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Abstract

We observe that many important computational problems in NC1 share a simple self-reducibility
property. We then show that, for any problemA having this self-reducibility property,A has
polynomial-size TC0 circuits if and only if it has TC0 circuits of sizen1+ε for everyε > 0 (count-
ing the number of wires in a circuit as the size of the circuit). As an example of what this observa-
tion yields, consider the Boolean Formula Evaluation problem (BFE), which is complete for NC1

and has the self-reducibility property. It follows from a lower bound of Impagliazzo, Paturi, and
Saks, that BFE requires depthd TC0 circuits of sizen1+εd . If one were able to improve this lower
bound to show that there is some constantε > 0 (independent of the depthd) such that every TC0

circuit family recognizing BFE has size at leastn1+ε, then it would follow that TC0 6= NC1. We
show that proving lower bounds of the formn1+ε is not ruled out by the Natural Proof framework
of Razborov and Rudich and hence there is currently no known barrier for separating classes such
as ACC0, TC0 and NC1 via existing “natural” approaches to proving circuit lower bounds.

We also show that problems with small uniform constant-depth circuits have algorithms that
simultaneously have small space and time bounds. We then make use of known time-space tradeoff
lower bounds to show that SAT requires uniform depthd TC0 and AC0[6] circuits of sizen1+c for
some constantc depending ond.

1 Introduction

There is consensus in the research community that one of the most challenging and important open
problems in computer science is to prove that various computational problems require large circuits in
order to be computed. However, there is also a great deal of pessimism in the community, regarding
the likelihood of proving such lower bounds on circuit size anytime in the near future. One goal of
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this paper is to suggest that there might be some reason to be more optimistic about prospects for
circuit size lower bounds; we show that in certain settings, superpolynomial bounds would follow
as a consequence of some very modest-sounding lower bound results (such as a lower bound of size
n1.0001). Of course, a confirmed pessimist would say that this is merely evidence that even these
modest-sounding lower bounds are likely to remain beyond our reach.

1.1 The Quest for Circuit Lower Bounds

This paper focuses primarily on the task of proving superpolynomial lower bounds for various well-
studiedrestricted classesof circuits, such as NC1, TC0, and CC0[6]. The reader can find definitions
of these classes in Section 2, along with a brief discussion of their importance and significance. Here,
we recall just a few salient facts:

• Although it seems at first to be an absurdly weak class, CC0[6] (the class of problems that
can be solved by constant-depth polynomial-size circuit families of MOD-6 gates) has not yet
been shown to have less computational power than NP. Some theoreticians suspect that CC0[6]
cannot even compute the AND function [12, 29]. Showing that AND (or any other problem in
NP) lies outside of CC0[6] would constitute a significant advance in complexity theory.

• The “majority function” MAJ, which determines if more than half of the input bits are 1, is the
canonical representative of the complexity class TC0, consisting of the problems computed by
constant-depth polynomial-size threshold circuits. Separating the complexity classes TC0 and
CC0[6] is equivalent to proving a superpolynomial lower bound on the size of CC0[6] circuits
computing MAJ.

• NC1 is the class of Boolean functions that can be represented by Boolean formulae of polyno-
mial size. NC1 has several natural problems that are complete under very restrictive notions
of reducibility; we mention in particular the problem of evaluating a Boolean formula, which
we denote by BFE. Separating the complexity classes NC1 and TC0 is equivalent to proving a
superpolynomial lower bound on the size of constant-depth threshold circuits computing BFE.

The problem of separating these and other circuit complexity classes has remained open for more
than two decades. This in itself would be cause for some discouragement about the prospects for
progress. Additional grounds for despair were provided by Razborov and Rudich [39], who showed
that, if a class of circuitsC is strong enough to compute pseudorandom function generators, then a
wide variety of proof techniques areincapableof proving a given problem is too difficult to be com-
puted by circuits inC. Since there are constructions of pseudorandom function generators computable
in TC0 that are conjectured to be cryptographically secure [37], this has been viewed as constituting
a significant barrier to progress on proving circuit lower bounds.

Although superpolynomial circuit size lower bounds have proved elusive, there has been signif-
icant work proving more modest lower bounds. For example, H˚astad presents a nearly-cubic lower
bound on the formula size for a certain function [27]. Nonlinear lower bounds on branching program
size have been presented [3, 14]. The time-space tradeoff results that are surveyed by van Melkebeek
[49] give run-time lower bounds of the formnc for small-space computations.

However, none of these lower bounds has led to superpolynomial lower bounds. More to the
point, there was no expectation that a circuit size lower bound of the formnc couldpossiblyyield
superpolynomial circuit bounds. In this paper, we show that there are several settings where precisely
this sort of “amplification”canoccur.

Moreover, in Section 8 we show that the work of Razborov and Rudich on “Natural Proofs”
[39] poses no barrier to proving weak lower bounds of the formnc. This can be viewed as holding
out some hope of separating circuit classes by proving circuit lower bounds using “natural” proof
techniques.
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1.2 Our Contributions

The main tool allowing us to obtain our results is self-reducibility of problems. We show that many
problems in and around NC1 (such as BFE, MAJ, AND, and many others) arestrongly downward
self-reducible. Then we show that, for any strongly downward self-reducible set, a lower bound of
sizenc implies a superpolynomial size lower bound.1

In particular, we obtain the following corollaries:

Corollary If there is someε > 0 such thatAND requiresCC0[6] circuits of sizen1+ε, thenAND 6∈
CC0[6].

Corollary If there is someε > 0 such thatMAJ requiresCC0[6] circuits of sizen1+ε, thenCC0[6] 6=
TC0.

Corollary If there is someε > 0 such thatBFE requiresTC0 circuits of sizen1+ε, thenTC0 6= NC1.

Let us examine this third corollary more closely. It is interesting to recall that some non-linear
lower bounds for BFEareknown. Impagliazzo, Paturi, and Saks showed that any depthd TC0 circuit
for PARITY must haven1+εd wires [32] (whereεd = Ω(1/(2.5)d)). Since there is a trivial reduction
from PARITY to BFE (see the detailed definition of BFE in Section 2), the same size lower bound
holds for BFE. In order to separate TC0 from NC1, it would suffice to improve this to a lower bound
of sizen1+ε whereε doesnotdepend ond.

One might reasonably wonder whether it is overly optimistic to expect to prove constant-depth
circuit size lower bounds that do not depend on the depthd. Most circuit size lower bounds in the
literature (such as those of [25, 52, 30, 40, 46]) do degrade with depth. For instance, the parity
function requires depthd AC0 circuits of size2ω(n1/(d−1)), and this is nearly optimal [30]. However,
it is important to note that there are exceptions to this trend; Rossman recently proved that, for every
constantk, thek-clique problem requires AC0 circuits withω(nk/4) gatesindependentof the depth
[44].

Clearly, no proof of TC0 6= NC1 can follow from a PARITY lower bound such as the bound of
Impagliazzo, Paturi, and Saks [32], and equally clearly, their argument does not yield a lower bound
on the size of depthd CC0[6] circuits computing BFE (since CC0[6] circuits of linear size compute
PARITY). In fact, there seem to be no known superlinear lower bounds for BFE on depthd CC0[q]
circuits for anyq with at least two distinct prime factors. We now turn to the question of obtaining
lower bounds for CC0[q] and the related class AC0[q], in order to discuss some of our other theorems.

Fortnow showed that SAT does not have logspace-uniform NC1 circuits of sizen1+o(1) [24].
(Several improvements of this result of Fortnow are presented in [48, Theorem 1.5].) Since we
are able to show that modest lower bounds for BFE would yield superpolynomial lower bounds, it is
natural to wonder if the same situation holds for SAT. That is, if one could build on the Fortnow lower
bound, and show that SAT requires AC0[6] circuits of sizen1.01, would it follow that NP6= AC0[6]?
We know of no such implication — and in Section 5 we show that the approach that works for BFE
cannot transfer directly to SAT. More specifically, in Section 5 we show that all strongly downward
self-reducible sets lie in (uniform) NC. Thus, in order to demonstrate that SAT has the sort of self-
reducibility properties that would enable us to amplify modest lower bounds to superpolynomial
lower bounds, one would have to first prove that P=NP. (It is still conceivable that one could proceed
by arguing thatif NP = AC0[6], thenSAT has the desired type of self-reduction, but we have not
been able to construct such an argument.)

It is interesting to note that Srinivasan has shown [47] that anΩ(n1+ε) lower bound on the run-
ning time of algorithms that compute weak approximations (of the formn1−o(1)) to MAX-CLIQUE
would imply P 6= NP. Using his techniques, we show in Section 6 that if NP= AC0[6], then there
are AC0[6] circuits of sizen1+o(1) that computen1−o(1)-approximations to MAX-CLIQUE. We

1A special case of this general observation (relating only to regular sets) also appears in a survey article by the second
author [35]; the present article expands significantly on the related results of [35].
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also use a similar argument to obtain lower bounds on the running time of any algorithm reducing
MAX-CLIQUE to the problem of computing approximations of MAX-CLIQUE.

Even though we do not know how to separate NP from AC0[6] by presenting a lower bound of
the formnc for the size of AC0[6] circuits for SAT, we would nonetheless like to be able to present
such a lower bound (as an illustration that current techniques can provide the sort of modest lower
bounds that would separate NC1 from AC0[6] if such bounds could be proved for BFE). Although
we can not provide such a lower bound, in Section 7 we do provide a lower bound analogous to the
Impagliazzo, Paturi, and Saks bound mentioned above; we show that, for everyd, there is a constant
cd such that depthd AC0[6] circuits for SAT require sizen1+cd .

2 Preliminaries

2.1 Circuit complexity classes

This paper focuses on Boolean circuits and in particular on the circuit class NC1 and its subclasses.
Let us remind the reader of the main definitions, and present some notation. For more background on
circuit complexity, the reader is referred to the text by Vollmer [50].

For a functionf : {0, 1}∗ → {0, 1} and an integern ≥ 1, fn : {0, 1}n → {0, 1} is the restriction
of f to inputs of sizen.

We begin our discussion of circuits by considering a special case: formulas. ABoolean formula
in n variablesx1, x2, . . . , xn is a rooted tree where each internal node is labeled by some function
such as AND, OR or NOT and each leaf is labeled either by one of the input variablesx1, . . . , xn or
by a constant zero or one (false or true). Given an inputx ∈ {0, 1}n, one can inductively assign a
value to each node of the formula as follows: each leaf labeled by a variable gets the value of that
variable, each leaf labeled by a constant gets the value of that constant, and each internal node gets
the value of the function that labels it applied to the values of its children. In case where the function
labeling a node is not symmetric the order of the children has to be specified. The value (output) of
the formula on inputx is the value of the root node. Hence a Boolean formula naturally computes
a functionf : {0, 1}n → {0, 1}. The nodes of the formula are generally referred to asgates. The
in-degree of a gate is called itsfan-in. In addition to the elementary functions AND, OR, and NOT,
we will also consider gates computing the function MAJ (which evaluates to one if and only if the
strict majority of its inputs is one) and the MOD-q function for an integerq ≥ 2 (which is one if and
only if the number of its inputs set to one is not divisible byq). The MOD-2 function will also be
referred to as the PARITY function (⊕ function). Sometimes we allow a more complex function to be
computed by a gate; a node of a formula can be designated as anoracle gate. Typically all the oracle
gates in a given formula will compute the same Boolean functiong : {0, 1}∗ → {0, 1}, although we
allow a single formula to have oracle gates forgm andgm′ form 6= m′. The oracle should be viewed
as a parameter for the formula; for a functiong and formulaφ with oracle gates, theformulaφ with
oracle forg is the formulaφ where each oracle gate computes the functiong. For a setA, anoracle
gate forA is an oracle gate computing the characteristic function ofA.

A Boolean circuit is a generalization of a formula where instead of a rooted tree we allow
an arbitrary directed acyclic multi-graph. (We allow multiple edges (orwires) between nodes.)
The nodes of out-degree zero are the output nodes. This way a circuit can compute a function
f : {0, 1}n → {0, 1}m, for integersn,m ≥ 1. In circuits we also allow oracle gates to have several
distinct output bits (wires) thus allowing us to have oracle gates for functionsg : {0, 1}m → {0, 1}m′

for m′ > 1. (The tree-like nature of formulas imposes the restriction thatm′ = 1 in a formula.)
Thedepthof a circuit is the length of the longest path from an input node to an output node. The

sizeof a circuit is the number of its wires, which is the number of edges in it. We will frequently refer
also to thenumber of gatesin a circuit,

A circuit computes a function on a fixed number of variables. To compute a functionf :
{0, 1}∗ → {0, 1} by circuits we need an infinite family of circuits{Cn}n≥1, where for eachn ≥ 1,
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circuitCn computesfn. One may abuse notation and say thatf is computable by circuits with prop-
erty γ(n). Such an expression means that there is a family of circuits{Cn}n≥1 where eachCn has
propertyγ(n) and computesfn. Similarly, asymptotic statements should be interpreted with respect
to the input size; e.g.,f is computable by polynomial-size constant-depth circuitsmeans that there is
a circuit family{Cn}n≥1, polynomialp(n) and constantd, such that eachCn computesfn and has
size at mostp(n) and depth at mostd. Similarly for formulas.

In addition to functions over the binary alphabet{0,1}, we also consider functions over an arbi-
trary alphabetΣ. In such cases we assume that there is some fixed encoding Bin: Σ → {0, 1}∗ of
symbols fromΣ into fixed-length binary strings; circuits for a function over the alphabetΣ operate
on inputs encoded symbol-by-symbol by Bin. Furthermore, a circuit for a function with non-Boolean
output produces a binary encoding of the output symbol. The definitions of computability by circuits
and of all the other terms extend naturally also to this case, however we only require that a circuit
computing functionf defined onΣ∗ operate correctly on binary strings corresponding to binary en-
codings of strings fromΣ∗. Thus, on inputs that do not correspond to binary encoded strings from
Σ∗, the circuit may give an arbitrary output. For example a functionf : Σ∗ → {0, 1} is computed
by a circuit family{Cn}n≥1 if for somek ≥ 1 there is a binary encoding Bin: Σ → {0, 1}k such
that for eachn ≥ 1, and each inputx ∈ Σn, Cn(Bin(x)) outputsfn(x). In this case the size of the
input is considered to ben although its binary encoding has lengthkn. Oracle gates for a function
over an arbitrary alphabetΣ also operate on binary encoded strings fromΣ, and on invalid inputs we
assume that they output all zeros. (We state this convention only in order to make such oracle gates
unambiguous; none of our results depends on it.)

A languageA is a subset ofΣ∗ for some finite alphabetΣ. Every language naturally corresponds
to its characteristic functionχA : Σ∗ → {0, 1} defined byχA(x) = 1 if and only if x ∈ A. Vice
versa, every function into{0, 1} corresponds to a language. We will identify languages with their
characteristic functions. We say thatA is recognizedby {Cn}n≥1 if its characteristic function is
computable by{Cn}n≥1.

This allows us to define the following classes of functions.

• NC0 is the class of functions computable by polynomial-size constant-depth circuits built using
fan-in two AND and OR gates and unary NOT gates.

• AC0 is the class of functions computable by polynomial-size constant-depth circuits built using
unbounded fan-in AND and OR gates and unary NOT gates.

• CC0[q] is the class of functions computable by polynomial-size constant-depth circuits having
onlyunbounded fan-in MOD-q gates.

• AC0[q] is the class of functions computable by polynomial-size constant-depth circuits of un-
bounded fan-in AND and OR gates and unary NOT gates, along with unbounded fan-in MOD-q
gates.

• CC0 is the union of all the classes CC0[q] (for q ≥ 2).

• ACC0 is the union of all the classes AC0[q] (for q ≥ 2).

• TC0 is the class of functions computable by polynomial-size constant-depth circuits of un-
bounded fan-in MAJ gates and unary NOT gates.

• NC1 is the class of functions computable by circuits of fan-in two AND and OR gates, and
unary NOT gates, having depthO(log n).

• NC is the class of functions computable by circuits of fan-in two AND and OR gates, and unary
NOT gates, having depthO(logk n) for a constantk.
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Some authors define these classes in terms oflanguagesinstead offunctions, and use notation such
as FAC0 or FNC1, etc., to refer to the associated class of functions. We prefer the simpler notation,
and are confident that no confusion will result. We use the names of the function classes to denote
also the corresponding circuit families; e.g., we refer to “AC0 circuit families” or more succinctly to
“AC0 circuits”.

As presented, these classes arenonuniform, i.e., it is not required that there be an easy way to
construct the circuits for inputs of lengthn. We shall also need to consider logspace-uniform and
Dlogtime-uniform versions of these classes [13]. A circuit family{Cn}n≥1 is logspace-uniformif
there is a procedure that runs in logarithmic space and on input1n it outputs the description ofCn.
A circuit family {Cn}n≥1 is Dlogtime-uniformif there is a procedure that on input(n, i, r, j, s, t),
wheren, i, j, r, s are integers encoded in binary andt is a gate type (e.g., AND, OR, NOT, oracle,
input, 0,1), runs in time linear in its input size and accepts if and only if the gate ofCn having label
i is of typet and itsr-th child is thes-th output bit of the gate labeledj. In case of the gatei being
an input gate, the procedure accepts if gatei takes the value of thes-th input bit. Furthermore, the
procedure accepts(n, i, j, s, output) if and only if thes-th output bit of gatei is thej-th output bit of
the circuitCn. We also require that the procedure accepts the input(n, i, d) if and only if d is equal
to the fan-in of the gate ofCn having labeli; without this condition it is not always clear that Turing
reducibilities defined in terms of uniform circuit families are closed under composition.2 Thus, for
example, Dlogtime-uniform AC0 is the class of functions computable by Dlogtime-uniform families
of AC0 circuits, or more precisely, the class of functions computable by some Dlogtime-uniform
family of circuits of polynomial-size and constant-depth that are built using unbounded fan-in AND

and OR gates and unary NOT gates.
A stringw ∈ {0, 1}∗ of lengthn is the binary representation of an integerm =

∑n
i=1 2n−iwi.

The logarithm base two is denoted bylog.
We use the following convention throughout the paper. Whenever we refer to some real valuea

(such asa = logn or a = nε) in a context where there should be an integral quantity (for instance:
“a string of lengtha”) the reader should read it asdae.

2.2 Reductions and complete problems

The reader is probably familiar with the notion of polynomial-time many-one reducibility≤p
m . Polynomial-

time reducibility is an extremely useful tool for classifying NP-complete problems and more generally
for classifying the complexity of problems that are not believed to lie in P. However, it is of no use
at all in identifying important distinctions among different problems in P. For that, it is necessary to
use a more refined tool, such as AC0 reductions.

For languagesA andB we writeA≤AC0

m B if there is a functionr ∈ Dlogtime-uniform AC0 such
that, for allx, x ∈ A if and only if r(x) ∈ B. More generally, for any class of functionsC, we say that
A≤CmB if there is a functionr ∈ C such that for anyx, χA(x) = χB(r(x)). The functionr is called
themany-one reduction ofA toB. We say thatA is complete forD under≤Cm reductions ifA ∈ D
and for any languageB ∈ D, B≤CmA. (Note, we require onlylanguagesto reduce toA; otherwise
no language could be complete for a class that contains any non-Boolean function.) Although AC0

reductions may seem to be quite restrictive, most natural examples of NP-complete problems remain
complete under≤AC0

m reductions. For any classC that is closed under≤TC0

m reductions, e.g. NC1,
any language that is complete forC under≤AC0

m reductions is also complete under≤NC0

m reductions
[2, 1].

Note that we have defined≤AC0

m reducibility for uniformreductions. IfA is complete for any of
the uniform circuit classesC that we consider under uniform≤AC0

m reductions, then it is also complete

2There are additional conditions that are required, in order to obtain a satisfactory definition of uniform NC1; we refer the
reader to the work of Ruzzo, who gives a uniformity condition with the desirable property that uniform NC1 corresponds to
logarithmic time on an alternating Turing machine [45].
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for the correspondingnonuniformclass under nonuniform≤AC0

m reductions. (See the discussion
before Proposition 3.)

NC1 has several natural and important problems that are complete under≤AC0

m reductions. We
give detailed definitions of three such problems: the word problem over the permutation groupS5 on
five elements [11], the Boolean Formula Evaluation problem [17], ands-t-connectivity on directed
graphs of width 5.

(1) The word problem overS5. The word problem over the permutation groupS5 is the task of
evaluating the product of a sequence of permutations. More generally we define theword problem
over a finite monoidM first. A monoidM is a finite set with an associative binary operation and
identity element1M . We denote the operation ofM multiplicatively. The word problem overM is the
functionWM : M∗ → M that assigns to each sequencem1,m2, . . . ,mn of elements fromM their
productm = m1m2 · · ·mn overM . The empty sequenceε is assigned the identity element1M . The
word problem overS5 is the word problemWS5 over the permutation groupS5 = { permutations
on five elements}. The binary operation onS5 is the composition of permutations; the identity
element ofS5 is the identity permutation. (The word problem overS5 can also be presented as a
languageconsisting of those pairs(m, (m1, . . . ,mn)) for whichm = m1m2 · · ·mn, and technically
it is this language that is complete for NC1 under≤AC0

m reductions — but this language has the same
complexity as the functional version of the problem that we have presented, and that version is more
convenient to work with; working with the language would rather obscure things.)

(2) Thes-t-connectivity problem on directed graphs of width 5. This is an NC1-complete variant
of s-t-connectivity. We say that a directed graphis of widthk if its vertices can be partitioned into
layerswhere each layer is of size at mostk, the layers are linearly ordered and every edge goes from
vertices of one layer to the vertices of the next layer. Every two consecutive layers of a width5
directed graph form a bipartite graph and this bipartite graph can be represented by a5× 5 adjacency
matrix. Thus a width5 directed graph withn + 1 layers can be described by a sequence ofn 5 × 5
adjacency matrices. Thes-t-connectivity problem on directed graphs of width 5 is the problem of
deciding whether a given vertexs in the first layer is connected by a path to a vertext of the last
layer in a width5 directed graph. It is more convenient for us to work with the following functional
version of connectivity (which has the same complexity as the decision problem), where we ask
about connectivity between all vertices of the first and last layers. LetΣ = {0, 1}5×5 be the set of
binary5 × 5 matrices. We define W5-STCONN: Σ∗ → Σ as follows. ForA1, A2, . . . , An ∈ Σ,
W5-STCONN(A1A2 . . . An) = A, whereA ∈ Σ represents the connectivity between the first and
last layer of a width 5 directed graph withn+ 1 layers with adjacency matricesA1, A2, . . . , An. It is
a standard fact thatA is equal to the productA1A2 · · ·An over the ring({0, 1},OR,AND) – and this
could also be taken as a formal definition of W5-STCONN. Moreover, one can view W5-STCONN as
a word problem over the monoidΣ, where the binary operation is matrix multiplication over the ring
({0, 1},OR,AND) and the identity element ofΣ is the identity matrix. This view of W5-STCONN
will also be useful for us. Clearly, the word problem overS5 is a special case of W5-STCONN.

(3) The Boolean Formula Evaluation problem. Roughly speaking, the Boolean Formula Evaluation
problem is the set of formulas that evaluate to true. We will make use of its variant where we focus
only on balanced formulas (that is, formulas whose graph is acompletebinary tree of depthd).
Input instances thus consist of a string of2d zeros and ones representing the values that label the
leaves of the formula, along with a sequence of2d − 1 labels for the internal nodes of the tree. Let
Σ = {0, 1,∧,∨,⊕}. The set BFE consists of all of the “well-formed formulas” over alphabetΣ that
evaluate to 1.

In order to simplify the proof that our construction in Proposition 12 is Dlogtime-uniform, we
choose a particular encoding that will be convenient. The “well-formed formulas” consist of strings
of the formvx such that for somed, x is a string of length2d in {0, 1}∗, andv is a string of length
2d − 1 in {∧,∨,⊕}∗ representing the labels of the internal nodes of the formula, given in the order
specified by the following recursive definition.
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If d = 1, then there is only one internal node, so there is no need to specify the order.
If d = 2, then the label of the root is listed first, followed by the label of the left child, and then

by the label of the right child.
If d > 2 andd = 2c− 1, then the2c − 1 labels of the subtreeT of depthc closest to the root are

given first, in the order specified for trees of depthc. This is followed by2c encodings of the subtrees
of depthc− 1 whose values feed intoT (starting from the leftmost subtree), in the order specified for
trees of depthc− 1.

If d > 2 andd = 2c, then the2c−1 labels of the subtreeT of depthc closest to the root are given
first, in the order specified for trees of depthc. This is followed by2c encodings of the subtrees of
depthc whose values feed intoT (starting from the leftmost subtree), in the order specified for trees
of depthc.

The reader may wonder if it is necessary to be so particular about our encoding of the problem
BFE. To some extent, the choice of encoding is crucial. For instance, if a formula were not encoded
as a formula, but instead were encoded as an unsorted list of gates and edges, then it is an easy ex-
ercise to show that evaluating a formula is complete for L, using the fact that determining whether
a vertexu occurs before a vertexv in a directed line graph presented as an unsorted list of edges is
complete for L [22]. Thus it is at least important that the formulas in BFE be presented as parenthe-
sized expressions or some similar encoding. The general (not-necessarily balanced) Boolean formula
evaluation problem is in NC1 [17], and thus there are “efficient”≤AC0

m reductions from the general
formula evaluation problem to the balanced encoding that we have chosen for BFE, but the reductions
that one obtains from known NC1 algorithms (e.g., [17, 16, 15]) do not appear to be computable by
linear-sizeAC0 circuits. This is one reason why we do not know how to obtainlinear-sizestrong
downward self-reductions for the general Boolean formula evaluation problem, such as we present
for BFE. The reason why we include⊕ as an operation in BFE is so there will be a linear-size reduc-
tion from PARITY to BFE, so that the non-linear PARITY lower bounds [32] will immediately carry
over to BFE.

Even in this restricted form, BFE is complete for NC1. (See, for example, the proof of Lemma
7.2 in [13].)

Proposition 1 [11, 17] WS5 ,BFE,W5-STCONNare problems complete forNC1 under≤NC0

m re-
ductions.

The problem W5-STCONN remains complete for NC1 if directed edges are permittedin both
directionsbetween adjacent layers, as well as in the undirected case. The arguments that we present
for W5-STCONN also carry over to these variants, with minor technical modifications.

Although NC1 has several natural complete problems under≤AC0

m reductions, many of the other
complexity classes we consider (such as TC0,AC0[q], and ACC0) are not believed to haveanycom-
plete problems under≤AC0

m reducibility. Some of them do, however, have complete problems under
AC0-Turing reducibility. Our main theorems rely on different variants of Turing reducibility, and thus
we need the following general definition.

For any circuit complexity classC, we defineC-Turing reducibility. Letf andg be two functions.
We say thatf≤CTg if there is a family of circuits of polynomial size computingf , where the circuits
haveoracle gatesfor the functiong in addition to the collection of gates that is provided in the
definition of the circuit classC.3 The family of circuits is called thereduction off to g. We say that
f is complete forD under≤CT reductions iff ∈ D and for any functiong ∈ D, g≤CTf . It is an

3In this paper, we do not make use of NC1-Turing reducibility, and indeed this definition would need to be modified in order
to coincide with the definition of NC1-Turing reducibility as studied by Cook [20] and Wilson [51] and others. In defining
ACk reducibility, each oracle gate is considered to have depth 1, as in our definition, but in defining NCk reducibility, Cook
and Wilson felt that it was more in keeping with the flavor of bounded fan-in circuits to define the depth of an oracle gate to be
the logarithm of its fan-in. Using their convention, an NC0-Turing reduction could have oracle gates of only bounded fan-in,
which is not a very useful notion. In contrast, our definition yields exactly the type of “NC0-Turing reducibility” that we need
in our definition of “pure self-reducibility”.
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easy observation that languages complete for NC1 under≤AC0

m reductions are also complete for NC1

under≤AC0

T reductions.

Proposition 2 • MAJ is complete forTC0 under≤NC0

T reductions.

• MOD-q is complete forAC0[q] under≤AC0

T reductions.

• AND is complete forACC0 under≤CC0

T reductions.

Turing reducibility will be used in the next section, in order to define downward self-reducibility.
Reductions can be either uniform or nonuniform. The reader can verify that all of the examples

of reductions that we present in this paper are Dlogtime-uniform. It is worth observing that ifA is
complete for any of theuniformclasses that we consider under uniform≤AC0

m or≤CT reductions, then
it is also complete for the correspondingnonuniformclass under nonuniform reductions of the same
type. For example, ifB is in nonuniform NC1, then there is a nonuniform family of Boolean formulae
{φn}n≥1 acceptingB. The setD = {(ψ, x) : a boolean formulaψ given in infix notation evaluates
to 1 onx} is in uniform NC1 [17, 16] and thus there is a uniform reduction fromD toA. Composing
this uniform reduction with the nonuniform reduction ofB to D that mapsx to (φx, x) yields the
desired nonuniform reduction ofB toA. Note that, for this example, it is important thatC be defined
in terms of Boolean formulae, instead of, say, logarithmic depth Boolean circuits, since it is not
known whether logarithmic depth Boolean circuits can be evaluated in NC1. A similar construction
works also for constant-depth circuits. As an example we briefly explain the case of CC0[q]. If B is
in nonuniform CC0[q] then it is accepted by a family of CC0[q] circuits of depthd and size at mostnk

for somek, d ≥ 1 and anyn ≥ 2. Without loss of generality one may also assume that these circuits
are layered and between any two gates there is at most one wire. Consider the setD = {(C, x) : C
is a CC0[q] circuit of depthd encoded by a sequence of|x|k × |x|k adjacency matrices, one for each
level of the circuit, such thatC(x) = 1}. Clearly,D has uniform CC0[q] circuits of depthO(d) and
sizenO(k). Hence it reduces toA. SinceB nonuniformly reduces toD by transitivity it also reduces
nonuniformly toA.

Since completeness results carry over from the uniform setting to the nonuniform setting, we will
henceforth slightly abuse notation and simply say that a setA is “complete under≤CT reductions” even
whenC is a nonuniform class, without explicitly mentioning that the reductions must be nonuniform
in this case.

The following fact about Dlogtime-uniform Turing reductions is not entirely obvious, and thus
for completeness we provide a proof. Let circuit family{Cn} be a Turing reduction off to g, and let
{Dn} be a Turing reduction ofg to h. Thecompositionof these reductions is the reduction off to h
that results by replacing each oracle gate ofCn having fan-inm byDm.

Proposition 3 For any of the classesC defined in this section, the composition of two Dlogtime-
uniform≤CT reductions is a Dlogtime-uniform≤CT reduction.

Proof. Let {Cn} and{Dn} be two Dlogtime-uniform families of reductions. Define a new family
{En} whereEn has the following gates:

{i : i is a non-oracle gate ofCn}∪

{(i,m, j) : i is an oracle gate ofCn that has fan-inm andj is a gate ofDm}.
Since the definition of Dlogtime-uniformity ensures that it is easy to recognize the fan-in of an oracle
gate, it is routine to establish that the familyHn (with the obvious connections among gates to im-
plement the composed reduction) is Dlogtime-uniform. For all of the polynomial-size circuit classes
C defined in this section, it is immediate that the resulting reduction{Hn} is also a≤CT reduction.2
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3 Downward self-reducibility

In this section we define downward self-reducibility and present several examples of downward self-
reducible functions. Intuitively, a function is downward self-reducible if it can be efficiently computed
from its own values at shorter inputs. We give a formal definition next.

A C self-reduction forf is a family of oracle circuits witnessing thatf≤CTf , where on inputx,
the oracle circuit does not feed inputx into any of its oracle gates.

Self-reducibility sometimes also goes by the name “autoreducibility.” The term “self-reducibility”
is more common in those settings (as here) where interest centers on routines that enforce the condi-
tion thatx is not queried, by ensuring that all queries have lengthshorterthan the length ofx.

Definition 4 Letf : {0, 1}∗ → {0, 1}∗ be a function, and letC be a class of circuits. Lets(n),m(n) :
IN → IN be functions such that for alln, m(n) < n. We say thatfn is downward self-reducible to
fm(n) by aC reduction of sizes(n) if there is a family ofC oracle circuits{Cn}n≥1 computingf
such that for eachn, Cn uses its oracle gates to queryf on inputs of size at mostm(n), and has at
mosts(n) wires.

Most of the self-reductions that we present consist of almost no hardware other than oracle gates.
We call such reductions “pure”; apure self-reduction forf is an NC0 self-reduction forf , i.e., a
self-reduction where theonly gates are oracle gates, as well as bounded fan-in AND and OR gates
and unary NOT gates.

Definition 5 Let f : {0, 1}∗ → {0, 1}∗ be a function. Lets(n),m(n) : IN → IN be functions such
that for all n, m(n) < n and letd ≥ 1 be an integer. We say thatfn is downward self-reducible to
fm(n) by a pure reduction of depthd and sizes(n) if there is a circuit family{Cn}n≥1 such that for
eachn,Cn computesfn, is of depth at mostd, size at mosts(n), and consists of fan-in twoAND and
OR gates, unaryNOT gates and oracle gates that compute functionf on inputs of size at mostm(n).

We use the term “pure” rather than simply calling them NC0 reductions, since the term “NC0” usually
refers to computation in which the output depends on at mostO(1) bits of the input, and pure self-
reductions do not share that property.

We will almost exclusively be interested in functions that are downward self-reducible to inputs
of size at mostm(n) = nε, for someε > 0. This notion of downward self-reducibility is essentially
identical to what Goldwasseret al. call “strong downward self-reducibility” [26]. Hence, iff is
downward self-reducible tofnε by a pure reduction for someε > 0, we will also call it strongly
downward self-reducible. (Similarly, if f is downward self-reducible tofnε by a C reduction for
some classC, we will say thatf is C strongly downward self-reducible.) For our purposes however,
it is important to pay close attention to the size and depth of the reduction.

The rest of this section is devoted to showing that the following problems are strongly downward
self-reducible: AND,WM ,MOD-q,W5-STCONN,MAJ and BFE. We also present somewhat weaker
downward self-reducibility results for various types of iterated matrix multiplication problems.

We start with an example that may seem trivial, but is nonetheless useful.

Proposition 6 For any 0 < ε < 1, ANDn is downward self-reducible toANDnε by a Dlogtime-
uniform pure reduction of depthO(1/ε) and sizeO(n). Similarly forOR.

Proof. Consider the AND function. The idea of the proof is simple: form a tree of depthO(1/ε)
from ANDnε gates and assign to each leaf one of the variables. However,ε andn may be arbitrary
so this construction may not be uniform. Thus to provide a Dlogtime-uniform construction one has
to be careful about the details. We provide a more detailed construction below to demonstrate the
necessary techniques. A reader familiar with the issues of uniformity may want to skip the rest of the
proof. Let an integerk satisfy2k−1 < 1/ε ≤ 2k. If n < 42k

then a tree of AND2 gates can be used
to compute ANDn. So assume for the rest of the proof thatn ≥ 42k

. Pick the largest integer̀≥ 1
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such that2` ≤ n1/2k

and the smallest integerm such thatn < (2`)m. We will use AND2` gates to
build the circuit. We will label gates of the circuit by labels from{0, 1, . . . ,m} × ({0, 1}`)m. Not
all labels will be valid; some labels will be unused. We describe the valid labels together with the
associated gates next. Letn1, n2, . . . , nm ∈ {0, 1}` be such thatn1n2 · · ·nm is the`m-bit binary
representation ofn− 1 padded with leading zeros if necessary. Considerw1, w2, . . . , wm ∈ {0, 1}`,
w = w1w2 · · ·wm andd ∈ {0, 1, . . . ,m}. (d, w) represents a valid label in any of the following
cases:

1. If d = 0 andw1 = w2 = · · · = wm = 0` then(d, w) is the label of the single output AND2`

gate with inputs from gates labeled by(1, w′1w2 · · ·wm) for anyw′1 ∈ {0, 1}`.

2. If 0 < d < m, w1w2 · · ·wd precedes or is equal ton1n2 · · ·nd in the lexicographical order
andwd+1 = wd+2 = · · · = wm = 0` then(d, w) labels an AND2` gate with inputs from gates
labeled by(d+ 1, w1w2 · · ·wdw

′
d+1wd+2 · · ·wm) for anyw′d+1 ∈ {0, 1}`.

3. If 0 < d ≤ m, w1w2 · · ·wd−1 = n1n2 · · ·nd−1, nd precedeswd in the lexicographical order
andwd+1 = wd+2 = · · · = wm = 0` then(d, w) labels a gate with constant one.

4. If d = m, w1w2 · · ·wm precedes or is equal ton1n2 · · ·nm in the lexicographical order then
(d, w) labels an input gate associated withi-th input variable, wherei− 1 is represented byw
in binary.

No other label is used. Sinceε is a constant,k is also a constant. One can verify easily from
the description of the gate labeling that the connectivity language for the circuit with respect to this
labeling is decidable by a Dlogtime procedure. (Givenn in binary, one can find̀ andm in time linear
in the binary representation ofn. Incrementing and decrementing a number in binary representation
can also be done in time linear in the length of the binary representation. All other operations are
clearly in linear time assuming our Dlogtime machine has at least two tapes.) One can also easily
verify that the described circuit computes exactly ANDn.

We claim that it containsO(n) wires. Indeed, the number of wires between bottom level of AND

gates and inputs is at mostn + 2`. The layer one up contains at mostn/2` + 2` wires, the next one
n/(2`)2 + 2`, and so on. Thus the number of wires in the circuit is at most2n+ (m + 1)2`. Since
ε < 1, we have thatk ≥ 1 and hence2` ≤ √

n. Furthermore,2`(m−1) ≤ n so,m ≤ 1 + logn. Thus
the number of wires in the circuit is bounded by2n+

√
n · (2 + logn). 2

The case of AND and OR can be further generalized to word problems over finite monoids.

Proposition 7 For any finite monoidM and any0 < ε < 1, (WM )n is downward self-reducible to
(WM )nε by a Dlogtime-uniform pure reduction of depthO(1/ε) and sizeO(n).

The proof is essentially the same as for AND and OR; one uses gates computingWM on inputs
of size≤ nε and constants for the binary encoding of1M . If for an integerq ≥ 2 we consider the
monoidZq = ({0, 1, . . . , q − 1},+(mod q)) then we obtain the next corollary.

Corollary 8 For any0 < ε < 1, (MOD-q)n is downward self-reducible to(MOD-q)nε by a Dlogtime-
uniform pure reduction of depthO(1/ε) and sizeO(n).

Proof. Clearly, MOD-q can be computed usingWZq . The other way around is also true: one can
computeWZq using MOD-q. The proof of the corollary consists of showing how(WZq )` can be
computed using gates for(MOD-q)` and then applying the previous proposition onWZq . A reader
familiar with the issue of conversion between(MOD-q)` andWZq may want to skip the rest of the
proof.

Let b ≥ 1 be a constant, Bin: Zq → {0, 1}b be an arbitrary injective function, and̀> 4q
be an integer. We show how to use(MOD-q)` gates to compute(WZq )` encoded by Bin. Let
x1, x2, . . . , x` ∈ Zq be an input toWZq and y1, . . . , y`b be its encoding by Bin. We will build
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a circuit that takesy1, . . . , y`b as its input and outputsz1 · · · zb, wherez1 · · · zb is the encoding of
∑`

i=1 xi(mod q) by Bin. The circuit will be of constant depth (depending only on Bin andq) and use
O(`) bounded fan-in AND, OR and NOT gates andq MOD-q gates of fan-iǹ . The circuit computes
as follows.

Letm = d`/qe− 2. Partition arbitrarily{1, . . . , `} into non-empty setsS1, S2, . . . , Sm of size at
most2q. Sincè > 4q, this is possible. For eachi ∈ {1, . . . ,m}, letwi = 1

∑
j∈Si

xj(mod q)0q−∑
j∈Si

xj(mod q).
Clearly,

∑m
i=1

∑q
j=1(wi)j =

∑`
i=1 xi(mod q). As q andb are constant,w1w2 · · ·wm can be com-

puted fromy1, . . . , y`b by a circuit of constant depth usingO(`) fan-in two AND and OR gates and
unary NOT gates.

Forj = 0, . . . , q−1, letgj be a MOD-q gate of fan-iǹ that takes as its inputw1w2 · · ·wm0j1q−j

padded with zeros to the length of`. Clearly,gj evaluates to zero if and only if
∑`

i=1 xi = j(mod q).
Hence, the output ofg0, . . . , gq−1 uniquely determines

∑`
i=1 xi(mod q). The output ofg0, . . . , gq−1

can thus be processed by a constant size circuit consisting of bounded fan-in AND, OR and NOT gates
to compute Bin(

∑`
i=1 xi(mod q)). This gives the desired circuit for computing(WZq )` encoded by

Bin. (For ` < 4q one can build a constant-depth circuit computing(WZq )` using fan-in two AND

gates and unary NOT gates.)
By Proposition 7, there are constantsb, k and a function Bin: Zq → {0, 1}b such that for alln

large enough, there is a circuitCn of depth≤ k/ε with ≤ kn wires that computes(WZq )n encoded
by Bin using fan-in two AND and OR gates, unary NOT gates and gates for(WZq )` encoded by Bin,
for ` ≤ nε. TakeCn and replace each gate for(WZq )` by the circuit constructed in the preceding
paragraph to obtain a circuitC′n computing(WZq )n. The circuitC′n consists of fan-in two AND and
OR gates, unary NOT gates and(MOD-q)` gates, for̀ ≤ nε. Since each(WZq )` gate of fan-iǹ b is
replaced by a constant-depth circuit that usesO(`) wires, the depth and the number of wires ofC′n
are only a constant factor larger than that ofCn.

If we encode an inputv1, v2, . . . , vn ∈ {0, 1} symbol by symbol by Bin and we feed the resulting
string into the circuitC′n we obtain

∑n
i=1 vi = j(mod q) encoded by Bin. From this encoded value

one can decode the output of MOD-q on inputv1, . . . , vn. Hence usingO(n) additional fan-in two
AND and OR gates and unary NOT gates one can convert the circuitC′n into a constant-depth circuit
for (MOD-q)n. The overall size of the circuit will be linear inn.

One can verify that the construction can be made Dlogtime-uniform. Indeed, the circuit comput-
ing WZq using MOD-q gates can be made Dlogtime-uniform, and its gate labeling can be concate-
nated with the labeling of gates inCn to obtain a gate labeling ofC′n. Additional labels can be used
for gates calculating the Bin encoding and decoding of input and output ofC′n. The details of these
constructions are rather straightforward and we leave them to the interested reader. 2

Because of the connection between W5-STCONN and word problems over monoids we also
obtain:

Proposition 9 For any0 < ε < 1, W5-STCONNn is downward self-reducible toW5-STCONNnε

by a Dlogtime-uniform pure reduction of depthO(1/ε) and sizeO(n).

We can prove a similar self-reducibility claim also for MAJ. This time the proof is a little bit more
involved and uses the following lemma.

Lemma 10 There is a constantd such that for any1 ≤ ` ≤ m there is a Dlogtime-uniform depth
d circuit family with at most4`m gates (consisting of fan-in twoAND gates, unaryNOT gates and
oracle gates forMAJ2m), taking as its input̀ -bit binary representations of integersy1, . . . , ym, and
producing as output a sequence of integersz1, . . . , z` each represented bỳ+ log(m + 1) bits such
thaty1 + y2 + · · ·+ ym = z1 + · · ·+ z`.

Proof. First, observe that we can compute ANDm and ORm, using a gate for MAJ2m and constants
0 and 1. For j = 1, . . . , `, let zj = 2`−j

∑m
i=1(yi)j . It follows from the definition of binary
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representation thaty1 + y2 + · · ·+ ym = z1 + · · ·+ z`. Thus we only need to show how to compute
the(`+log(m+1))-bit binary representation ofz1, . . . , z` from binary representation ofy1, . . . , ym.
(Note each of the representations ofz1, . . . , zm has` of its bits always set to zero.)

Fix j ∈ {1, . . . , `}. Let g1, . . . , gm be MAJ2m gates where fork = 1, . . . ,m, gk takes as its
input (y1)j(y2)j · · · (ym)j1m−k+10k−1. Clearly, the outputg1 · · · gm = 1

∑m
i=1(yi)j 0m−∑m

i=1(yi)j .
For k = 1, . . . ,m − 1, let g′k = (gk AND (NOT gk+1)) andg′m = gm. Theng′k evaluates to one
if and only if

∑m
i=1(yi)j is k. Hence, theh-th bit of the log(m + 1)-bit binary representation of∑m

i=1(yi)j is obtained by taking the OR of gates in the set{g′k; k ∈ {1, . . . ,m} and theh-th bit
of the log(m + 1)-bit binary representation ofk is one}. Thus to obtain thelog(m + 1)-bit binary
representation of

∑m
i=1(yi)j we needm MAJ2m gates,m − 1 AND2 gates,m − 1 NOT gates and

log(m + 1) ORm gates. Hence, to obtain all thelog(m + 1)-bit representations of
∑m

i=1(yi)j for
different j’s we need at most4`m (non-input) gates in total. The desired binary representation of
zj is obtained by concatenating the binary representations of

∑m
i=1(yi)j with 0j on left and0`−j on

right. Dlogtime-uniformity of the circuit is routine to establish. 2

Theorem 11 For any0 < ε < 1, MAJn is downward self-reducible toMAJnε by a Dlogtime-uniform
pure reduction of depthO(1/ε) and sizeO(n1+ε) consisting of a linear number of gates.

Proof. First, we prove the claim forε = 1/2 to illustrate the technique. For simplicity and clarity we
mostly ignore rounding issues. We can view the input asn 1-bit integersa1, . . . , an. To determine
the output of MAJn we will compute the binary representation of the sum of these integers. The total
sum will be obtained in several stages. Each stage will take as an input a sequencea1, a2, . . . , am of
integers and convert it into a shorter sequence of integersb1, b2, . . . , bm′ having the same sum, i.e.,
m′ < m anda1 + a2 + · · · + am = b1 + · · · + bm′ . The first stage will start with the input as a
sequence of 1-bit integers and the last stage will output a single integer representing the total sum of
the input bits. As no integer at any stage can attain a value larger thann we can always truncate any
number of more thanlog(n + 1)-bits to thelog(n + 1) least significant bits. (If convenient we may
also pad a binary representation of any number by leading zeros tolog(n+ 1)-bits.)

Stage 1:n×1-bit → (2
√
n+6)× log(n+1)-bits. This stage takes a sequence of bitsa1, a2, . . . , an

and outputsb1, b2, . . . , b2√n+6. Partition{1, . . . , n} into setsS1, S2, . . . , S2
√

n+6 of consecutive
integers, each set of size at most

√
n/2. Using Lemma 10 compute for eachj = 1, . . . , 2

√
n + 6 in

parallel the integerbj =
∑

i∈Sj
ai. Outputb1, . . . , b2√n+6 padded tolog(n + 1)-bits. Lemma 10

(with ` = 1 andm =
√
n/2) provides a circuit with at most2

√
n gates for computing eachbj , so in

total we needO(n) of AND2, NOT and MAJ√n gates for this stage.

Stage 2:(2
√
n+6)× log(n+1)-bits→ 5dlog(n+1)e× log(n+1)-bits. This stage takes a sequence

of log(n + 1)-bit integersa1, a2, . . . , a2
√

n+6 and outputsb1, b2, . . . , b5dlog(n+1)e. Similarly to the
previous stage divide theai’s into five subsequences of size at most

√
n/2 and using Lemma 10 (with

` = log(n + 1) andm =
√
n/2, truncating the outputs tolog(n + 1) bits), compute for each of the

subsequenceslog(n + 1)-bit integers representing the sum of theai’s in that subsequence. Output
all the 5dlog(n + 1)e integers that were obtained from the application of the lemma. Since each
subsequence contains at most

√
n/2 integers, this stage requires at mostO(

√
n logn) many AND2,

NOT and MAJ√n gates.

Stage 3: 5dlog(n + 1)e × log(n + 1)-bits → 3 × log(n + 1)-bits. This stage getslog(n + 1)-
bit integersa1, a2, . . . , a5dlog(n+1)e and outputsb1, b2, b3. It proceeds as follows. We divide the
binary representation of eachai, i ∈ {1, . . . , 5dlog(n + 1)e}, into blocks oflog logn consecutive
bits. Each block is regarded as alog logn-bit integer so we get integersai,1, ai,2, . . . , ai,k, where
k ≈ log(n+ 1)/ log log n andai =

∑k
j=1 2(k−j)dlog log neai,j .

For j = 1, . . . , k, we apply Lemma 10 on the sequencea1,j , a2,j , . . . , a5dlog(n+1)e,j to obtain

dj,1, dj,2, . . . , dj,log log n, where
∑5dlog(n+1)e

i=1 ai,j =
∑log log n

i=1 dj,i. Denote the value of the sum
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sj . The sequencedj,1, dj,2, . . . , dj,log log n representslog logn integers, each havingO(log logn)
bits. Hence altogether they constitute onlyO(log logn)2 bits. Hence, using a DNF formula of
size2O(log log n)2 ≤ no(1) built from no(1) ANDO(log log n)2 gates and a single ORno(1) gate we can
calculate from the sequencedj,1, dj,2, . . . , dj,log log n each bit of the binary representation ofsj. For
all j we do the whole calculation in parallel.

Finally, eachsj represents a sum of at most5dlog(n + 1)e integers each oflog logn-bits, so
it can be represented bylog(5dlog(n + 1)e + 1) + log logn ≤ 5 + 2 log logn bits. We can form
three integersb1, b2, b3 from s1, . . . , sk that represent the sum of theai’s (see Fig. 1). Formally,
bi =

∑
j≡4−i mod3 2(k−j)dlog log nesj , wherej ranges from1 to k.

This stage involvesO(log n/ log logn) applications of Lemma 10 with parameters` andm of
order less thanlogn, andk(5+2 log log n) DNF formulas of sizeno(1). Hence, it can be implemented
by a constant-depth circuit consisting of a linear number of AND2, NOT and MAJno(1) gates.

Figure 1: Adding(k log logn)-bit integersa1, a2, . . . , ac log n: b1 +b2 +b3 = a1 +a2 + · · ·+ac log n.

Stage 4: 3 × log(n + 1)-bits → 1 × log(n + 1)-bits. Adding twon-bit integers can be done by
AC0 circuits usingO(n2) many ANDn, ORn and NOT gates (see, e.g. [50, Theorem 1.15]). Hence,
adding threelog(n + 1)-bit integers can be done by constant-depth circuits usingO(log2 n) many
ANDlog(n+1), ORlog(n+1) and NOT gates. Thus summing the inputa1, a2, a3 of this stage can be
done by a constant-depth circuit usingO(log2 n) many MAJO(log n) and NOT gates to obtain the final
sum.

The resulting total sum obtained from Stage 4 of the circuit can be compared with the binary
representation ofn/2 by an AC0 circuit consisting ofO(log2 n) many ANDlog(n+1), ORlog(n+1) and
NOT gates or alternatively MAJO(log n) and NOT gates. As each stage of the computation can be done
by constant-depth circuits consisting of a linear number of AND2, NOT and MAJ√n gates the lemma
follows for ε = 1/2.
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For generalε the computation proceeds similarly, but the first two stages are replaced by a re-
peated use of a stage that reduces the input sequencea1, a2, . . . , am to the sequenceb1, b2, . . . , bm′ ,
for m′ = (2m log(n + 1))/nε. The reduction is done using Lemma 10 applied on subsequences of
ai’s of lengthnε/2. Oncem′ ≤ nε/2, a single application of Lemma 10 produceslog(n+1) integers
that can be passed to the last two stages of the above procedure. Clearly,2 + 1/ε repetitions will
suffice for the first stage, each repetition requiring at mostn1−ε · O(nε) = O(n) gates for MAJnε ,
AND2 and NOT.

We have established that the self-reductions have a linear number of gates, but it remains for us
to prove the size bound ofO(n1+ε) by counting the number of wires. There areO(n) gates, each
having fan-in at mostnε. Thus the total size isO(n1+ε). Dlogtime-uniformity of the circuit is routine
to establish. 2

We have seen that AND, OR, MOD-q, and MAJ are all downward self-reducible. We saw also
that downward self-reducibility holds for the word problem over any finite monoid, which yields
self-reductions for some of the standard complete problems for NC1: W5-STCONN and the word
problem overS5. We thank Mario Szegedy for pointing out that BFE (another standard complete
problem for NC1) is also downward self-reducible:

Proposition 12 For any 0 < ε < 1, BFEn is downward self-reducible toBFEnε by a Dlogtime-
uniform pure reduction of depthO(1/ε) and sizeO(n).

Proof. We will show that there is a constantc and an oracle circuit family{Cn}n≥1 such thatCn is
a pure reduction of depthc and sizeO(n) reducing BFEn to BFE4n1/2 , where no path from a leaf to
the root ofCn encounters more than two oracle gates.

We first show that this suffices to prove the proposition. Note that if we replace each oracle gate
for BFEm in Cn by the oracle circuitCm, we obtain a Dlogtime-uniform family of pure reductions
of depth3c and sizeO(n) reducing BFEn to BFE16n1/4 , where no path from a leaf to the root ofCn

encounters more than four oracle gates. (Notice, each oracle gate for BFEm usesO(m) wires and is
replaced by a circuit having alsoO(m) wires. Thus, the size of the circuit gets at most multiplied by
some constant.) By induction, we obtain, for everyk, a Dlogtime-uniform family of pure reductions
of depth(2k − 1)c and sizeO(n) reducing BFEn to BFE

4kn1/2k .
Thus, in particular, forε of the form1/2k−1 there is a Dlogtime-uniform family of pure reductions

of depth(2k − 1)c = O(1/ε) and sizeO(n) reducing BFEn to BFEn1/ε , since4kn1/2k

< n1/2k−1

for all largen. The theorem follows, since everyε is within a factor of 2 of some smaller number of
the form1/2k−1.

We now proceed to prove the claim, by presenting the circuit family{Cn}. BFE contains only
inputs of lengthn of the formn = 2d+1 − 1 for some integerd, so assumen has this form. Assume
thatd is odd; the construction is simpler ifd is even. Let us denote the first2d − 1 input symbols by
v, and the last2d input symbols byx.

The output gate ofCn will be an AND gate of fan-in two, where one childa checks if the input is
a well-formed formula, and the other childb evaluates the formula, assuming that it is well-formed.
We considerb first.

The gateb is an oracle gate that has as its input the stringv′x′, wherev′ consists of the first
2(d+1)/2 − 1 symbols ofv, andx′ is a string of2(d+ 1)/2 symbols consisting of the outputs of
oracle gatesbi, for 1 ≤ i ≤ 2(d+1)/2. If the input stringvx is well-formed, the stringv′ encodes the
subformula of the formulav having depth roughly half of the depth ofv and containing the output
gate ofv, and the oracle gatesbi will evaluate the subformulas ofv that feed intov′. More precisely,
the oracle gatebi will take as input a string(vi, xi), wherevi is thei-th block of length2(d−1)/2 − 1
afterv′ in v, andxi is thei-th block of length2(d−1)/2 in x. It is immediate that the gateb produces
the desired output, if the input is a well-formed formula. A routine calculation shows that the queries
have length bounded by4n1/2.

We now turn to the construction of the subcircuita that tests if the input is well-formed. Recall
that the input is well-formed if and only ifv ∈ {∧,∨,⊕}∗ andx ∈ {0, 1}∗. This is simply an AND of
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n conditions (call themci), where each conditionci can be computed using NC0 circuitry. We need
to evaluate this AND using oracle gates for BFEm wherem ≤ 4n1/2. To do this, we first use another
layer of NC0 circuitry to halve the fan-in of the unbounded fan-in AND that we need to compute; we
compute conditionsc′j defined byc′j = c2j−1 ∧ c2j for j = 1, . . . , (n − 1)/2 andc′(n+1)/2 = cn.
Note that the input is well-formed if and only if BFE(v′′x′′) evaluates to true, wherex′′ consists of
the bitsc′j andv′′ = ∧(n−1)/2. This well-formed instance of BFE can be evaluated using queries to
BFEm for m ≤ 4n1/2, using the same construction as was used for the gateb, to evaluate a formula.

To complete the proof, we merely observe that the number of wires is easily seen to be linear in
n, and we note that Dlogtime-uniformity is routine to establish. 2

Indeed, we point out that any problem that is complete for a complexity class that has a strongly
downward self-reducible complete problem must be strongly downward self-reducible. See Proposi-
tion 24.

Another problem for which we can prove downward self-reducibility isIterated Matrix Multipli-
cation. Let IMMn,d,` : {0, 1}nd2` → {0, 1}d2n(`+log d) be the problem of computing the product of
n d × d matrices, with each entry being a non-negative`-bit integer. Define themodularversion of
the Iterated Matrix Product to be the function mIMMn,d,q : {0, 1}nd2 log q → {0, 1}d2 log q computing
the Iterated Matrix Product modulo some integerq ≥ 2. Finally, we will also need to consider the
BooleanIterated Matrix Product problem BIMMn,d : {0, 1}nd2 → {0, 1}d2

which is the Iterated
Matrix Problem over the ring({0, 1},OR,AND).

The following proposition is immediate using the same technique as in Proposition 6:

Proposition 13 For any 0 < ε < 1 and anyn, d, q ≥ 1, mIMMn,d,q is downward self-reducible
to mIMMnε,d,q by a Dlogtime-uniform pure reduction of depthO(1/ε) and sizeO(nd2 log q) using
O(n) oracle gates formIMM `,d,q, nε/2 ≤ ` ≤ nε. SimilarlyBIMM n,d is reducible toBIMM nε,d by
a reduction of depthO(1/ε) and sizeO(nd2) usingO(n) oracle gates.

The following more interesting lemma will be useful in the next section.

Lemma 14 There is a universal constantcCRR such that for any0 < ε < 1 and anyd(n) ≤ n,
IMM n,d(n),n is downward self-reducible toIMM nε,d(n),nε by a Dlogtime-uniformTC0-reduction of
depthO(1/ε) and sizeO(d(n)2 · n3+2cCRR) usingO(n3) oracle gates.

Here,cCRR is a specific constant that can be determined from a paper of Hesse et al. [31]. The
exact value ofcCRR is not important for our purposes, but we estimate thatcCRR < 10.
Proof. Hesse et al. [31] give Dlogtime-uniform TC0 circuits withO(ncCRR) wires that do the
following tasks:

• take as input twon-bit integersa andb, and outputamod b. (Call this circuitAn.)

• take as input ann-bit integera, and output itsChinese Remainder Representation, i.e., a se-
quence ofn pairs(ai, bi) of O(log n)-bit numbers whereai = amod bi and allbi are distinct
primes depending only onn. (Call this circuitBn.)

• take as inputn pairs(ai, bi) of O(log n)-bit numbers and output anO(n logn)-bit numbera
satisfyingai = amod bi and0 ≤ a <

∏
i bi, if the bi are distinct primes. (Call this circuit

Rn.)

Let n be large enough and setd = d(n). Using these three circuit families we can reduce IMMn,d,n

to the problem of computingO(n2) instances of mIMMn,d,qi in parallel forO(n2) distinct prime
O(log n)-bit numbersqi. Namely to compute the iterated product, we first compute the Chinese
Remainder Representation of each input matrix; this gives usO(n2) instances of mIMMn,d,qi to
solve. Next, we compute the iterated product mod each of theqi (thereby obtaining the output in
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Chinese Remainder Representation). Finally, we convert the answer to binary representation. The
following three steps describe the computation in more detail.

Step 1. We convert the input matricesM1,M2, . . . ,Mn into 2n2 ≥ n(n + log d) sequences of
d × d matricesM1,j,M2,j, . . . ,Mn,j, j ∈ {1, 2, . . . , 2n2} as follows: For eachi ∈ {1, . . . , n} and
k, ` ∈ {1, . . . , d} we apply the circuitB2n2 on the entry(Mi)k,` of Mi padded by leading zeros to
2n2 bits, to obtain((Mi,1)k,`, q1), ((Mi,2)k,`, q2), . . . , ((Mi,2n2)k,`, q2n2). That is, each matrixMi,j

consists of the entries ofMi modulo theO(log n)-bit primeqj . This step consists ofn · d2 copies of
circuitA2n2 so it can be done by a TC0 circuit of sizeO(d2n1+2cCRR).

Step 2.For eachj ∈ {1, 2, . . . , 2n2}, we compute the productNj of matricesM1,j ,M2,j, . . . ,Mn,j

modqj . To do so, we use the pure self-reduction of mIMMn,d,qj to mIMMnε,d,qj given by Propo-
sition 13. However as we do not have oracle access to mIMMnε,d,qj , we replace each oracle gate
for mIMM `,d,qj , nε/2 ≤ ` ≤ nε, by a small sub-circuit consisting of an oracle gate IMM`,d,` giv-
ing an intermediate matrixM followed by an application of the circuitA2`2 on each entry ofM
(padded by leading zeros to2`2 bits) to obtainM mod qj , i.e., the result expected from the oracle
gate mIMM̀ ,d,qj . Thus, to computeNj , we use a TC0 circuit withO(n) oracle gates for IMM̀,d,`,
nε/2 ≤ ` ≤ nε, O(nd2) copies ofA2`2 , andO(nd2 logn) wires for the original self-reduction.
In total to implement this step we needO(n3) oracle gates for IMM̀,d,` andn2 · O(nd2 logn +
nd2n2εcCRR + d2n2ε) = O(n3+2εcCRRd2) wires.

Step 3. From the previous step we obtain matricesN1, N2, . . . , N2n2 which represent the product
N of matricesM1, . . . ,Mn. Here,Nj = N mod qj . For eachk, ` ∈ {1, . . . , d} apply the circuit
R2n2 on ((N1)k,`, q1), ((N2)k,`, q2), . . . , ((N2n2)k,`, q2n2) to obtain the entryNk,l of N . This step
requiresd2 copies ofR2n2 , so in total it usesO(d2n2cCRR) wires.

The desired circuit for IMMn,d,n is obtained by combining the above three steps. Clearly, the
circuit will useO(n3) oracle gates for IMM̀,d,`, ` ≤ nε andO(d2(n3+2εcCRR + n1+2cCRR)) wires.

2

4 Amplifying lower bounds

In the previous section we have established several downward self-reducibility results. In this section
we show that any problem that is downward self-reducible in this way has circuits of polynomial size
of some type if and only if it has very small circuits of that type. Thus, if a small circuit size lower
bound can be proved for any such problem, it can be “amplified” into a superpolynomial size lower
bound.

The general form of our claims is:

If a functionf is computable by polynomial-size circuits of typeC then for anyε > 0, f
is computable by circuits of typeC usingO(n1+ε) gates and wires.

The circuit types we will consider are AC0, ACC0, CC0, TC0 and NC1 circuits. The functionsf we
will consider will typically (but not always) be complete for some complexity class. For example
MAJ is complete for TC0 (under≤NC0

T reductions), and the word problem forS5 is complete for
NC1, and so on. The consequence of our claim is that establishing a lower bound ofΩ(n1+ε) for
someε > 0 on the number of wires or gates necessary to computef would separate some of the
circuit classes. The following proposition summarizes known relationships between these circuit
classes.

Proposition 15
AC0 ( ACC0 ⊆ TC0 ⊆ NC1

CC0 ⊆ ACC0, CC0 6⊆ AC0
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Except for the proper inclusion AC0 ( ACC0 [25, 52, 30] which also implies CC0 6⊆ AC0 the
precise relationship among ACC0, CC0, TC0 and NC1 is not known, and any separation or collapse
would constitute major progress in theoretical computer science. Separation of, say, TC0 from NC1

would typically entail showing that no polynomial-size TC0 circuit family can compute some chosen
function from NC1. We show that this same separation follows already from a much smaller lower
bound.

Theorem 16 Let C be one of the circuit classes considered above (and the class of associated func-
tions), andf be a function. If for someε0 and s(n) : N → N , for every0 < ε ≤ ε0, fn is
downward self-reducible tofnε by a pure reduction of depthO(1/ε) and sizeO(s(n)), andf has
polynomial-size circuits of typeC, then for everyε′ > 0, f has circuits of typeC of sizeO(s(n)nε′ ).

Proof. Assume thatfn has circuits of typeC with nk + k wires. Letε = min(ε′/k, ε0). Consider
the reduction offn to fnε that is of sizeO(s(n)) and hence has at mostO(s(n)) oracle gates. If we
replace each oracle gate forfnε by the circuit of typeC of sizenεk + k, we obtain a circuit of type
C for fn with O(s(n)nεk) = O(s(n)nε′) wires. The claim follows. (Technically, classC may not
allow for bounded fan-in AND, OR or NOT gates which may appear in the pure reduction hence, one
needs to simulate such gates by constant-size circuits of typeC. However, this simulation does not
affect the size bound by more than a constant factor.) 2

By analyzing the depth of the circuits constructed in the proof of Theorem 16, one can observe
that if C is a class ofbounded depthcircuits, thenf has circuits of typeC having depthO(1/ε′) and
O(s(n)nε′) wires. For most of our arguments, for anyε0 < 1, eithers(n) = n or s(n) = n1+ε0 .
This yields the following corollary.

Corollary 17 1. If for someε > 0, W5-STCONNrequiresCC0 circuits with at leastΩ(n1+ε)
wires, thenCC0 6= NC1. The same is true withACC0 andTC0 in place ofCC0, and withBFE
andWS5 in place ofW5-STCONN.

2. If for someε > 0, MAJ requiresCC0 circuits with at leastΩ(n1+ε) wires thenCC0 6= TC0.
The same is true withACC0 in place ofCC0.

3. If for someε > 0, AND requiresCC0 circuits with at leastΩ(n1+ε) wires thenCC0 6= ACC0.

Contrast this with the situation for SAT; if SAT is in TC0, we have no way to bound the number
k such that TC0 sizenk is sufficient to compute SAT. (Although, as we mentioned in Section 1.2,
Srinivasan has shown that if P= NP then there are algorithms running in timen1+ε that compute
weak approximationsto MAX-CLIQUE [47]. See also our Section 6.)

Although stated as a sequence of implications, the preceding corollary is really a sequence of
equivalences, since W5-STCONN is complete for NC1 under≤AC0

m reductions, MAJ is complete
for TC0under≤NC0

T reductions, and AND is complete for ACC0 under≤CC0

T reductions. Thus, for
example, W5-STCONN is in ACC0 if and only if NC1 = ACC0.

We remark that, since our self-reductions are Dlogtime-uniform, one can compute a constantK
such that, for example, if BFE is in Dlogtime-uniform TC0, then it has TC0 circuits withO(n1+ε)
wires where the uniformity machine runs in timeK logn. (We have not computed the value ofK
– and indeed this value may depend on minor details of the particular formulation that is used in
defining Dlogtime-uniformity – but we anticipate thatK = 4 is sufficient; the self-reductions have
a very regular structure, and theO(log n) running time of the “original” TC0 circuit family ends up
being simulated only to determine the structure of circuits for inputs of sizenε for small values ofε.)

Sometimes concrete lower bounds are easier to prove for specially-constructed sets, rather than
for the standard complete sets for a complexity class. The following corollary shows that we can also
“amplify” lower bounds for such specially-constructed sets, since if one can show that a specially-
constructed set lies in NC1, then typically one can determine some upper bound on the depthd(n) of
the NC1 circuits computingf .
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Corollary 18 Letf be computable byNC1 circuits of depthd(n). If f does not haveTC0 circuits of
sizeO(3d(n)) thenTC0 6= NC1. The same is true withACC0 andCC0 in place ofTC0.

Proof. If f has NC1 circuits of depthd(n), then it has a balanced formula of size2d(n), and thus
there is a reduction off to instances of BFE of size2d(n). If TC0 = NC1 then evaluating Boolean
formulae of length̀ can be done by TC0 circuits of sizeO(`1+ε) for any chosenε > 0, by Corollary
17. The claim follows. 2

The technique is applicable also to other circuit classes, so if we pick a functionf from e.g. TC0

and we know that it is computable by TC0 circuits of sizeO(nk), then if TC0 = ACC0 then for every
ε > 0, f is computable by ACC0 circuits usingO(nk(1+ε)) wires. So proving anΩ(nk(1+ε)) lower
bound on the size of ACC0 circuits forf separates ACC0 from TC0.

This technique is applicable, to a certain extent, also to classes larger than NC1. First, let us
consider NL. Boolean iterated matrix product BIMMn,n is complete for NL. We do not know how
to work directly with BIMMn,n, and thus we work with slightly smaller matrices instead.

Theorem 19 If NL ⊆ NC1 then for anyε > 0, BIMM n,2
√

log n is computable byNC1 circuits of size
O(n1+ε). The same is true withCC0, ACC0, andTC0 in place ofNC1.

Note, one can replace the dimension bound2
√

log n in the theorem by any other function fromno(1).
The contrapositive may be more informative; if one can show for someε > 0 that BIMMn,2

√
log n

requires NC1 circuits of sizeΩ(n1+ε) then one has shown that NC1 6= NL. Unlike the earlier
theorems in this section, we obtain only an implication, and not an equivalence – since BIMMn,2

√
log n

is not known (or believed) to be complete for NL. Note that this result is for NC1 circuit size; it does
not seem to translate into a useful statement aboutformulasize.
Proof. Since BIMMn,n is in NL, our assumption implies that BIMMn,n is computable by NC1

circuits of sizeO(nk) for somek > 0. Let ε > 0 and setε′ = ε/k. Then BIMMnε′ ,nε′ is computable

by NC1 circuits of sizeO(nε′k) = O(nε) and hence BIMM̀,2
√

log n is computable by NC1 circuits

of sizeO(nε) for any ` ≤ nε′ . (Here, we are taking advantage of the fact that2
√

log n grows more
slowly thannε′ for any ε′ > 0.) By Proposition 13, BIMMn,2

√
log n is downward self-reducible to

BIMM nε′ ,2
√

log n by a pure reduction of sizeO(n22
√

log n) with O(n) oracle gates for BIMM̀,2
√

log n ,

` ≤ nε′ . We can replace each oracle gate by an NC1 circuit of sizeO(nε), yielding an NC1 circuit of
sizeO(n22

√
log n + n · nε) = O(n1+ε). 2

We now turn to the complexity class #L (the class of functions that count the number of accepting
paths of NL machines). This is the largest complexity class that we know how to address using
these techniques. Iterated Matrix Multiplication IMMn,n,n is a problem complete for #L (see [9]).
IMM n,2

√
log n,n is a subproblem not known (or expected) to be complete for #L, but also not known

to lie in any smaller complexity class.

Theorem 20 Let cCRR be the constant from Lemma 14. If#L ⊆ TC0 thenIMM n,2
√

log n,n is com-
putable byTC0 circuits of sizeO(n2cCRR+4). The same is true withNC1 in place ofTC0.

Thus to separate #L from TC0 it suffices to show a lower bound ofω(n2cCRR+4) on the size of
TC0 circuits computing IMMn,2

√
log n,n. Similarly for NC1.

Proof. Since IMMn,n,n is in #L, by our assumption, IMMn,n,n is computable by TC0 circuits of
sizeO(nk) for somek > 0. Chooseε = 1/k. Then IMMnε,nε,nε is computable by TC0 circuits of
sizeO(nεk) = O(n) and hence IMMnε,2

√
log n,nε is computable by TC0 circuits of sizeO(n).

By Lemma 14, IMMn,2
√

log n,n is downward self-reducible to IMMnε,2
√

log n,nε by TC0 circuits

of sizeO(22
√

log n · n2cCRR+3) ≤ O(n2cCRR+4). There areO(n3) oracle gates in this reduction, and
each gate for IMMnε,2

√
log n,nε can be replaced by circuits withO(n) wires, yielding TC0 circuits of
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sizeO(n2cCRR+4 + n4) = O(n2cCRR+4). This yields the bound for TC0 circuits in the statement of
the lemma.

To prove the claim regarding NC1 circuits, it suffices to remark that each MAJ` gate in the TC0

reduction above can be replaced by NC1 circuitry of sizeO(`). (This follows from the fact that MAJ

is computable by NC1 circuits of linear size [50, Lemma 2.11.1].) The depth of the circuit increases
by a factor of at mostO(log n) and the size by at most a constant factor. 2

The preceding two theorems do not make use of problems that are known to becompletefor
well-known complexity classes, and thus we obtain onlyimplicationsregarding NL and #L, instead
of equivalentstatements concerning whether these classes collapse with NC1. However, it is worth-
while noting that IMMn,3,n is complete for GapNC1 [18] (the class of functions over the integers,
computable by polynomial-size arithmetic formulae). All functions in NC1 are in GapNC1, and it has
been conjectured that GapNC1 coincides with NC1 [4]. GapNC1 is the only well-studied complexity
class not known to be contained in NC1, for which we can present a complete problem that is strongly
downward self-reducible.

Theorem 21 GapNC1 ⊆ TC0 if and only if IMM n,3,n hasTC0 circuits of sizeO(n2cCRR+3). The
same is true withNC1 in place ofTC0.

Proof. Let us prove the first equivalence. Assume that GapNC1 ⊆ TC0. Since IMMn,3,n is in
GapNC1, there isk > 0 such that IMMn,3,n has TC0 circuits of sizeO(nk). Let ε = 2cCRR/k. By
Lemma 14, IMMn,3,n is downward self-reducible to IMMnε,3,nε by TC0 circuits of sizeO(d2n3+2cCRR)
withO(n3) oracle gates. Replace each oracle gate in the reduction by the TC0 circuit for IMMnε,3,nε

of sizeO(nεk) = O(n2cCRR) to obtain a TC0 circuit of sizeO(9 ·n3+2cCRR +n3n2cCRR) computing
IMM n,3,n. This shows one implication. The other implication follows from the fact that IMMn,3,n is
complete for GapNC1 under≤AC0

m reductions.
The equivalence for NC1 follows from the first one by an argument similar to the proof of the

previous theorem. 2

5 Limits on downward self-reducibility

In the previous section we have seen that downward self-reducibility provides us with an interesting
tool for the study of circuit classes. We have shown that in order to separate circuit classes such as
ACC0 and NC1, quadratic lower bounds for the circuit complexity of certain NC1-complete problems
would suffice. What about separating ACC0 from, say NP? That should in principle be a much easier
task. Can we use the technique of downward self-reducibility to establish an analog of Corollary 17
for ACC0 versus NP?

The following theorem shows that there are significant obstacles to overcome before such an
approach can work. Namely, in order to establish that a problem is strongly downward self-reducible,
one must already have an efficient algorithm for the problem.

Theorem 22 Letf : {0, 1}∗ → {0, 1}∗ be a function andδ > 0 .

1. If f is strongly downward self-reducible, thenf ∈ NC andf hasCC0[q] circuits of size2nδ

,
wheneverq ≥ 2 is an integer with at least two distinct prime factors.

2. If f is TC0 strongly downward self-reducible, thenf ∈ NC andf hasTC0 circuits of size2nδ

.

3. If f is strongly downward self-reducible via polynomial time Turing reductions thenf is in P.

Proof. We prove the second claim first.
2) Letn ≥ 2. In order to build a circuit forfn, start with the TC0 circuit of depthd and sizenk

that reducesfn to fnε , for someε < 1. If we replace each oracle gate in this circuit with the circuit
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that reducesfnε to f(nε)ε , the depth of the new circuit isd2 and the size is at mostnk + nk · nεk. We
repeat the process until the oracle gates are of sizeO(1), at which point we replace the oracle gates
by circuitry of sizeO(1) computingf on small inputs. The number of stages isO(log logn); thus
the depth isdO(log log n) = logO(1) n. The size of the circuit is polynomially bounded bynk · nεk ·
nε2k · · · ≤ nk/(1−ε). Finally, replace each MAJ gate by an NC1 circuit. It is easy to verify that the
resulting circuit is logspace-uniform if the self-reduction circuits are. This establishes thatf ∈ NC.
In order to see thatf has TC0 circuits of size2nδ

, merely follow the same iteration process as above,
but continue for onlyO(1) stages instead ofO(log logn) stages. This results in a TC0 oracle circuit
with oracle gates forfm with m < nδ. Now replace each oracle gate with a DNF expression forfm.
(Clearly, if the self-reduction is an AC0 circuit instead of a TC0 circuit, thenf has AC0 circuits of
size2nδ

.)
1) The hypothesis for this implication is stronger than the hypothesis in part 2; we are assuming

a≤NC0

T downward self reduction, rather than a≤TC0

T reduction. Hence again we can conclude that
f ∈ NC. We obtain the upper bound of2nδ

on CC0[q] circuit size in a similar way. We use the same
iterative process forO(1) steps and obtain an oracle circuit with oracle gates forfm with m < nδ,
where all of the other gates have fan-inO(1). The DNF expression forfm can be computed by
CC0[q] circuits of sizeO(2m), by using CC0[q] circuits of size2m to compute each AND of fan-inm
[12]. At most one of these AND gates will evaluate to 1, and hence taking the MOD-q of these AND

gates computes the DNF forfm.
3) Again we use the obvious recursive algorithm. We run the Turing reduction and whenever it

asks an oracle query about a smaller instance off we recursively invoke the reduction on the smaller
instance. If the reduction runs in timeO(nk) then the total running time of the algorithm will be
bounded bynk · nεk · nε2k · · · ≤ nk/(1−ε). Sinceε is constant, the time is polynomial. 2

As a corollary, using the fact that every problem in NC1 is reducible via≤NC0

m reductions to BFE,
we obtain the following upper bound on the complexity of problems in NC1, which appears to be a
new observation.

Corollary 23 For everyδ > 0 and every integerq ≥ 2 with at least two distinct prime factors, every
problem inNC1 hasCC0[q] circuits of size2nδ

.

Speculation:Although Theorem 22 suggests that we abandon any attempt to show that SAT has
the downward self-reducibility property, it does not exclude the following approach for trying to
prove an analog of Corollary 17 for NP. (Such an analog might, for instance, state that if NP=
TC0 then SAT has TC0 circuits of sizen2.) Rather than trying to present a self-reduction for SAT
unconditionally, perhaps one can start with theassumptionthat NP⊆ TC0 and construct a downward
self-reduction of SAT (or some other specially-constructed set in NP) and conclude that under this
assumption SAT has almost linear size TC0 circuits.

This is the appropriate time to observe that if NP⊆ TC0, then SAT certainly does have the strong
downward self-reducibility property; this follows from Proposition 24 below. However, since one
can say nothing about the size of this self-reduction (other than that it is computed by an NC0 oracle
circuit of polynomial size), this does not seem to allow us to conclude that SAT has TC0 circuits of,
say, quadratic size.

Proposition 24 Let C be one of our constant-depth circuit classes. Letf and g be functions that
are equivalent under≤CT reductions (i.e.,f ≤CT g ≤CT f ), and letf beC strongly downward self-
reducible. Theng is alsoC strongly downward self-reducible. Moreover, the size of the self-reduction
of f can be determined from the sizes of the reductions betweenf andg and the size of the strong
downward self-reduction off .

Proof. The polynomial-size reductions betweenf andg each ask queries of size at mostnk for
somek, for all n ≥ 2. The strong downward self-reduction off reducesfn to fnε for someε > 0.
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Let ` be such thatε` < 1/(2k2). Let {Cn} be the circuit family that is thè-fold composition of
the downward self reduction off . By Proposition 3,{Cn} is aC downward self-reduction that, on
inputs of lengthnk makes no query of length greater than(nk)ε`

< n1/(2k). If we compose the
reduction fromg to f with the reduction computed by{Cn}, we obtain a reduction ofgn to fn1/(2k) .
Composing this reduction with the reduction fromf to g, we obtain a reduction ofgn to gn1/2 . This
establishes thatg is C strongly downward self-reducible. 2

6 Inapproximability of MAX-CLIQUE

In this section we adapt the technique of Srinivasan [47] to the setting of constant-depth circuit
classes, and also obtain a lower bound on the complexity of any polynomial-time reduction of
MAX-CLIQUE to the problem of computing approximations to MAX-CLIQUE.

For functionsf : {0, 1}∗ → IN andα : IN → IN, a functiong : {0, 1}∗ → IN α-approximates
f if g(x) ≤ f(x) andf(x) ≤ α(|x|)g(x) for all x ∈ {0, 1}∗. MAX-CLIQUE is the following
computational problem: given an undirected graphG determine the size of the largest clique inG.
For simplicity we assume thatG is given by its adjacency matrix. We say that thesizeof G is the
number of vertices inG. It is known [53] (see also [28, 23, 33, 34]) that if for someε > 0 there is a
n1−ε-approximation to MAX-CLIQUE computable in P then P= NP.

We use the technique of Srinivasan [47] to show the following statement:

Theorem 25 Let k > 1 and let ε = ε(n) < 1 be such thatε(n) = ω(log logn/ logn). If
MAX-CLIQUE is computable byAC0[q] circuits of sizeO(nk) then an1−ε(n)-approximation to
MAX-CLIQUE is computable byAC0[q] circuits of sizeO(n1+(k−1)ε(n)). The same is true withTC0

andNC1 in place ofAC0[q].

It is interesting to note that the depth of theO(n1+(k−1)ε(n))-size circuits does not increase while
decreasingε(n). As stated, the theorem holds only for nonuniform circuits, but a uniform version
holds for any functionε(n) that is sufficiently easy to compute. To prove the theorem we need the
following simple lemma.

Lemma 26 There is a constantc > 0 such that for anỳ ,m ≥ 1 there is a Dlogtime-uniform
constant-depth circuit of size at mostc2``m consisting of unbounded fan-inAND and OR gates,
and unaryNOT gates, that takes as its input`-bit binary representations of integersy1, . . . , ym, and
produces as its output the binary representation ofz = max{y1, y2, . . . , ym}.

Proof. The computation of the circuit proceeds in three steps. We identify integers0, . . . , 2` − 1
with their `-bit binary representations.

Step 1: compute bitsb0, b1, . . . , b2`−1 wherebi = 1 iff i ∈ {y1, . . . , ym}. For i = 0, . . . , 2`−1 and
w ∈ {0, 1}`, let gi(w) be a circuit that evaluates to one ifw is the binary representation ofi. Clearly,
gi(w) can be constructed from a single AND` gate and at most̀ NOT gates. Bitbi is obtained by
taking OR of gi(yj) for j = 1, . . . ,m. Thus to computeb0, b1, . . . , b2`−1 we need2` ORm gates,
2`m AND` gates and̀m NOT gates (as the NOT gates may be reused by different gatesgi(yj) and
gi′(yj)). Hence, we need at most3 · 2``m wires for this step.

Step 2: compute the “suffix-OR” of b0, b1, . . . , b2`−1. The suffix-OR is a vector of bitsd0, d1, . . . , d2`−1

with the property thatdi = 1 if and only if for somei′ ∈ {i, i+ 1, . . . ,m}, bi′ = 1. It can be com-
puted by Dlogtime-uniform constant-depth circuits of sizeO(2`) consisting of AND, OR and NOT

gates of fan-in at most2`, as was shown by Chandra, Fortune and Lipton [19].

Step 3: compute the outputz. For i = 0, . . . , 2` − 2 let ei = (di AND (NOT di+1)) ande2`−1 =
d2`−1. Hence, thek-th bit of the`-bit binary representation ofz is obtained by taking the OR of gates
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computingei for all thosei such that thek-th bit of the`-bit binary representation ofi is one. This
step requires̀ OR2` gates, and2` − 1 AND2 and NOT gates.

Clearly, the combination of the above three steps gives a constant-depthc2``m size circuit that
correctly computesz. Dlogtime-uniformity of the circuit is routine to establish. 2

Proof of Theorem 25. Let us assume that we have an AC0[q] circuit family of sizeO(nk) that
computes MAX-CLIQUE. We will build an AC0[q] circuit family of sizeO(n1+(k−1)ε) computing a
n1−ε-approximation of MAX-CLIQUE. The computation of the approximation proceeds as follows:
we partition the vertices of the graphG into n1−ε partsV1, . . . , Vn1−ε of size at mostdnεe. For
i = 1, . . . , n1−ε we compute in parallel MAX-CLIQUE ofG restricted toVi. Then we output the
largest of these partial results. The correctness of the algorithm follows from the simple observation
that ifG contains a clique of sizef(G) then for somei, Vi contains at leastf(G)/dn1−εe vertices of
that clique and hence MAX-CLIQUE ofG restricted toVi is at leastf(G)/dn1−εe.

The size of a circuit carrying out the computation can be bounded as follows. We usen1−ε

circuits of sizeO(nεk) to compute the value of then1−ε MAX-CLIQUE subproblems. This requires
sizeO(n1+(k−1)ε) in total. By Lemma 26 we can find the maximum of then1−ε values in the range
{0, . . . , nε} by an AC0 circuit of sizeO(n1−ε ·nε · log nε) = O(n log n). Thus the size of the circuits
is bounded byO(n1+(k−1)ε). Dlogtime-uniformity of the circuit is routine to establish. The case of
TC0 and NC1 is proven by essentially the same argument. 2

The technique from the previous proof can be also used to establish the following claim.

Theorem 27 Let 0 < ε < 1 and k < 1/ε be constants. If there is a polynomial time algorithm
that solvesMAX-CLIQUEn using an oracle form1−ε-approximation ofMAX-CLIQUEm, where
m ≤ nk, thenMAX-CLIQUEn is downward self-reducible toMAX-CLIQUEnεk .

Proof. In the proof of Theorem 25 we have seen how to compute am1−ε-approximation of
MAX-CLIQUEm by asking queries to MAX-CLIQUEmε . If there is a polynomial time algorithm
that solves MAX-CLIQUEn using an oracle form1−ε-approximation of MAX-CLIQUEm where
m ≤ nk, then we can combine it with the above reduction to obtain the desired self-reduction.2

This gives rise to what is perhaps the first example of a lower bound showing that there is no
“quick” reduction between two natural NP-optimization problems. For many natural NP-complete
problemsA andB, very efficient reductions betweenA andB are known. (For example, for any
problemA ∈ NTIME(n logO(1) n), there is a many-one reduction fromA to SAT that is computable
in timeO(n logO(1) n) [21].) It is easy to show that ifB 6∈ NTIME(nk), then any reduction from
B to SAT requires timenk/ logO(1) n – but this does not provide any useful lower bound on the
complexity of reducing natural problems to SAT, since no natural NP-complete problem is known
to lie outside of NTIME(n). There seems to be no pair of natural NP-complete problemsA andB
known, where a reduction fromA to B is known to require more than linear time (even under the
assumption that P6= NP).

In contrast to this, consider the problem of computing a
√
n-approximation to MAX-CLIQUE.

Zuckerman presents a deterministic polynomial-time Turing reduction from MAX-CLIQUE to this
approximation problem [53]. (More precisely, Zuckerman shows that distinguishing graphs having
only small cliques from graphs withlarge cliques is complete for NP under many-one reductions,
i.e., that one can decide the membership of a formula in SAT from the answer to an instance of
an arbitraryn1−ε-approximation of MAX-CLIQUEn. The polynomial-time Turing reduction from
MAX-CLIQUE follows from the trivial observation that MAX-CLIQUE is computable in PSAT =
PNP.) How long must the queries in this reduction be? Assuming that P6= NP, Theorems 27 and 22
tell us that the queries in this reduction must ask about graphs with at leastn2 vertices. We can state
the following claim

Corollary 28 P = NP if and only if there is anα < 2 and a deterministic polynomial-time Turing
reduction fromMAX-CLIQUE to the problem of computing a

√
n-approximation toMAX-CLIQUE

that asks queries of size no greater thannα.
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Proof. One direction follows from the observation that if P= NP then there is a polynomial-time
Turing reduction for this problem that asks queries of sizeO(1) (or asks no queries at all).

For the other direction: If there is a reduction from MAX-CLIQUE to the problem of computing a√
n-approximation to MAX-CLIQUE that asks queries only to graphs of sizenα for someα < 2, then

by Theorem 27, MAX-CLIQUEn is downward self-reducible to MAX-CLIQUEnα/2 . By Theorem
22, this implies that MAX-CLIQUE is computable in polynomial time, and hence NP= P. 2

Clearly, analogous statements can be proved fornε-approximation for any value ofε such that
0 < ε < 1 andα < 1/(1− ε); the caseε = 1/2 is likely to be of greatest interest. Similar claims can
be also proved for probabilistic reductions instead of deterministic ones, under the assumption that
SAT does not have probabilistic polynomial-time algorithms.

It is worthwhile mentioning that, in some sense, decreasing the size of the query length in Zuck-
erman’s reduction [53] from MAX-CLIQUE to computing an1/2-approximation to MAX-CLIQUE
is auniversalapproach to proving P= NP. If any approach will work, then this approach will.

7 Circuit lower bounds

We observed in Section 1.2 that, although BFE requires sizen1+εd on depthd TC0 circuits [32], no
similar bound for ACC0 or even CC0[q] circuits is known. Here, we present lower bounds of this sort
for SAT.

We begin this section by showing that problems with small constant-depth circuits have algo-
rithms that run quickly and have small space bounds. Let TISP(t(n), s(n)) denote the class of prob-
lems that are computable by machines running in timeO(t(n) that use space at mostO(s(n)). (This
definition is somewhat sensitive to the underlying model of computation. We shall always refer ex-
plicitly to either the Turing machine model or the random access machine model, to clarify which
class is meant.)

A technical matter that must be dealt with in stating the following theorem, is that Dlogtime-
uniformity does not seem to guarantee that there is a quick way to enumerate, for a given gateh,
the list of gatesg for which there is a wire fromg to h. There are some standard techniques for
ensuring that this property holds (see, e.g., [6]), but we note that these techniques seem to involve a
polynomial blow-up in the circuit size, which we would prefer to avoid. We believe that, for most
uniform families of circuits that are constructed, a quick enumeration of the inputs to a given gate
will nonetheless be possible. Rather than alter the definition of Dlogtime-uniformity, in this section
we simply say that a circuit family isstrongly uniformif it is Dlogtime-uniform, and in addition, on
input (n, i, h), the name of the gateg that is thei-th input to the gate inCn having labelh can be
computed in timelogO(1) n.

Theorem 29 If A has strongly-uniformTC0circuits of depthd with O(n1+ε) wires then for every
0 < δ < 1 + ε, A ∈ TISP ((n1+ε + nδd) logO(1) n, n1+ε−δ logO(1) n) on random access machines
andA ∈ TISP ((n1+ε+δd logO(1) n, n1+ε−δ logO(1) n) on Turing machines. The same is true with
AC0[q] or CC0[q] in place ofTC0.

Proof. A naı̈ve recursive way to evaluate the circuit in spaceO(log n) would require timeO(nd(1+ε) logn).
Since we can use more space we will use it to remember the computed values of gates that have fan-
in larger thannδ. The faster algorithm then will also recursively evaluate the circuit but whenever
it computes the value of a gate with fan-in larger thannδ it records the value so such a gate will be
evaluated at most once. On a random access machine we will store the values in a binary search tree,
on a Turing machine we will store them in a simple list. Since there are at mostO(n1+ε/nδ) gates
with fan-in larger thannδ we will need space onlyO(n1+ε−δ logO(1) n). Finding the value of a gate
and whether it has already been computed will takeO(logO(1) n) time on a random access machine
andO(n1+ε−δ logO(1) n) on a Turing machine. To bound the total time needed to evaluate the circuit
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notice that we will have to recursively evaluate a tree of fan-in at mostnδ and depthd. To traverse the
tree we will need to makenδd visits to the nodes. Beside that we will have to evaluate the gates with
large fan-in. Since there are at mostO(n1+ε) wires leading into them these gates will additionally
cost at mostO(n1+ε) node visits. This yields the claimed time bound. 2

We need to make use of known time-space tradeoffs for SAT. The following theorem is a special
case of Theorem 1.3 in the excellent survey article by van Melkebeek [49]:

Theorem 30 For every realc such that1 < c < 5/3, there exists a positive reale such that SAT
cannot be solved by both

1. a co-nondeterministic machine with random access that runs in timeO(nc) and

2. a deterministic random-access machine that runs in timeO(n1.5) and spaceO(ne).

Moreover, the constante approaches 1 from below whenc approaches 1 from above.

Theorem 31 For everyd ≥ 1 there is a constantεd > 0 such that SAT does not have strongly-
uniform depthd TC0 circuits of sizeO(n1+εd). The same is true withAC0[q] or CC0[q] in place of
TC0.

Proof. Assume that the claim fails for some depthd ≥ 2; thus for everyε > 0, SAT has strongly-
uniform depthd TC0 circuits withO(n1+ε) wires.

Pick anyε < 1/(3d − 1) and δ = 3ε. By Theorem 29, SAT is solvable on random access
machines in TISP((n1+ε + nδd) logO(1) n, n1+ε−δ logO(1) n) ⊆ TISP(n1+2ε + ndδ+ε, n1+2ε−δ) ⊆
TISP(n1+2ε, n1−ε). Since this is true for allε < 1/(3d − 1), we have in particular that SAT is in
DTIME(nc) on random access machines for allc > 1.

For the rest of the proof fix someε < 1/(3d−1). In particular, we have SAT is in TISP(n1.5, n1−ε)
on random access machines.

By Theorem 30, if we letc approach 1 from above, the value ofe (in Theorem 30) approaches 1
from below. Thus there is some value ofc > 1 for which e > 1 − ε (in the statement of Theorem
30). Fix these values ofc ande. Thus, we now have that SAT is in TISP(n1.5, ne) on random access
machines.

At this point, by Theorem 30, we know that SAT is not both solvable by co-nondeterministic
random access machine in timeO(nc), and in TISP(n1.5, ne) on random access machines. But we
have already observed (three paragraphs ago) that SAT is in DTIME(nc) and thus it is solvable in
co-nondeterministic timeO(nc). Thus we must conclude that SAT is not in TISP(n1.5, ne). But this
contradicts the conclusion of the preceding paragraph. Cased = 1 follows from the case ofd = 2.

2

8 The Natural Proofs barrier

Razborov and Rudich [39] identified a significant obstacle to further progress in proving lower bounds
on circuit size, by observing that existing lower bound arguments rely on the existence of an easy-to-
recognize combinatorial property of a functionf that (a) is shared by a large fraction of all functions,
and (b) is shared by no function that has small circuits of a given type. Razborov and Rudich showed
that any “Natural Proof” that follows this paradigm and shows that a function cannot be computed by
circuits of a classC constitutes a proof thatC cannot compute pseudorandom function generators. It
is not clear how significant an obstacle this poses for proving lower bounds against ACC0, since there
is not much evidence that ACC0 circuit families can compute pseudorandom function generators.
However, for TC0 this is a serious impediment, since Naor and Reingold have presented a good
candidate pseudorandom function generator that is computable in TC0 [37]. (The reader should keep
in mind the distinction between pseudorandomfunctiongenerators and pseudorandombit generators.
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It is known that there are no pseudorandomfunctiongenerators computable in AC0 [36]; in contrast,
if the Naor-Reingold generator is secure, then there are pseudorandombit generators computable in
NC0 [10].)

It is premature to argue very strongly that we have identified a path around this obstacle. After
all, the only new lower bound that this paper offers is to be found in Section 7, and that bound follows
from known time-space tradeoff results. (These time-space tradeoffs, in turn, rely on diagonalization,
which lies outside the natural proofs framework, but only gives lower bounds foruniformcircuit fam-
ilies. The natural proofs framework addresses the problem of finding lower bounds fornonuniform
circuit complexity.)

However, we contend that it is at least plausible that a natural proof could form the basis for a
proof that NC1 6= TC0, even assuming that the Naor-Reingold generator is cryptographically secure.

How?
A proof that NC1 6= TC0 could conceivably consist of two parts:

1. A proof that BFE requires TC0 circuits of sizen1.5, and

2. Appeal to Corollary 17, to conclude that NC1 6= TC0.

Let us assume for the moment that someone hands us a natural proof of then1.5 lower bound that
takes care of the first part of this hypothetical argument. The entire two-part argument nonetheless
fails to be a “natural” proof, because the proof of Corollary 17 centers on strong downward self-
reducibility, which is a combinatorial property that is shared by only avanishingly small fraction
of all Boolean functions onn variables, contrary to the requirements of a natural proof. (Strictly
speaking, the strong downward self-reducibility property is not a “combinatorial property” in the
sense of the Natural Proofs framework, as it is a relationship between function values on different
input sizes. However, all strongly downward self-reducible functions must have truth-tables of small
Kolmogorov complexity (since the truth-table of size2n is determined completely by a truth-table of
size2nδ

), and thus they constitute a tiny fraction of all functions.)
So now we are left with the question of whether it is reasonable to hope that a natural proof could

possibly show that BFE requires TC0 circuits of sizen1.5.
First, we note that there are already examples of natural proofs that yield lower bounds of the

form nk for some fixedk. The parity lower bound of Impagliazzo, Paturi, and Saks gives a lower
bound of this form for BFE on TC0 circuits of depthd [32]. Håstad gives a nearly cubic lower bound
on formula size [27]. These are natural proofs.

Next, in order to directly address the question of what obstacles have been identified by Razborov
and Rudich that might block a proof showing that BFE requires TC0 circuits of sizen1.5, let us
examine their framework more closely, by recalling their definitions of “natural” and “useful” com-
binatorial properties.

Let Fn denote the class of all Boolean functionsfn : {0, 1}n → {0, 1}. A property{Tn ⊆
Fn}n∈IN isQuasiP -natural if there is a sub-property{T ∗n ⊆ Tn}n∈IN such that for someε, c > 0

1. |T ∗n | ≥ |Fn|/2εn, and

2. there is a deterministic algorithm that given a truth-table of a functionfn : {0, 1}n → {0, 1}
decides whetherfn ∈ T ∗n in time2nc

.

Furthermore, a property{Tn ⊆ Fn}n∈IN is usefulagainst a circuit classΛ if no sequence of functions
{fn ∈ Tn}n∈IN is computable by circuits fromΛ.

Razborov and Rudich show that anyQuasiP -natural property that is useful against TC0 can
be used as a subroutine to foil any purported pseudorandom function generator that is computable
in TC0. More generally, they show how to transform any natural lower bound proof into a lower
bound on the complexity of computing a pseudorandom function generator. However it is absolutely
essential for their argument, that there be asingle natural propertyT that is useful against TC0
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circuits of sizenk for everyk; lower bounds for circuits of sizenk for small fixedk translate into
lower bounds for pseudorandom function generators that are so weak as to be uninformative. More
to the point, such natural properties can easily be shown to exist.

To be concrete, let us exhibit an example of a propertyT = {Tn}n∈IN that isQuasiP -natural
and useful against TC0 circuits of sizeO(n1.5). Our propertyT is defined as follows:

Tn = {fn : {0, 1}n → {0, 1}; fn does not have circuits of depthlog∗ n and sizen2

consisting of MAJ and NOT gates}.
It is a trivial exercise to verify thatT is natural and useful against TC0 circuits of sizeO(n1.5).

Of course, we are not able to establish that BFE has propertyT ; if it does, then by Corollary 17
NC1 6= TC0. Clearly, this argument makes use of no special properties of TC0; one can easily
come up with aQuasiP -natural property that will be useful against any class of circuits of a fixed
polynomial size.

However, the existence of propertyT does not seem to imply anything very interesting about
the nonexistence of pseudorandom function generators (and consequently does not yield interesting
upper bounds on the complexity of factoring Blum integers, which would follow if the Naor-Reingold
generator is insecure [37]). Thus it seems to us that it is reasonable to hope for a “natural” proof that
BFE satisfies propertyT , which would then yield an “unnatural” proof of TC0 6= NC1, by Corollary
17.

9 Conclusions and open problems

So are there reasons to be more optimistic about prospects for lower bounds? We are not sure. The
truth is that we do not understand computation. All the known lower bounds essentially rest on
information theoretic arguments and none of them really takescomputationinto account. We realize
that this is a vague statement; part of the challenge in seeking lower bound proofs is to be able to
say something more precise. For example we are unable to handlerecursion, so our bounds typically
deteriorate with depth. Hence, the underlying message of Razborov and Rudich – namely, that we
need to go beyond combinatorial arguments – is still a worthwhile message. We identify two still
unresolved challenges that we believe would advance our understanding of computation:

• ProveΩ(n2) lower bounds on the length of width 5 branching programs computing an ex-
plicit function (by which we mean any problem in NP). It appears that nothing better than
Ω(n2/ logn) is known [38, 41].

• ProveΩ(n1+1/
√

d) lower bounds on the size of depthd CC0[6] or TC0 circuits computing an
explicit function.

Are there perhaps fundamental barriers that remain in our path, as we attempt to prove circuit
lower bounds?

One way to explore this question is to follow the lead of Razborov [43], who showed that (under
cryptographic assumptions) the bounded arithmetic proof systemS2

2 cannot prove that SAT requires
circuits of superpolynomial size. (In earlier work, Razborov had argued that most existing lower
bound arguments can be carried out in even weaker systems [42].)

Perhaps techniques similar to those of Razborov [43], combined with our observations, can enable
one to prove thatS2

2 (or a similar system) cannot prove that BFE requires TC0 circuits of sizen1+ε.
The most important and interesting question raised by this work is the question of whether it can

ultimately lead to separations of complexity classes. (This topic is also discussed in a recent survey
[5].) However, a number of other questions naturally arise. We close by listing two such questions.
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• Are there sets complete for every level of the NC hierarchy that are downward self-reducible
to instances of sizenε? Or is there some fundamental reason why we were unable to find a
downward self-reduction of this sort for any problem that is complete for NL or L? (In Theorem
19 we worked with a restricted version of the NL-complete problem BIMM; the restriction is
not believed to be complete for NL.) Showing that a complete set for L is strongly downward
self-reducible (via a pure reduction) would show that every problem in L has subexponential-
size CC0[q] circuits (by Theorem 22), which would be a new upper bound. However, we know
of no similar obstacle to showing that sets complete for L or NL are AC0 strongly downward
self-reducible, or that functions complete for #L are TC0 strongly downward self-reducible.
Note in this regard that problems in NL have subexponential-size AC0 circuits [7] and functions
in #L have subexponential-size TC0 circuits [8].

• If NP = TC0, does SAT have TC0 circuits of quadratic size? If NEXP⊆ nonuniform CC0[6],
does the standard complete set for NEXP have CC0[6] circuits of quadratic size? (Even if
arguments based on downward self-reducibility fail for problems outside of NC, perhaps there
is another approach that leads to the same conclusion.)
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