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Abstract

Thesign-rankof a real matrixM is the least rank of a matrixR in which
every entry has the same sign as the corresponding entry ofM.We determine
the sign-rank of every matrix of the formM = [ D(|x ∧ y|) ]x,y, whereD :
{0, 1, . . . , n} → {−1,+1} is given andx andy range over{0, 1}n. Specifically,
we prove that the sign-rank ofM equals 2Θ̃(k), wherek is the number of times
D changes sign in{0, 1, . . . , n}.

Put differently, we prove an optimal lower bound on theunbounded-error
communication complexityof every symmetric function, i.e., a function of
the form f (x, y) = D(|x ∧ y|) for someD. The unbounded-error model is
essentially the most powerful of all models of communication (both classical
and quantum), and proving lower bounds in it is a substantialchallenge.
The only previous nontrivial lower bounds for this model appear in the
groundbreaking work of Forster (2001) and its extensions. As corollaries
to our result, we give new lower bounds for PAC learning and for threshold-
of-majority circuits.

The technical content of our proof is diverse and features random walks
on Zn

2, discrete approximation theory, the Fourier transform onZn
2, linear-

programming duality, and matrix analysis.

Electronic Colloquium on Computational Complexity, Report No. 112 (2007)

ISSN 1433-8092




1 Introduction

The unbounded-error model, due to Paturi and Simon [27], is arich and elegant
model of communication. Fix a functionf : X × Y → {0, 1}, whereX and Y
are some finite sets. Alice receives an inputx ∈ X, Bob receivesy ∈ Y, and
their objective is to computef (x, y). To this end, they exchange bits through a
shared communication channel according to a certain strategy, or protocol, that
they establish ahead of time. Alice and Bob each have an unlimited private source
of random bits which they can use in deciding what messages tosend. Eventually,
Bob concludes this process by sending Alice a single bit, which is taken to be the
output of their joint computation.

Define the random variableP(x, y) ∈ {0, 1} as the output bit when the parties
receive inputsx ∈ X andy ∈ Y. Alice and Bob’s protocol is said tocompute fif

Pr[P(x, y) = f (x, y)] >
1
2

for eachx ∈ X, y ∈ Y.

The above probability is, of course, over the private use of random bits by Alice
and Bob. Thecostof a given protocol is the worst-case number of bits exchanged
on any input (x, y). Theunbounded-error communication complexityof f , denoted
U( f ), is the least cost of a protocol that computesf .

The unbounded-error model occupies a special place in the study of commu-
nication because it is more powerful than any other standardmodel (deterministic,
nondeterministic, randomized, quantum with or without entanglement). More
precisely, the unbounded-error complexityU( f ) can be only negligibly greater
than the complexity off in any other model—and often,U( f ) is exponentially
smaller. We defer precise quantitative statements to Section 2.2. The power
of the unbounded-error model resides in its very liberal success criterion: it
suffices to produce the correct output with probability greater than 1/2 (say, by
an exponentially small amount). This contrasts with all other models, where the
correct output is expected with probability at least 2/3.

1.1 Motivation

The additional power of the unbounded-error model has the welcome consequence
that proving communication lower bounds in it requires richer and more creative
mathematical machinery. Furthermore, the resulting lowerbounds will have
implications that other communication models could not yield. Before we state
our results, we take a moment to thoroughly motivate our workby reviewing these
new possibilities unique to the unbounded-error model.
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Circuit complexity. Recall that athreshold gategwith Boolean inputsx1, . . . , xn

is a function of the formg(x) = sign(a1x1 + · · · + anxn − θ), for some fixed reals
a1, . . . , an, θ. Thus, a threshold gate generalizes the familiarmajoritygate. A major
unsolved problem in computational complexity is to exhibita Boolean function
that requires a depth-2 threshold circuit of superpolynomial size.

Communication complexity has been crucial to the progress on this problem.
Using randomized communication complexity, many explicitfunctions have been
found [9, 24, 33, 34] that require depth-2 majority circuitsof exponential size. Via
the reductions due to Goldman et al. [8], these lower bounds remain valid for the
broader class ofmajority-of-threshold circuits.This solves an important special
case of the general problem. The unbounded-error model solves another important
special case [6]: it supplies exponential lower bounds againstthreshold-of-majority
circuits, i.e., circuits with a threshold gate at the top that receivesinputs from
majority gates. To our knowledge, the unbounded-error model is currently the
only means to prove lower bounds against threshold-of-majority circuits.

Sign-rank and rigidity. Unlike other models of communication, the unbounded-
error model has a particularly natural matrix-analytic formulation. Fix a real matrix
M = [Mi j ] without zero entries. Thesign-rankof M, denoted dc(M), is defined
as the least rank of a matrixA = [Ai j ] with Mi j Ai j > 0 for all i, j. In other
words, sign-rank measures the sensitivity of the rank ofM when its entries undergo
sign-preserving perturbations. The sensitivity of rank isan important and difficult
subject in complexity theory. For example, much work has focused on the closely
related concept ofmatrix rigidity [12,21].

On the surface, unbounded-error complexity and sign-rank seem unrelated. In
reality, they are equivalent notions! More specifically, let f : X × Y → {0, 1} be a
given function. Consider its communication matrixM = [(−1)f (x,y)]x∈X, y∈Y. Paturi
and Simon [27] showed that

U( f ) = log dc(M) ± O(1).

Thus, unbounded-error complexity embodies a fundamental question from matrix
analysis, with close ties to complexity theory.

PAC learning. In a seminal paper [35], Valiant formulated theprobably approx-
imately correct(PAC) model of learning, now the primary model in computational
learning theory. LetC be a givenconcept class, i.e., a set of functions{0, 1}n →
{0, 1}. The learner in this model receives training examples

(x1, f (x(1))), (x2, f (x(2))), . . . , (xm, f (x(m))),
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where f ∈ C is an unknown function andx(1), x(2), . . . , x(m) ∈ {0, 1}n are sampled
independently from some unknown distributionµ. For every choice off andµ, the
learner must produce a hypothesish : {0, 1}n → {0, 1} that closely approximates
the unknown function:Ex∼µ[h(x) , f (x)] 6 ε. The objective is to findh efficiently.

Research has shown that PAC learning is surprisingly difficult. Indeed, the
problem remains unsolved for such natural concept classes as DNF formulas of
polynomial size and intersections of two halfspaces, whereas hardness results and
lower bounds are abundant [4, 13, 14, 16–18]. There is, however, an important
case when efficient PAC learning is straightforward. Specifically, letC be a given
concept class. For notational convenience, view the functions inC as mappings
{0, 1}n → {−1,+1} rather than{0, 1}n → {0, 1}. The dimension complexityof C,
denoted dc(C), is the leastr for which there are functionsφ1, . . . , φr : {0, 1}n → R
such that everyf ∈ C is expressible in the form

f (x) ≡ sign(a1φ1(x) + · · · + arφr(x))

for some realsa1, . . . , ar . There is a simple and well-known algorithm [15], based
on linear programming, that PAC learnsC in time polynomial in dc(C). To relate
this discussion to sign-rank (or equivalently, to unbounded-error complexity), let

MC
def
= [ f (x)] f∈C, x∈{0,1}n be the characteristic matrix ofC. A moment’s reflection

reveals that
dc(C) = dc(MC),

i.e., the dimension complexity of a concept class is precisely the sign-rank of its
characteristic matrix.

Thus, the study of sign-rank yields nontrivial PAC learningalgorithms. In
particular, the best known algorithm for learning polynomial-size DNF formulas
(Klivans & Servedio, 2001) was obtained precisely by placing a 2Ω̃(n1/3) upper
bound on the dimension complexity of that concept class. Furthermore, this
dimension-complexity method actually represents the state of the art in compu-
tational learning theory: whatever is known to be efficiently PAC learnable has
low dimension complexity—with the only exception of low-degree polynomials
over a finite field, which are trivial to learn but have high dimension complexity
(Forster 2001). In summary, dimension complexity is an important notion in
computational learning theory.
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1.2 Our Result

As we have discussed, the unbounded-error model has immediate applications
to circuit complexity, matrix analysis, and learning theory, in addition to its
intrinsic appeal as a model of communication. Despite this motivation, progress
in understanding unbounded-error complexity has been slowand difficult. It is
only recently that the first nontrivial lower bound was proved (Forster 2001) on
the unbounded-error complexity of an explicit function. Forster’s proof has since
seen several extensions and refinements [6, 7, 20]. We are notaware of any other
progress on unbounded-error complexity.

In this paper, we determine the unbounded-error complexityof a natural class
of functions that was beyond the reach of the existing techniques. Specifically, we
study functionsf : {0, 1}n→ {0, 1} of the form

f (x, y) = D(|x∧ y|),

whereD : {0, 1, . . . , n} → {0, 1} is a given predicate. AbbreviateU(D)
def
= U( f ).

Prior to our work, Forster showed thatU(D) = Θ(n) for the parity predicate
D(t) ≡ (t mod 2). The unbounded-error complexity of generalD, however, re-
mained unsettled.

We settle the unbounded-error complexity ofevery D. Let deg(D) stand for the
number of timesD changes sign in{0, 1, . . . , n}, i.e.,

deg(D)
def
= |{i = 1, 2, . . . , n : D(i) , D(i − 1)}|.

We prove:

Theorem 1.1 (Main Result). Let D : {0, 1, . . . , n} → {0, 1} be given. Then

U(D) = Θ̃(deg(D)),

where theΘ̃ notation suppresseslogn factors.

As explained in Section 1.1, this result implies lower bounds for PAC learning
and for threshold-of-majority circuits. Since they followfrom Theorem 1.1 as
immediate corollaries, we defer their statements and proofs to the final version of
the paper.

The upper bound in Theorem 1.1 has a short, first-principles proof. The lower
bound, on the other hand, is rather nontrivial and has required us to use a variety
of techniques (random walks onZn

2, discrete approximation theory, the Fourier
transform onZn

2, linear-programming duality, and matrix analysis). We discuss our
proof in greater detail next.
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Figure 1: Proof outline.

1.3 Our Techniques

Figure 1 schematically illustrates our proof. As a first step, we reduce the original
problem to one that is much smaller and more structured. Specifically, we reduce
the overall task to analyzing what we calldensepredicates. These are predicates
that change valuẽΘ(n) times and at roughly regular intervals. Such predicates
behave more predictably and are amenable to our methods, whereas arbitrary
predicates are not. The reduction works as follows. Under the assumption that
a given predicateD has complexityÕ(deg(D)), we use random walks onZn

2 to
infer the existence of somedensepredicate with low complexity. The remaining
part of the paper proves that this is an impossibility, i.e.,every dense predicate has
unbounded-error complexitỹΘ(n).

This leaves us with the challenge of analyzing the sign-rankof F =

[(−1)D(|x∧y|)], the communication matrix of a given dense predicate. To thisend, we
combine several distinct ideas. The first of these is Forster’s generalized result [6].
Applied to our setting, it states that the sign-rank ofF is proportional to the quantity

minx,y |Pxy|
‖P ◦ F‖

,
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where◦ denotes entrywise multiplication andP = [Pxy] is any matrix whose entries
are positive and sum to 1. In other words, we need to prove the existence of a matrix
P with large entries that leads to a small spectral norm‖P ◦ F‖.

To exhibit P with such properties, we usepattern matrices. These matrices
arose in two earlier works by the author [32, 34], where they proved useful in
obtaining strong lower bounds on communication. Their purpose in this paper is
to reduce the search forP to a search for asmooth orthogonalizing distributionfor
the predicateD. This informal term refers to a distribution on{0, 1}n that does not
put too little weight on any point (thesmoothpart) and under which (−1)D(x1+···+xn)

is approximately orthogonal to all low-degree parity functions (theorthogonalizing
part).

To find a smooth orthogonalizing distribution, we apply linear-programming
duality and work in the dual space instead. The dual problem turns out to be that of
bounding the advantage to which a low-degree univariate polynomial can compute
D, in a certain technical sense. We reformulate this new question as a discrete
approximation problem and solve the latter from scratch, using fundamentals of
approximation theory. Consolidating these various ingredients establishes our
main result.

Organization. Section 2 reviews the necessary technical background. Section 3
opens the proof with the reduction to dense predicates. Section 4 solves a certain
problem in discrete approximation. Section 5 translates this approximation result,
via linear-programming duality and the Fourier transform,into an existence proof
of smooth orthogonalizing distributions for every dense predicate. Section 6
combines the above ingredients to give the final lower boundson unbounded-error
complexity.

2 Preliminaries

This section provides the necessary technical background.We start by describing
our notation and reviewing some standard preliminaries in Section 2.1. A detailed
review of the unbounded-error model of communication is offered in Section 2.2,
along with relevant previous work. Finally, Section 2.3 examines an essential
ingredient of our proof, the pattern matrices.

2.1 Notation and Standard Preliminaries

A Boolean functionis a mappingX → {0, 1}, whereX is a finite set. Typical
cases areX = {0, 1}n andX = {0, 1}n × {0, 1}n. The notation [n] stands for the set
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{1, 2, . . . , n}. Throughout this manuscript, “log” refers to the logarithm to base 2.
The symbol

Pk

refers to the family of all univariate polynomials of degreeat mostk.
For x ∈ {0, 1}n, we write

|x| def
= |{i : xi = 1}| = x1 + x2 + · · · + xn.

For x, y ∈ {0, 1}n, the notationx∧ y refers as usual to the component-wise AND of
x andy. In particular,|x∧ y| stands for the number of positions wherex andy both
have a 1. At several places in this manuscript, it will be important todistinguish
between addition over the reals and addition over GF(2). To avoid any confusion,
we reserve the operator+ for the former and⊕ for the latter.

Random walks onZn
2 play an important role in this work. In particular, it will

be helpful to recall the following fact.

Proposition 2.1 (Folklore). For an integer T> 1, let b1, b2, . . . , bT ∈ {0, 1} be
independent random variables, each taking on1 with probability p. Then

E
[

b1 ⊕ b2 ⊕ · · · ⊕ bT

]

=
1
2
−

1
2

(1− 2p)T .

Proof. Straightforward by induction onT. �

Predicates. A predicateis a mappingD : {0, 1, . . . , n} → {0, 1}. We say that
a value changeoccurs at indext ∈ {1, 2, . . . , n} if D(t) , D(t − 1). The degree
of D, denoted deg(D), is the total number of value changes ofD. For example,
the familiar predicate PARITY(t) ≡ (t mod 2) has degreen, whereas a constant
predicate has degree 0. It is not hard to show that deg(D) is the least degree of a
real univariate polynomialp such that

sign(p(t)) = (−1)D(t) for t = 0, 1, . . . , n,

hence the termdegree.Finally, given two predicatesD1,D2 : {0, 1, . . . , n} → {0, 1},
their XOR is the predicateD1 ⊕ D2 : {0, 1, . . . , n} → {0, 1} defined by

(D1 ⊕ D2)(t)
def
= D1(t) ⊕ D2(t).
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Matrices. The symbolRm×n refers to the family of allm× n matrices with real
entries. The (i, j)th entry of a matrixA is denoted byAi j . We frequently use
“generic-entry” notation to specify a matrix succinctly: we write A = [F(i, j)] i, j

to mean that that the (i, j)th entry ofA is given by the expressionF(i, j). In most
matrices that arise in this work, the exact ordering of the columns (and rows) is
irrelevant. In such cases we describe a matrix by the notation

[F(i, j)] i∈I , j∈J,

whereI andJ are some index sets. In specifying matrices, we will use the symbol
∗ for entries whose values are irrelevant, as in the proofs of Lemmas 3.2 and 3.5.
Recall that thespectral normof a matrixA ∈ Rm×n is given by

‖A‖ def
= max

x∈Rn, ‖x‖2=1
‖Ax‖2,

where‖ · ‖2 is the Euclidean norm on vectors.

Fourier transform over Zn
2. Consider the vector space of functions{0, 1}n→ R,

equipped with the inner product

〈 f , g〉 def
=

1
2n

∑

x∈{0,1}n
f (x)g(x).

For S ⊆ [n], defineχS : {0, 1}n → {−1,+1} by χS(x)
def
= (−1)

∑

i∈S xi . Then{χS}S⊆[n]

is an orthonormal basis for the inner product space in question. As a result, every
function f : {0, 1}n→ R has a unique representation of the form

f (x) =
∑

S⊆[n]

f̂ (S)χS(x),

where f̂ (S)
def
= 〈 f , χS〉. The realsf̂ (S) are called theFourier coefficients of f. The

following fact is immediate from the definition of̂f (S):

Proposition 2.2. Let f : {0, 1}n→ R be given. Then

max
S⊆[n]
| f̂ (S)| 6 1

2n

∑

x∈{0,1}n
| f (x)|.
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Symmetric functions. Denote the group of permutations [n] → [n] by Sn.

A function φ : {0, 1}n → R is calledsymmetricif φ(x) is uniquely determined
by x1 + · · · + xn. Equivalently,φ is symmetric if

φ(x) = φ(xσ(1), . . . , xσ(n))

for every x ∈ {0, 1}n and everyσ ∈ Sn. Observe that for everyφ : {0, 1}n → R
(symmetric or not), the derived function

φsym(x)
def
=

1
n!

∑

σ∈Sn

φ(xσ(1), . . . , xσ(n))

is symmetric. The symmetric functions on{0, 1}n are intimately related to uni-
variate polynomials, as demonstrated by Minsky and Papert’s symmetrization
argument:

Proposition 2.3 (Minsky & Papert [22]). Letφ : {0, 1}n → R be symmetric with
φ̂(S) = 0 for |S| > r. Then there is a polynomial p∈ Pr with

φ(x) = p(x1 + · · · + xn) for all x ∈ {0, 1}n.

Minsky and Papert’s observation has seen numerous uses in the literature [1,25,26].

2.2 The Unbounded-Error Model of Communication

We continue the review started in the Introduction.
Readers with background in communication complexity will note that the

unbounded-error model is exactly the same as theprivate-coin randomized
model [19, Chap. 3], with one exception: in the latter case the correct answer
is expected with probability at least 2/3, whereas in the former case the success
probability need onlyexceed1/2 (say, by an exponentially small amount). This
difference has far-reaching implications. For example, the fact that the parties
in the unbounded-error model do not have ashared source of random bits is
crucial: allowing shared randomness would make the complexity of every function
a constant, as one can easily verify. By contrast, introducing shared randomness
into the randomized model has minimal impact on the complexity of any given
function [23].

As one might expect, the weaker success criterion in the unbounded-error
model has a drastic impact on the complexity of certain functions. For example,
the well-knowndisjointnessfunction onn-bit strings has complexityO(logn) in the
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unbounded-error model andΩ(n) in the randomized model [11, 29]. Furthermore,
explicit functions are known [2,31] with unbounded-error complexityO(logn) that
requireΩ(

√
n) communication in the randomized model to even achieve advantage

2−
√

n/5 over random guessing.
More generally, the unbounded-error complexity of a function f : X × Y →

{0, 1} is never much more than its complexity in the other standard models. For
example, it is not hard to see that

U( f ) 6 min{N0( f ),N1( f )} +O(1)

6 D( f ) +O(1),

whereD, N0, andN1 refer to communication complexity in thedeterministic,0-
nondeterministic,and 1-nondeterministicmodels, respectively. Continuing,

U( f ) 6 R1/3( f ) +O(1)

6 O
(

Rpub
1/3( f ) + log log [|X| + |Y|]

)

,

where R1/3 and Rpub
1/3 refer to theprivate- and public-coin randomizedmodels,

respectively. As a matter of fact, one can show that

U( f ) 6 O
(

Q∗1/3( f ) + log log [|X| + |Y|]
)

,

whereQ∗1/3 refers to thequantum model with prior entanglement. An identical
inequality is clearly valid for the quantum modelwithout prior entanglement.
See [3,19] for rigorous definitions of these various models;our sole intention was
to point out that the unbounded-error model is at least as powerful.

Unlike other models of communication complexity, the unbounded-error
model has a particularly natural interpretation in matrix-analytic terms. Specifi-
cally, let M = [Mi j ] be a real matrix without zero entries. Define thesign-rankof
M, denoted dc(M), by:

dc(M)
def
= min

A
{rankA : Mi j Ai j > 0 for all i, j}.

In words, dc(M) is the least rank of a real matrixA whose entries each have the
same sign as the corresponding entry ofM. A term equivalent to sign-rank is
dimension complexity,hence the notation dc(M). Paturi and Simon (1986) made
the following important observation.

Theorem 2.4 (Paturi and Simon [27, Thm. 2]).Let X,Y be finite sets and f:
X × Y→ {0, 1} a given function. Put M= [(−1)f (x,y)]x∈X,y∈Y. Then

U( f ) = log dc(M) ± O(1).
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Paturi and Simon’s original observation concernedX = Y = {0, 1}n, but their proof
readily extends to arbitrary sets. In words, the unbounded-error complexity of
a function essentially equals the logarithm of the sign-rank of its communication
matrix. This equivalence is very helpful: sometimes it is more convenient to reason
in terms of communication protocols, and sometimes the matrix formulation offers
more insight.

The power of the unbounded-error model arguably makes it themost challeng-
ing model in which to prove communication lower bounds. In a breakthrough
result, Forster [5] has recently proved the first nontriviallower bound in the
unbounded-error model for an explicit function. (By contrast, hard functions have
long been known [3, 19] for all other communication models.)Forster’s proof
generalizes to yield the following result, which serves as acrucial starting point for
our work.

Theorem 2.5 (Forster et al. [6, Thm. 3]). Let X,Y be finite sets and M=
[Mxy]x∈X,y∈Y a real matrix without zero entries. Then

dc(M) >

√
|X| |Y|
‖M‖

min
x,y
|Mxy|.

We close this overview by discussing some closure properties of the
unbounded-error model. Given functionsf , g : X × Y → {0, 1}, recall that their
XOR is the functionf ⊕ g : X × Y→ {0, 1} defined by

( f ⊕ g)(x, y) def
= f (x, y) ⊕ g(x, y).

We have:

Proposition 2.6 (Folklore). Let f, g : X × Y→ {0, 1} be arbitrary. Then

U( f ⊕ g) 6 U( f ) + U(g).

Proof. Alice and Bob can evaluatef andg individually and output the XOR of
the two answers. It is straightforward to verify that this strategy is correct with
probability greater than 1/2. �

In what follows, we will be interested primarily in the complexity of predicates
D : {0, 1, . . . , n} → {0, 1}. Specifically, we defineU(D) to be the unbounded-error
communication complexity of the functionf : {0, 1}n × {0, 1}n→ {0, 1} given by

f (x, y) = D(|x∧ y|).
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2.3 Pattern Matrices

An important ingredient of this work is a certain family of real matrices that we call
pattern matrices. They arose in two earlier works by the author [32,34] and proved
useful in obtaining strong lower bounds on communication. Relevant definitions
and results from [32] follow.

Let t andn be positive integers witht | n. Split [n] into t contiguous blocks,
each withn/t elements:

[n] =
{

1, 2, . . . ,
n
t

}

∪
{

n
t
+ 1, . . . ,

2n
t

}

∪ · · · ∪
{

(t − 1)n
t

+ 1, . . . , n

}

.

LetV(n, t) denote the family of subsetsV ⊆ [n] that have exactly one element in
each of these blocks (in particular,|V| = t). Clearly, |V(n, t)| = (n/t)t. For a bit
string x ∈ {0, 1}n and a setV ∈ V(n, t), define theprojection of x onto Vby

x|V
def
= (xi1, xi2, . . . , xit ) ∈ {0, 1}

t,

wherei1 < i2 < · · · < it are the elements ofV.

Definition 2.7 (Pattern matrix). Forφ : {0, 1}t → R, the (n, t, φ)-pattern matrixis
the real matrixA given by

A =
[

φ(x|V ⊕ w)
]

x∈{0,1}n, (V,w)∈V(n,t)×{0,1}t
.

In words,A is the matrix of size 2n by 2t(n/t)t whose rows are indexed by strings
x ∈ {0, 1}n,whose columns are indexed by pairs (V, w) ∈ V(n, t)×{0, 1}t, and whose
entries are given byAx,(V,w) = φ(x|V ⊕ w).

The logic behind the term “pattern matrix” is as follows: a mosaic arises from
repetitions of a pattern in the same way thatA arises from applications ofφ to
various subsets of the variables.

The author has recently conducted [32] a complete and exact spectral analysis
of pattern matrices. All we will need is the following expression for their spectral
norm.

Theorem 2.8 (Sherstov [32, Thm. 4.3]).Let φ : {0, 1}t → R be given. Let A be
the(n, t, φ)-pattern matrix. Then

‖A‖ =
√

2n+t
(n

t

)t
max
S⊆[t]

{

|φ̂(S)|
( t
n

)|S|/2}

.
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3 Reduction to Dense Predicates

For a predicateD, recall thatU(D) denotes its unbounded-error communication
complexity. Let

U(n, k)

stand for the minimumU(D) over all predicatesD : {0, 1, . . . , n} → {0, 1} with
deg(D) = k. In this notation, our ultimate goal will be to show thatU(n, k) = Ω̃(k).
This section takes a step in that direction. First, we reducethe task of analyzing
U(n, k) to that of analyzingU(n, dαne), whereα > 1/4. This focuses our efforts on
high-degree predicates. We then further reduce the problemto densepredicates,
i.e., high-degree predicates that change value at more or less even intervals in
{0, 1, . . . , n}. These reductions are essential because dense predicates behave more
predictably and are much easier to analyze than arbitrary predicates. Dense
predicates will be the focus of all later sections.

We start with some preparatory work (Section 3.1) and obtainour reductions
in the two subsections that follow (Sections 3.2 and 3.3).

3.1 Preliminary Notions

An obvious representation of a predicateD : {0, 1, . . . , n} → {0, 1} is the vector
(D(0),D(1), · · · ,D(n)). Unfortunately, this representation is poorly suited to ana-
lyzing the number of value changes ofD.We therefore start by establishing a more
convenient representation. Fori = 0, 1, . . . , n, define the predicate

Ti(t)
def
=






1 if t > i,

0 otherwise.

A moment’s reflection reveals that every predicateD : {0, 1, . . . , n} → {0, 1} can be
uniquely expressed in the form

D =
⊕

i∈S
Ti

for some setS ⊆ {0, 1, . . . , n}.With this in mind, we define thecharacteristic vector
of D to be the characteristic vector ofS, i.e., the vectorv = (v0, v1, . . . , vn) given by

vi
def
=






1 if i ∈ S,

0 otherwise.

The advantage of this representation is that it allows us to conveniently express the
number of value changes ofD:

deg(D) = |S ∩ {1, . . . , n}| = v1 + · · · + vn,
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as one can easily verify.
We will make a few more simple but useful observations. IfD1 and D2 are

predicates with characteristic vectorsv(1) andv(2), thenD1 ⊕ D2 has characteristic
vector v(1) ⊕ v(2). Finally, given a predicateD : {0, 1, . . . , n} → {0, 1}, consider a
derived predicateD′ : {0, 1, . . . ,m} → {0, 1} given by

D′(t) ≡ D(t + ∆),

wherem> 1 and∆ > 0 are fixed integers withm+ ∆ 6 n. Then the characteristic
vectorsv andv′ of D andD′, respectively, are related as follows:

v′ = (v0 ⊕ · · · ⊕ v∆, v∆+1, · · · , v∆+m) ∈ {0, 1}m+1.

From the standpoint of communication complexity,D′ can be computed by hard-
wiring some inputs to a protocol forD:

D′
(∣∣
∣
∣x1x2 . . . xm

∧

y1y2 . . . ym

∣
∣
∣
∣

)

= D
(∣∣
∣
∣x1x2 . . . xm1∆0n−m−∆

∧

y1y2 . . . ym1∆0n−m−∆
∣
∣
∣
∣

)

.

Therefore,
U(D′) 6 U(D).

3.2 Reduction from Arbitrary to High-Degree Predicates

We start with a technical lemma. Consider a Boolean vectorv = (v1, v2, . . . , vn).
We show that there is a subvector (vi , vi+1, . . . , v j) that is reasonably far from both
endpoints ofv and yet contains many of the “1” bits present inv.

Lemma 3.1. Let v ∈ {0, 1}n, v , 0n. Put k
def
= v1 + · · · + vn. Then there are indices

i, j with i 6 j such that

vi + · · · + v j >
1
14

k
1+ log(n/k)

(3.1)

and
min{i − 1, n− j} > j − i. (3.2)

Proof. By symmetry, we can assume thatv1 + v2 + · · · + vm > 1
2k for some index

m6 dn/2e. Letα ∈ (0, 1
2) be a parameter to be fixed later. LetT > 0 be the smallest

integer such that

v1 + v2 + · · · + vbm/2Tc < (1− α)T (v1 + v2 + · · · + vm).
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Clearly,T > 1. Sincev1 + v2 + · · · + vbm/2T c 6 m/2T , we further obtain

1 6 T 6 1+
1+ log(n/k)
log(2− 2α)

.

Now,

vbm/2T c+1 + · · · + vbm/2T−1c = (v1 + · · · + vbm/2T−1c)
︸                   ︷︷                   ︸

>(1−α)T−1(v1+v2+···+vm)

− (v1 + · · · + vbm/2T c)
︸                 ︷︷                 ︸

<(1−α)T (v1+v2+···+vm)

>
1
2
α(1− α)T−1k

>
1
2
α(1− α(T − 1))k

>
1
2
α

(

1− α · 1+ log(n/k)
log(2− 2α)

)

k. (3.3)

Setα = 0.23/(1 + log(n/k)), i = bm/2Tc + 1, and j = bm/2T−1c. Then one easily
verifies (3.2), while (3.1) is immediate from (3.3). �

We are now ready to prove the desired reduction to high-degree predicates.
Throughout this proof, we will freely use the preliminary notions of Section 3.1,
often without mention.

Lemma 3.2 (Reduction from arbitrary to high-degree predicates). For all
integers n, k with 1 6 k 6 n,

U(n, k) >
5
6

K min
m=K,...,n,
1/46α61

{

1
m

U(m, dαme)
}

,

where

K
def
=

⌈

1
14

k
1+ log(n/k)

⌉

.

Proof. Let D : {0, 1, . . . , n} → {0, 1} be any predicate with deg(D) = k. Let v =
(v0, v1, . . . , vn) be the characteristic vector ofD. Apply Lemma 3.1 to (v1, . . . , vn)
and leti, j be the resulting indices (i 6 j). Put

m
def
= j − i + 1.

Sincevi + · · · + v j > K, we have

K 6 m6 n. (3.4)
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Define predicatesD−(m−1), · · · ,D0, · · · ,Dm−1, each a mapping{0, 1, . . . ,m} →
{0, 1}, by:

Dr(t) ≡ D(t + i − 1+ r) for r = −(m− 1), . . . , (m− 1).

Then (3.2) shows that each each of these predicates can be computed by taking a
protocol forD and fixing all but the firstmvariables to appropriate values. Thus,

U(D) > U(Dr ) for r = −(m− 1), . . . , (m− 1). (3.5)

The characteristic vector ofD0 is (∗, vi , . . . , v j) for some∗ ∈ {0, 1}, which means
that deg(D0) = vi + · · · + v j . If deg(D0) > m/2, then the theorem is true forD in
view of (3.4) and (3.5). Thus, we can assume the contrary:

K 6 vi + · · · + v j 6
1
2

m. (3.6)

If we write the characteristic vectors ofD−(m−1), . . . ,Dm−1 one after another as
row vectors, we obtain the following matrixA:

A =





∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ vi
∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ vi vi+1

∗ ∗ ∗ ∗ ∗ · · · ∗ vi vi+1 vi+2
...
...

...
...

...
...

...
...

...

∗ vi vi+1 vi+2 vi+3 · · · v j−3 v j−2 v j−1 v j
...
...

...
...

...
...

...
...

...

∗ v j−2 v j−1 v j ∗ · · · ∗ ∗ ∗ ∗
∗ v j−1 v j ∗ ∗ · · · ∗ ∗ ∗ ∗
∗ v j ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗





.

Let T be a suitably large integer to be named later, and letu(1), u(2), . . . , u(T) be
independent random vectors, each selected uniformly from among the rows ofA.
Put

u
def
= u(1) ⊕ u(2) ⊕ · · · ⊕ u(T).

We will index the columns ofA and the components of all these vectors by
0, 1, . . . ,m (left to right). Let pr stand for the fraction of 1s in therth column
of A. Every column ofA, except the zeroth, containsvi , . . . , v j and somem− 1
additional values. One infers from (3.6) that

K
2m
6 pr 6

3
4

(r = 1, . . . ,m). (3.7)
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Therefore,

E
[

(u)1 + · · · + (u)m

]

=

m∑

r=1

E
[

(u(1))r ⊕ · · · ⊕ (u(T))r

]

=

m∑

r=1

(

1
2
− 1

2
(1− 2pr )

T
)

by Proposition 2.1

>
1
2

m

(

1−
1

eT K/m

)

by (3.6), (3.7).

Fix T
def
= d(ln 2)m/Ke. Then by the last calculation, there is a vectoru =

(u0, u1, . . . , um) that satisfiesu1 + · · · + um > m/4 and is the XOR of someT
rows of A. In other words, there is a predicateD⊕ : {0, 1, . . . ,m} → {0, 1}
that satisfies deg(D⊕) > m/4 and is the XOR of someT 6

6m
5K predicates

from amongD−(m−1), . . . ,Dm−1. This completes the proof in view of (3.5) and
Proposition 2.6. �

3.3 Reduction from High-Degree to Dense Predicates

The proof of Lemma 3.2 made critical use of random walks on{0, 1}n. The work in
this section also relies heavily on random walks, except theargument is now more
involved. In particular, we will need the following lemma that bounds the mixing
time of a random walk.

Lemma 3.3 (Razborov [28, Lem. 1]1). Fix a probability distributionµ on {0, 1}n.
Let {v(1), v(2), . . . , v(n)} be a basis for{0, 1}n as a vector space over GF(2). Put

p
def
= min

{

µ(0n), µ(v(1)), µ(v(2)), . . . , µ(v(n))
}

.

Let u(1), . . . , u(T) be independent random vectors, each distributed accordingto µ.
Then for everyv ∈ {0, 1}n,

∣
∣
∣
∣
∣
Pr

[

u(1) ⊕ · · · ⊕ u(T)
= v

]

− 1
2n

∣
∣
∣
∣
∣
6

1
e2T p
.

We are ready to formally define dense predicates and give the promised reduction.

Definition 3.4 (Dense predicate).Let n, b be positive integers andd > 0 a real
number. A predicateD is called (n, b, d)-denseif D is a predicate{0, 1, . . . , n} →
{0, 1} with characteristic vector (v0, v1, . . . , vn) satisfying

vrb+1 + vrb+2 + · · · + v(r+1)b > d for all r = 0, 1, 2, . . . ,
⌊n
b

⌋

− 1.

1Razborov’s proof is in Russian. For an English translation,see Jukna [10, Lem. 24.3].
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Lemma 3.5 (Reduction from high-degree to dense predicates). Let D :
{0, 1, . . . , n} → {0, 1} be a predicate withdeg(D) > 1

4n. Let b be any integer with
1 6 b 6 1

350n. Then

U(D) >
b

n logn
U(D′),

where D′ is a certain(m, dlogneb, 1
700b)-dense predicate and1

350n 6 m6 n.

Proof. Let (v0, v1, . . . , vn) be the characteristic vector ofD. Apply Lemma 3.1 to
(v1, . . . , vn) and leti, ` be the resulting indices (i 6 `). It will be convenient to work

with a somewhat smaller subvectorv
def
= (vi , . . . , v j), where we definej ∈ {i, . . . , `}

to be the largest integer so thatb | ( j− i+1). Sinceb 6 1
350n andvi+ · · ·+v` > 1

168n,
this gives:

vi + · · · + v j >
1

350
n. (3.8)

Defining m
def
= j − i + 1, we infer that 1

350n 6 m 6 n, as desired. We viewv =
(vi , . . . , v j) as composed of consecutive blocks, eachb bits long:

v =




vi , . . . , vi+b−1

block 1

, vi+b, . . . , vi+2b−1
block 2

, · · · · · · , v j−b+1, . . . , v j

block m/b




. (3.9)

For r = 1, 2, . . . , b, define therth layer ofv, denotedz(r), to be the vector obtained
by taking therth component from each of the above blocks:

z(r) def
= (vi−1+r , vi−1+b+r , . . . , v j−b+r ) ∈ {0, 1}m/b.

We say of a layerz that it is perfect if it does not havedlogne consecutive
components equal to 0. If more than 1

700b of the layers are perfect, takeD′ to
be the predicate with characteristic vector (v0 ⊕ · · · ⊕ vi−1, vi , . . . , v j). Clearly,D′ is
(m, dlogneb, 1

700b)-dense. Furthermore,U(D′) 6 U(D), by the same argument as
in Lemma 3.2. As a result, the theorem holds in this case.

Thus, we may assume that at least (1− 1
700)b of the layers are not perfect. In

view of (3.8), at most (1− 1
350)b layers can be zero vectors. Therefore,1

700b or more
layers are nonzeroand not perfect. These are the only layers we will consider in
the remainder of the proof.

Define predicatesD−(m−b),D−(m−2b), . . . ,D−b,D0,Db, . . . ,Dm−2b,Dm−b, each a
mapping{0, 1, . . . ,m} → {0, 1}, by Dr(t) ≡ D(t + i − 1 + r). These are a subset of
the predicates from the proof of Lemma 3.2, and again

U(D) > U(Dr) for eachr. (3.10)
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Writing the characteristic vectors of these predicates oneafter another as row
vectors yields the following matrixB:

B =




∗ ∗ ∗ ∗ · · · ∗ ∗ block 1

∗ ∗ ∗ ∗ · · · ∗ block 1 block 2
...

...
...

...
...

...
...

∗ block 1 block 2 block 3 · · · block m
b − 2 block m

b − 1 block m
b

...
...

...
...

...
...

...

∗ block m
b − 1 block m

b ∗ · · · ∗ ∗ ∗
∗ block m

b ∗ ∗ · · · ∗ ∗ ∗





,

where the blocks refer to the partition in (3.9). LetT be a suitably large integer
to be named later, and letu(1), u(2), . . . , u(T) be independent random vectors, each
selected uniformly from among the rows ofB. Put

u
def
= u(1) ⊕ u(2) ⊕ · · · ⊕ u(T).

We will index the columns ofB and the components ofu by 0, 1, . . . ,m (left to
right). Key to analyzing the distribution ofu is the following claim.

Claim 3.5.1. Let T > (m/b) ln n. Let∆ ∈ {1, 2, . . . , b} be such that the layer
z(∆) is nonzero and not perfect. Let s∈ {0, b, 2b, 3b, . . . } be such that s+
dlogneb 6 m. Then

Pr
[

(u)s+∆ = (u)s+b+∆ = · · · = (u)s+(dlogne−1)b+∆ = 0
]

6
2
n
.

Proof. Let B′ be the matrix whose columns are the following columns of
B: s + ∆, s + b + ∆, . . . , s + (dlogne − 1)b + ∆, in that order. Sincez(∆)

is nonzero and not perfect, it hasdlogne + 1 consecutive components with
values either 0, 0, . . . , 0, 1 or 1, 0, 0, . . . , 0. Consequently,B′ must contain
one of the following submatrices, each of size (dlogne + 1)× dlogne:





0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 ∗
...
...
...

...
...
...

0 1 ∗ . . . ∗ ∗ ∗
1 ∗ ∗ . . . ∗ ∗ ∗





or





∗ ∗ ∗ · · · ∗ ∗ 1
∗ ∗ ∗ · · · ∗ 1 0
...
...
...

...
...
...

∗ 1 0 · · · 0 0 0
1 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0





.
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The claim now follows immediately from Lemma 3.3, since 2−dlogne
+

e−2T· b
2m 6 2/n. �

We now return to the proof of the lemma. FixT = d(m/b) ln ne. Let s = 0 and
apply Claim 3.5.1 with every∆ ∈ {1, 2, . . . , b} for which the layerz(∆) is nonzero
and not perfect. Since there are at least1

700b such choices for∆, we conclude by
the union bound that

Pr
[

(u)1 + (u)2 + · · · + (u)dlogneb <
1

700
b

]

6 b · 2
n
.

The same calculation applies to the next set ofdlogneb components ofu (i.e.,
s = dlogneb), and so on. Applying a union bound across all thesem/(dlogneb)
calculations, we find that with probability

1−
m

dlogneb

(

b ·
2
n

)

> 0,

the predicate whose characteristic vector isu is (m, dlogneb, 1
700b)-dense. Fix any

such predicateD′. SinceD′ is the XOR ofT 6 (n logn)/b predicates from among
D−(m−b), . . . ,Dm−b, the lemma follows by (3.10) and Proposition 2.6. �

4 A Lower Bound for Approximation by Polynomials

Crucial to our study of dense predicates are certain approximation problems to
which they give rise. Roughly speaking, the hardness of suchan approximation
problem for low-degree polynomials translates into the communication hardness
of the associated predicate. This section carries out the first part of the program,
namely, showing that the approximation task at hand is hard for low-degree
polynomials. We examine this question in its basic mathematical form, with no
extraneous considerations to obscure our view. How communication fits in this
picture will become clear in the next two sections.

For a finite setX ⊂ R, a function f : X→ R, and an integerr > 0, define

ε∗( f ,X, r)
def
= min

p∈Pr
max
x∈X
|p(x) − f (x)|.

In words, ε∗( f ,X, r) is the least error (in the uniform sense) to which a degree-
r polynomial can approximatef on X. The following well-known fact from
approximation theory is useful in estimating this error.
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Fact 4.1 (see, e.g., [30, Thm. 1.15]).Let X = {x1, x2, . . . , xr+2} be a set of r+ 2

distinct reals. Let f: X → R be given. Putω(x)
def
= (x− x1)(x− x2) · · · (x− xr+2).

Then

ε∗( f ,X, r) =

∣
∣
∣
∑r+2

i=1 [ f (xi)/ω′(xi)]
∣
∣
∣

∑r+2
i=1 [1/|ω′(xi)|]

.

To develop some intuition for the work in this section, consider the following
approximation problem. Letf : {0, 1, . . . , n} → {0, 1} be defined by

f (x) =






1 if x = bn/2c,
0 otherwise.

It is well-known that any polynomial that approximatesf within 1/3 has degree
Ω(n). For example, this follows from work by Paturi [26]. The approximation
problem of interest to us is similar, except that our points need not be as evenly
spaced as 0, 1, . . . , n but rather may form clusters. As a result, Paturi’s results and
methods do not apply, and we approach this question differently, using the first-
principles formula of Fact 4.1. Specifically, our main result in this section is as
follows.

Lemma 4.2 (Inapproximability by low-degree polynomials). Let positive inte-
gers L, d and a real number B> d be given. Let{xi j : i = 1, . . . , L; j = 1, . . . , d} be
a set of Ld distinct reals, where xi j ∈ [(i − 1)B, iB] and

|xi j − xi′ j′ | > 1 for (i, j) , (i′, j′). (4.1)

Let x0 ∈ [ 1
4LB, 3

4LB]. Then any polynomial p with

p(x0) = 1, |p(xi j )| <
1
2

(

1
LB

)4d+1

for all i , j

has degree at least
(

1
2L − 1

)

d.

Proof. Define f (x) by

f (x) =






1 if x = x0,

0 if x = xi j for somei, j.

By symmetry, we can assume thatx0 ∈ [ 1
4LB, 1

2LB]. Fix an integer̀ 6 d12Le so
that x0 ∈ [(` − 1)B, `B]. Put

X
def
= {x0} ∪ {xi j : i = 1, . . . , 2` − 1; j = 1, . . . , d}.
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With ω(x)
def
=

∏

y∈X(x− y), Fact 4.1 implies that

ε∗( f ,X, |X| − 2) >
1
|X|

minx∈X |ω′(x)|
|ω′(x0)|

. (4.2)

We proceed to estimate the denominator and numerator of (4.2). If x0 = xi j for
somei, j, the lemma is vacuous. Thus, we can assume that the quantity

δ
def
= min

i=1,...,2`−1,
j=1,...,d

|x0 − xi j |

satisfiesδ > 0.We have:

|ω′(x0)| =
d∏

j=1

2`−1∏

i=1

|x0 − xi j | 6 δ
d∏

j=1

2`−1∏

i=1

B

⌈ |x0 − xi j |
B

⌉

︸       ︷︷       ︸

6|i−`|+1

6 δ ·
(

`! `! B2`−1
)d
. (4.3)

On the other hand, everyxi′ j′ ∈ X satisfies:

|ω′(xi′ j′)| =
∏

x∈X\{xi′ j′ }
|x− xi′ j′ |

(4.1)
> δ

d∏

j=1

∏

i=1,...,2`−1
i<{i′−1,i′,i′+1}

|xi j − xi′ j′ |

> δ

d∏

j=1

∏

i=1,...,2`−1
i<{i′−1,i′,i′+1}

B

⌊ |xi j − xi′ j′ |
B

⌋

︸         ︷︷         ︸

>|i−i′ |−1

> δ ·
(

`! `! B2`−4

`4

)d

. (4.4)

Now (4.2) yields, in view of (4.3) and (4.4):

ε∗( f ,X, |X| − 2) >
1
2

(

1
LB

)4d+1

,

which concludes the proof since|X| >
(

1
2L − 1

)

d + 1. �

5 Smooth Orthogonalizing Distributions

We now transition to the final ingredient of our proof,smooth orthogonalizing
distributions for a given predicateD. This informal term refers to a distribution
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on {0, 1}n that does not put too little weight on any point (thesmoothpart) and
under which (−1)D(x1+···+xn) is approximately orthogonal to all low-degree parity
functionsχS (the orthogonalizingpart). Our task is to establish the existence of
such distributions for every dense predicate. Crucial to this undertaking will be the
inapproximability result that we proved in Section 4.

For a polynomialp, a predicateD : {0, 1, . . . , n} → {0, 1}, and a numberN > 0,
define theadvantageof p in computingD by

adv(p,N,D)
def
= N min

t=0,...,n

{

(−1)D(t) p(t)
}

+

n∑

t=0

(
n
t

)

2n (−1)D(t) p(t).

This quantity is conceptually close to the correlation ofp andD with respect the
binomial distribution. There is a substantial difference, however: ifp andD differ
in sign at some point, this causes a penalty term to be subtracted. We will be
interested in valuesN � 1, when even a single error ofp results in a large penalty.
Define

advr(N,D)
def
= max

p
{adv(p,N,D)},

where the maximization is overp ∈ Pr with |p(t)| 6 1 for t = 0, 1, . . . , n. As we
now show, this quantity is closely related to smooth orthogonalizing distributions
for D.

Theorem 5.1 (Smooth distributions vs. approximation by polynomials). Given
a predicate D: {0, 1, . . . , n} → {0, 1} and an integer r> 0. Then for every N> 1,
there is a distributionµ on {0, 1}n such thatµ(x) > 1

2nN for each x and
∣
∣
∣
∣
∣
E
x

[

(−1)D(x1+···+xn)µ(x) χS(x)
]
∣
∣
∣
∣
∣
6

1
2nN

advr(N − 1,D) for |S| 6 r .

Proof. Put f (x)
def
= (−1)D(x1+···+xn) and consider the following linear program:

variables: µ(x) for all x; ε

minimize: ε

subject to:

∣
∣
∣
∣
∣
∣
∣
∣

∑

x∈{0,1}n
µ(x) f (x)χS(x)

∣
∣
∣
∣
∣
∣
∣
∣

6 ε for |S| 6 r ,

∑

x∈{0,1}n
µ(x) = 1,

µ(x) >
1

2nN
for eachx.

(LP1)
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It suffices to show that the optimum of this program is at most1
N advr (N − 1,D).

For this, we pass to the dual:

variables: αS (for |S| 6 r); ξx (for all x); ∆

maximize:
1
N




(N − 1)∆ +

1
2n

∑

x∈{0,1}n
(∆ + ξx)





subject to: f (x)
∑

|S|6r

αS χS(x) > ∆ + ξx for all x,

∑

|S|6r

|αS| 6 1,

αS ∈ R for |S| 6 r ,

ξx > 0 for all x,

∆ ∈ R.

(LP2)

The dual programs (LP1) and (LP2) are both feasible and thus have the same finite
optimum. Therefore, our task reduces to proving that the optimum of (LP2) is at
most 1

N advr (N − 1,D). Fix an optimal solution to (LP2). Then

f (x)
∑

|S|6r

αS χS(x) = ∆ + ξx for all x, (5.1)

since in case of a strict inequality (>) we could increase the corresponding variable
ξx by a small amount to obtain a feasible solution with greater value. Furthermore,
we claim that

∆ = min
x∈{0,1}n






f (x)
∑

|S|6r

αS χS(x)






. (5.2)

Indeed, letm stand for the right-hand side of (5.2). Then∆ 6 m because eachξx
is nonnegative. It remains to show that∆ > m. If we had∆ < m, then (5.1) would
imply thatξx > m−∆ for all x. As a result, we could obtain a new feasible solution
ξ′x = ξx+ (∆−m) and∆′ = m. This new solution satisfies∆′ + ξ′x = ∆+ ξx for all x.
Moreover,∆′ > ∆, which results in a greater objective value and yields the desired
contradiction. In summary,∆ = m.

In view of (5.1) and (5.2), the optimum of (LP2) is

1
N

max
φ





(N − 1) min

x
{ f (x)φ(x)} +

1
2n

∑

x

f (x)φ(x)





, (5.3)
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where the maximization is over functionsφ of the form

φ(x) =
∑

|S|6r

αS χS(x), where
∑

|S|6r

|αS| 6 1. (5.4)

Fix φ that optimizes (5.3). By (5.4),

max
x∈{0,1}n

{|φ(x)|} 6 1.

Put

φsym(x)
def
=

1
n!

∑

σ∈Sn

φ(xσ(1), . . . , xσ(n)).

Since f is symmetric,φ andφsym have the same objective value in (5.3). By the
symmetrization argument (Proposition 2.3), there is a univariate polynomialp ∈ Pr

with
φsym(x) = p(x1 + · · · + xn) for all x ∈ {0, 1}n.

For t = 0, 1, . . . , n,

|p(t)| = |p(1+ · · · + 1
︸      ︷︷      ︸

t times

+0+ · · · + 0)| 6 max
x∈{0,1}n

{|φsym(x)|} 6 max
x∈{0,1}n

{|φ(x)|} 6 1.

Replacingφ(x) by p(x1 + · · · + xn) in (5.3), we see that the optimum of (LP2) is at
most

1
N

max
p





(N − 1) min

t=0,...,n

{

(−1)D(t) p(t)
}

+
1
2n

n∑

t=0

(

n
t

)

(−1)D(t) p(t)





,

where the maximization is overp ∈ Pr with |p(t)| 6 1 for t = 0, 1, . . . , n. This latter
quantity is 1

N advr(N − 1,D), by definition. �

Theorem 5.1 states that a smooth orthogonalizing distribution for D exists
whenever low-degree polynomials have negligible advantage in computingD.
Accordingly, we proceed to examine the advantage achievable by low-degree
polynomials.

Lemma 5.2 (Each dense predicate induces a hard approximation problem).
Let D be an(n, B, 2d + 1)-dense predicate, where n, B, d are positive integers.
Assume thatadvr (D,N) > n2−n/6, where r< deg(D) and N > 0 are given. Then
there areb n

Bcd distinct reals{xi j : i = 1, . . . , b n
Bc; j = 1, . . . , d} and a polynomial
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p ∈ Pr such that:

xi j ∈ [(i − 1)B, iB] for all i , j,

|xi j − xi′ j′ | > 1 for all (i, j) , (i′, j′),

|p(xi j )| 6
√

n/N for all i, j,

p(x0) = 1 for some x0 ∈ [ 1
4n, 3

4n].

Proof. Fix q ∈ Pr with |q(t)| 6 1 for t = 0, 1, . . . , n and adv(q,D,N) = advr (D,N).
Fix k ∈ {0, 1, . . . , n} with

(

n
k

)

(−1)D(k)q(k) = max
t=0,...,n

{(

n
t

)

(−1)D(t)q(t)

}

.

Since deg(q) < deg(D), the quantity
(
n
t

)

(−1)D(t)q(t) is positive for at mostn values
of t = 0, 1, . . . , n. Therefore,

adv(q,D,N) 6 n ·

(
n
k

)

2n (−1)D(k)q(k) 6 n ·

(
n
k

)

2n .

Recalling that adv(q,D,N) > n2−n/6, we infer that14n 6 k 6 3
4n. Put

p(t)
def
=

1
|q(k)|

q(t).

Takingx0
def
= k, we have1

4n 6 x0 6
3
4n andp(x0) = 1, as desired. It remains to find

the pointsxi j . For this, we need the following claim.

Claim 5.2.1. Let a, b be integers with a< b and D(a) , D(b). Then|p(ξ)| 6√
n/N for someξ ∈ [a, b].

Proof. If q vanishes at some point in [a, b],we are done. In the contrary case,
q is nonzero and has the same sign at every point of [a, b], which means that
either q(a)(−1)D(a) < 0 or q(b)(−1)D(b) < 0. Since adv(q,D,N) > 0, we
have:

min{|q(a)|, |q(b)|} 6 n
N

max
t=0,...,n






(
n
t

)

2n (−1)D(t)q(t)






=
n
N
·

(
n
k

)

2n · |q(k)|

6

√
n

N
|q(k)|,

and hence min{|p(a)|, |p(b)|} 6
√

n/N. �
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Consider any segment [(i − 1)B+ 1, iB], for an integeri with 1 6 i 6 b n
Bc. SinceD

is (n, B, 2d + 1)-dense, it changes value at least 2d times in [(i − 1)B+ 1, iB]. As a
result, there are at leastd pairs of integers (a1, b1), . . . , (ad, bd) with

D(a1) , D(b1), D(a2) , D(b2), . . . , D(ad) , D(bd)

and
(i − 1)B+ 1 6 a1 < b1 < a2 < b2 < · · · < ad < bd 6 iB.

In view of Claim 5.2.1, this provides the desiredd points in [(i − 1)B+ 1, iB]. �

Our work in this and the previous section furnishes all the key ingredients
needed to deduce the existence of smooth orthogonalizing distributions for dense
predicates. Putting them together yields the main result ofthis section:

Theorem 5.3 (Smooth orthogonalizing distributions for dense predicates).Let
D be an(n, B, 2d+1)-dense predicate, where n, B, d are positive integers with B| n
and n> 3B. Then there is a distributionµ on {0, 1}n such that:

µ(x) >
1
2n

1

3n4d+1.5
for each x,

∣
∣
∣
∣
∣
E
x

[

(−1)D(x1+···+xn)µ(x)χS(x)
]
∣
∣
∣
∣
∣
6 2−7n/6 for |S| <

nd
6B
.

Proof. Put N
def
= 3n4d+1.5. In view of Theorem 5.1, it suffices to show that

advr(D,N − 1) < n2−n/6 for all r < nd
6B. So assume, for the sake of contradiction,

that advr(D,N − 1) > n2−n/6 for somer < nd
6B. Since deg(D) > n

B(2d + 1), we
have r < deg(D). Thus, Lemma 5.2 is applicable and yieldsnd

B distinct reals
{xi j : i = 1, . . . , n

B; j = 1, . . . , d} and a polynomialp ∈ Pr such that:

xi j ∈ [(i − 1)B, iB] for all i, j,

|xi j − xi′ j′ | > 1 for all (i, j) , (i′, j′),

|p(xi j )| < 1
2

(
1
n

)4d+1
for all i, j,

p(x0) = 1 for somex0 ∈ [ 1
4n, 3

4n].

Applying Lemma 4.2 withL
def
=

n
B, we infer thatr >

(
1
2

n
B − 1

)

d, which yields

r > nd
6B since n

B > 3.We have reached the desired contradiction tor < nd
6B. �
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6 Proof of the Main Result

This section consolidates the preceding developments intoour main result, an
optimal lower bound on the unbounded-error communication complexity of every
symmetric function. As outlined earlier, we will first solvethis problem for dense
predicates and then extend our work to the general case via the reductions of
Section 3.

As a first step, we identify a pattern matrix inside the communication matrix of
a given predicateD.

Lemma 6.1. Let D : {0, 1, . . . ,m} → {0, 1} be a given predicate. Let F be

the (2v, v, f )-pattern matrix, wherev 6 m/4 and f(z)
def
= (−1)D(|z|). Then F is a

submatrix of
[

(−1)D(|x∧y|)
]

x∈{0,1}m, y∈{0,1}m
.

The author has proved an almost identical statement in earlier work [32, Lem. 6.1].
For the reader’s convenience, we reproduce that proof with the needed adaptations
in Appendix A.

We are now ready to solve the problem for all dense predicates.

Theorem 6.2 (Communication complexity of dense predicates). Let α > 0
be a sufficiently small absolute constant. Let D be an(m, bdlogne, 1

700b)-dense
predicate, where1

350 n 6 m6 n and b= bαn/ log2 nc. Then

U(D) > Ω

(

n
logn

)

.

Proof. Throughout the proof we will, without mention, use the assumption thatn
is large enough. This will simplify the setting of parameters, the manipulation of
floors and ceilings, and generally make the proof easier to follow.

Fix an integerv ∈ [ 1
8m, 1

4m] with bdlogne | v. Clearly, v > 3bdlogne. Define
D′ : {0, 1, . . . , v} → {0, 1} by D′(t) ≡ D(t). SinceD′ is (v, bdlogne, 1

700b)-dense,
Theorem 5.3 provides a distributionµ on {0, 1}v with

µ(z) > 2−v 2
−αn/350 logn for eachz ∈ {0, 1}v, (6.1)

∣
∣
∣
∣
∣
E
z

[

(−1)D(|z|)µ(z)χS(z)
]
∣
∣
∣
∣
∣
6 2−7v/6 for |S| <

v

6 · 1401dlogne
. (6.2)
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Defineφ : {0, 1}v → R by φ(z)
def
= (−1)D(|z|)µ(z). Restating (6.2),

|φ̂(S)| 6 2−7v/6 for |S| <
v

6 · 1401dlogne
. (6.3)

Furthermore, Proposition 2.2 reveals that

max
S⊆[v]
|φ̂(S)| 6 2−v. (6.4)

Let A be the (2v, v, 8−vφ)-pattern matrix. By (6.3), (6.4), and Theorem 2.8,

‖A‖ 6 4−v 2
−v/12·1401dlogne . (6.5)

By (6.1), every entry ofA has absolute value at least 16−v 2
−αn/350 logn. Combining

this observation with (6.5) and Theorem 2.5,

dc(A) > 2
v/12·1401dlogne 2

−αn/350 logn.

Recall thatv > 1
8 m> 1

8·350 n. Hence, for a suitably small constantα > 0,

dc(A) > 2Ω(n/ logn).

It remains to relate the sign-rank ofA to the communication complexity ofD.

Let F be the (2v, v, f )-pattern matrix, wheref (z)
def
= (−1)D(|z|). Then dc(A) = dc(F)

becauseA andF have the same sign pattern. However, Lemma 6.1 states thatF is
a submatrix of the communication matrix ofD, namely,

M
def
=

[

(−1)D(|x∧y|)
]

x∈{0,1}m,y∈{0,1}m
.

Thus, dc(M) > dc(F). Summarizing,

dc(M) > dc(F) = dc(A) > 2Ω(n/ logn).

In view of Theorem 2.4, the proof is complete. �

The hard work is now behind us. What remains is to apply the reductions of
Section 3, in reverse order.

Corollary 6.2.1 (Communication complexity of high-degreepredicates). Let
D : {0, 1, . . . , n} → {0, 1} be a predicate withdeg(D) > 1

4n. Then

U(D) > Ω

(

n

log4 n

)

.
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Proof. Immediate from Lemma 3.5 and Theorem 6.2. �

Corollary 6.2.2 (Communication complexity of arbitrary pr edicates).Let D :

{0, 1, . . . , n} → {0, 1} be a nonconstant predicate. Put k
def
= deg(D). Then

U(D) > Ω

(

k

[1 + log(n/k)] log4 n

)

.

Proof. Immediate from Lemma 3.2 and Corollary 6.2.1. �

At last, we arrive at the main result of this paper.

Theorem 1.1(Restated from p. 4).Let D : {0, 1, . . . , n} → {0, 1} be given. Then

U(D) = Θ̃(deg(D)),

where theΘ̃ notation suppresseslogn factors.

Proof. The lower bound onU(D) follows by Corollary 6.2.2. To prove the upper
bound, letp be a polynomial of degree deg(D) with

sign(p(t)) = (−1)D(t) for t = 0, 1, . . . , n.

Put
M

def
=

[

(−1)D(|x∧y|)
]

x,y
, R

def
=

[

p(x1y1 + · · · + xnyn)
]

x,y
,

where the indices run as usual:x, y ∈ {0, 1}n. Then MxyRxy > 0 for all x andy.
Therefore,

dc(M) 6 rank(R) 6
deg(D)
∑

i=0

(

n
i

)

6 2O(deg(D) logn).

In view of Theorem 2.4, this completes the proof. �
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A Pattern Matrices Inside Communication Matrices

The purpose of this appendix is to prove Lemma 6.1, needed in Section 6.

Lemma 6.1(Restated from p. 28).Let D : {0, 1, . . . ,m} → {0, 1} be a given pred-

icate. Let F be the(2v, v, f )-pattern matrix, wherev 6 m/4 and f(z)
def
= (−1)D(|z|).

Then F is a submatrix of
[

(−1)D(|x∧y|)
]

x∈{0,1}m, y∈{0,1}m
. (A.1)

Proof (adapted from Sherstov [32, Lem. 6.1]).By definition,

F =
[

(−1)D(| x|V ⊕ w |)
]

x∈{0,1}2v, (V,w)∈V(2v,v)×{0,1}v
.

We will define one-to-one maps

α : {0, 1}2v → {0, 1}m,
β : V(2v, v) × {0, 1}v → {0, 1}m

such that
| x|V ⊕ w | = | α(x) ∧ β(V, w) | for all x,V, w. (A.2)

Obviously, this will mean thatF is a submatrix of (A.1).
As usual, let juxtaposition of bit strings stand for their concatenation, e.g.,

(0, 1)(1, 0, 1) = (0, 1, 1, 0, 1).With this convention, defineα by

α(x1, x2, . . . , x2v)
def
= (x1,¬x1, x2,¬x2, . . . , x2v,¬x2v) 0m−4v.

Defineβ by

β(V, w)
def
= γ(i1, w1) γ(i2, w2) · · · γ(iv, wv) 0m−4v,

wherei1 < i2 < · · · < iv are the elements ofV, andγ : Z × Z→ {0, 1}4 is given by

γ(a, b)
def
=






(1, 0, 0, 0) if a is odd,b is even,

(0, 1, 0, 0) if a is odd,b is odd,

(0, 0, 1, 0) if a is even,b is even,

(0, 0, 0, 1) if a is even,b is odd.

It is now straightforward to verify (A.2). �

33

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



