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Abstract

We provide a non-explicit separation of the number-on-forehead communication complexity classes
RP and NP when the number of players is up toδ · logn for any δ < 1. Recent lower bounds on Set-
Disjointness [10, 7] provide an explicit separation between these classes when the number of players is
only up too(loglogn).

1 Introduction

In the number-on-forehead (NOF) model of communication complexity, k players are trying to evaluate a
functionF defined onknbits. The input ofF is partitioned intok pieces ofn bits each, call themx1, . . . ,xk,
and xi is placed, metaphorically, on the forehead of playeri. Thus, each player sees(k− 1)n of the kn
input bits. The players communicate by writing bits on a shared blackboard in order to computeF. This
model was introduced by [5] and it has many applications, including circuit lower bounds [9, 11], time/space
tradeoffs for Turing Machines, pseudo-random number generators for space-bounded Turing Machines [2],
and proof system lower bounds [4].

In this model, a protocol is said to be “efficient” if it has complexity (logn)O(1). Correspondingly,Pcc
k , RP

cc
k ,

BPP
cc
k and NP

cc
k are the classes of functions having efficient deterministic, one-sided-error randomized,

(two-sided-error) randomized and nondeterministic protocols, respectively. The usual inclusions between
these classes apply, soPcc

k ⊆ RP
cc
k ⊆ NP

cc
k andRP

cc
k ⊆ BPP

cc
k . One of the most fundamental questions

in NOF communication complexity is to provide separations between these classes. In [3], Beame et al.
show thatRP

cc
k 6= P

cc
k for k ≤ nO(1) players. Recently, [7, 10] show thatNP

cc
k 6⊂ BPP

cc
k (and thus, that

NP
cc
k 6= RP

cc
k ) for k≤ o(log logn) players. Our main result in this paper is the following.

Theorem 1.1(Main Theorem). NP
cc
k 6⊂ BPP

cc
k (and thus,NP

cc
k 6= RP

cc
k ) for all δ < 1 and all k≤ δ · logn.

Until very recently, it was far from clear how to obtain communication complexity lower bounds in the
number-on-forehead model for any function that could separate nondeterministic from randomized com-
plexity. The difficulty can be described as follows. The onlymethod currently known for obtaining multi-
party NOF lower bounds is the discrepancy method [2, 13, 8]. Lower bounds using discrepancy are obtained
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by showing that the function in question has small discrepancy with respect to some distribution. Unfortu-
nately, it is not hard to see that every function with small nondeterministic complexity has high discrepancy
with respect to every distribution (see, for example, Lemma3.1 in [7].) Thus, the discrepancy method
seemed doomed to failure and new techniques seemed to be required.

However, in very recent work, these difficulties were overcome to obtain a surprisingly elegant lower bound
for the Set-Disjointness function [7, 10]. The idea behind their proofs as well as ours is as follows.

In a recent paper, Sherstov [15] (and implicitly also in Razborov [14]) applied the discrepancy method in
a more general way for the 2-player model in order to overcomethe above difficulties. Thegeneralized
discrepancy method was adapted to the number-on-forehead model in [7, 10] and can be described at a high
level as follows. Start with some candidate functionF, whereF has small nondeterministic complexity, and
we want to prove thatF has high randomized communication complexity. Now come up with a function
G and a distributionλ such that: (1)F andG are highly correlated with respect toλ ; and (2)G has small
discrepancy with respect toλ . It is not hard to see that if such aG can be found, then sinceG has small
discrepancy, it requires large randomized complexity, andmoreover sinceF andG are very correlated, this
in turn implies lower bounds on the randomized complexity ofF as well.

Thus, to use the generalized discrepancy method, the problem is to come up with the functionsF andG. To
accomplish this, we will use another wonderful idea due to Sherstov [16], and substantially generalized to
apply to the number-on-forehead setting by Chattopadhyay [6]. We consider special functions of the form
Fφ . This will be a function on(k+ 1)n bits, computed byk+ 1 players. Player 0 receives ann-bit vector
x. Playeri, for 1≤ i ≤ k gets ann-bit vectoryi . The functionφ takes as inputy1, . . . ,yk and outputs an
n-bit string z, wherez has exactlym 1’s. We will view φ a selectingm bits/indices of Player 0’s input,x.
The functionFφ will be the OR function applied to them bits of x as specified byφ(y1, . . .yk). (In earlier
terminology, thek+1 players will apply the OR function to Player 0’sunmaskedinput.)

Note that regardless of what functionφ is chosen,Fφ will have a small nondeterministic protocol. Player
0 simply guesses an indexj that is one of the indices chosen byφ , and then any of the other players can
easily verify whether or notx j is 1 in that position. Whenφ is the bitwise AND function, thenFφ is the
Set-Disjointness function. We will show that for almost allφ , the randomized communication complexity
of Fφ is large as long ask is at most a constant times logn. Because we will be working with a randomφ ,
as a bonus, our argument is substantially simpler that the previous bounds obtained for Set-Disjointness.

2 Definitions and Notation

2.1 Communication Complexity

In the number-on-forehead (NOF) multiparty communicationcomplexity game [5] there arek players that
are trying to collaborate to compute a functionF : X1× . . .×Xk → {0,1} where eachXi = {0,1}n. Thekn
input bits are partitioned intok sets, each of sizen. For(x1, . . . ,xk) ∈ {0,1}kn, and for eachi, playeri knows
the values of all of the inputs except forxi (which conceptually is thought of as being placed on playeri’s
forehead).

The players exchange bits according to an agreed-upon protocol, by writing them on a public blackboard.
A protocol specifies, for every possible blackboard contents, whetheror not the communication is over,
the output if over and the next player to speak if not. A protocol also specifies what each player writes as
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a function of the blackboard contents and of the inputs seen by that player. Thecostof a protocol is the
maximum number of bits written on the blackboard.

In a deterministic protocol, the blackboard is initially empty. Arandomized protocolof costc is simply a
probability distribution over deterministic protocols ofcostc, which can be viewed as a protocol in which
the players have access to asharedrandom string. Anon-deterministic protocolis one where an initial guess
string appears on the blackboard at the beginning of the protocol, and the players are trying to verify that
the output of the function is 1 in the usual sense: there exists a guess string where the output of the protocol
is 1 if and only if the output of the function is 1.

The deterministic communication complexity of F, written Dk(F), is the minimum cost of a deterministic
protocol forF that always outputs the correct answer. For 0≤ ε < 1/2, letRk,ε (F) denote the minimum cost
of a randomized protocol forF which, for every input, makes an error with probability at most ε (over the
choice of the deterministic protocols). The(two-sided-error) randomized communication complexity of F is
Rk(F) = Rk,1/3(F). Let R1

k,ε(F) denote the minimum cost of a randomized protocol forF which is correct
on all 0-inputs, and for every 1-input, it makes an error withprobability at mostε . The one-sided-error
randomized communication complexity of Fis R1

k(F) = R1
k,1/3(F). Thenon-deterministic communication

complexity of F, writtenNk(F), is the minimum cost of a non-deterministic protocol forF. We usually drop
the subscriptk when the number of players is clear from the context.

Since any functionFn on kn bits can be computed using onlyn bits of communication, following [1], for
sequences of functionsF = (Fn)n∈N, protocols are considered “efficient” or “polynomial” if only polylog-
arithmically many bits are exchanged. Accordingly, letP

cc
k , RP

cc
k , BPP

cc
k andNP

cc
k denote the classes of

function familiesF for which Dk(Fn),R1
k(Fn),Rk(Fn) andNk(Fn) are(logn)O(1), respectively.

Even though the standard communication complexity definitions above are given for functions with range
{0,1}, we find it more convenient to work with the range{−1,1}. We transform the former into the latter
by mapping 0→ 1 (representingfalse) and 1→−1 (representingtrue). Thus, for example, when the range
of F is {−1,1}, in a non-deterministic protocol the players are trying to verify that the output ofF is -1.

The most important method to prove lower bounds for randomized communication complexity uses the
concept of discrepancy. Ani-cylinder Γi in X1× . . .×Xk is a set such that for allx1 ∈ X1, . . . ,xk ∈ Xk,x′i ∈ Xi

we have(x1, . . . ,xi , . . . ,xk) ∈ Γi if and only if (x1, . . . ,x′i , . . . ,xk) ∈ Γi. A cylinder intersectionis a set of the
form

⋂k
i=1Γi where eachΓi is ani-cylinder inX1×·· ·×Xk. For a setS, let 1S be its characteristic function,

which is 1 if the input is inSand 0 otherwise. Letλ be a distribution on the inputs ofF. Thediscrepancy
of F on Γ under λ is discΓk,λ (F) = |Ex∼λ [F(x)1Γ(x)]|. The discrepancy of F underλ is disck,λ (F) =

maxΓ discΓ
k,λ (F). Thestandard discrepancy method[2] connects the discrepancy of a functionF with its

randomized communication complexity as follows: for everydistributionλ , Rk,ε(F) ≥ log
(

1−2ε
disck,λ (F)

)

.

2.2 Notation

Throughout this paper, the functions whose communication complexity we are analyzing are denoted by
capital letters such asF. As mentioned in the introduction, we will be restricting our attention to certain
functions which are constructed from abasefunction, usually denoted by lower casef , and amasking
function, usually denoted byφ . In general,m denotes the size of the input to the base functionf , and the
range of this function is{−1,1}. A specific base function we will work with is the OR function,which
takes on the value -1 if and only if any of its input bits is 1. The masking functionφ takes as inputk strings
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of n bits each, usually denoted byy1, . . . ,yk, and it’s output is anm-element subset of[1,n]. We always have
m≤ n. Starting with a base functionf and a masking functionφ , we construct a function Lift( f ,φ) on
(k+ 1)n input bits as follows. Givenn-bit inputsx,y1, . . . ,yk, φ is evaluated on the latterk inputs to select
a set ofm bits in x on which we applyf . Formally, Lift( f ,φ)(x,y1, . . . ,yk) = f (x|φ(y1, . . . ,yk)), where
for a setS⊆ [1,n], x|S denotes the substring ofx indexed by the elements inS. We are interested in the
communication complexity of Lift( f ,φ) in the NOF model withk+ 1 players, where player 0 getsx and
players 1 throughk gety1 throughyk, respectively.

2.3 Correlation, Fourier Representation and Degree

Let f ,g : {0,1}m → R. Let µ be a distribution on the set{0,1}m. We define thecorrelation between f and
g underµ to be corrµ( f ,g) = Ex∼µ [ f (x)g(x)]. Whenever we omit to mention a specific distribution when
computing the correlation, an expected value or a probability, it is to be assumed that we are talking about
the uniform distribution.

For S⊆ [1,m], let χS(x) = (−1)∑i∈Sxi be the Fourier character of the setS. Let f : {0,1}m → R and let
fS = corr( f ,χS). Then f (x) = ∑S⊆[1,m] fSχS(x) is the Fourier representation off . Theexact degree of fis
the size of the largestSsuch thatfS is non-zero. Theε-approximate degree of f, denoted by degε( f ) is the
smallestd for which there exists a functiong of exact degreed such that maxx | f (x)−g(x)| ≤ ε .

2.4 Set Families

Let S = (S1, . . . ,Sz) be a multi-set ofm-element subsets of[1,n]. Let therangeof S, denoted by
⋃

S, be the
set of indices from[1,n] that appear in at least one set inS. Let theboundaryof S, denoted by∂S, be the set
of indices from[1,n] that appear in exactly one set in the collectionS.

3 Statement of Results

Our main technical result is the following.

Theorem 3.1. Let δ < 1 be a constant. Letε = (1−δ )/4. Let m= nε and let k≤ δ · logn. There exists a
functionφ such that Rk+1(Lift (OR,φ)) ≥ nΩ(1).

Proof of Main Theorem 1.1 from Theorem 3.1.Consider the functionφ whose existence is guaranteed by
Theorem 3.1. On the one hand, the Theorem implies that Lift(OR,φ) /∈ BPP

cc
k+1.

On the other hand, the following is a nondeterministic protocol for Lift (OR,φ): guess an indexi ∈ [1,n]
using logn bits; player 0 (the one holdingx on its forehead) locally computesφ(y1, . . . ,yk) and communi-
cates a 1 ifi belongs to that set; player 1 communicates a 1 ifxi = 1. The cost of this protocol isO(logn).
Easily, Lift(OR,φ)(x,y1, . . . ,yk) = −1 iff there exists a guessi such that both players communicate a 1.
Thus, Lift(OR,φ) ∈ NP

cc
k+1.
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4 Proof of Main Result

We obtain our lower bounds on the bounded-error communication complexity of Lift(OR,φ) using an anal-
ysis that follows [7]. In their paper, Chattopadhyay and Adaanalyze the Set-Disjointness function, and for
that reason, their masking functionφ must be the AND function. In our case, intuitively, we allowφ to
be a random function. While our results no longer apply to Set-Disjointness, we still obtain a separation
betweenBPP

cc
k andNP

cc
k because, no matter what masking function is used, Lift(OR,φ) always has a cheap

nondeterministic protocol.

At a more technical level, the results of [7] become trivial whenk ≥ log logn because of the relationship
betweenn (the size of the input toF) andm (the number of bits the base function OR gets applied to.) For
their analysis to go through, they needn = 22k

mO(1). In our case,n = mO(1) is sufficient, and this allows our
results to be non-trivial fork≤ δ logn for anyδ < 1.

4.1 Overview of Proof

As mentioned earlier, we will start with the base functionf = OR onm input bits,m< n. We lift the base
function f in order to obtain the lifted functionFφ = Lift ( f ,φ). Recall thatFφ is a function on(k+ 1)n
inputs with small nondeterministic complexity, and is obtained by applying the base function (in this case
the OR function) to the unmasked bits of Player 0’s input,x. We want to prove that for a randomφ , Fφ has
high randomized communication complexity.

Paturi [12] proved that no function that is a sum of low-degree Fourier characters can well-approximate the
OR function. This implies that there exists a functiong (also onm bits) and a distributionµ over allm-bit
inputs such that the functionsg and f = OR are highly correlated overµ and furthermore,g is orthogonal to
all small Fourier characters. This is our Lemma 4.1, and it was originally proved using duality by Sherstov
[15] in the context of 2-player lower bounds for quantum communication complexity.

Now we lift the functiong in order to get the functionGφ = Lift (g,φ). Defineλ to be a distribution over all
(k+1)n-bit inputs that is the natural extension ofµ . Sinceg and f = OR are highly correlated overµ , it is
not hard to see (using the definitions and the fact thatλ is the natural extension ofµ to the lifted space) that
the lifted versions,Fφ andGφ are also highly correlated overλ .

By the generalized discrepancy method (Lemma 4.2), in orderto prove that the randomized complexity of
Fφ is high, it suffices to prove thatGφ has small discrepancy. This final step is accomplished by Lemmas 4.4,
4.5, and 4.6, using two important properties ofg andφ . The crucial property ofg that we exploit is that it
is orthogonal to the space of all small Fourier characters. This property will be used to prove Lemma 4.4.
Secondly, we wantφ to behave like a random function with respect to all sub-cubes. This second property
is exploited in order to prove Lemma 4.6. We now proceed with the formal proof.

4.2 Proof of Main Theorem

The following lemma is from [15]. Intuitively it shows the following. Let f be a base function onm
bits, and with the property that no function in the low-degree Fourier subspace can approximatef . (We
will be interested inf = OR.) The lemma states that this implies the existence of another functiong and
a distributionµ such thatg is in the orthogonal subspace of low-degree Fourier characters andg well-
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approximatesf .

Lemma 4.1 (Orthogonality Lemma, Lemma 5.1 in [7]). If f : {0,1}m → {−1,1} is a function withδ ′-
approximate degree d, there exist a function g: {0,1}m → {−1,1} and a distributionµ on {0,1}m such
that:

(i) corrµ(g, f ) ≥ δ ′; and

(ii) for every T⊆ [1,m] with |T| ≤ d and every function h: {0,1}|T | → R, Ex∼µ [g(x) ·h(x|T)] = 0.

The next lemma is the generalized discrepancy lemma from [7]. It states that if two functionsF andG
are highly correlated, and ifG has small discrepancy (and hence high communication complexity), then the
communication complexity ofF is also high.

Lemma 4.2 (Generalized Discrepancy Lemma, Lemma 3.2 in [7]). Let Z= Z1×·· ·×Zk. Let F,G : Z →
{−1,1} and letλ be a distribution on Z such thatcorrλ (G,F) ≥ δ ′. Then, for everyε ′ < δ ′/2,

Rk,ε ′(F) ≥ log

(

δ ′−2· ε ′

disck,λ (G)

)

.

The following lemma is standard and used in every discrepancy argument. See [2, 13, 8] for details.

Lemma 4.3(The standard BNS argument). Let Z= X×Y1×·· ·×Yk and let F : Z → {−1,1}. Let Γ ⊆ Z
be a cylinder intersection. We writey for (y1, . . . ,yk). Then,

(

Ex,y [F(x,y)1Γ(x,y)]

)2k

≤ Ey0,y1

[
∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

F(x,yu1
1 , . . . ,yuk

k )

]
∣

∣

∣

∣

∣

]

.

Using the above lemmas, We will now prove Theorem 3.1. By [12], deg5/6(OR) ≥ c
√

m for some constant
c. By Lemma 4.1, applied withf = OR, there exist a functiong and a distributionµ such that:

(i) corrµ(g,OR) ≥ 5/6; and

(ii) for every T ⊆ [1,m] with T ≤ c
√

m and every functionh : {0,1}|T | → R, Ex∼µ [g(x)h(x|T)] = 0.

For every masking functionφ , let Fφ = Lift (OR,φ) and letGφ = Lift (g,φ). As in [7], we define the
distributionλ on{0,1}(k+1)n as follows. Forx∈ {0,1}n andy = (y1, . . . ,yk) ∈ {0,1}kn, let

λ (x,y) =
µ(x|φ(y))

2(k+1)n−m
.

It can be easily verified that corrλ (Gφ ,Fφ ) = corrµ(g,OR) ≥ 5/6. Thus, by Lemma 4.2,

R(Fφ ) ≥ log

(

5/6−2(1/3)

discλ (Gφ )

)

= log

(

1
discλ (Gφ )

)

−Θ(1).

Let Γ be the cylinder intersection that witnesses the discrepancy of Gφ underλ . Then,

discλ (Gφ ) = discΓ
λ (Gφ ) =

∣

∣E(x,y)∼λ [Gφ (x,y)1Γ(x,y)]
∣

∣= 2m |Ex,y[µ(x|φ(y))g(x|φ(y))1Γ(x,y)]|
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where the last equality follows from the connection betweenλ and the uniform distribution. Finally, by
Lemma 4.3, we obtain

∀φ ,
(

discλ (Gφ )
)2k

≤ 2m2k
Ey0,y1

[∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|φ(yu1
1 , . . . ,yuk

k ))g(x|φ(yu1
1 , . . . ,yuk

k ))

]∣

∣

∣

∣

∣

]

.

It is at this point that we diverge from the analysis in [7]. Let A = A(y0,y1) be the event “∃i such that
y0

i = y1
i ”. Clearly, this event depends only on the choice ofy0 andy1. By a simple union bound, Pry0,y1[A]≤

k/2n = 2−n+logk. Furthermore, Pry0,y1[A] ≤ 1, and since|µg| ≤ 1, Ey0,y1[. . . |A] ≤ 1. Thus,

∀φ ,
(

discλ (Gφ )
)2k

≤ 2−n+m2k+logk +2m2k
Ey0,y1

[∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|φ(yu1
1 , . . . ,yuk

k ))g(x|φ(yu1
1 , . . . ,yuk

k ))

]∣

∣

∣

∣

∣

∣

∣A

]

.

For the remaining part of the analysis, we fix the choices ofy0 andy1 in such a way that the eventA does
not occur. Foru∈ {0,1}k, defineSu = Su(y0,y1,φ) = φ(yu1

1 , . . . ,yuk
k ). Let S = S(y0,y1,φ) be the multi-set

(Su : u∈ {0,1}k). Even though the setsSu and the multi-setS depend ony0,y1 andφ , we will usually omit
explicitly indicating this dependence in our proofs in order to reduce the clutter. We definethe number of
conflicts inS to beq(S) = m2k−|⋃S|. Intuitively, |⋃S| measures the range ofS, while m2k is the maximum
possible value for this range.

We use the following three Lemmas to complete our proof.

Lemma 4.4. For everyy0,y1 andφ , if A(y0,y1) and q(S(y0,y1,φ)) < c·√m·2k/2, then

Ex

[

∏
u∈{0,1}k

µ(x|Su(y
0,y1,φ))g(x|Su(y

0,y1,φ))

]

= 0.

Lemma 4.5. For everyy0,y1 andφ , if A(y0,y1),

Ex

[

∏
u∈{0,1}k

µ(x|Su(y
0,y1,φ))

]

≤ 2q(S(y0,y1,φ))

2m·2k .

Lemma 4.6. For everyy0,y1, if A(y0,y1), whenφ is chosen at random,

Pr
φ

[q(S(y0,y1,φ)) = q|A(y0,y1)] ≤
(

m·2k

n

)q

.

Before proving these Lemmas, we complete the proof of our main Theorem. Since the bound on discλ (Gφ )
holds for everyφ , we can write

Eφ

[

(

discλ (Gφ )
)2k
]

≤ 2−n+m2k+logk +2m2k
Ey0,y1,φ

[∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|Su)g(x|Su)

]∣

∣

∣

∣

∣

∣

∣A

]

.
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Moreover,

Ey0,y1,φ

[∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|Su)g(x|Su)

]∣

∣

∣

∣

∣

∣

∣A

]

≤ ∑
q≥0

Pr
φ

[q(S) = q|A]Ey0,y1,φ

[
∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|Su)g(x|Su)

]
∣

∣

∣

∣

∣

∣

∣A,q(S) = q

]

(by Lemma 4.4) ≤ ∑
q≥c

√
m2k/2

Pr
φ

[q(S) = q|A]Ey0,y1,φ

[
∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|Su)g(x|Su)

]
∣

∣

∣

∣

∣

∣

∣A,q(S) = q

]

(because|g| = 1) ≤ ∑
q≥c

√
m2k/2

Pr
φ

[q(S) = q|A]Ey0,y1,φ

[
∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|Su)

]
∣

∣

∣

∣

∣

∣

∣A,q(S) = q

]

(by Lemma 4.5) ≤ ∑
q≥c

√
m2k/2

Pr
φ

[q(S) = q|A]
2q

2m2k

(by Lemma 4.6) ≤ ∑
q≥c

√
m2k/2

(

m2k

n

)q
2q

2m2k

=
1

2m2k ∑
q≥c

√
m2k/2

(

2m2k

n

)q

.

We have chosenε = (1− δ )/4, so 1− ε − δ = 3ε . Furthermore,m = nε and k ≤ δ logn, so m2k/n ≤
n−1+ε+δ = n−3ε < 1/4 whenn is large enough. Thus, 2m2k/n< 1/2. Using∑q≥q0

wq = wq0/(1−w)≤ 2wq0

for w < 1/2, we obtain

Ey0,y1,φ

[
∣

∣

∣

∣

∣

Ex

[

∏
u∈{0,1}k

µ(x|Su)g(x|Su)

]
∣

∣

∣

∣

∣

∣

∣A

]

≤ 21−c
√

m2k/2

2m2k .

Putting everything together,

Eφ

[

(

discλ (Gφ )
)2k
]

≤ 2−n+m2k+logk +2m2k
2−m2k

21−c
√

m2k/2.

For the exponent of the first term, note that logk≤ m2k andn≥ 4m2k, so−n+m2k+ logk≤−2m2k. When
m is large enough,−2m2k ≤−c

√
m2k/4. For the exponent of the second term, note that 1≤ c

√
m2k/4 when

m is large enough, so 1− c
√

m2k/2 ≤ −c
√

m2k/4. Thus, the sum of the two terms is at most 21−c
√

m2k/4.
Whenm is large enough, 1≤ c

√
m2k/8, so

Eφ

[

(

discλ (Gφ )
)2k
]

≤ 2−c
√

m2k/8.

Therefore, there exists someφ such that discλ (Gφ ) ≤ 2−c
√

m/8. For thisφ ,

R(Fφ ) ≥ log

(

1
discλ (Gφ )

)

−Θ(1) ≥ Θ(1)
√

m= Θ(1)nε ≥ nΩ(1).
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5 Proofs of Lemmas

Proof of Lemma 4.4.We write Su for Su(y0,y1,φ) andS for S(y0,y1,φ). Assumeq(S) < c
√

m2k/2. Let
r(S) = |⋃S| be the size of the range ofS, and letb(S) = |∂S| be the size of the boundary ofS. Note that
r(S)− b(S) ≤ q(S) because everyj ∈ ∪S \ ∂S occurs in at least 2 sets inS, thus contributes at least 1 to
q(S). Furthermore,r(S)+q(S) = m2k. Then,b(S) ≥ r(S)−q(S) = m2k−2q(S) > (m−c

√
m)2k. There are

2k sets in the multi-setS so by the pigeonhole principle, there existsv such that|Sv∩ ∂S| > m− c
√

m. We
can write

Ex

[

∏
u∈{0,1}k

µ(x|Su)g(x|Su)

]

= Ex|Sv

[

µ(x|Sv)g(x|Sv)Ex|[1,n]\Sv

[

∏
u∈{0,1}k,u6=v

µ(x|Su)g(x|Su)

]]

.

Let T = Sv \ ∂S. So |T| ≤ c
√

m. Let h = Ex|[1,n]\Sv

[

∏u6=v µ(x|Su)g(x|Su)
]

. Note thath is a function that
depends only onx|T. Then, by the property (ii) ofg andµ , Ex|Sv

[µ(x|Sv)g(x|Sv)h(x|T)] = 0.

Proof of Lemma 4.5.We writeSu for Su(y0,y1,φ) andS for S(y0,y1,φ). We see that

Ex

[

∏
u∈{0,1}k

µ(x|Su)

]

= Ex|[1,n]\⋃S

[

Ex|⋃S

[

∏
u∈{0,1}k

µ(x|Su)

]]

= Ex|⋃S

[

∏
u∈{0,1}k

µ(x|Su)

]

.

Every u ∈ {0,1}k can be interpreted as an integer in the range[0,2k − 1]. With this in mind, for 0≤ j ≤
2k−1, let S j be the sub-multi-set ofS consisting of the sets up to and includingSj , S j = (S0, . . . ,Sj). So,
S = S2k−1. DefineS−1 = /0. For 0≤ j ≤ 2k − 1, let G j = Ex|⋃Sj

[∏ j
i=0 µ(x|Si)] and letH j(x|Sj \ ∂S j) =

Ex|Sj∩∂Sj
[µ(x|Sj )]. LettingG−1 = 1, observe that, for 0≤ j ≤ 2k−1,

G j = Ex|⋃Sj−1

[(

j−1

∏
i=0

µ(x|Si)

)

H j(x|Sj \∂S j)

]

≤ (max(H j)) ·G j−1.

To obtain a bound on max(H j), consider an arbitrary partition of[1,m] into two setsE,F. Let ν be a dis-
tribution on[1,m], and letρ(x|E) = Ex|F [ν(x)]. Then,ρ(x|E) = ∑x|F 2−|F |ν(x) = 2−|F |∑x|F ν(x) ≤ 2−|F | =

2|E|−m, simply using the fact thatν is a probability distribution. Thus, max(H j) ≤ 2|Sj\∂Sj |−m. Inductively,

Ex

[

2k−1

∏
i=0

µ(x|Si)

]

= G2k−1 ≤
2∑2k−1

j=0 |Sj\∂Sj |

2m2k .

Consider some indexz∈ ⋃S. Suppose this index appears inl setsSj1, . . . ,Sjl from S, with j1 < · · · < j l .

Then, this index contributes exactlyl − 1 to the expression∑2k−1
j=0 |Sj \ ∂S j |, once for everyj = j2, . . . , j l

(for j = j1, z∈ ∂S j because no set beforeSj containsz.) Since this holds for every indexz, we see that

∑2k−1
j=0 |Sj \∂S j | = q(S) and thereforeEx[∏u∈{0,1}k µ(x|Su)] ≤ 2q(S)−m2k

.

Proof of Lemma 4.6.Fix y0,y1 such thatA. The multi-setS is constructed from the setsSu = φ(yu1
1 , . . . ,yuk

k )
for u ∈ {0,1}k. SinceA did not occur, the 2k points whereφ gets evaluated are distinct. Furthermore,
φ is chosen at random, which is equivalent to choosing 2k randomm-element subsets of[1,n]. We can
overestimate the number of conflicts inS as follows. Instead of choosing, for each subset,m elements

9



from [1,n] without replacement, suppose we chose themwith replacement. The number of conflicts we will
obtain can only be larger than in the original experiment or,equivalently, the probability of obtaining a fixed
number of conflicts can only be greater in the second experiment. The maximum range ofS is m2k. Every
conflict in S arises when we select a previously selected point from[1,n]. Thus, the probability of each
conflict is independently at mostm2k/n. The probability of obtainingq conflicts is at most(m2k/n)q.
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