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Abstract

We study the average-case hardness of the class NP against deterministic polynomial time
algorithms. We prove that there exists some constant µ > 0 such that if there is some lan-
guage in NP for which no deterministic polynomial time algorithm can decide L correctly on
a 1 − (log n)−µ fraction of inputs of length n, then there is a language L′ in NP for which no
deterministic polynomial time algorithm can decide L′ correctly on a 3/4+(logn)−µ fraction of
inputs of length n. In coding theoretic terms, we give a construction of a monotone code that
can be uniquely decoded up to error rate 1

4
by a deterministic local decoder.

1 Introduction

The average case hardness of complexity classes such as EXP and NP has been studied intensively.
There are several motivations for this study: in addition to being a natural alternative to worst-
case hardness, average-case hardness is also necessary in cryptography. Functions with extreme
average-case hardness also play a key role in the construction of pseudorandom generators and
derandomization. This hardness is measured against a certain complexity class C. We consider
Boolean functions f : {0, 1}∗ → {0, 1}. The function f may not be defined for all input lengths n,
but it should be defined for infinitely many n. We only consider such n in the definition below.

Definition 1. We say that f is (1− δ)-hard almost everywhere (a.e) for C if for every A ∈ C there
is some n0 so that for all n > n0, Prx∈{0,1}n [A(x) 6= f(x)] > δ. We say f is (1 − δ)-hard infinitely
often (i.o) for C if for every A ∈ C there are infinitely many n such that Prx∈{0,1}n [A(x) 6= f(x)] > δ.

Our main focus in this work is on the average-case hardness of NP languages, and specifically
on hardness amplification results that convert an NP language with mild average-case hardness into
another NP language that is much harder. Previous hardness amplification results for NP focus on
the case when the class C is either the class P/poly of poly-size circuits [O’D04, HVV06] or the class
BPP of randomized polynomial time algorithms [Tre03, Tre05, BOKS06]. In this work we study
the hardness of NP for the class P of deterministic polynomial time algorithms.1 The following is
our main result.

∗Research supported in part by an Alfred P. Sloan Research Fellowship, NSF grant CCF-0343672, and a David
and Lucile Packard Foundation Fellowship.

1Technically, P is the class of languages that admit deterministic polynomial time algorithms, and not the algo-
rithms themselves. Likewise for BPP and P/poly. For ease of notation, we blur this distinction in the sequel.
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Theorem 1. There is a constant µ > 0 such that if there is some balanced function in NP which is
(

1 − 1
(log n)µ

)

-hard a.e/i.o for P then there is a function in NP which is
(

3
4 + 1

(log n)µ

)

-hard a.e/i.o

for P.

This is the first hardness amplification result for NP against P. This matches the hardness
parameters shown by Trevisan in [Tre03] for NP against BPP. Subsequently, this was improved to
an amplification from (1 − 1

poly(n))-hardness to (1
2 + o(1))-hardness by [Tre05, BOKS06]. Stronger

results are known for amplification against P/poly (see Section 1.1).
The conclusion of Theorem 1 still holds if the original mildly hard function is only close to

balanced, and has bias bounded by (log n)−C for some constant C = C(µ) > 0 (with C(µ) → 0 for
µ → 0). If we assume hardness a.e. against slightly non-uniform algorithms, we can eliminate the
balance hypothesis entirely, and still conclude (3

4 + o(1))-hardness i.o.

Theorem 2. There is a constant µ > 0 such that if there is some function in NP which is (1 −
1

(log n)µ )-hard a.e for P/ log n then there is a function in NP which is (3
4 + 1

(log n)µ )-hard i.o for P. 2

Our techniques also yield a simple proof of amplification from (1 − 1/poly(n))-hardness to
(3/4 + 1/poly(n))-hardness, for languages in PSPACE (or any class closed under XOR) against
P. This improves on the amplification from 1 − 1

poly(n) to 7
8 + 1

poly(n) shown by Trevisan [Tre03].

Stronger amplification results are known for PSPACE and EXP against BPP and P/poly (see
Section 1.1).

Theorem 3. If there is some function in PSPACE which is (1 − 1/poly(n))-hard a.e/i.o for P
then there is a function in PSPACE which is (3

4 + 1/poly(n))-hard a.e/i.o for P.

One can replace PSPACE by any complexity class which is closed under XOR. Though we note
that for EXP and higher classes, very strong average case hardness is known unconditionally via
diagonalization [GW00].

There is a well-studied connection between hardness amplification and error-correcting codes
[STV01, Tre03]. Black-box hardness amplification amounts to taking a code with weak error-
correction properties and converting it into a better error-correcting code which has a local decoding
algorithm. A local decoding algorithm is one that can recover any bit of the message by querying
the received word at a few locations. Buresh-Oppenheim et al. [BOKS06] define a family of codes
called monotone codes and showed that error-correction for these codes can give amplification
within NP. In what follows it will be helpful to think of the message f ∈ {0, 1}N as the truth-table
of a Boolean function on n bits, where N = 2n, indexed by strings in {0, 1}n.

Definition 2. An [N,M ] monotone code is a map C : {0, 1}N → {0, 1}M is a map such that each
bit of the codeword C(f) is a monotone function in the bits of the message f .

Typically, we want M = 2poly(n). Also, we want our local decoder to run in time poly(n) when
asked for any bit of the message, which implies that it can only read a tiny fraction of the received
word. It is easy to show that monotone codes cannot have good distance for all messages. However
it is possible to have good distance if we restrict ourselves to balanced messages. Further one needs
to settle for recovering the message approximately as opposed to exactly, we will show that this is
an inherent limitation of such codes.

2In fact, it suffices to assume hardness against P/(log n)ε for any fixed ε > 0, and the claimed statement will hold
with some µ = µ(ε) > 0.
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To show hardness amplification against P, one needs the local decoding algorithm A to be
deterministic. This is a non-trivial requirement since in the conventional setting where we wish to
recover the message exactly, it is impossible for a local decoder that tolerates a constant fraction of
errors to be deterministic. This is because an adversary could corrupt all the bits of the input that
are probed by the decoder to recover a particular bit of the message. The locality property of the
decoder implies that this is a tiny fraction of the entire message. However, this does not rule out
a deterministic local decoder that is able to recover all but a fraction of the message bits. Indeed,
our result gives a monotone code with a deterministic local decoder that can recover from 1

4 − o(1)
errors.

Theorem 4. For some constant µ > 0, there is a monotone [N,M ] code C and a deterministic
local decoder A which can (log n)−µ-approximately decode C up to distance 1

4−(log n)−µ on balanced

messages which M = 2n(1+o(1)). Further, A runs in time o(n).

Finally, we prove lower bounds on the error-correcting capabilities of monotone codes which
can be used in hardness amplification. For EXP, one can obtain optimal average-case hardness
starting from worst-case hardness assumptions [STV01, TV02]. One does not expect similar black-
box reductions for NP, under some complexity theoretic assumptions [BT06]. The crux of the
reduction for EXP is the existence of codes which can be decoded exactly even at very high error-
rates. We observe that there exist monotone codes which have similar error-correcting properties.
However, for use in black-box amplification, one requires an upper bound on the complexity of
encoding each bit; namely that the functions used have small certificates. We show that this places
certain restrictions on the error-correcting capacity of the code. On one hand we show that starting
from worst case hardness, one can only get very weak-average case hardness (1 − 2−n(1−o(1))). At
the other end of the spectrum, to get a hardness of 1 − η for some constant η > 0, we show that
one must start by assuming 1 − 1

poly(n) hardness (see Section 4 for precise statements).

1.1 Previous work

The has been a long body of work in computer science devoted to studying hardness amplification in
various scenarios. In addition to being a natural question in its own right, hardness amplification
has important applications in cryptography and derandomization. The first such result is the
famous XOR Lemma due to Yao, which asserts that computing the XOR of k independent copies
of a mildly hard function f is much harder than computing f [Yao82, GNW95]. There has been
a long line of research that studies amplification for EXP against BPP and P/poly, motivated by
derandomization [BFNW93, Imp95, IW97, IW98, STV01, TV02].

The study of hardness amplification within NP was initiated in a beautiful paper by O’Donnell
[O’D04] who showed that one can amplify (1− 1/poly(n))-hardness to (1/2 + 1/n1/3)-hardness for
NP against polynomial size circuits. The key technical ingredient in this work was the analysis of
a variant of Yao’s XOR Lemma when the XOR function is replaced by a monotone function. The
efficacy of a particular monotone function in such a setting was rather precisely tied to the noise
sensitivity of the function. O’Donnell’s result was improved by Healy, Vadhan, and Viola [HVV06]
who showed how to amplify (1 − 1/poly(n))-hardness to (1/2 + 1/poly(n))-hardness, also against
polynomial size circuits. The non-uniformity in these proofs seemed inherent due to the use of
Impagliazzo’s powerful hard-core set lemma [Imp95].

The first uniform hardness amplification result for NP, albeit against randomized algorithms,
was due to Trevisan [Tre03]. He was able to amplify (1−1/(log n)α)-hardness to (3/4+1/(log n)α)-
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hardness (which is identical to what we achieve for deterministic polynomial time algorithms in
this work). Trevisan’s proof was based on a “more uniform” version of the hard-core set lemma,
but the amount of non-uniformity was large enough to preclude amplifying from hardness fractions
greater than 1 − 1/(log n)α.

In [Tre05], Trevisan built upon the result of [Tre03] to achieve amplification from (1−1/poly(n))-
hardness to (1/2 + 1/(log n)α)-hardness, for NP against randomized polynomial time algorithms.
An alternate proof of this result was given by [BOKS06] based on monotone codes, and the powerful
direct product theorem of Impagliazzo et al. [IJK06].

Our work seems to be the first to address the average-case hardness of NP against deterministic
uniform algorithms. Hardness amplification against P was considered previously by Trevisan [Tre03]
who proved an amplification from (1 − 1/poly(n))-hardness to (7/8 + 1/poly(n))-hardness for
PSPACE (or any class that is closed under XOR). Goldreich and Wigderson use diagonalization to
prove the existence of languages in EXP which are hard on average a.e for P [GW00].

There has been a body of work exploring limitations to the hardness amplification parameters
that are achievable via various kinds of black-box reductions [TV02, O’D04, HVV06, BOKS06].
Our negative results in Section 4 complement these results.

1.2 Technical Contributions

Just as amplification against BPP requires uniform local decoding algorithms, amplification against
P requires derandomized local decoding. Our main technical contribution is the construction of a
monotone code that has an efficient, deterministic local decoder that can correct up to 1

4 − o(1)
errors. Note that 1

4 is an upper bound on the unique-decoding radius of any non-trivial binary code,
and due to the well-known connection between hardness amplification and coding theory, it is also
the limit for results shown using uniform “black-box” reductions (see, for instance, the discussion
in [Tre05] or [TV02, Sec. 6]). Thus the (3/4 + o(1))-hardness we achieve is a natural barrier for
our techniques.

Our construction and proof is based on majority logic decoding of an expander-based code
[ABN+92, GI01] and Generalized Minimum Distance (GMD) decoding of concatenated codes
[For66]. The first step in the encoding is to use the expander-based construction of Alon et
al.[ABN+92] which gives a good distance code over a larger alphabet as the outer code. In con-
junction with the majority logic decoder for such codes due to [GI01], this gives a derandomized
direct product theorem in the spirit of [IJK06].

A standard way to reduce the alphabet size is to use concatenation with an inner binary
code. The advantage is that the binary code is now applied to a small message size, and thus
can be decoded even by brute force. By adapting GMD decoding to this setting, Guruswami and
Indyk [GI01, GI05] constructed binary codes that can decoded up to a (1/4 − ε) fraction of errors
in time linear in the block length. Trevisan [Tre03, Theorem 7] used the same construction with a
simpler (but less powerful) local decoder to amplify (1−1/poly(n))-hardness to (7/8+1/poly(n))-
hardness for PSPACE against the class P. However, translating this to the monotone setting and
achieving a decoding radius of 1

4 locally and deterministically require overcoming some obstacles
which we detail below.

A significant barrier is that the naive decoder will only correct a fraction 1/8 of errors and in
order to decode up to a fraction (1/4 − o(1)) of errors, one needs to implement GMD decoding
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in a local manner.3 The standard approach behind GMD decoding is to pass weights from the
inner decodings along with the decoded symbols. The outer decoder then picks a threshold, erases
all symbols with weights below the threshold, and decodes from the remaining symbols using a
majority vote for each bit of the message. This is repeated for each possible threshold. This seems
hard to implement locally and uniformly since the same threshold needs to be used for all bits of
the message and we do not know in advance which threshold will work.

We bypass this problem by using the weights as soft information representing the confidence of
each inner decoder and take a weighted majority. This scheme is local and deterministic since to
recover a message bit, we only need to decode the inner codes for its neighbors, and then take a
majority vote. To prove that this scheme works, we use the spectral properties of the underlying
expander graph.

In order for the final function to belong to NP the inner code has to be monotone. However
monotone codes are only guaranteed to have good distance when the messages are far apart, and
when each of them is balanced or close to balanced. Indeed, the code we use has the property
that nearby messages have similar encodings, and this is crucial to our analysis. On the decoding
side, we can only guarantee that messages are recovered approximately even when the decoding of
the inner code succeeds (unlike in the conventional setting), which makes the analysis of the outer
decoder much harder.

Our local GMD decoding technique can also be used to amplify hardness against P within
EXP via concatenation with standard binary codes. In fact the proof is easier since none of the
complications of monotone codes arise.

2 Preliminaries

2.1 Expander Graphs

A crucial ingredient in our construction is k-regular expander graphs with small second eigenvalue.
We need graphs on N vertices where N = 2n, whose degree is k = (log n)τ where τ � 1 and whose
second largest eigenvalue (in absolute value) λ is bounded by k(1−ν) for some absolute constant
ν > 0. Finally, we need graphs which are highly explicit in the sense that the i’th neighbor of any
vertex v can be computed in deterministic poly(n) time. The standard way to get graphs with
good eigenvalue gap is to use the LPS construction of Ramanujan graphs. However, to construct
such a graph with N = 2n vertices requires finding a large prime of size NΩ(1) and it is not known
how to perform this task in deterministic poly(n) time. Instead, we start with the construction of
Margulis and its analysis due to Gabber-Galil [HLW06, Chap. 8].

Definition 3. Let N be a square. The vertex set of GN is Z√
N × Z√

N . Let

T1 =

(

1 2
0 1

)

, T2 =

(

1 0
2 1

)

, e1 =

(

1
0

)

, e2 =

(

0
1

)

.

The vertex v = (x, y) is adjacent to T1v, T2v, T1v + e1, T2v + e2 and four other vertices obtained by
the inverse transformations.

3It is mentioned in [GK06, Remark 4.9] that the binary code construction from [GI01] can be used to boost
hardness to (3/4 + ε) in a uniform, deterministic way. However, it is unclear if the standard GMD algorithm can be
implemented locally.
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Note that since the transformations are invertible GN has degree 8. The following result of
Gabber and Galil bounds its second eigenvalue.

Theorem 5 ([HLW06]). The graph GN satisfies λ 6 5
√

2 < 8.

Now take Gt
N , the tth power of GN , the (multi)graph where vertices are adjacent if they are

connected by a length-t walk in G. It is easy to see that that this graph has N vertices, degree dt

and second eigenvalue λ 6 (5
√

2)t = dt(1−ν) for some explicit constant ν > 0. The parameters we
want are obtained by taking t = Θ(log log n).

Theorem 6. There is an absolute constant ν > 0 such that for all τ > 0 and for all large enough
evenintegers n, there exists an integer t = t(τ, n) and a highly explicit graph Gt

N on N = 2n vertices
with degree k = Θ ((log n)τ ) and second eigenvalue λ 6 k(1−ν).

The above construction works only for even n. Note that if f : {0, 1}n → {0, 1} is (1 − δ)-hard
for C, then the function f̃ : {0, 1}n+1 → {0, 1} defined by f̃(x, b) = f(x) for b ∈ {0, 1} is (1 − δ/2)-
hard for class C. For our application to hardness amplification, we can thus assume that the input
length n of f is even, and thus use the above expanders.

Finally, let G(A,B,E) be the k = dt-regular bipartite multigraph obtained by taking the double
cover of Gt

N . By the expander mixing lemma, for S ⊆ A and T ⊆ B, we have

∣

∣

∣

∣

|E(S, T )| − k|S||T |
N

∣

∣

∣

∣

6 λ
√

|S||T |.

In the above, |E(S, T )| is the number of edges between vertices in S and T , where multiple edges
are counted as many times.

2.2 Monotone Codes

We begin by formally defining distance and decodability for monotone codes. We use ∆ to denote
the normalized Hamming distance between two strings of equal lengths.

Definition 4. A monotone code C has distance (α, β) if for any two balanced messages f and g
such that ∆(f, g) > α, ∆(C(f),C(g)) > β.
Algorithm A α-approximately decodes C up to distance γ if when given a received word R, if there
is a balanced f such that ∆(C(f), R)) < γ, A outputs g such that ∆(f, g) < α.

Notice that we only require good distance between balanced messages that are far apart. This is
not an inherent limitation of all monotone codes, [BOKS06] prove the existence of monotone codes
that have good distance for any pair of balanced messages. However in Section 4, we show that
monotone codes which can be used in black-box hardness amplification do have inherent limitations;
they can only have good distance for messages which are far apart.

The following generic construction of monotone codes is from [BOKS06].

Definition 5. Given a monotone function g : {0, 1}r → {0, 1}, we define the [k, kr] code gk,r as
follows. The codeword is indexed by i = (i1, . . . , ir) ∈ [k]r. Given a message x ∈ {0, 1}k, the bit of
gk,r(x) for index i is given by

gk,r(x)i = g(xi1 , . . . , xir).
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To compute a random index of gk,r(x), we sample an r-tuple of coordinates in x with repetition,
and apply the function g. To analyze the properties of the code, we use the notion of noise-sensitivity
of a Boolean function.

Definition 6. Given x ∈ {0, 1}r let Nδ(x) denote the random vector obtained by flipping each bit
of x independently with probability δ. For a function g : {0, 1}r → {0, 1}, the noise-sensitivity of g
at δ denoted NSδ(g) is defined as

NSδ(g) = Pr
x∈{0,1}r ,Nδ(x)

[g(x) 6= g(Nδ(x))].

The following Lemma is implicit in [BOKS06].

Lemma 7. The code gk,r has distance (δ,NSδ(g)).

Proof. Take two balanced messages x, y ∈ {0, 1}k with ∆(x, y) = δ. If we pick a random i ∈ [k],

Pr[xi = 1] = Pr[yi = 1] =
1

2
, Pr[xi 6= yi] = δ.

Thus it follows that ∆(gk,r(x), gk,r(y)) = NSδ(g).

Note that Claim 7 of [BOKS06] about the list-decodability of gk,r can be derived from Lemma
7 by applying the Johnson bound. Another useful property of these codes is that nearby messages
(even unbalanced) have similar encodings. This allows us to reason about the distance between the
encodings of nearly-balanced messages by replacing them with nearby balanced messages.

Lemma 8. For all x, y ∈ {0, 1}k such that ∆(x, y) 6 δ, ∆(gk,r(x), gk,r(y)) 6 δr.

Proof. Pick a random index of gk,r. Since x and y differ at no more than δk indices, the probability
that sampling a random r-tuple gives different strings is bounded by δr, from which the claim
follows.

For each r = 3`, the Recursive-Majority function RecMaj : {0, 1}r → {0, 1} is a function on r
variables given by a depth-` ternary tree of majority gates with the inputs at the leaves.

Fact 9 ([O’D04]). There is a constant γ ∈ (0, 1), such that NSr−γ (RecMaj) >
1
2 − r−γ.

3 The Monotone Code construction

3.1 The expander-based construction

There is a standard way, originally due to [ABN+92], to use an expander graph to map a binary
string into a string over a larger alphabet, such that a small Hamming distance between two binary
strings is amplified into a much larger Hamming distance between their images.

Definition 7. Given a string f ∈ {0, 1}N and a k-regular bipartite (multi)-graph G(A,B,E) with
|A| = |B| = N (we assume the elements of A and B are identified with {1, 2, . . . , N} in some fixed
order), the string G(f) ∈ ({0, 1}k)N is defined as follows. For j ∈ B, let G(f)j , the j’th symbol
of G(f), be the vector obtained by concatenating the symbols of f corresponding to positions in the
neighborhood of j in A in some fixed order. In other words, if Γ1(j), . . . ,Γk(j) are the k neighbors
of j ∈ B, then

G(f)j = fΓ1(j) ◦ fΓ2(j) ◦ · · · ◦ fΓk(j).

7



In other words, we associate the vertices of the LHS with the message symbols. To each vertex
on the RHS we associate the concatenation of the symbols of to its neighbors (considered in some
fixed order). To reduce the alphabet size, we will further encode the k bits in each symbol of G(f)
by an “inner” code.

We can now state the construction of our code C. For some constant τ > 1 that we fix later,
we pick a graph G(A,B,E) with |A| = |B| = 2n, degree k = Θ ((log n)τ ), and second largest
eigenvalue at most k1−ν , as guaranteed by Theorem 6. We associate the message f of length N
with the vertices on the LHS. We concatenate each symbol on the RHS (which lies in {0, 1}k) with
the code RecMajk,r where r = Θ((log n)ρ) for any constant ρ < 1. It is clear from the choice of
parameters that the encoding length is M = Nkr = 2n(log n)τ(log n)ρ

= 2n(1+o(1)).
One can show that the distance of this code is close to 1

2 , as long as the messages are at distance
at least 4r−γ (here γ > 0 is the constant from Fact 9). We defer this proof to the appendix.

Lemma 10. The code C has distance (4r−γ , 1
2 − 4r−γ).

3.2 Deterministic Local Decoding

We analyze the following decoding procedure. Let Rj denote the portion of the received word
corresponding to C(f)j. We decode Rj to a balanced string yj such that ∆j = ∆(RecMajk,r(yj), Rj)
is minimized. We then define a confidence estimate βj ∈ [0, 1] as

βj = max(1 − 4∆j , 0).

Note that if ∆j is small, then the confidence estimate is close to 1. As ∆j approaches 1
4 , which is

approximately half the relative distance of the inner code, βj drops to 0.
After decoding the inner codes, for each vertex i on the LHS, we get a vote for the value of fi

from every vertex j in its neighborhood Γ(i). We take a weighted majority of these votes, using
the βjs are weights. Let i ∈ A, and let Γ0(i),Γ1(i) denote the subset of Γ(i) on the RHS which
vote 0 and 1 respectively. We set fi = 1 if

∑

j∈Γ1(i)

βj >
∑

j∈Γ0(i)

βj ,

and fi = 0 otherwise.
The decoding procedure outlined above is deterministic. To recover a bit fi, we only need to

decode the inner codes for vertices in Γ(i). The size of Γ(i) is bounded by (log n)τ and the time
taken to decode each inner code is bounded by (log n)τ(log n)ρ

= o(n) since ρ < 1. Thus the time
needed to recover fi is o(n).

We now analyze the error-correction. Let f be a balanced message. Assume that an adversary
corrupts ∆(R,C(f)) = η 6

1
4 − 4r−γ/2 fraction of the indices. Also, let ηj denote the error-rate on

the inner code for a vertex j ∈ B. We partition B into two sets, Balanced ⊂ B is the set of vertices
j such that the bias of G(f)j is at most 1

kν/2
, and its complement UnBalanced.

Lemma 11. We have |UnBalanced| 6
1
kν N .

Proof. Take S to be the set of 1s on the RHS, so that |S| = 1
2N . Let

U1 =

{

j ∈ B | wt(G(f)j) >
1

2
+

1

kν/2

}

, U0 =

{

j ∈ B | wt(G(f)j) <
1

2
− 1

kν/2

}

.
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Note that |E(S,U1)| > (1
2 + 1

kν/2
)k|U1|. Hence |E(S,U1)| − k|U1|

2 > k1−ν/2|U1|. Applying the
expander mixing lemma,

k1−ν/2|U1| 6 k1−ν
√

|S||U1| ⇒ |U1| 6
1

2kν
N.

A similar calculation for U0 gives |UnBalanced| = |U0| + |U1| 6
N
kν .

We note that for this lemma, |S| need not be perfectly balanced, it follows that |UnBalanced| 6

O( 1
kν N) as long as the bias of f is o( 1

kν/2
).

Thus |Balanced| > N(1 − 1
kν ). We further divide Balanced into two parts, Good and Bad. We

say that j ∈ Balanced lies in Good if ∆(yj, G(f)j) 6 2r−γ else j ∈ Bad.

Lemma 12. We have
∑

j∈Good

βj −
∑

j∈Bad

βj > r−γN.

Proof. Fix a j ∈ Balanced. Let xj denote the balanced message so that ∆(xj , G(f)j) 6
1

kν/2
. By

Lemma 8,

∆(RecMajk,r(xj), C(f)j) 6
r

kν/2
. (1)

Case 1: j ∈ Bad. In this case, we show that if vertex j has a high confidence βj , then ηj needs to
be large. Formally, we show that if j ∈ Bad, then

ηj >
1 + βj

4
− 2r−γ .

Since j is a bad vertex, ∆(yj, G(f)j) > 2r−γ , hence by the triangle inequality

∆(xj, yj) > 2r−γ − 1

kν/2
> r−γ (since r < kν/2)

Hence their encodings are far apart,

∆(RecMajk,r(xj),RecMajk,r(yj)) >
1

2
− r−γ

which together with (1) gives

∆(C(f)j,RecMajk,r(yj)) >
1

2
− r−γ − r

kν/2
>

1

2
− 2r−γ .

Now we consider two cases. If βj > 0, then by definition

∆(Rf ,RecMajk,r(yj)) =
1 − βj

4

hence

ηj = ∆(C(f)j, Rj) >
1

2
− 2r−γ − 1 − βj

4
=

1 + βj

4
− 2r−γ .

When βj = 0, we know that

∆(RecMajk,r(xj), Rj) > ∆(RecMajk,r(yj), Rj) >
1

4
.
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Together with (1), this gives

ηj = ∆(C(f)j, Rj) >
1

4
− r

kν/2
>

1

4
− 2rγ

where the last inequality follows from r2 < kν/2.

Case 2: j ∈ Good. We now show that if a good vertex has low confidence, then ηj is close to 1
4 .

When j ∈ Good, we have

∆(Rf ,RecMajk,r(xj)) > ∆(Rf ,RecMajk,r(yj)) >
1 − βj

4

and hence

∆(C(f)j, Rj) >
1 − βj

4
− r

kν/2
>

1 − βj

4
− r−γ .

Since the total fraction of errors is bounded by 1
4 − 4r−γ/2,

∑

j∈Good

(

1 − βj

4
− r−γ

)

+
∑

j∈Bad

(

1 + βj

4
− 2r−γ

)

6

(

1

4
− 4r−γ/2

)

N.

Rearranging terms, and using the fact that all but 1
kν N vertices are balanced,

∑

j∈Good

βj −
∑

j∈Bad

βj > N

(

2r−γ/2 − 1

kν

)

> r−γ/2N

Thus overall, the total mass of the βj ’s is higher on the good vertices than the bad vertices.
Using the spectral properties of the graph, we can show that even locally, most vertices will receive
more votes from good than bad vertices.

Lemma 13. Define the set

I1 =







i ∈ A
∑

j∈Γ(i)∩Good

βj −
∑

j∈Γ(i)∩Bad

βj <
r−γ/2

2
k







The |I1| 6
4rγ

k2ν N .

Proof. Define the vector z = (z1, . . . , zN ) where zj = βj for j ∈ Good, zj = −βj for j ∈ Bad and
zj = 0 otherwise. Define the vector χ to be the indicator of the set I1. Let AG be the adjacency
matrix of G. Then

χtAGz =
∑

i∈I1

(AGz)i =
∑

i∈I1

∑

j∈Γ(i)

zj =
∑

i∈I1





∑

j∈Γ(i)∩Good

βj −
∑

j∈Γ(i)∩Bad

βj



 <
r−γ/2

2
k|I1|.
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On the other hand, let us expand z and χ in the orthonormal basis of the eigenvectors {v1, . . . , vN}
of A (with corresponding eigenvalues k = λ1 > λ2 > · · · > λN with λ = max{λ2, |λN |}) as:
z =

∑

N ζ`v` and χT =
∑

` ξ`v`. Note that ξ1 = |I1|/
√

n, and ζ1 = (
∑

i zi)/
√

N > r−γ
√

N . Now

χtAGz =
∑

`

ξ`ζ`λ`

= ξ1ζ1d +
∑

`>2

ξ`ζ`λ`

>
|I1|√

N
· r−γ/2

√
N · k − λ〈χ, z〉

> r−γ/2k|I1| − λ‖χ‖‖z‖
> r−γ/2k|I1| − λ

√

|I1|N.

We thus conclude

r−γ/2k|I1| − λ
√

|I1|N <
r−γ/2

2
k|I1| ⇒ |I1| <

4rγ

k2ν
N.

Lemma 14. The local decoding procedure 16r−γ/2-approximately decodes C up to distance 1
4 −

4r−γ/2.

Proof. We say that an edge is incorrect if the wrong symbol is sent to the LHS after decoding the
inner code. We assume that all edges from vertices in Bad and vertices in UnBalanced are incorrect.
In addition, each vertex in Good might have up to 2r−γ incorrect edges. We will argue that even
so, most of the vertices in A are decoded correctly.

Let I2 ⊂ A be the set of vertices which have at least r−γ/2

4 k neighbors in UnBalanced. Since the
total out-degree of the set UnBalanced is bounded by k1−νN , we have

|I2|
r−γ/2

4
k 6 k1−νN ⇒ |I2| 6

4rγ/2

kν
N.

Hence for any vertex in A \ I1 ∪ I2,

∑

j∈Γ(i)∩UnBalanced

βj 6 |Γ(i) ∩ UnBalanced| 6
r−γ/2

4
k.

∑

j∈Γ(i)∩Good

βj −
∑

j∈Γ(i)∩Bad

βj >
r−γ/2

2
k.

Hence
∑

j∈Γ(i)∩Good

βj −
∑

j∈Γ(i)∩Bad

βj −
∑

j∈Γ(i)∩UnBalanced

βj >
r−γ/2

4
k. (2)
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Finally, partition Γ(i)∩Good into Correcti and Incorrecti based on whether or not the edge (i, j)
is correct. The advantage of correct votes over incorrect votes at vertex i is given by

advi >
∑

j∈Correcti

βj −
∑

j∈Incorrecti

βj −
∑

j∈Γ(i)∩Bad

βj −
∑

j∈Γ(i)∩UnBalanced

βj

=
∑

j∈Good

βj − 2
∑

j∈Incorrecti

βj −
∑

j∈Γ(i)∩Bad

βj −
∑

j∈Γ(i)∩UnBalanced

βj

>
∑

j∈Good

βj −
∑

j∈Γ(i)∩Bad

βj −
∑

j∈Γ(i)∩UnBalanced

βj − 2|Incorrecti|

Hence for an incorrect decoding of i, we must have |Incorrecti| >
r−γ/2

4 k. Denote the set of such
vertices by I3. The number of incorrect edges leaving Good is bounded by (2r−γ)kN . Thus,

|I3|
r−γ/2

4
k 6 (2r−γ)kN ⇒ |I3| 6 8r−γ/2.

Thus overall, the fraction of vertices that are wrongly decoded is bounded by

δ 6
|I1| + |I2| + |I3|

N
6 8r−γ/2 +

4rγ/2

kν
+

4rγ

k2ν
6 16r−γ/2

for sufficiently large k.

3.3 Proofs of our main results

Theorem 4 now follows by a suitable choice of parameters. Recall that r = (log n)ρ for some
constant ρ < 1. We set k = (log n)τ for some large constant τ so that r2 < k2ν , which ensures
that error terms involving k are bounded by r−γ/2. Thus our algorithm recovers balanced messages
with error at most (log n)−µ up to error rate 1

4 − (log n)−µ for some constant µ and large n.

To prove Theorem 1, let f be a balanced function which is 1 − (log n)−µ hard for P. Assume
that there is a deterministic polynomial time algorithm A that computes G(f) within accuracy
3
4 +(log n)−µ. Then using the local decoding procedure in conjunction with A gives a deterministic
polynomial time algorithm A′ which computes f correctly on 1 − (log n)−µ fraction of inputs,
contradicting our assumption about its hardness. We can relax the condition that f is perfectly
balanced. Indeed, our proof goes through even if f has bias o(k−ν/2). In this case, we can still use
Lemma 11 to show that for most vertices j ∈ B, G(f)j has bias bounded by k−ν/2. The rest of the
proof goes through unchanged.

To eliminate the balance hypothesis and prove Theorem 2, we use the padding argument used
by Trevisan [Tre05, Lemma 7]. By suitable choice of parameters ρ, τ , assume that kν/2 = o(log n).
We consider inputs lengths n = 2t. We use f on {0, 1}n to define a padded version f ′ on input
lengths in the interval [2t, 2t + t]. On one of these lengths, f ′ has bias bounded by O(1/t) and has
about the same hardness as f . However, to get an algorithm for f from an algorithm for f ′, we
need O(log t) = O(log log n) advice bits to tell us which length in the interval [2t, 2t + t] to use, and
O(log n) advice bits to tell us an appropriate suffix to pad the input for f with. The latter advice
string is not needed in the BPP setting as one can pad the input with a random string. Since the
argument is similar to ones used in [O’D04, Tre05], we omit the details.
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To prove Theorem 3, we take an expander graph with degree k = nO(1). We concatenate it
with a binary code that gives codewords of length kO(1) and can be unique decoded up to error
rate 1

4 − n−O(1) in time poly(k). (There are several choices for such a code, for example Reed-
Solomon concatenated with a Hadamard code would work.) For decoding, we define the confidence
parameter βj for each vertex as before. A vertex is now good if it recovers the message exactly
and bad otherwise. We can prove statements similar to Lemma 12 showing that good vertices have
more confidence overall, and Lemma 13 showing that this is also true for the neighborhoods of most
vertices on the LHS. This concludes the analysis, since unlike in the monotone case, we do not have
to worry about unbalanced vertices or wrong votes from good vertices. This gives a deterministic
local decoder that runs in time poly(n) and can 1

poly(n) -approximately decode codewords up to error

rates of 1
4 − 1

poly(n) , which implies Theorem 3.

4 Limitations to Hardness Amplification via Monotone Codes

For EXP, it is possible to show optimal average case hardness starting from worst-case hardness
assumptions. Roughly, amplifying worst-case hardness to (1 − δ)-hardness requires codes that are
exactly locally decodable up to error rate δ. The crux of this reduction for EXP is the existence
of codes which can be locally list-decoded (exactly) up to 1

2 − o(1) errors (the notion of local
list-decoding is subtle and needs to be defined carefully, see [STV01]).

In contrast, for NP we do not expect to amplify worst case hardness to even 1 − 1/poly(n)-
hardness in a black-box manner, assuming certain complexity-theoretic hypotheses [BT06]. This
suggests limitations to the error-correcting properties of monotone codes that can be used for
amplification, namely that they cannot be decoded exactly. Our goal in this section is to prove
these limitations without any complexity theoretic assumptions. We note that our lower bounds
are purely combinatorial in nature, hence they apply also to randomized and non-uniform decoders.

[BOKS06] noted that there exist monotone codes that have good distance. We observe that
additionally, they can have efficient and exact local decoding algorithms.

Lemma 15. For any η < 1
4 , there exist monotone codes that can be locally decoded exactly up to

error rate η.

Proof. Let C : {0, 1}N → {0, 1}M be a (not necessarily monotone) code which is locally decodable
up to error rate η. We now define a monotone code C′ : {0, 1}N → {0, 1}M as follows: on balanced
messages, C′(x) = C(x). For each i ∈ [M ] and balanced string x ∈ {0, 1}N , this defines a function
C′

i(x) taking values in {0, 1}. We can now extend C′
i to a monotone function that is defined on the

entire hypercube {0, 1}N . The local decoder for C′ is just the local decoder for C. On any balanced
message, it is guaranteed to recover from up to η fraction of errors.

The reason why this construction will not give hardness amplification is because we do not have
an upper bound on the complexity of encoding. While it is certainly sufficient if the encoding is
local, this is a strong condition and is in fact restrictive. Healy et al.[HVV06] show that one cannot
hope for better that 1

2 + 1
poly(n) hardness via such reductions. Healy et al. [HVV06] observe that

for black-box hardness amplification, the monotone code C must be such that each function Ci has
small certificate complexity. Using this, they are able to break the 1

2 + 1
poly(n) barrier.

Definition 8. For S ⊆ N and x ∈ {0, 1}N , let xS denote the projection of x onto the coordinates
in S. For a Boolean function f : {0, 1}N → {0, 1}, and x ∈ f−1(1), we say that xS is a certificate
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for x if f(y) = 1 for all y ∈ {0, 1}N such that yS = xS. We define

N1(f) = max
x∈f−1(1)

min |xS |

over all certificates xS for x.

Alternately N1(f) is the non-deterministic complexity of f , it is the maximum number of bits
of x that a prover has to reveal to a verifier to convince her that f(x) = 1. It is easy to see that if
f is monotone, then a minimal certificate for x ∈ f−1(1) can only consist of 1’s. For a monotone
code C : {0, 1}N → {0, 1}M , we define

N1(C) = max
i∈[M ]

N1(Ci).

We will study black-box hardness amplification, where N1(C) is bounded by poly(n) and N =
2n. This still allows each Ci to depend on all the 2n message bits. Indeed this assumption that
each bit can be encoded with small non-deterministic complexity seems to be the natural definition
for amplification within NP. We will show that the condition N1(C) = poly(n) places bounds on
the distance of the resulting monotone code.

Lemma 16. A monotone code with N1(C) 6 t can be exactly decoded from at most a fraction
δ = t

N of errors.

Proof. Let x ∈ {0, 1}N be a random balanced message. Let A0 and A1 denote the subsets of indices
where xi is 0 and 1 respectively. Let y ∈ {0, 1}N be generated from x by flipping a random bit
from each of A0 and A1. It is clear that y is also a random balanced message.

For each i ∈ [M ], we bound Pr[Ci(x) 6= Ci(y)]. Note that

Pr[Ci(x) 6= Ci(y)] = Pr[Ci(x) = 0, Ci(y) = 1] + Pr[Ci(x) = 1, Ci(y) = 0]

= 2Pr[Ci(x) = 1, Ci(y) = 0]

by symmetry. By monotonicity, flipping a bit from A0 cannot cause Ci to change from 1 to 0. Let
S be a certificate that Ci(x) = 1 of size at most t. The bit flipped from A1 must belong to S, else
Ci(y) = Ci(x) = 1 since yS = xS . The probability of this event is bounded by t

N . Thus,

Pr[Ci(x) 6= Ci(y)] 6
2t

N
.

By linearity of expectation,

∆(C(x),C(y)) 6
2t

N
.

Thus there exists a pair of balanced messages x, y satisfying this condition. Thus any unique
decoder for C can tolerate at most an error rate of t

N , which is exponentially small in n.

The above lemma rules out getting 1 − 1
poly(n) hardness starting from worst-case hardness via

black-box reductions. One can use a similar argument to also bound from below the error of any
approximate decoder that decodes from a constant fraction of error.

Lemma 17. Let C be a monotone code with N1(C) 6 t. Any local decoder that can tolerate η
fraction of errors can only recover balanced messages η

2t -approximately.
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Proof. Define x ∈ {0, 1}N , A0 ⊂ [N ], A1 ⊂ [N ] as before. Pick random subsets B0 ⊂ A0 and
B1 ⊂ A1 of size η

2tN each and flip these bits to obtain y. As before, we have

Pr[Ci(x) 6= Ci(y)] = 2Pr[Ci(x) = 1, Ci(y) = 0]

Let S be a certificate that Ci(x) = 1 of size at most t. Some bit from S must lie in B1 in order
for Ci(y) to equal 0. It is easy to show that the expected size of B1 ∩ S is at most η, hence the
probability that it is non-empty is bounded by η. Hence using linearity of expectation,

Pr[Ci(x) 6= Ci(y)] 6 2η ⇒ ∆(C(x),C(y)) 6 2η

Thus there exist two balanced messages x, y such that

∆(x, y) =
η

t
, ∆(C(x),C(y)) 6 2η.

Hence there exists a received word R ∈ {0, 1}M such that

∆(R,C(x)) 6 η, ∆(R,C(y)) 6 η.

Now consider the output of the decoder on input R. The decoded message is always at distance at
least η

2t from one of x and y.

This lemma shows that to achieve (1−η)-hardness for any constant η by a black-box reduction,
one has to start by assuming 1 − 1

poly(n) hardness.

5 Conclusions

The reason we are unable to amplify from (1 − 1
poly(n))-hardness for NP is due to the fact that we

do not know anything but a brute-force exponential decoder for the inner monotone code that can
correct a linear fraction of errors. In order to prove such a result via our concatenation scheme, we
would need an inner monotone code with a deterministic decoder that on messages of size k, can
correct up to 1

4 fraction of errors with accuracy k−γ for some constant γ > 0 in poly(k) time. Of
course, we would need some additional properties of the inner code (like Lemma 8) to deal with
imbalance in the messages.

In the other direction, improving the hardness to 1
2 +o(1) from 3

4 +o(1) calls for a deterministic,
local list-decoder that can correct a 1

2 − ε fraction of errors approximately. We are unaware of any
such decoders for any non-trivial code, say even the Hadamard code. Indeed, it would be interesting
to improve Theorem 3 to get deterministic hardness amplification up to 1

2 +o(1) even for PSPACE.
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A Analyzing the Distance

We will need Lemma 11 showing that for a balanced message f and most vertices j ∈ B, G(f)j is
unbiased. Next we argue that if f and g are both balanced and at sufficiently large distance, then
G(f)j and G(g)j are also at a good distance for most j ∈ B.

Lemma 18. Let f and g be balanced, such that ∆(f, g) = δ > 1
kν . Let T be the set of vertices

j ∈ B such that ∆(G(f)j , G(g)j) < δ
2 . Then |T | 6 4

kν N .

Proof. Let S ⊂ A denote the set of vertices on the LHS where f and g differ, so that |S| > δN .
With T as above, we get |E(S, T )| 6

δ
2k|T |, so that

δk|T | − |E(S, T )| >
δ

2
k|T |.

By the expander mixing lemma,

δ

2
k|T | 6 λ

√

δN |T | ⇒ |T | <
4

k2νδ
N 6

4

kν
N.

We can now prove Lemma 10 stating that the code C has distance (4r−γ , 1
2 − 4r−γ).
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Proof. We consider vertices j ∈ B so that G(f)j and G(g)j have small bias and good distance, and
call such vertices nice. Lemmas 11 and 18 imply that this is a 1 − 5

kν fraction of all vertices. Fix
one such vertex j.

Since G(f)j and G(g)j have bias at most 1
2 + 1

kν/2
, there are a balanced string x and y such that

∆(x,G(f)j) <
1

kν/2
, ∆(RecMajk,r(x), C(f)j) < r

kν/2
(3)

∆(y,G(g)j) <
1

kν/2
, ∆(RecMajk,r(y), C(g)j) < r

kν/2

But since ∆(G(f)j , G(g)j) > 2r−γ , we have

∆(x, y) > 2r−γ − 2

kν/2
> r−γ ⇒ ∆(RecMajk,r(x),RecMajk,r(y)) >

1

2
− r−γ . (4)

By Equations (3), (4) and the triangle inequality,

∆(C(f)j, C(g)j) >
1

2
− r−γ − 2r

kν/2
>

1

2
− 2r−γ .

Since this holds for every nice vertex j ∈ B, and all but a fraction O( 1
kν ) of vertices are nice, for

large enough k

∆(C(f), C(g)) >
1

2
− 4r−γ .
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