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Abstract

We study the approximability of predicates on k variables from a do-
main [q], and give a new sufficient condition for such predicates to be
approximation resistant under the Unique Games Conjecture. Specifi-
cally, we show that a predicate P is approximation resistant if there exists
a balanced pairwise independent distribution over [q]k whose support is
contained in the set of satisfying assignments to P .

Using constructions of pairwise indepenent distributions this result
implies that

• For general k ≥ 3 and q ≥ 2, the Max k-CSPq problem is UG-hard
to approximate within qdlog2

k+1e−k + ε.

• For k ≥ 3 and q prime power, the hardness ratio is improved to
kq(q − 1)/qk + ε.

• For the special case of q = 2, i.e., boolean variables, we can sharpen
this bound to (k + O(k0.525))/2k + ε, improving upon the best pre-
vious bound of 2k/2k + ε (Samorodnitsky and Trevisan, STOC’06)
by essentially a factor 2.

• Finally, for q = 2, assuming that the famous Hadamard Conjecture
is true, this can be improved even further, and the O(k0.525) term
can be replaced by the constant 4.

1 Introduction

In the Max k-CSP problem, we are given a set of constraints over a set of
boolean variables, each constraint being a boolean function acting on at most k
of the variables. The objective is to find an assignment to the variables satisfying
as many of the constraints as possible. This problem is NP-hard for any k ≥ 2,
and as a consequence, a lot of research has been focused on studying how well
the problem can be approximated. We say that a (randomized) algorithm has
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approximation ratio α if, for all instances, the algorithm is guaranteed to find
an assignment which (in expectation) satisfies at least α ·Opt of the constraints,
where Opt is the maximum number of simultaneously satisfied constraints, over
any assignment.

A particularly simple approximation algorithm is the algorithm which simply
picks a random assignment to the variables. This algorithm has a ratio of 1/2k.
It was first improved by Trevisan [22] who gave an algorithm with ratio 2/2k for
Max k-CSP. Recently, Hast [8] gave an algorithm with ratio Ω(k/(log k2k)),
which was subsequently improved by Charikar et al. [5] who gave an algorithm
with approximation ratio c · k/2k, where c > 0.44 is an absolute constant.

The PCP Theorem implies that the Max k-CSP problem is NP-hard to
approximate within 1/ck for some constant c > 1. Samorodnitsky and Tre-

visan [20] improved this hardness to 22
√

k/2k, and this was further improved to

2
√

2k/2k by Engebretsen and Holmerin [7]. Finally, Samorodnitsky and Trevisan
[21] proved that, if the Unique Games Conjecture [12] is true, then the Max

k-CSP problem is hard to approximate within 2k/2k. To be more precise, the
hardness they obtained was 2dlog2

k+1e/2k, which is (k+1)/2k for k = 2r−1, but
can be as large as 2k/2k for general k. Thus, the current gap between hardness
and approximability is a small constant factor of 2/0.44.

For a predicate P : {0, 1}k → {0, 1}, the Max CSP(P ) problem is the
special case of Max k-CSP in which all constraints are of the form P (l1, . . . , lk),
where each literal li is either a variable or a negated variable. For this problem,
the random assignment algorithm achieves a ratio of m/2k, where m is the
number of satisfying assignments of P . Surprisingly, it turns out that for certain
choices of P , this is the best possible algorithm. In a celebrated result, Håstad
[10] showed that for P (x1, x2, x3) = x1 ⊕ x2 ⊕ x3, the Max CSP(P) problem is
hard to approximate within 1/2 + ε.

Predicates P for which it is hard to approximate the Max CSP(P ) problem
better than a random assignment, are called approximation resistant. A slightly
stronger notion is that of hereditary approximation resistance – a predicate P is
hereditary approximation resistant if all predicates implied by P are approxima-
tion resistant. A natural and important question is to understand the structure
of approximation resistance. For k = 2 and k = 3, this question is resolved –
predicates on 2 variables are never approximation resistant, and a predicate on
3 variables is approximation resistant if and only if it is implied by an XOR of
the three variables [10, 23]. For k = 4, Hast [9] managed to classify most of the
predicates with respect to to approximation resistance, but for this case there
does not appear to be as nice a characterization as there is in the case k = 3. It
turns out that, assuming the Unique Games Conjecture, most predicates are in
fact hereditary approximation resistant – as k grows, the fraction of such pred-
icates tend to 1 [11]. Thus, instead of attempting to understand the seemingly
complicated structure of approximation resistant predicates, one might try to
understand the possibly easier structure of hereditary approximation resistant
predicates, as these constitute the vast majority of all predicates.

A natural approach for obtaining strong inapproximability for the Max k-
CSP problem is to search for approximation resistant predicates with very few
accepting inputs. This is indeed how all mentioned hardness results for Max

k-CSP come about (except the one implied by the PCP Theorem).
It is natural to generalize the Max k-CSP problem to variables over a
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domain of size q, rather than just boolean variables. Without loss of generality
we may assume that the domain is [q]. We call this the Max k-CSPq problem.
For Max k-CSPq, the random assignment gives a 1/qk-approximation, and any
f(k)-approximation algorithm for the Max k-CSP problem gives a f(kdlog2 qe)-
approximation algorithm for the Max k-CSPq problem. Thus, Charikar et al.’s
algorithm gives a 0.44k log2 q/qk-approximation in the case that q is a power of
2. The best previous inapproximability for the Max k-CSPq problem is due
to Engebretsen [6], who showed that the problem is NP-hard to approximate

within qO(
√

k)/qk.
Similarly to q = 2, we can define the Max CSP(P) problem for P : [q]k →

{0, 1}. Here, there are several natural ways of generalizing the notion of a literal.
One possible definition is to say that a literal l is of the form π(xi), for some
variable xi and permutation π : [q] → [q]. A stricter definition is to say that a
literal is of the form xi + a, where, again, xi is a variable, and a ∈ [q] is some
constant. In this paper, we use the second, stricter, definition. As this is a
special case of the first definition, our hardness results apply also to the first
definition.

1.1 Our contributions

Our main result is the following:

Theorem 1.1. Let P : [q]k → {0, 1} be a k-ary predicate over [q], and let µ be
a distribution over [q]k such that

Pr
x∈([q]k,µ)

[P (x)] = 1

and for all 1 ≤ i 6= j ≤ k and all a, b ∈ [q], it holds that

Pr
x∈([q]k,µ)

[xi = a, xj = b] = 1/q2.

Then, for any ε > 0, the UGC implies that the Max CSP(P ) problem is NP-
hard to approximate within

|P−1(1)|
qk

+ ε,

i.e., P is hereditary approximation resistant.

Using constructions of pairwise independent distributions, we obtain the
following corollaries:

Theorem 1.2. For any k ≥ 3, q ≥ 2, and ε > 0, it is UG-hard to approximate
the Max k-CSPq problem within

qdlog2
k+1e

qk
+ ε <

klog
2

q · q
qk

+ ε.

In the special case that k = 2r − 1 for some r the hardness ratio improves to

klog
2

q

qk
+ ε.

3



This already constitutes a significant improvement upon the qO(
√

k)/qk-
hardness of Engebretsen, and in the case that q is a prime power we can improve
this even further.

Theorem 1.3. For any k ≥ 3, q = pe for some prime p, and ε > 0, it is
UG-hard to approximate the Max k-CSPq problem within

k(q − 1)q

qk
+ ε.

In the special case that k = (qr − 1)/(q − 1) for some r, the hardness ratio
improves to

k(q − 1) + 1

qk
+ ε ≤ kq

qk
+ ε.

Neither of these two theorems improve upon the results of [21] for the case
of q = 2. However, the following theorem does.

Theorem 1.4. For any k ≥ 3 and ε > 0, it is UG-hard to approximate the
Max k-CSP problem within

k + O(k0.525)

2k
+ ε.

If the Hadamard Conjecture is true, it is UG-hard to approximate the Max

k-CSP problem within

4d(k + 1)/4e
2k

+ ε ≤ k + 4

2k
+ ε

Thus, we improve the hardness of [21] by essentially a factor 2, decreasing
the gap to the best algorithm from roughly 2/0.44 to roughly 1/0.44.

1.2 Related work

It is interesting to compare our results to the results of Samordnitsky and Tre-
visan [21]. Recall that using the Gowers norm, [21] prove that the Max k-CSP

problem has a hardness factor of 2dlog2
k+1e/2k, which is (k+1)/2k for k = 2r−1,

but can be as large as 2k/2k for general k.
Our proof uses the same version of the UGC, but the analysis is more direct

and more general. The proof of [21] requires us to work specifically with a lin-
earity hyper-graph test for the long codes. For this test, the success probability
is shown to be closely related to the Gowers inner product of the long codes. In
particular, in the soundness analysis it is shown that if the value of this test is
too large, it follows that the Gowers norm is larger than for “random functions”.
From this it is shown that at least two of the functions have large influences
which in turns allows us to obtain a good solution for the UGC.

Our construction on the other hand allows any pairwise distribution to define
a long-code test. Using [16] we show that if a collection of supposed long codes
does better than random for this long code test, then at least two of them have
large influences.

Our proof has a number of advantages: first it applies to any pairwise inde-
pendent distribution. This should be compared to [21] that require us to work
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specifically with the hyper-graph linearity test. In particular our results allow
us to obtain hardness results for Max CSP(P ) for a wide range of P ’s. The
results are general enough to accomodate any domain [q] (it is not clear if the
results of [21] extend to larger domains), and we are also able to obtain a better
hardness factor for most values of k even in the q = 2 case.

Also, our proof uses bounds on expectations of products under certain types
of correlation, putting it in the same general framework as many other UGC-
based hardness results, in particular those for 2-CSPs [13, 14, 2, 3, 18].

Finally, our proof gives parametrized hardness in the following sense. We
give a family of hardness assumptions, called the (t, k)-UGC. All of these as-
sumptions follow from the UGC, and in particular the case t = 2 is known to
be equivalent to the UGC. However, the (t, k)-UGC assumption is weaker for
larger values of t. For each value of t our results imply a different hardness of
approximation factor. Specifically, if the (t, k)-UGC is true for some t ≥ 3, then
the Max k-CSP problem is NP-hard to approximate within O

(

kdt/2e−1/2k
)

.

Thus, even the (4, k)-UGC gives a hardness of O(k/2k), and for t <
√

k/ log k,
the (t, k)-UGC gives a hardness better than the best unconditional result known
[7].

2 Definitions

2.1 Unique Games

We use the following formulation of the Unique Label Cover Problem: given is a
k-uniform hypergraph, where for each edge (v1, . . . , vk) there are k permutations
π1, . . . , πk on [L]. We say that an edge (v1, . . . , vk) with permutations π1, . . . , πk

is t-wise satisfied by a labelling ` : V → [L] if there are i1 < i2 < . . . < it
such that πi1(`(vi1 )) = πi2(`(vi2 )) = . . . = πit

(`(vit
)). We say that an edge is

completely satisfied by a labelling if it is k-wise satisfied.
We denote by Optt(X) ∈ [0, 1] the maximum fraction of t-wise satisfied

edges, over any labelling. Note that Optt+1(X) ≤ Optt(X).
The following conjecture is known to follow from the Unique Games Conjec-

ture (see details below).

Conjecture 2.1. For any 2 ≤ t ≤ k, and δ > 0, there exists an L > 0 such
that it is NP-hard to distinguish between k-ary Unique Label Cover instances X
with label set [L] with Optk(X) ≥ 1 − δ, and Optt(X) ≤ δ.

For particular values of t and k we will refer to the corresponding special
case of the above conjecture as the (t, k)-Unique Games Conjecture (or the
(t, k)-UGC).

Khot’s original formulation of the Unique Games Conjecture [12] is then
exactly the (2, 2)-UGC, and Khot and Regev [15] proved that this conjecture
is equivalent to the (2, k)-UGC for all k, which is what Samorodnitsky and
Trevisan [21] used to obtain hardness for Max k-CSP.

In this paper, we mainly use the (3, k)-UGC to obtain our hardness results.
Clearly, since Optt+1(X) ≤ Optt(X), the (t, k)-UGC implies the (t+1, k)-UGC,
so our assumption is implied by the Unique Games Conjecture. But whether
the converse holds, or whether there is hope of proving this conjecture (or, say,
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the (k, k)-UGC for large k) without proving the Unique Games Conjecture, is
not clear, and should be an interesting direction for future research.

2.2 Influences

It is well known (see e.g. [13]) that each function f : [q]n → R admits a unique
Efron-Stein decomposition: f =

∑

S⊆[n] fS where

• The function fS depends on xS = (xi : i ∈ S) only.

• For every S′ 6⊆ S, and every yS′ ∈ [q]S
′

it holds that

E[fS(xS)|xS′ = yS′ ] = 0.

For m ≤ n we write f≤m =
∑

S:|S|≤m fS for the m-degree expansion of f . We

now define the influence of the ith coordinate on f , denoted by Infi(f) by

Infi(f) = E
x
[Var

xi

[f(x)]]. (1)

We define the m-degree influence of the ith coordinate on f , denoted by Inf≤m
i (f)

by Infi(f
≤m).

Recall that the influence Infi(f) measures how much the function f depends

on the i’th variable, while the low degree influences Inf≤m
i (f) measures this for

the low part of the expansion of f . The later quantity is closely related to the
influence of f on “slightly noisy inputs”.

An important property of low-degree influences is that

n
∑

i=1

Inf≤m
i (f) ≤ m Var[f ],

implying that the number of coordinates with large low-degree influence must
be small. In particular, if f : [q]n → [0, 1], then the the number of coordinates
with low-degree influence at least τ is at most τ/m.

2.3 Correlated Probability Spaces

We will be interested in probability distributions supported in P−1(1) ⊆ [q]k.
It would be useful to follow [16] and view [q]k with such probability measure
as a collection of k correlated spaces corresponding to the k coordinates. We
proceed with formal definitions of two and k correlated spaces.

Definition 2.2. Let (Ω, µ) be a probability space over a finite product space
Ω = Ω1 × Ω2. The correlation between Ω1 and Ω2 (with respect to µ) is

ρ(Ω1, Ω2; µ) = sup{Cov[f1(x1)f2(x2)] : fi : Ωi → R, Var[fi(xi)] = 1 },

where (x1, x2) is drawn from (Ω, µ).

Definition 2.3. Let (Ω, µ) be a probability space over a finite product space
∏k

i=1 Ωi, and let ΩS =
∏

i∈S Ωi. The correlation of Ω1, . . . , Ωk (with respect to
µ) is

ρ(Ω1, . . . , Ωk; µ) = max
1≤i≤k−1

ρ(Ω{1,...,i}, Ω{i+1,...,k}; µ)
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Of particular interest to us is the case where correlated spaces are defined
by a measure that it t-wise independent.

Definition 2.4. Let (Ω, µ) be a probability space over a product space Ω =
∏k

i=1 Ωi. We say that µ is t-wise independent if, for any choice of i1 < i2 <
. . . < it and b1, . . . , bt with bj ∈ Ωij

, we have that

Pr
w∈(Ω,µ)

[wi1 = b1, . . . , wis
= bs] =

t
∏

j=1

Pr
w∈(Ω,µ)

[wij
= bj ]

We say that (Ω, µ) is balanced if for every i ∈ [k], b ∈ Ωi, we have that
Prw∈(Ω,µ)[wi = b] = 1/|Ωi|.

The following theorem considers low influence functions that act on corre-
lated spaces where the correlation is given by a t-wise independent probability
measure for t ≥ 2. It shows that in this case, the functions have almost the same
distribution as if they were completely independent. Moreover, the result holds
even if some of the functions have large influences as long as in each coordinate
not more than t functions have large influences.

Theorem 2.5 ([16], Theorem 6.6 and Lemma 6.9). Let (Ω, µ) be a finite prob-

ability space over Ω =
∏k

i=1 Ωi with the following properties:

(a) µ is t-wise independent.

(b) For all i ∈ [k] and bi ∈ Ωi, µi(bi) > 0.

(c) ρ(Ω1, . . . , Ωk; µ) < 1.

Then for all ε > 0 there exists a τ > 0 and d > 0 such that the following holds.
Let f1, . . . , fk be functions fi : Ωn

i → [0, 1] satisfying that, for all 1 ≤ j ≤ n,

|{ i : Inf≤d
j (fi) ≥ τ }| ≤ t.

Then
∣

∣

∣

∣

∣

E
w1,...,wn

[

k
∏

i=1

fi(w1,i, . . . , wn,i)

]

−
k

∏

i=1

E
w1,...,wn

[fi(w1,i, . . . , wn,i)]

∣

∣

∣

∣

∣

≤ ε,

where w1, . . . , wn are drawn independently from (Ω, µ), and wi,j ∈ Ωj denotes
the jth coordinate of wi.

Note that a sufficient condition for (c) to hold in the above theorem is that
for all w ∈ Ω, µ(w) > 0.

Roughly speaking, the basic idea behind the theorem and its proof is that
low influence functions cannot detect dependencies of high order – in particular
if the underlying measure is pairwise independent, then low influence functions
of different coordinates are essentially independent.
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3 Main theorem

In this section, we prove our main theorem. Note that it is a generalization of
Theorem 1.1.

Theorem 3.1. Let P : [q]k → {0, 1} be a k-ary predicate over a (finite) domain
of size q, and let µ be a balanced t-wise independent distribution over [q]k such
that Prx∈([q]k,µ)[P (x)] > 0. Then, for any ε > 0, the (t+1, k)-UGC implies that
the Max CSP(P ) problem is NP-hard to approximate within

|P−1(1)|
qk · Prx∈([q]k,µ)[P (x)]

+ ε

In particular, note that if Prx∈([q]k,µ)[P (x)] = 1, i.e., if the support of µ is
entirely contained in the set of satisfying assignments to P , then P is approxi-
mation resistant. It is also hereditary approximation resistant, since the support
of µ will still be contained in P−1(1) when we add more satisfying assignments
to P .

Reduction. Given a k-ary Unique Label Cover instance X , the prover writes
down the table of a function fv : [q]L → [q] for each v, which is supposed to be
the long code of the label of the vertex v. Furthermore, we will assume that fv

is folded, i.e., that for every x ∈ [q]k and a ∈ [q], we have fv(x + (a, . . . , a)) =
fv(x) + a (where the definition of “+” in [q] is arbitrary as long as ([q], +) is
an Abelian group). When reading the value of fv(x1, . . . , xL), the verifier can
enforce this condition by instead querying fv(x1 − x1, x2 − x1, . . . , xL − x1) and
adding x1 to the result. Let η > 0 be a parameter, the value of which will be
determined later, and define a probability distribution µ′ on [q]k by

µ′(w) = (1 − η) · µ(w) + η · µU (w),

where µU is the uniform distribution on [q]k, i.e., µU (w) = 1/qk. Given a proof
Σ = {fv}v∈V of supposed long codes for a good labelling of X , the verifier
checks Σ as follows.

Algorithm 1: The verifier V
V(X , Σ = {fv}v∈V )
(1) Pick a random edge e = (v1, . . . , vk) with permutations

π1, . . . , πk.
(2) For each i ∈ [L], draw wi randomly from ([q]k, µ′).
(3) For each j ∈ [k], let xj = w1,j . . . wL,j , and let bj =

fvj
πj(xj).

(4) Accept if P (b1, . . . , bk).

Lemma 3.2 (Completeness). For any δ, if Optk(X) ≥ 1 − δ, then there is a
proof Σ such that

Pr[V(X, Σ) accepts] ≥ (1 − δ)(1 − η) Pr
w∈([q]k,µ)

[P (w)]
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Proof. Take a labelling ` for X such that a fraction ≥ 1 − δ of the edges are
k-wise satisfied, and let fv : [q]L → [q] be the long code of the label `(v) of
vertex v.

Let (v1, . . . , vk) be an edge that is k-wise satisfied by `. Then fv1
π1 =

fv2
π2 = . . . = fvk

πk, each being the long code of i := π1(`(v1)). The probability
that V accepts is then exactly the probability that P (wi) is true, which, since wi

is drawn from ([q]k, µ) with probability 1−η, is at least (1−η) Prw∈([q]k,µ)[P (w)].
The probability that the edge e chosen by the verifier in step 1 is satisfied

by ` is at least 1 − δ, and so we end up with the desired inequality.

Lemma 3.3 (Soundness). For any ε > 0, η > 0, there is a constant δ :=
δ(ε, η, t, k, q) > 0, such that if Optt+1(X) < δ, then for any proof Σ, we have

Pr[V(X, Σ) accepts] ≤ |P−1(1)|
qk

+ ε

Proof. Assume that

Pr[V(X, Σ) accepts] >
|P−1(1)|

qk
+ ε. (2)

We need to prove that this implies that there is a δ := δ(ε, η, t, k, q) > 0 such
that Optt+1(X) ≥ δ.

Equation 2 implies that for a fraction of at least ε/2 of the edges e, the

probability that V(X, Σ) accepts when choosing e is at least |P−1(1)|
qk + ε/2.

Let e = (v1, . . . , vk) with permutations π1, . . . , πk be such a “good” edge. For
v ∈ V and a ∈ [q], define gv,a : [q]L → {0, 1} by

gv,a(x) =

{

1 if fv(x) = a
0 otherwise

.

The probability that V accepts when choosing e is then exactly

∑

x∈P−1(1)

E
w1,...,wL

[

k
∏

i=1

gvi,xi
πi(w1,i, . . . , wL,i)

]

,

which, by the choice of e, is greater than |P−1(1)|/qk + ε/2. This implies that
there is some x ∈ P−1(1) such that

E
w1,...,wL

[

k
∏

i=1

gvi,xi
πi(w1,i, . . . , wL,i)

]

> 1/qk + ε′

=

k
∏

i=1

E
w1,...,wL

[gvi,xi
πi(w1,i, . . . , wL,i)] + ε′,

where ε′ = ε/2/|P−1(1)| and the last equality uses that, because fvi
is folded

and µ is balanced, we have Ew1,...,wL
[gvi,xi

(w1,i, . . . , wL,i)] = 1/q.
Note that because both µ and µU are t-wise independent, µ′ is also t-wise

independent. Also, we have that for each w ∈ [q]k, µ′(w) ≥ η/qk > 0, which
implies both conditions (b) and (c) of Theorem 2.5. Then, the contrapositive
formulation of Theorem 2.5 implies that there is an i ∈ [L] and at least t + 1
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indices J ⊆ [k] such that Inf≤d

π−1

j
(i)

(gvj ,xj
) = Inf≤d

i (gvj ,xj
πj) ≥ τ for all j ∈ J ,

where τ and d are functions of ε, η, t, k, and q.
The process of constructing a good labelling of X from this point is standard.

For completeness, we give a proof in the appendix. Specifically, Lemma A.1

gives that Optt+1(X) ≥ ε/2
(

τ
d·q

)t+1

, which is a function of ε, η, t, k, and q, as

desired.

It is now straightforward to prove Theorem 3.1.

Proof of Theorem 3.1. Let c = Prx∈([q]k,µ)[P (x)], s = |P−1(1)|/qk and η =
min(1/4, εc

4s). Note that since the statement of the Theorem requires c > 0
we also have s > 0 and η > 0. Assume that the (t + 1, k)-UGC is true, and
pick L large enough so that it is NP-hard to distinguish between k-ary Unique
Label Cover instances X with Optt+1(X) ≤ δ and Optk(X) ≥ 1 − δ, where
δ = min(η, δ(εc/4, η, t, k, q)), where δ(. . .) is the function from Lemma 3.3. By
Lemmas 3.2 and 3.3, we then get that it is NP-hard to distinguish between
Max CSP(P ) instances with Opt ≥ (1 − δ)(1 − η)c ≥ (1 − 2η)c and Opt ≤
s + εc/4. In other words, it is NP-hard to approximate the Max CSP(P )
problem within a factor

s + εc/4

(1 − 2η)c
≤ s(1 + 4η)

c
+ (1 + 4η)ε/4 ≤ s/c + ε

4 Inapproximability for Max k-CSPq

As a simple corollary to Theorem 3.1, we have:

Corollary 4.1. Let t ≥ 2 and let µ be a balanced t-wise independent distribution
over [q]k. Then the (t + 1, k)-UGC implies that that Max k-CSPq problem is
NP-hard to approximate within

| Supp(µ)|
qk

Thus, we have reduced the problem of obtaining strong inapproximability for
Max k-CSPq to the problem of finding small t-wise independent distributions.
As we are mainly interested in the strongest possible results that can be obtained
by this method, our main focus will be on pairwise independence, i.e, t = 2.
However, let us first mention two simple corollaries for general values of t.

For q = 2, it is well-known that the binary BCH code gives a t-wise indepen-
dent distribution over {0, 1}k with support size O(kbt/2c) [1]. In other words,
the (t + 1, k)-UGC implies that the Max k-CSP problem is NP-hard to ap-
proximate within O(kdt/2e/2k). Note in particular that the (4, k)-UGC suffices
to get a hardness of O(k/2k) for Max k-CSP, which is tight up to a constant
factor.

For q a prime power and large enough so that q ≥ k, there are t-wise in-
dependent distributions over [q]k with support size qt based on evaluating a
random degree-t polynomial over Fq. Thus, in this setting, the (t + 1, k)-UGC
implies a hardness factor of qt−k for the Max k-CSPq problem.

10



In the remainder of this section, we will focus on the details of constructions
of pairwise independence, giving hardness for Max k-CSPq under the (3, k)-
UGC.

4.1 Theorems 1.2 and 1.3

The pairwise independent distributions used to give Theorems 1.2 and 1.3 are
both based on the following simple lemma, which is well-known but stated here
in a slightly more general form than usual:

Lemma 4.2. Let R be a finite commutative ring, and let u, v ∈ Rn be two
vectors over R such that uivj − ujvi ∈ R∗ for some i, j.1 Let X ∈ Rn be
a uniformly random vector over Rn and let µ be the probability distribution
over R2 of (〈u, X〉 , 〈v, X〉) ∈ R2. Then µ is a balanced pairwise independent
distribution.

Proof. Without loss of generality, assume that i = 1 and j = 2. It suffices to
prove that, for all (a, b) ∈ R2 and any choice of values of X3, . . . , Xn, we have

Pr[(〈u, X〉 , 〈v, X〉) = (a, b) |X3, . . . , Xn] = 1/|R|2.

For this to be true, we need that the system

{

u1X1 + u2X2 = a′

v1X1 + v2X2 = b′

has exactly one solution, where a′ = a −
∑n

i=3 uiXi and similarly for b′. This
in turn follows directly from the condition on u and v.

Consequently, given a set of m vectors in Rn such that any pair of them
satisfy the condition of Lemma 4.2, we can construct a pairwise independent
distribution over Rm with support size |R|n.

Let us now prove Theorem 1.2.

Proof of Theorem 1.2. Let r = dlog2 k+1e. For a nonempty S ⊆ [r], let uS ∈ Z
r
q

be the characteristic vector of S, i.e., uS,i = 1 if i ∈ S, and 0 otherwise. Then,
for any S 6= T , the vectors uS and uT satisfy the condition of Lemma 4.2, and
thus, we have that (〈uS , X〉)S⊆[r] for a uniformly random X ∈ Z

r
q induces a

balanced pairwise independent distribution over Z
2r−1
q , with support size qr.

When k = 2r − 1 we get a hardness of qlog
2
(k)−k, but for general values of

k, in particular k = 2r−1, we may lose up to a factor q.

We remark that for q = 2 this construction gives exactly the predicate used
by Samorodnitsky and Trevisan [21], giving an inapproximability of 2k/2k for
all k, and (k + 1)/2k for all k of the form 2l − 1.

Intuitively, it should be clear that when we have more structure on R in
Lemma 4.2, we should be able to find a larger collection of vectors where every
pair satisfies the “independence condition”. This intuition leads us to Theo-
rem 1.3, dealing with the special case of Theorem 1.2 in which q is a prime
power. The construction of Theorem 1.3 is essentially the same as that of [17].

1R∗ denotes the set of units of R. In the case that R is a field, the condition is equivalent

to saying that u and v are linearly independent.
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Proof of Theorem 1.3. Let r = dlogq(k(q−1)+1)e, and n = (qr−1)/(q−1) ≥ k.
Let P(Fr

q) be the projective space over F
r
q, i.e., P(Fr

q) = (Fr
q \ 0)/∼. Here ∼

is the equivalence relation defined by (x1, . . . , xr) ∼ (y1, . . . , yr) if there exists
a c ∈ F

∗
q such that xi = cyi for all i, i.e., if (x1, . . . , xr) and (y1, . . . , yr) are

linearly independent. We then have |P(Fr
q)| = (qr − 1)/(q − 1) = n.

Choose n vectors u1, . . . , un ∈ F
r
q as representatives from each of the equiva-

lence classes of P(Fr
q). Then any pair ui, uj satisfy the condition of Lemma 4.2,

and as in Theorem 1.2, we get a balanced pairwise independent distribution
over F

n
q , with support size qr.

When k = (qr − 1)/(q − 1), this gives a hardness of k(q − 1) + 1, and for
general k, in particular k = (qr−1 − 1)/(q − 1) + 1, we lose a factor q in the
hardness ratio.

Again, for q = 2, this construction gives the same predicate used by Samorod-
nitsky and Trevisan. In the case that q ≥ k, we get a hardness of q2/qk, the
same factor as we get from the general construction for t-wise independence
mentioned at the beginning of this section.

4.2 Theorem 1.4

Let us now look closer at the special case of boolean variables, i.e., q = 2. So
far, we have only given a different proof of Samorodnitsky and Trevisan’s result,
but we will now show how to improve this.

An Hadamard matrix is an n×n matrix over ±1 such that HHT = nI, i.e.,
each pair of rows, and each pair of columns, are orthogonal. Let h(n) denote
the smallest n′ ≥ n such that there exists an n′ × n′ Hadamard matrix. It is a
well-known fact that Hadamard matrices give small pairwise independent distri-
butions and thus give hardness of approximating Max k-CSP. To be specific,
we have the following proposition:

Proposition 4.3. For every k ≥ 3, the (3, k)-UGC implies that the Max k-
CSP problem is UG-hard to approximate within h(k + 1)/2k + ε.

Proof. Let n = h(k +1) and let A be an n×n Hadamard matrix, normalized so
that one column contains only ones. Remove n−k of the columns, including the
all-ones column, and let A′ be the resulting n × k matrix. Let µ : {−1, 1}k →
[0, 1] be the probability distribution which assigns probability 1/n to each row
of A′. Then µ is a balanced pairwise independent distribution with | Supp(µ)| =
h(k + 1).

It is well known that Hadamard matrices can only exist for n = 1, n = 2,
and n ≡ 0 (mod 4). The famous Hadamard Conjecture asserts that Hadamard
matrices exist for all n which are divisible by 4, in other words, that h(n) =
4dn/4e ≤ n + 3. It is also possible to get useful unconditional bounds on h(n).
We now give one such easy bound.

Theorem 4.4 ([19]). For every odd prime p and integers e, f ≥ 0, there exists
an n × n Hadamard matrix Hn where n = 2e(pf + 1), whenever this number is
divisible by 4.

Theorem 4.5 ([4]). There exists an integer n0 such that for every n ≥ n0,
there is a prime p between n and n + n0.525.
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Corollary 4.6. We have: h(n) ≤ n + O(n0.525).

Proof. Let p be the smallest prime larger than n/2, and let n′ = 2(p + 1) ≥ n.
Then, Theorem 4.4 asserts that there exists an n′ × n′ Hadamard matrix, so
h(n) ≤ n′. If n is sufficiently large (n ≥ 2n0), then by Theorem 4.5, p ≤
n/2 + (n/2)0.525 and n′ ≤ n + 2n0.525, as desired.

Theorem 1.4 follows from Proposition 4.3 and Corollary 4.6.
It is probably possible to get a stronger unconditional bound on h(n) than

the one given by Corollary 4.6, by using stronger construction techniques than
the one of Theorem 4.4.

5 Discussion

We have given a strong sufficient condition for predicates to be hereditary ap-
proximation resistant under (a weakened version of) the Unique Games Con-
jecture: it suffices for the set of satisfying assignments to contain a balanced
pairwise independent distribution. Using constructions of small such distribu-
tions, we were then able to construct approximation resistant predicates with
few accepting inputs, which in turn gave improved hardness for the Max k-
CSPq problem.

There are several aspects here where there is room for interesting further
work:

As mentioned earlier, we do not know whether the (t, k)-UGC implies the
“standard” UGC for large values of t. In particular, proving the (t, k)-UGC for
some t <

√
k/ log k would give hardness for Max k-CSP better than the best

current NP-hardness result. But even understanding the (k, k)-UGC seems like
an interesting question.

A very natural and interesting question is whether our condition is also nec-
essary for a predicate to be hereditary approximation resistant, i.e., if pairwise
independence gives a complete characterization of hereditary approximation re-
sistance.

Finally, it is natural to ask whether our results for Max k-CSPq can be
pushed a bit further, or whether they are tight. For the case of boolean variables,
Hast [9] proved that any predicate accepting at most 2bk/2c + 1 inputs is not
approximation resistant. For k ≡ 2, 3 (mod 4) this exactly matches the result
we get under the UGC and the Hadamard Conjecture (which for k = 2r −1 and
k = 2r − 2 is the same hardness as [21]). For k ≡ 0, 1 (mod 4), we get a gap of
2 between how few satisfying assignments an approximation resistant predicate
can and cannot have.

Thus, the hitherto very succesful approach of obtaining hardness for Max k-
CSP by finding “small” approximation resistant predicate, can not be taken fur-
ther, but there is still a small constant gap of roughly 1/0.44 to the best current
algorithm. It would be interesting to know whether the algorithm can be im-
proved, or whether the hardest instances of Max k-CSP are not Max CSP(P )
instances for some approximation resistant P .

For larger q, this situation becomes a lot worse. When q = 2l and k =
(qr − 1)/(q − 1), we have a gap of Θ(q/ log2 q) between the best algorithm and
the best inapproximability, and for general values of q and k, the gap is even
larger.
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A Good labellings from influential variables

Lemma A.1. Let X be a k-ary Unique Label Cover instance. Furthermore, for
each vertex v, let fv : [q]k → [q] and define

gv,a(x) =

{

1 if fvi
= a

0 otherwise
.

Then if there is a fraction of at least ε edges e = (v1, . . . , vk) with a vector
a ∈ [q]k, an index i ∈ [L] and a set J ⊆ [k] of |J | = t indices such that

Inf≤d

π−1

j
(i)

(gvj ,aj
) ≥ τ (3)

for all j ∈ J , then Optt(X) ≥ δ := ε
(

τ
d·q

)t

.

Proof. For each v ∈ V , let

C(v) = { i | Inf≤d
i (gv,a) ≥ τ for some a ∈ [q] }.

Note that |C(v)| ≤ q · d/τ .
Define a labelling ` : V → [L] by picking, for each v ∈ V , a label `(v)

uniformly at random from C(v) (or an arbitrary label in case C(v) is empty). Let
e = (v1, . . . , vk) be an edge satisfying Equation 3. Then for all j ∈ J , π−1

j (i) ∈
C(vj), and thus, the probability that πj(`(vj)) = i is 1/|C(vj)|. This implies
that the probability that this edge is t-wise satisfied is at least

∏

j∈J 1/|C(vj)| ≥
(

τ
d·q

)t

. Overall, the total expected number of edges that are t-wise satisfied by

` is at least δ = ε
(

τ
d·q

)t

, and thus Optt(X) ≥ δ.
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