C 6= C′, with

ϕ ∗ {C} = ϕ ∗ {C′}.
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6.2 Hitting and multihitting clause-sets

The next lemma answers the question which clauses C remain irredundant for a

clause-set F under all applications of partial assignments; this strongest form of

irredundancy of C for F turns out to be equivalent to the condition, that the set

of falsifying assignments for C is not covered at all by (modvar(F )(C
′))C′∈F\{C}. A

simple but important observation here is, that for two clauses C,C′ and var(C) ∪
var(C′) ⊆ V we have modV (C) ∩ modV (C′) = ∅ iff C and C′ clash.

Lemma 6.5 Consider a generalised clause-set F ∈ CLS and a clause C ∈ CL.

Then the following assertions are equivalent:

(i) C is ϕ-irredundant for all ϕ ∈ PASS.

(ii) C is contraction-ϕ-irredundant for all ϕ ∈ PASS.

(iii) modvar(F )(C) ∩
⋃

C′∈F\{C} modvar(F )(C
′) = ∅.

(iv) C clashes with every C′ ∈ F \ {C}, i.e., clause C is connected in the conflict

graph cg(F ) to every other vertex.

Proof: By the above remark we see that (iii) and (iv) are equivalent. By definition

(iii) is equivalent to (i), while by Lemma 6.1, part 2 it is (i) equivalent to (ii).

Corollary 6.6 A generalised clause-set F ∈ CLS is a hitting clause-set if and only

if for all ϕ ∈ PASS it is ϕ ∗ F irredundant.

Generalising Theorem 32 in [33]:

Corollary 6.7 A generalised clause-set F ∈ CLS is an unsatisfiable hitting clause-

set if and only if ϕ ∗ F is minimally unsatisfiable for every ϕ ∈ PASS.

Hitting clause-sets are irredundant; the more general class of multihitting clause-

sets (clause-sets with complete multipartite conflict graph) contains redundant

clause-sets, but all redundancies can be removed efficiently (and canonically), as

the following lemma shows. We use the notion of an irredundant core of a

clause-set F ∈ CLS which is an irredundant F ′ ⊆ F such that F ′ is equivalent to F

(in [43] the notion “irredundant equivalent subset” is used). An irredundant core

of an unsatisfiable clause-set is called a minimally unsatisfiable core.

Lemma 6.8 Consider a generalised clause-set F ∈ CLS without trivial variables

which is multihitting. Let F be the multipartition of F , and V := var(F ).

1. For F1, F2 ∈ F, F1 6= F2 we have modV (F1) ∩ modV (F2) = ∅.

2. If for F ′ ⊆ F and C ∈ F \ F ′ we have F ′ |= C, then there must be some

C′ ∈ F ′ with C′ ⊂ C.

3. F has exactly one irredundant core, which is obtained from F by subsumption-

elimination. Thus if F is unsatisfiable, then F has exactly one minimally

unsatisfiable core, which is obtained from F by subsumption-elimination.

4. A hitting clause-set F is unsatisfiable iff
∑

C∈F |modV ({C})| = |PASS(V )|.
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Proof: Part 1 follows by definition. In Part 2 it is modV ({C}) covered by

modV (F ′), and thus by Part 1 in fact modV ({C}) is covered by modV (F ′ ∩ FC),

where FC ∈ F with C ∈ FC ; i.e., FC ∩ F ′ |= {C}. By the strong completeness of

resolution and the fact that within FC no clashes exist, it follows that there must

be C′ ∈ F ′ ∩ FC with C′ ⊂ C. Part 3 follows immediately from Part 2. Finally

Part 4 follows immediately from Part 1.

Corollary 6.9 A multihitting clause-set is irredundant if and only if F is subsump-

tion-free. Thus an unsatisfiable multihitting clause-set is minimally unsatisfiable if

and only if F is subsumption-free.

By Corollary 6.9 we know that deciding whether a multihitting clause-set is

minimally unsatisfiable is the same task (up to subsumption elimination) as deciding

whether it is unsatisfiable. Obviously MHIT ∩ USAT is in co-NP (and thus also

MHIT ∩MUSAT ). We have more precise information only for special cases.

Using |modvar(F )(C)| =
∏

v∈var(F )\var(C)|Dv| for C ∈ F it follows that satis-

fiability for hitting clause-sets is decidable in polynomial time (generalising the

well-known special case for boolean clause-sets). For boolean bihitting clause-sets

in [19] it was shown, that satisfiability decision can be done in quasi-polynomial

time (where “quasi-polynomial” means a “polynomial” upper bound with the ex-

ponent of logarithmic order in the size of the input), since satisfiability decision

for bihitting clause-sets is essentially the same as deciding whether for two given

hypergraphs one is the transversal hypergraph of the other; this can immediately

be generalised:

Lemma 6.10 Satisfiability for generalised clause-sets which are bihitting is decid-

able in quasi-polynomial time.

Proof: Variables with a domain size greater than two appearing in a bihitting

clause-set must be pure variables, since if a generalised clause-set contains a variable

of domain size k, then the conflict graph contains the complete graph Kk (which is

not bipartite).

It seems to be a very interesting question, to what degree (generalised) multihit-

ting clause-sets have efficient satisfiability decision (see Subsection 7.5 for further

discussion, and see [34] for more information in the boolean case).

We conclude this section by some general results on irredundant cores, generalis-

ing [40] (where only unsatisfiable boolean clause-sets have been considered). Recall

that a (finite) hypergraph is a pair (V,E) such that V is a (finite) set (the “vertex

set”) and E is a set of subsets of V (the set of “hyperedges”). For a hypergraphG by

min(G) resp. max(G) we denote the hypergraph with the same vertex set and with

all inclusion-minimal resp. maximal hyperedges. Consider a (generalised) clause-set

F . Let EQ(F ) be the hypergraph with vertex set F (the clauses of F ), while the

hyperedges are all subsets of F which are equivalent to F , and let NEQ(F ) be the

hypergraph with vertex set F and hyperedges the subsets of F which are not equiva-

lent to F . If F is unsatisfiable, then EQ(F ) = USAT (F ), the hypergraph consisting

of all unsatisfiable sub-cause-sets of F , while NEQ(F ) = SAT (F ), the hypergraph

of all satisfiable sub-clause-sets of F . Now min(EQ(F )) is the hypergraph consisting

of all irredundant cores of F ; if F is unsatisfiable then min(EQ(F )) = MU(F ), the

hypergraph of all minimally unsatisfiable cores of F .
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Generalising [43, 40], the elements of
⋂

EQ(F ) =
⋂

min(EQ(F )), the clauses

which are in every irredundant core of F , are called necessary clauses, while, follow-

ing [40], the elements of
⋃

min(EQ(F )), the clauses which are in some irredundant

core, are called potentially necessary clauses (in [43] such clauses are called “use-

ful”). We see that necessary clauses are exactly the irredundant clauses as defined

before. Regarding decision complexity we have:

1. A clause-set F is satisfiable iff ⊥ is necessary for F ∪ {⊥}, and thus already

for (boolean) unsatisfiable clause-sets decision whether a clause is necessary

is NP-complete (this was noticed for (arbitrary) boolean clause-sets in Theo-

rem 3 in [43], and trivially also the decision problem whether some clause is

necessary for an generalised clause-sets is NP-complete as well).

2. By Theorem 4 in [43] we have, that decision whether a clause C is potentially

necessary for a (boolean) clause-set F is ΣP
2 -complete (where ΣP

2 is the class

of problems reducible to the decision problem whether a quantified boolean

formula with quantifier-prefix ∃∗∀∗ is true). Trivially this holds also for all gen-

eralised clause-sets, and due to
⋃

min(EQ(F ∪ {⊥})) = {⊥}∪
⋃

min(EQ(F ))

we can restrict F here again to unsatisfiable clause-sets.

3. In Theorem 5 in [43] it is shown that decision whether a (boolean) clause-

set has a unique irredundant core is ∆P
2 [logn]-complete (where ∆P

2 is the

class of problems decidable in polynomial time by arbitrary use of an NP-

oracle, while for ∆P
2 [logn] only logarithmically many oracle calls are allowed).

Obviously this carries over to generalised clause-sets, however whether again

restriction to unsatisfiable clause-sets is possible (that is, deciding whether an

unsatisfiable clause-set has a unique minimally unsatisfiable core) is not clear.

Finally we can also generalise the observation of Bailey and Stuckey, using the same

proof as in [40] (Section 2): For a hypergraph G denote by Tr(G) the hypergraph

with the same vertex set V (G), while the hyperedges are the minimal transversals

of G (minimal subsets of V (G) intersecting every hyperedge), and denote by {(G)

the hypergraph with vertex set V (G) and hyperedges V (G) \H for H ∈ E(G).

Lemma 6.11 For every (generalised) clause-set F we have

min(EQ(F )) = Tr({(max(NEQ(F )))).

Proof: The assertion is equivalent to {(Tr(min(EQ(F )))) = max(NEQ(F )), which

just states that the maximal non-equivalent sub-clause-sets of F are exactly the

maximal independent vertex sets of min(EQ(F )), i.e., those maximal sets of clauses

not containing an irredundant core.

6.3 Saturated minimally unsatisfiable clause-sets

A clause-set F ∈ CLS is called saturated minimally unsatisfiable, if F is un-

satisfiable, but for any clause C ∈ F replacing C in F by C ∪ {x} for any literal x

with var(x) /∈ var(C) and |Dvar(x)| ≥ 2 yields a satisfiable clause-set.18) Saturated

minimally unsatisfiable clause-sets are minimally unsatisfiable (consider x such that

var(x) /∈ var(F )), and actually a clause-set F is saturated minimally unsatisfiable

18)Instead of “saturated” in [1] “strong” is used, and in [8] “maximal”; we follow [16].
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iff it is minimally unsatisfiable and addition of a literal x with var(x) ∈ var(F ) to

any clause C with var(x) /∈ var(C) yields a satisfiable clause-sets. The set of all

saturated minimally unsatisfiable clause-sets is called SMUSAT . By Lemma 6.8,

part 4 we see that unsatisfiable hitting clause-sets are in SMUSAT .

Lemma 6.12 Every minimally unsatisfiable clause-set F ∈ MUSAT can be sat-

urated, that is there exists F ∗ ∈ SMUSAT with var(F ∗) = var(F ) and a bijection

π : F → F ∗ such that for all C ∈ F we have C ⊆ π(C).

Proof: The observation needed here is, that if for a minimally unsatisfiable clause-

set F we replace some clause C ∈ F by a clause C′ ⊃ C, obtaining F ′ := (F \{C})∪
{C′}, then F ′ is minimally unsatisfiable if F ′ is unsatisfiable (the only possibly

redundant clause in F ′ is C′, and if C′ is redundant in F ′, then F ′ is satisfiable,

since F ′ \{C′} = F \{C} ∈ SAT ). So we can add literals x with var(x) ∈ var(F ) to

clauses such that we maintain (minimally) unsatisfiability, and finally we will end

up with a saturated F ∗.

For boolean clause-sets the characterisation of SMUSAT from Lemma C.1 in

[26] is fundamental: A minimally unsatisfiable boolean clause-set F is saturated if

and only if for every variable v ∈ var(F ) and each ε ∈ Dv = {0, 1} it is 〈v → ε〉 ∗ F
minimally unsatisfiable. Together with saturation this characterisation provides a

powerful method for proving properties of minimally unsatisfiable clause-sets via

induction on the number of variables. For generalised clause-sets saturatedness is

weaker, and the above condition is only sufficient for being minimally unsatisfiable,

but is no longer necessary. The following lemma develops these fundamental facts,

using the following notion: We say that addition of literal x renders clause-set F

satisfiable iff for all clauses C ∈ F with var(x) /∈ var(C) the clause-set (F \ {C}) ∪
{C ∪ {x}} is satisfiable (thus a clause-set F is saturated minimally unsatisfiable iff

F is unsatisfiable and addition of any literal renders F satisfiable).

Lemma 6.13 Consider a generalised clause-set F ∈ MUSAT and a literal (v, ε) ∈
LIT .

1. If 〈v → ε〉 ∗F ∈ MUSAT , then for all ε′ ∈ Dv \ {ε} addition of literal (v, ε′)

renders F satisfiable.

2. If v is boolean, and for ε′ ∈ Dv \ {ε} addition of literal (v, ε′) renders F

satisfiable, then 〈v → ε〉 ∗ F ∈ MUSAT .

Proof: For Part 1 assume that there is C ∈ F , v /∈ var(C) and ε′ ∈ Dv \ {ε} such

that F ′ := (F \ {C}) ∪ {C ∪ {(v, ε′)}} is unsatisfiable. Then 〈v → ε〉 ∗ F ′ ∈ USAT
with 〈v → ε〉 ∗ F ′ = (〈v → ε〉 ∗ F ) \ {C}, and thus C would be redundant in

〈v → ε〉 ∗ F .

For Part 2 assume that 〈v → ε〉 ∗F is not minimally unsatisfiable; by Corollary

6.3 thus there is a clause C ∈ F , v /∈ var(C) such that F \ {C} |= C ∪ {(v, ε)}.

It follows that for F ′ := (F \ {C}) ∪ {C ∪ {(v, ε′)}} we have F ′ |= C (using one

resolution step), and thus F ′ would be unsatisfiable.

Corollary 6.14 If for the generalised clause-set F ∈ CLS for every partial assign-

ment ϕ ∈ PASS with n(ϕ) ≤ 1 we have ϕ ∗ F ∈ MUSAT , then F ∈ SMUSAT .

If F is boolean, then also the reverse direction holds, that is, F ∈ SMUSAT
if and only if for every partial assignment ϕ ∈ PASS with n(ϕ) ≤ 1 we have

ϕ ∗ F ∈ MUSAT .
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An example to show that the implication “F ∈ SMUSAT ⇒ 〈v → ε〉 ∗ F ∈
MUSAT ” in Corollary 6.14 does not hold for generalised clause-sets is as follows:

Consider variables a, b with Da = Db = {0, 1, 2}, and let F be the following clause-

set with 4 binary clauses and 2 unary clauses:

F :=
{

{a 6= 0, b 6= 0}, {a 6= 1, b 6= 0}, {a 6= 0, b 6= 1}, {a 6= 1, b 6= 1},

{a 6= 2}, {b 6= 2}
}

.

It is F ∈ SMUSAT (after unit-clause elimination we obtain a boolean clause-set

with all possible (full) clauses), while 〈a → 2〉 ∗ F = {⊥, {b 6= 2}} /∈ MUSAT (as

well as 〈b → 2〉 ∗ F = {⊥, {a 6= 2}} /∈ MUSAT ). It might be worth investigating

the class of (generalised) clause-sets F such that for all partial assignments ϕ with

n(ϕ) ≤ 1 we have ϕ ∗ F ∈ MUSAT (a strict subset of SMUSAT ).

An important application of the process of saturation for boolean clause-sets is

given by Lemma C.2 in [26], proving that for every F ∈ MUSAT , F 6= {⊥} there

is a variable v ∈ var(F ) such that for ε ∈ Dv = {0, 1} we have #(v,ε)(F ) ≤ δ(F ),

that is, F has a “min-max var-degree” of at most δ(F ). The proof is based on the

characterisation of saturated minimally unsatisfiable boolean clause-sets in Corol-

lary 6.14 and uses δ(F ) ≥ 1 for F ′ ∈ MUSAT , where F ′ is obtained from F by

applying suitable partial assignments ϕ with n(ϕ) = 1. It is not completely clear

how to obtain a full generalisation for generalised clause-sets (the problem is that

saturation is not that powerful anymore); in Lemma 6.15 we obtain the generalisa-

tion of the min-max var-degree bound to generalised clause-sets in the special case

of deficiency one, while in Subsection 6.5 we consider the class of minimally un-

satisfiable clause-sets stable under application of partial assignments with at most

one variable, for which then the full min-max var-degree bound can be shown (in

Lemma 6.19).

6.4 Characterisation of the basic case of deficiency one

Generalising the tree construction from [26] (exploiting a formula class introduced

by Stephen Cook and communicated to me by Alasdair Urquhart), let a deficiency-

1 tree representation (in the remainder of this section just called “tree represen-

tation”) be a 4-tuple (T, r, v, ε), where

• (T, r) is a finite tree with root r (inner nodes (that is, nodes which are not

leaves) can have an arbitrary number of children).

• v labels each inner node w of (T, r) with a variable v(w).

• ε labels each edge e leading from a node w to a node w′ (edges are directed

from the root towards the leaves) with a value ε(e) ∈ Dv(w) such that the

labelling of the edges going out from w yields a bijection to Dv(w).

If an order on the value set Dv(w) is given, then also the outgoing edges are ordered

by the same order; in the special case of boolean variables thus we can speak of

“left” and “right” branches, corresponding to the positive and negative literal. An

example R is given as follows.
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This tree representation R uses six variables a, . . . , f with Da = Dc = {0, 1, 2},

Db = Df = {0, 1} (thus b, f are boolean variables), and Dd = De = {0}.

Given a tree representation (T, r, v, ε), to every node w of (T, r) we associate a

clause Cw by considering the path w0, e1, w1, . . . , em, wm from the root to w in T

(thus w0 = r, wm = w, and the ei are the connecting edges from wi−1 to wi, while m

is the length of the path), and setting Cw := {(v(wi), ε(ei+1)) : i ∈ {0, . . . ,m− 1}}.

The clause-set F (T, r, v, ε) is defined as the set of all clauses Cw for leaves w of

(T, r). For the above example R we get

F (R) =
{

{a 6= 0, b 6= 0}, {a 6= 0, b 6= 1, e 6= 0},

{a 6= 1, c 6= 0}, {a 6= 1, c 6= 1}, {a 6= 1c 6= 2},

{a 6= 2, d 6= 0, f 6= 0}, {a 6= 2, d 6= 0, f 6= 1}
}

.

We list some basic properties of the clause-sets F (T, r, v, ε):

1. The rooted tree (T, r) yields a resolution tree for F (T, r, v, ε) by labelling the

nodes w with clauses Cw and considering the variables v(w) for inner nodes w

as resolution variables; since Cr = ⊥ we see that F (T, r, v, ε) is unsatisfiable.

2. F (T, r, v, ε) is a 1-regular hitting clause-set (for two different clauses Cw1 , Cw2

the unique clashing variable is v(w0) for the root w0 of the smallest sub-

tree of (T, r) containing w1 and w2). It follows that F (T, r, v, ε) is saturated

minimally unsatisfiable.

3. δ(F (T, r, v, ε)) = 1, since c(F (T, r, v, ε)) is the number of leaves of (T, r), while

wn(F (T, r, v, ε)) is the number of edges of T minus the number of inner nodes

of (T, r), and thus δ(F (T, r, v, ε)) is the difference of the number of vertices

and the number of edges of T , which is 1 for every tree.

4. If n(F (T, r, v, ε)) > 0 (that is, if (T, r) is not trivial), then we have:

(a) There is exactly one variable occurring in every clause of F (T, r, v, ε)

(namely v(r)).

(b) Every clause C ∈ F (T, r, v, ε) contains a literal x ∈ C with #x(F ) = 1

(namely with var(x) = v(w0), where C = Cw and w0 is the parent node

of w).

(c) There exists a variable v ∈ var(F (T, r, v, ε)) such that for all ε ∈ Dv we

have #(v,ε)(F (T, r, v, ε)) = 1 (choose v = v(w) for an inner node w of

(T, r) such that all children of w are leaves).
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We can read off many more properties of F (T, r, v, ε) directly from the tree repre-

sentation, for example the minimal resp. maximal clause-length is the minimal resp.

maximal depth of a leaf, but we need here only the above listed properties. Using

RHIT for the set of regular hitting clause-sets and hd for the hitting degree, as

introduced before, we have F (T, r, v, ε) ∈ RHIT sat=0
hd=1,δ=1.

We say that a clause-set F ′ ∈ CLS is obtained from F (T, r, v, ε) by literal elim-

ination if F ′ is obtained from F (T, r, v, ε) by eliminating some literal occurrences

(at least one) without ever creating a pure variable. Replacing “F (T, r, v, ε)” by F ′,

Properties 1, 3, 4b, 4c are still valid, while Properties 2, 4a are lost: F ′ is definitely

not a hitting clause-set anymore, and there does not need to exist a variable occur-

ring in every clause. It is furthermore F ′ definitely not saturated anymore (by the

definition of F ′), however F ′ is still minimally unsatisfiable (since removal of any

clause either creates a pure variable or removes the only clause).

In Lemma C.5 from [26] it is shown, that the boolean elements of SMUSATδ=1

are exactly the clause-sets F (T, r, v, ε) using only boolean variables, while the ele-

ments of MUSATδ=1\SMUSATδ=1 are exactly the clause-sets obtained from such

F (T, r, v, ε) by literal elimination. To generalise this characterisation, the following

lemma is central (compare Property 4c from above).

Lemma 6.15 For every (generalised) clause-set F ∈ MUSATδ=1 with n(F ) > 0

there exists a variable v ∈ var(F ) such that for all ε ∈ Dv we have #(v,ε)(F ) = 1.

Proof: Consider F ∈ MUSATδ=1. We investigate the structure of Θ(F ) (recall

Section 5). As we remarked in Subsection 5.2, we have δ(Θ(F )) = 1, and thus

by Lemma 5.3 we have Θ(F ) ∈ MUSATδ=1. Since Θ(F ) is a boolean clause-

set, we can conclude that Θ(F ) is obtained by literal elimination from some tree

representation (T, r, v, ε) as defined above (using only boolean variables).

Θ(F ) always has the following special properties:

(i) Θ(F ) is a PN-clause-set, that is, every clause is either positive or negative.

(ii) For every negative clause N ∈ Θ(F ) we have ∀x ∈ N : #x(F ) = 1 (recall that

the negative clauses are the ALO-clauses introduced by the translation Θ).

Call a boolean F ∈ MUSATδ=1 special if these two conditions are fulfilled. (These

“special” boolean clause-sets constitute exactly the image Θ(MUSATδ=1) of the

translation, but we do not need this simple fact here.) Consider a tree representation

(T, r, v, ε) of a special F ; obviously also all clause-sets given by the subtrees of (T, r)

are special again. Now we proof by induction on the height of the tree representation

of special formulas F with n(F ) > 0, that there always exists a negative clause

N ∈ F such that ∀x ∈ N : #x(F ) = 1, using the standard complement notation

for boolean literals here; this proves the lemma by definition of the translation Θ.

If the height of (T, r) is 1, then F is {{v(r)}, {v(r)}}, and the assertion is true.

So assume the height of (T, r) is greater than 1, and consider the left subtree T0

and the right subtree T1 of T with associated special F0, F1 ∈ MUSATδ=1. If T0

is not the trivial tree (has more than one node), then by the induction hypothesis

there exists a negative clause (non-empty) N0 ∈ F0 with ∀x ∈ N0 : #x(F0) = 1.

Now we must have N0 ∈ F , since otherwise N0 ∪ {v} ∈ F , where this clause is

neither positive nor negative; using N := N0 proves the assertion (since none of

the variables in N0 occurs in T1 in this case). So the remaining case is that T0
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is the trivial tree. Again by the induction hypothesis there is a negative clause

(non-empty) N1 ∈ F1 with ∀x ∈ N1 : #x(F1) = 1. Either we have N := N1 ∈ F or

N := N1 ∪ {v} ∈ F , proving the assertion (in the second case due to the triviality

of T0).

Now we are able to generalise Lemma C.5 in [26] (Part (i) of Theorem 6.16 has

been shown for boolean clause-sets in [10]):

Theorem 6.16 The class MUSATδ=1 of minimally unsatisfiable (generalised) clause-

sets of deficiency 1 has the following two characterisations:

(i) For F ∈ CLS we have F ∈ MUSATδ=1 if and only if F can be reduced to the

clause-set {⊥} by applying non-degenerated singular DP-reduction (as long as

possible, in any order).

(ii) MUSATδ=1 is the class of all clause-sets F (T, r, v, ε) together with all clause-

sets F ′ derived by literal elimination from such clause-sets.

Proof: Part (i) follows from Lemma 6.15 together with Lemma 3.4 and Lemma

4.30, Part 2(b)i. For Part (ii) it remains to show that every F ∈ MUSATδ=1

can be obtained from some F (T, r, v, ε) by a (possibly empty) sequence of literal

eliminations. We show this by induction on n(F ). If n(F ) = 0, then F = {⊥}, and

we can take the trivial rooted tree. So assume n(F ) > 0. By Lemma 6.15 there exists

a variable v ∈ var(F ) such that for all ε ∈ Dv we have #(v,ε)(F ) = 1; let Cε ∈ F be

the unique clause with (v, ε) ∈ Cε. Thus v is a singular DP-variable w.r.t. F . Let

G := DPv(F ); we have G = (F \ {Cε}ε∈Dv
) ∪ {R}, where R =

⋃

ε∈Dv
(C \ {(v, ε)}).

As already argued for Part (i) we have G ∈ MUSATδ=1, and thus we can apply

the induction hypothesis to G; the assertion follows now immediately by extending

the tree representation of G at the leaf labelled by R by adding new leaves Cε for

ε ∈ Dv.

Theorem 6.16 yields also two further poly-time decision procedures for the

class MUSATδ=1 (while two general poly-time decision procedures for the classes

MUSATδ=k for k ∈ N are given by Corollary 4.10 and Theorem 5.5). To conclude,

we characterise the saturated and the marginal elements of MUSATδ=1.

Corollary 6.17 The class SMUSATδ=1 of saturated minimally unsatisfiable (gen-

eralised) clause-sets of deficiency 1 is exactly the class of all clause-sets F (T, r, v, ε).

It follows that the following conditions are equivalent for a clause-set F ∈ CLS:

1. F = F (T, r, v, ε) for some deficiency-1 tree representation (T, r, v, ε).

2. F is an unsatisfiable 1-regular hitting clause-set of deficiency 1 (i.e., F ∈
RHIT sat=0

hd=1,δ=1).

3. F is an unsatisfiable regular hitting clause-set of deficiency 1 (i.e., F ∈
RHIT sat=0

δ=1 ).

4. F is an unsatisfiable hitting clause-set of deficiency 1 (i.e., F ∈ HIT sat=0
δ=1 ).

5. F is a saturated minimally unsatisfiable clause-set of deficiency 1 (i.e., F ∈
SMUSATδ=1).
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If a minimally unsatisfiable clause-set is hitting, then it is saturated; Corollary

6.17 proves the reverse for deficiency 1 (which does not hold for higher deficiencies).

While saturated minimally unsatisfiable clause-sets do not allow addition of any

literal occurrence to any clause without destroying the property of being minimally

unsatisfiable, on the other end of the spectrum we have marginal minimally un-

satisfiable clause-sets, which are minimally unsatisfiable clause-sets such that

removing any literal occurrence destroys the property of being minimally unsatisfi-

able.

Corollary 6.18 The class of marginal minimally unsatisfiable (generalised) clause-

sets of deficiency 1 is exactly the class of all F ∈ MUSATδ=1 for which no further

literal eliminations are possible, which is equivalent to the property, that for every

variable v ∈ var(F ) and every ε ∈ Dv we have #(v,ε)(F ) = 1.

Proof: If for a minimally unsatisfiable clause-set F every literal in it occurs exactly

once, then obviously it is marginal; Corollary 6.18 proves the reverse for deficiency

1 (which does not hold for higher deficiencies).

We remark that in [35] it is shown that in the boolean case the class of conflict

graphs of F ∈ MUSATδ=1 is exactly the class of all connected graphs, while the

conflict graphs of saturated (boolean) F ∈ MUSATδ=1 are exactly all complete

graphs, and the conflict graphs of marginal (boolean) F ∈ MUSATδ=1 are exactly

all trees; furthermore a boolean element of MUSATδ=1 is saturated resp. marginal

iff the conflict graph is complete respectively a tree.

Finally we remark that in general the decision problem whether a (generalised)

clause-set is saturated resp. marginal is DP -complete as shown in [8] (there for

boolean clause-sets, which obviously immediately generalises).

6.5 Stability parameter and minimal variable degree

Let us conclude the chapter by some considerations which summarise certain ob-

servations made for which definitely yet the final words are not spoken.

For a multi-clause-set F let sir(F ), the (substitution) stability parameter

regarding irredundancy, be the supremum in Z≥−1∪{+∞} of n ∈ N0 such that

for all ϕ ∈ PASS with n(ϕ) ≤ n the multi-clause-set ϕ ∗F is irredundant. We have

the following basic properties.

1. sir(F ) = −1 iff F is redundant, sir(F ) ≥ 0 iff F is irredundant.

2. sir(F ) = +∞ iff sir(F ) ≥ n(F ) iff F is a hitting clause-set (see Corollary 6.6).

3. Assume that F is unsatisfiable. Then sir(F ) ≥ 1 ⇒ F ∈ SMUSAT by

Corollary 6.14, and for boolean F we have equivalence.

For n(F ) > 0 let the min-max var-degree resp. the minimal var-degree be

defined by

mmvd(F ) := min
v∈var(F )

max
ε∈Dv

#(v,ε)(F ) ∈ N

mvd(F ) := min
v∈var(F )

#v(F ) ∈ N
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Lemma 6.19 Consider a generalised multi-clause-set F and a variable v ∈ var(F )

which is not pure for F (i.e., ∀ ε ∈ Dv : #(v,ε)(F ) ≥ 1), such that #v(F ) = mvd(F ).

Then we have for ε ∈ Dv the following.

1. δ(〈v → ε〉 ∗F ) = δ(F )− s(v,ε)(F ) + |Dv|−1. (Compare Lemma 4.28, Part 3.)

2. Assume sir(F ) ≥ 1 and that F is unsatisfiable.

(a) s(v,ε)(F ) ≤ δ(F ) + |Dv| − 2.

(b) If v is non-trivial (i.e., |Dv| ≥ 2), then #(v,ε)(F ) ≤ δ(F ).

Proof: Part 1 follows by the observation, that var(〈v → ε〉 ∗F ) = var(F ) \ {v} (if

another variable w would vanish, then every occurrence of w would be in a clause

C with some (v, ε′) ∈ C for ε′ ∈ Dv \ {ε}, and so #w(F ) ≤ s(v,ε)(F ) = #v(F ) −
#(v,ε)(F ) < #v(F ) = mvd(F ) ≤ #w(F )). For Part 2 we have δ(〈v → ε〉 ∗ F ) ≥ 1,

and thus Part 2a follows. For Part 2b consider ε′ ∈ Dv \ {ε}. By Part 2a we have

s(v,ε′)(F ) ≤ δ(F )+ |Dv|−2, where s(v,ε′)(F ) = #(v,ε)(F )+
∑

ε′′∈Dv\{ε,ε′}
#ε′′ (F ) ≥

#(v,ε)(F ) + |Dv| − 2.

Corollary 6.20 For an unsatisfiable generalised clause-set F with sir(F ) ≥ 1 we

have

mmvd(F ) ≤ δ(F )

(in case of n(F ) > 0).

Proof: Eliminating all trivial variables from F we obtain the clause-set F ′ with

δ(F ′) = δ(F ) and c(F ′) = c(F ); now the assertion follows by Part 2b of Lemma

6.19.

Since every minimally unsatisfiable (generalised) clause-set can be saturated

(see Lemma 6.12), and every boolean saturated minimally unsatisfiable clause-set

F fulfils sir(F ) ≥ 1, we get for arbitrary boolean F ∈ MUSAT the upper bound

mmvd(F ) ≤ δ(F ) (as shown in [26]). For generalised minimally unsatisfiable clause-

sets we showed this upper bound in Lemma 6.15 for the simplest case δ(F ) = 1,

while the general case is open.

7 Conclusion and open problems

The first purpose of this article was to set the stage for the study of generalised

clause-sets as sets of “no-goods”, where literals are given by one “forbidden value”:

We defined and summarised the basic properties of syntax, semantics, resolution

calculus and autarky systems. Then we considered the generalisation of the notion

of deficiency for these generalised clause-sets, and we studied the basic autarky sys-

tem related to this notion, namely matching autarkies. We showed fixed parameter

tractability of generalised clause-sets in the maximal deficiency. For autarky sys-

tems both the application of autarkies as reductions and the properties of autarky-

freeness, i.e., lean clause-sets are of interest. Lean clause-sets are a generalisation

of minimally unsatisfiable clause-sets, for which we considered the basic problem,

when the property of being minimally unsatisfiable is preserved under application

of partial assignments, and we characterised also minimally unsatisfiable clause-

sets of minimal deficiency. Besides using the generalised tools transferred from the

boolean case, also the structure preserving properties of the boolean translation are

important, and we investigated basic cases.
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7.1 Matching autarkies

In Corollary 4.10 polynomial-time satisfiability decision in the maximal deficiency is

shown, using the existence of matching-maximum satisfying assignments; the ques-

tion now is whether one can show also fixed-parameter tractability in this way, using

some form of local search which considers only matching-maximum assignments in

some form. Implementations of the various poly-time algorithms (especially the

algorithm exploited in the proof of Theorem 5.5) need to be carried out in order

to study whether interesting applications exist (and also to judge whether “native

algorithms” for generalised clause-sets are preferable here, or whether the boolean

translation is superior).

Regarding practical applications, one should implement reduction by matching

autarkies, and also the extension in Lemma 4.32, and study its uses. Regarding

Lemma 4.32 one should study the underlying autarky system.

In general it seems that applications of “expensive” algorithms is more fruitful

for harder problems like QBF (it seems most appropriate to restrict autarkies for

quantified boolean formulas to existential variables).

7.2 Satisfiable minimally matching-unsatisfiable clause-sets

The class of minimally matching-unsatisfiable clause-sets is exactly MLEANδ=1,

the set of matching lean clause-sets of deficiency one. The unsatisfiable elements we

know quite well by USAT ∩ MLEANδ=1 = MUSATδ=1, however the satisfiable

elements, that is, the set SAT ∩MLEANδ=1 seems to exhibit a much richer struc-

ture; see for example the special clause-set at the end of Subsection 4.3 (which in

fact is a 1-regular hitting-set — even for this special sub-class we know not much).

7.3 Minimally unsatisfiable clause-sets of low deficiency

Having transferred the characterisation of minimally unsatisfiable clause-sets of de-

ficiency one from the boolean case in Subsection 6.4, the next question concerns

the generalisation of the structure of boolean MUSATδ=2 as studied in [5]. This

generalisation seems to be not straightforward, but we believe that minimally un-

satisfiable generalised clause-sets of deficiency two are still quite close to the boolean

case (while from deficiency three on generalised clause-sets behave more wildly).

A key tool for the study of boolean minimally unsatisfiable clause-sets in the

observation in [26] that for every boolean minimally unsatisfiable clause-set F with

n(F ) > 0 there exists a variable v ∈ var(F ) such that for both ε ∈ {0, 1} we have

#(v,ε)(F ) ≤ δ(F ); see Lemma 6.19 for a discussion of this subject.

7.4 Regular hitting clause-sets

Regarding the base case of deficiency 1 for minimally unsatisfiable clause-sets, a

natural question is, whether every regular unsatisfiable hitting clause-set F has

necessarily deficiency 1 (we know that for every minimally unsatisfiable clause-set

the deficiency is at least 1, so the upper bound δ(F ) ≤ 1 is in question here) ? We

conjecture that this is the case:

Conjecture 7.1 RHIT sat=0 = RHIT sat=0
δ=1 .
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Obviously RHIT sat=0
hd=r is empty for r ≥ 2, since no resolution is possible here.

From Conjecture 7.1 it would follow by Corollary 6.17, that the class of unsatisfiable

regular hitting (generalised) clause-sets is equal to the class of saturated minimally

unsatisfiable clause-sets of deficiency 1, generalising Corollary 34 in [33].

In [33] the property δ(F ) ≤ 1 was actually shown for arbitrary (not necessarily

unsatisfiable) boolean regular hitting clause-sets F . Whether this holds for gener-

alised clause-sets seems to be a non-trivial problem, since the notion of hermitian

rank exploited in [33] is specifically tailored to the use of matrices (which are inher-

ently two-dimensional) and real numbers (with positive and negative values) and

hence boolean clause-sets. Though we do not know how to prove it, we nevertheless

believe that the generalisation holds true:

Conjecture 7.2 RHIT = RHIT δ≤1.

Note that Conjecture 7.2 implies Conjecture 7.1 (using Corollary 4.22). In the

terminology of graph partitions, Conjecture 7.2 generalises “Witsenhausen’s Theo-

rem”, the special case of the Graham-Pollak Theorem asserting that every biclique

partition of a complete graph Km needs at least m− 1 bicliques:

Now we allow to partition the edge set of r · Km (exactly r edges joining two

different nodes) into complete multipartite graphs, where every complete k-partite

component (k ≥ 2) contributes the “cost” k − 1, and Conjecture 7.2 says, that

the total cost must be at least m − 1 (allowing only k = 2 is the Theorem of

Witsenhausen, while allowing only k = m is trivial).

7.5 Multihitting clause-sets

As touched upon in Lemma 6.10, the SAT problem for bihitting clause-sets is es-

sentially the same as the hypergraph transversal problem, and whether the latter

problem can be decided in polynomial time is a long outstanding open question. Be-

ing optimistic about the potential of (generalised) clause-sets to provide a unifying

framework for (hard) graph and hypergraph problems, we propose:

Conjecture 7.3 Satisfiability decision for multihitting (generalised) clause-sets can

be done in polynomial time.
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