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Abstract

We consider the problem of testing graph expansion (either vertex or edge) in the bounded
degree model [2]. We give a property tester that given a graph with degree bound d, an expansion
bound α, and a parameter ε > 0, accepts the graph with high probability if its expansion is more
than α, and rejects it with high probability if it is ε-far from a graph with expansion α′ with

degree bound d, where α′ < α is a function of α. For edge expansion, we obtain α′ = Ω(α
2

d
),

and for vertex expansion, we obtain α′ = Ω(α
2

d2 ). In either case, the algorithm runs in time

Õ(n
(1+µ)/2

d
2

εα2 ) for any given constant µ > 0.

1 Property Testing of Expansion

We are given an input graph G = (V,E) on n vertices with degree bound d. Assume that d is a
sufficiently large constant. Given a cut (S, S̄) (where S̄ = V \ S) in the graph, let E(S, S̄) be the

number of edges crossing the cut. The edge expansion of the cut is E(S,S̄)
min{|S|,|S̄|} . The edge expansion

of the graph is the minimum edge expansion of any cut in the graph. The vertex expansion of the
cut is |∂S|

|S| , where ∂S is the set of nodes in S̄ that are adjacent to nodes in S. The vertex expansion
of the graph is the minimum vertex expansion of any cut in the graph.

Hereafter, when we use the term “graph”, we are only concerned with graphs having degree
bound d. We are interested in designing a property tester for expansion (either edge or vertex). The
graph is represented by an adjacency list, so we have constant time access to the neighbors of any
vertex. Given parameters, α > 0 and ε > 0, we want to accept to all graphs with expansion greater
than α, and reject all graphs that ε-far from having expansion less than α′ < α (where α′ is some
function of α). This means that G has to be changed at εnd edges (either removing or adding) to
make the conductance at least α′.

This problem was first defined by Goldreich and Ron [2], where an approach was described
towards designing the required property tester. They proposed an algorithm, but their analysis
relied on an unproven combinatorial conjecture. Our algorithm uses the same ideas as their paper,
but we use algebraic techniques to prove different combinatorial results which suffice to complete the
analysis. Progress towards this was made by Czumaj and Sohler [1], where the obtained a property

tester for vertex expansion with α′ = Θ( α2

d2 log n
), using combinatorial techniques. Independently,

we obtained the improvement α′ = Θ(α2

d2 ) for vertex expansion and α′ = Θ(α2

d ) for edge expansion
using algebraic techniques.

∗Part of this work was done when the author was at Princeton University.
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However, the first version of this paper could only prove that the tester rejects graphs that are ε
far from any graph of expansion α′ with degree bound 2d, rather than degree bound d. This revised
version of the paper gives a small modification to the earlier paper that improves the degree bound
to d. We recently found out that independently, the degree bound improvement was also obtained
by Nachmias and Schapira [3] using a combination of our techniques in the earlier paper and those
of Czumaj and Sohler.

Consider the following slight modification of the standard random walk on the graph: starting
from any vertex, the probability of choosing any outgoing edge is 1/2d, and with the remaining
probability, the random walk stays at the current node. Thus, for a vertex of degree d′ ≤ d, the
probability of a self-loop is 1 − d′/2d ≥ 1/2. This walk is symmetric and reversible; therefore, its
stationary distribution is uniform over the entire graph. Thus, the conductance of a cut (S, S̄) in the
graph is exactly its expansion divided by 2d. The conductance of the graph, ΦG, is the minimum
conductance of any cut in the graph. We design a property tester for expansion.

The tester is given two parameters Φ and ε. The tester must (with high probability) accept if
ΦG > Φ and reject if G is ε-far from having ΦG > cΦ2 (for some absolute constant c). Our tester is
almost identical to the one described in [2]. Now we present our main result:

Theorem 1.1 Given any conductance parameter Φ, and any constant µ > 0, there is an algo-

rithm which runs in time O(n(1+µ)/2 log(n) log(1/ε)
εΦ2 ) and with high probability, accepts any graph with

degree bound d whose conductance is at least Φ, and rejects any graph that is ε-far from a graph of

conductance at least Ω(Φ2) with degree bound d.

In our bounded degree graph model, the following easy relations hold:

edge expansion = conductance/2d,

(vertex expansion)/2 ≥ conductance ≥ (vertex expansion)/2d.

Using these relations, we immediately obtain property testers for vertex and edge expansion for
a given expansion parameter α by running the property tester for conductance with parameter
Φ = α/2d, and we get the following corollary to Theorem 1.1:

Corollary 1.1 Given any expansion parameter α, and any constant µ > 0, there is an algorithm

which runs in time O(d2n(1+µ)/2 log(n) log(1/ε)
εα2 ) and with high probability, accepts any graph with degree

bound d whose expansion is at least α, and rejects any graph that is ε-far from a graph of expansion at

least α′ with degree bound d. For edge expansion, α′ = Ω(α2

d ), and for vertex expansion, α′ = Ω(α2

d2 ).

2 Description of the Property Tester

We first define a procedure called Vertex Tester which will be used by the actual tester.

Vertex Tester

Input: Vertex v ∈ V .
Parameters: ` = 2 ln n/Φ2 and m = 2n(1+µ)/2.

1. Perform m random walks of length ` from s.

2. Let A be the number of pairwise collisions between the endpoints of these walks.

3. The quantity A/
(m

2

)

is the estimate of the vertex tester. If A/
(m

2

)

≥ (1+2n−µ)/n, then output
Reject, else output Accept.
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Now, we define the actual property tester.

Conductance Tester

Input: Graph G = (V,E).
Parameters: t = Ω(ε−1) and N = Ω(log(ε−1)).

1. Choose a set S of t random vertices in V .

2. For each vertex v ∈ S:

(a) Run Vertex Tester on v for N trials.

(b) If a majority of the trials output Reject, then the Conductance Tester aborts and
outputs Reject.

3. Output Accept.

3 Proof of Theorem 1.1

Let us fix some notation. The probability of reaching u by performing a random walk of length l
from v is pl

v,u. Denote the (row) vector of probabilities pl
v,u by ~p l

v . The collision probability for a

random walk of length l starting from v is denoted by γl(v) =
∑

v(p
l
v,u)2. Let ~1 denote the all 1’s

vector. The norm of the discrepancy from the stationary distribution will be denoted by ∆l(v):

∆l(v)2 = ‖~p l
v −~1/n‖2 =

∑

u∈V

(pl
v,u − 1/n)2 =

∑

u∈V

(pl
v,u)2 − 1/n = γl(v) − 1/n

Since l will usually be equal to `, in that case we drop the subscripts (or superscripts). The
relationship between ∆(v) and γ(v) is central to the functioning of the tester. The paramater ∆(v)
is a measure of how well a random walk from s mixes. The parameter γ(v) is something that can
be estimated in sublinear time, and by the relationship, allows us to test mixing of random walks
in sublinear time. The following is basically proven in [2]:

Lemma 3.1 The estimate of γ(v), viz. A/
(m

2

)

, provided by the Vertex Tester lies outside the

range [(1 − 2n−µ)γ(v), (1 + 2n−µ)γ(v)] with probability < 1/3.

Proof: For every i < j ≤ m, define a 0/1 random variable Xij which is 1 iff the ith and jth
walks share the same endpoint. Let A =

∑

i,j Xij , the total number of pairwise collisions. Note that

E[Xij ] = γ(v) and E[A] = γ(v)
(

m
2

)

. We now bound the variance var(A).
Note that Xij and Xkl are independent when {i, j} and {k, l} are disjoint. For clarity, we will

denote
(

m
2

)

by M . Set X ij = Xij − γ(v).

var(A) = E[(A − γ(v)M)2]

= E[(
∑

i,j

Xij)
2]

≤
∑

i,j

E[X
2
ij] +

∑

(i,j),(i′,j′)
i6=i′,j 6=j′

E[XijXi′j′ ] + 6
∑

i<j<k

E[X ijXik]

≤ γ(v)M + 0 + 6

(

m

3

)

∑

u

p3
v,u
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Since Xij and Xi′j′ are independent, E[X ijX i′j′ ] = E[X ij]E[X i′j′ ] = 0. The product X ijX ik is 1
iff the ith, jth, and kth walks end at the same vertex, and the probability of that is

∑

u p3
v,u. Using

the Cauchy-Schwartz inequality, we can show that
∑

u p3
v,u ≤ γ(v)3/2. We know that γ(v) ≥ 1/n

and M is chosen to be larger than n. Therefore γ(v)M ≥ 1 and

var(A) ≤ γ(v)M + 4(γ(v)M)3/2 ≤ 5(γ(v)M)3/2

By Chebyschev’s inequality, for any k > 0,

Pr[|A − γ(v)M | > k(γ(v)M)3/4] < 1/k2

Since γ(v) ≥ 1/n and M ≥ Ω(n1+µ),

(γ(v)M)3/4 ≤ n−µ/4γ(v)M

since m = 2n(1+µ)/2. Choosing k = 2, the bound above shows that the estimate provided by the
Vertex Tester, viz. A/M , lies outside the range [(1 − 2n−µ/4)γ(v), (1 + 2n−µ/4)γ(v)] with prob-
ability < 1/4. 2

For clarity of notation, we set σ = n−µ/4. We now have the following corollary:

Corollary 3.2 The following holds with probability at least 1/3. Let v ∈ S, the random sample

chosen by the Conductance Tester. If γ(v) < (1 + σ)/n, then the majority of the N trials of

Vertex Tester run on v return Accept. If γ(v) > (1 + 6σ)/n, then the majority of the N trials

of Vertex Tester run on v return Reject.

This is an easy consequence of the fact that we run N = Ω(log(ε−1)) trials, by an direct appli-
cation of Chernoff’s bound and using Lemma 3.1. We are now ready to analyze the correctness of
our tester.

First, we show the easy part. Let M denote the transition matrix of the random walk. The top
eigenvector of M is ~1. We will also need the matrix L = I − M , which is the Laplacian (I denotes
the identity matrix). The eigenvalues of L are of the form (1 − λ), where λ is an eigenvalue of M .

Lemma 3.3 If ΦG > Φ, then the Conductance Tester accepts with probability at least 2/3.

Proof: Let λG be the second largest eigenvalue of M . It is well known (see, e.g., [4]) that
λG ≤ 1 − Φ2

G/2 < 1 − Φ2/2. Thus, we have for any v ∈ V , if ~ev denotes the row vector which is 1
on coordinate v and zero elsewhere,

‖~pv −~1/n‖2 = ‖(~ev −~1/n)M `‖2

≤ ‖~ev −~1/n‖2λ2`
G

< (1 − Φ2/2)4Φ
−2 lnn

≤ 1/n2.

The second inequality follows because ~ev − ~1/n is orthogonal to the top eigenvector ~1. As a result,
∆(v)2 < 1/n2, and γ(v) < (1 + σ)/n for all v ∈ V . By Corollary 3.2, the tester accepts with
probability at least 2/3. 2

We now show that if G is ε-far from having conductance Ω(Φ2), then the tester rejects with
high probability. Actually, we will prove the contrapositive : if the tester does not reject with high
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probability, then G is ε-close to having conductance Ω(Φ2). Call a vertex s weak if γ(v) > (1+6σ)/n,
all others will be called strong. Suppose there are more than 1

25εn weak vertices. Then with high
probability, the random sample S chosen by the Conductance Tester has a weak vertex, since
the sample has Ω(ε−1) random vertices. Thus, the Conductance Tester will reject with high
probability.

Let us therefore assume that there are at most 1
25εn weak vertices. Now, we will show that εnd

edges can be added to make the conductance Ω(Φ2). We need a few useful lemmas first.

Lemma 3.4 Consider a set S ⊂ V of size s ≤ n/2 such that the cut (S, S) has conductance less

than δ. Then, for any integer l > 0, there exists a node v ∈ S such that ∆l(v) > (2
√

s)−1(1 − 4δ)l.

Proof: Denote the size of S by s (s ≤ n/2). Let us consider the starting distribution ~p where:

pv =

{

1/s v ∈ S
0 v /∈ S

Let ~u = ~p−~1/n. Note that ~uM l = ~pM l−~1/n. Let 1 = λ1 ≥ λ2 · · · ≥ λn > 0 be the eigenvalues of
M and ~f1, ~f2, · · · , ~fn be the corresponding orthogonal unit eigenvectors. Note that ~f1 is the ~1/

√
n.

We can represent ~u =
∑

i αi
~fi. Here, α1 = 0, since ~u ·~1 = 0.

∑

i

α2
i = ‖~u‖2

2

= s

(

1

s
− 1

n

)2

+
n − s

n2

=
1

s
− 1

n
.

Taking the Rayleigh quotient with the Laplacian L:

~u>L~u = ~u>I~u − ~u>M~u

= ‖~u‖2
2 −

∑

i

α2
i λi.

On the other hand, using the fact that the conductance of the cut (S, S̄) is less than δ, we have

~u>L~u =
∑

i<j

Mij(ui − uj)
2 < 2δds × 1

2d
× 1

s2
=

δ

s
.

Putting the above together:

∑

i

α2
i λi >

(

1

s
− 1

n

)

− δ

s

=
1 − δ

s
− 1

n
.

If λi > (1−4δ), call it heavy. Let H be the index set of heavy eigenvalues, and L the index set of
the light ones. Since

∑

i α
2
i λi is large, we expect many of the αi corresponding to heavy eigenvalues

to be large. This would ensure that the starting distribution ~p will not mix rapidly. We have

∑

i∈H

α2
i λi +

∑

i∈L

α2
i λi >

1 − δ

s
− 1

n
.
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Setting x =
∑

i∈H α2
i :

x + (
∑

i

α2
i − x)(1 − 4δ) >

1 − δ

s
− 1

n
.

We therefore get:

4δx +

(

1

s
− 1

n

)

(1 − 4δ) >
1 − δ

s
− 1

n

∴ x >
3

4s
− 1

n

≥ 1

4s
. ∵ n ≥ 2s (1)

We note that ~uM l =
∑

i αiλ
l ~fi. Thus,

‖~uM l‖2
2 =

∑

i

α2
i λ

2l
i

≥
∑

i∈H

α2
i λ

2l
i

>
1

4s
(1 − 4δ)2l

So ‖~uM l‖ >
1

2
√

s
(1 − 4δ)l

Now, note that ~u = 1
s

∑

v∈S(~ev − ~1
n), and hence ~uM l = 1

s

∑

v∈S(~evM
l − ~1

n). Now, ~evM
l − ~1

n
is the discrepancy vector of the probability distribution of the random walk starting from v after l
steps. Thus, by Jensen’s inequality, we conclude that

1

s

∑

v∈S

∆l(v) ≥ ‖~uM l‖ >
1

2
√

s
(1 − 4δ)l.

Hence, there is some v ∈ S for which ∆l(v) > (2
√

s)−1(1 − 4δ)l. 2

Lemma 3.5 Consider sets T ⊆ S ⊆ V such that the cut (S, S̄) has conductance less than δ. Let

|T | = (1 − θ)|S|. Assume 0 < θ ≤ 1
8 . Then, for any integer l > 0, there exists a node v ∈ T such

that ∆l(v) > (1−2
√

2θ)
2
√

s
(1 − 4δ)l.

Proof: Let ~uS (resp., ~uT ) be the uniform distribution over S (resp., T ) minus
~1
n . Let s and t

be the sizes of S and T resp. Let ~uS =
∑

i αi
~fi and ~uT =

∑

i βi
~fi be representation of ~uS and ~uT

in the basis {~f1, . . . , ~fn}, the unit eigenvectors of M . Note that α1 = β1 = 0 since ~uS and ~uT are
orthogonal to ~1.

Since the conductance of S is less than δ, by applying inequality (1) from Lemma 3.4, we have
that

∑

i∈H

α2
i >

1

4s
.

We have

‖~uS − ~uT ‖2 =
1

t
− 1

s
=

θ

(1 − θ)s
≤ 2θ

s
.
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Furthermore,

‖~uS − ~uT ‖2 =
∑

i

(αi − βi)
2 ≥

∑

i∈H

(αi − βi)
2.

Using the triangle inequality ‖~a −~b‖ ≥ ‖~a‖ − ‖~b‖, we get that

∑

i∈H

β2
i ≥





√

∑

i∈H

α2
i −

√

∑

i∈H

(αi − βi)2





2

>

[

1

2
√

s
−

√
2θ√
s

]2

≥ (1 − 2
√

2θ)2

4s
.

Finally, reasoning as in Lemma 3.4, we get that ‖~uT M l‖ > (1−2
√

2θ)
2
√

s
(1 − δ)l, and thus, by Jensen’s

inequality, there is a v ∈ T such that ∆l(v) > (1−2
√

2θ)
2
√

s
(1 − 4δ)l. 2

Lemma 3.6 There is a partition of the graph G into two pieces, A and Ā := V \ A, with the

following properties:

1. |A| ≤ 2
5εn.

2. Any cut in the induced subgraph on Ā has conductance Ω(Φ2).

Proof: We use a recursive partitioning technique: start out with A = {}. Let Ā = V \A. If there
is a cut (S, S̄) in Ā with |S| ≤ |Ā|/2 with conductance less than cΦ2, then we set A := A ∪ S, and
continue as long as |A| ≤ n/2. Here, c is a small constant to be chosen later.

We claim that the final set A has the required properties: the second one is obvious from
the construction, and as for the first one, if |A| > 2

5εn, then consider the cut (A, Ā) in G. It
has conductance at most cΦ2. Now, lemma 3.5 implies (with θ = 1/10) that there are at least

1
10 |A| > 1

25εn nodes in A such that for all such nodes v, and for b =
(1−2

√
1/5)√

2
, we have

∆`(v) >
b√
n

(1 − 4cΦ2)` >
√

6σ/n

for a suitable choice of c in terms of µ (say, c = µ/200 suffices).
Thus, for all such nodes v, we have γ`(v) = ∆`(v)2 + 1/n > (1 + 6σ)/n, which implies that all

such nodes are weak, a contradiction since there are only 1
25εn weak nodes. 2

Armed with this partitioning algorithm, we are ready to present the patch-up algorithm, which
changes the graph in εnd edges and raises its conductance to Ω(Φ2):

Patch-up Algorithm

1. Partition the graph into two pieces A and Ā with the properties given in Lemma 3.6.

2. Remove all edges incident on nodes in A.

3. For each node u ∈ A, repeat the following process until the degree of u becomes d − 1 or d:
choose a vertex v ∈ Ā at random. If the current degree of v is less than d, add the edge {u, v}.
Otherwise, if there is an edge {v,w} such that w ∈ Ā, remove {v,w}, and add the edges {u, v}
and {u,w}. Otherwise, re-sample the vertex v from Ā, and repeat.
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To implement the second step, we need to ensure that the set of nodes in Ā with degree less
than d or having an edge to another node in Ā is non-empty. In fact, we can show a stronger fact:

Lemma 3.7 At any stage in the patch-up algorithm, there are at least 1
4 |Ā| ≥ 1

4(1 − 2ε/5)n nodes

in Ā with degree less than d or having an edge to another node in Ā.

Proof: Let X ⊆ Ā be the set of nodes of degree at most d/2 before starting the second step, and
let Y := Ā \ X. Now we have two cases:

1. |X| ≥ 1
2 |Ā|: We add at most 2

5εnd edges. Thus, at most half the nodes in X can have their

degree increased to d, since 2
5εnd ≤ 1

2 |X| · d
2 , since |X| ≥ 1

2 (1 − 2ε/5)n. Here, we assume that
ε ≤ 1/4. Thus, at any stage we have at least 1

4 |Ā| nodes with degree less than d.

2. |Y | ≥ 1
2 |Ā|: we remove at most 1

5εnd edges from the subgraph induced by Ā. Thus, at most

half of the nodes in Y can have their (induced) degrees reduced to 0, 1
5εnd ≤ 1

2 |Y | · d
2 , since

|Y | ≥ 1
2(1− 2ε/5)n. Again, we assume that ε ≤ 1/4. Thus, at any stage we have at least 1

4 |Ā|
nodes with at least one edge to some other node in Ā.

Now, we prove that the patch-up algorithm works:

Theorem 3.1 If there are less than 1
25εn weak vertices, then εnd edges can be added or removed to

make the conductance Ω(Φ2), while ensuring that all degrees are at most d.

Proof: We run the patch-up algorithm on the given graph. It is easy to see that at the end of
the algorithm, every node has degree bounded by d. Also, the total number of edges deleted is at
most 2

5εnd+ 1
5εnd, and the number of edges added is at most 2

5εnd. Thus the total number of edges
changed is at most εnd.

Now, let (S, S̄) be a cut in the graph with |S| ≤ n/2. Let SA = S ∩ A, and SĀ = S ∩ Ā. Let
m := |S|. We have two cases now:

1. |SĀ| ≥ m/2: In this case, note that in the subgraph of original graph induced on Ā, the set SĀ

had conductance at least cΦ2, and hence the cut (SĀ, Ā\SĀ) had at least 2cΦ2|SĀ|d ≥ cΦ2md
edges crossing it.

For any edge {v,w} that was in the cut (SĀ, Ā \SĀ) and was removed by the construction, we
added two new edges {u, v} and {u,w} for some u ∈ A. Now it is easy to check that regardless
of whether u ∈ SA or u /∈ SA, one of the two edges {u, v} and {u,w} crosses the cut (S, S̄).
Thus, at least cΦ2md edges cross the cut (S, S̄), and hence it has conductance at least c

2Φ2.

2. |SĀ| ≤ m/2: In this case, for each node u ∈ SA, we chose at least d/2 random edges connecting
u to nodes in Ā (we disregard the chosen paired edges for now). By Lemma 3.7, and since
|SĀ| ≤ |SA| ≤ |A| ≤ 2εn/5, the probability that for any such edge, the endpoint in Ā was
actually in SĀ is at most

|SĀ|
1
4 |Ā|

≤ 2ε/5
1
4 (1 − 2ε/5)

≤ 1/4

assuming ε ≤ 1/8.

Since |SA| ≥ m/2, the total number of edges added to nodes in SA is at least md/4 (again,
disregarding the paired edges). The expected number of these edges going into SĀ is at most
md/16. By the Chernoff-Hoeffding bounds, the probability that more than md/8 randomly
chosen edges lie completely in S is less than n−Ω(md) ≤ 1/3nm+1, if we assume d is at least a
large enough constant.
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Taking a union bound over all sets of size m (the number of which is at most nm), and then
summing over all m, we get the with probability at least 2/3, none of these events happen,
and thus at least at least md/8 edges cross the cut (S, S). Therefore, the conductance of this
cut is at least 1/16 > Ω(Φ2), since Φ ≤ 1.
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