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Abstract

This article accompanies a tutorial talk given at the 40th ACM STOC conference. In it,
we give a brief introduction to Fourier analysis of boolean functions and then discuss some
applications: Arrow’s Theorem and other ideas from the theory of Social Choice; the Bonami-
Beckner Inequality as an extension of Chernoff/Hoeffding bounds to higher-degree polynomials;
and, hardness for approximation algorithms.

1 Introduction

In this article we will discuss boolean functions,

f : {0, 1}n → {0, 1}.
Actually, let’s agree to write −1 and 1 instead of 0 and 1, so a boolean function looks like

f : {−1, 1}n → {−1, 1}.
Boolean functions appear frequently in theoretical computer science and mathematics; they may
represent the desired operation of a circuit, the (indicator of) a binary code, a learning theory
“concept”, a set system over n elements, etc.

Suppose you have a problem (involving boolean functions) with the following two characteristics:

• the Hamming distance, or discrete-cube edge structure on {−1, 1}n, is relevant;

• you are counting strings, or the uniform probability distribution on {−1, 1}n is involved.

These are the hallmarks of a problem for which analysis of boolean functions may help. By anal-
ysis of boolean functions, roughly speaking we mean deriving information about boolean functions
by looking at their “Fourier expansion”.

1.1 The “Fourier expansion”

Given a boolean function f : {−1, 1}n → {−1, 1}, interpret the domain {−1, 1}n as 2n points lying
in Rn, and think of f as giving a ±1 labeling to each of these points. There is a familiar method
for interpolating such data points with a polynomial. For example, suppose n = 3 and f is the
“Majority” function Maj3, so Maj3(1, 1, 1) = 1, Maj3(1, 1,−1) = 1, . . . , Maj3(−1,−1,−1) = −1.
Denoting x = (x1, x2, x3), we can write

Maj3(x) =
(

1+x1

2

) (
1+x2

2

) (
1+x3

2

)
· (+1)

+
(

1+x1

2

) (
1+x2

2

) (
1−x3

2

)
· (+1)

+ · · ·
+

(
1−x1

2

) (
1−x2

2

) (
1−x3

2

)
· (−1).
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If we actually expand out all of the products, tremendous cancellation occurs and we get

Maj3(x) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3. (1)

We could do a similar interpolate/expand/simplify procedure even for a function f : {−1, 1}n → R,
just by multiplying each x-interpolator by the desired value f(x). And notice that after expanding
and simplifying, the resulting polynomial will always be “multilinear” — i.e., have no variables
squared, cubed, etc. In general, a multilinear polynomial over variables x1, . . . , xn has 2n terms,
one for each monomial

∏
i∈S xi, where S ⊆ [n] := {1, . . . , n}. (Note:

∏
i∈∅ xi denotes 1.) Hence:

Proposition 1.1. Every function f : {−1, 1}n → R can be uniquely1 expressed as a multilinear
polynomial,

f(x) =
∑

S⊆[n]

cS

∏

i∈S

xi, (2)

where each cS is a real number.

This expression (2) is precisely the “Fourier expansion” of f . It is traditional to write the
coefficient cS as f̂(S) and the monomial

∏
i∈S xi as χS(x); thus we usually see

f(x) =
∑

S⊆[n]

f̂(S)χS(x). (3)

For example, from (1) we can read off the “Fourier coefficients” of the function Maj3:

M̂aj3(∅) = 0,

M̂aj3({1}) = M̂aj3({2}) = M̂aj3({3}) =
1

2
,

M̂aj3({1, 2}) = M̂aj3({1, 3}) = M̂aj3({2, 3}) = 0,

M̂aj3({1, 2, 3}) =
1

2
.

The “Fourier expansion” gets its name because it can be developed in a more formal way in
connection with classical harmonic analysis — with group theory and characters and so on. But
it’s often just as well to think of it simply as writing f : {−1, 1}n → {−1, 1} as a polynomial.

1.2 Outline of this article

The aim of this article is to explain some basic concepts in analysis of boolean functions, and then
illustrate how they arise is a few diverse areas. Topics, by section number:

§2 Basics of Fourier analysis.

§3 Bias, influences, energy, and noise stability.

§4 Kalai’s Fourier-theoretic proof of Arrow’s Theorem.

§5 The Hypercontractive/Bonami-Beckner Inequality.

§6 Hardness of approximation via Dictator testing.

Unfortunately, applications in a very large number of areas have to be completely left out,
including in learning theory, pseudorandomness, arithmetic combinatorics, random graphs and
percolation, communication complexity, coding theory, metric and Banach spaces, . . .

1We’ll see this later.
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2 Fourier expansions

2.1 Random strings and Parseval

Let’s begin with some basic properties of the Fourier expansion. As mentioned earlier, a hallmark
of Fourier analysis is looking at a boolean function’s values on strings x chosen from the uniform
probability distribution. Throughout this article we’ll write random variables in boldface and
x = (x1, . . . ,xn) will invariably denote a uniformly random string from {−1, 1}n. We can think of
generating such an x by choosing each bit xi independently and uniformly from {−1, 1}.

The most basic result in all of Fourier analysis is:

Parseval’s Theorem. For any f : {−1, 1}n → R,
∑

S⊆[n]

f̂(S)2 = E
x
[f(x)2].

Proof. By the Fourier expansion of f ,

E
x

[f(x)2] = E
x




(
∑

S⊆[n]

f̂(S)χS(x)

)2




= E
x

[
∑

S,T⊆[n]

f̂(S)f̂(T )χS(x)χT (x)

]

=
∑

S,T⊆[n]

f̂(S)f̂(T )E
x

[χS(x)χT (x)] . (4)

Recalling that χS(x) denotes
∏

i∈S xi, we see:

Fact 2.1. χS(x)χT (x) = χS4T (x).

This is because whenever i ∈ S ∩ T we get an x2
i , which can be replaced by 1. So we continue:

(4) =
∑

S,T⊆[n]

f̂(S)f̂(T )E
x

[χS4T (x)] . (5)

We now observe:

Fact 2.2. Ex[χU (x)] = 0, unless U = ∅, in which case it’s 1.

This holds because by independence of the random bits x1, . . . ,xn we have

E
x

[χU (x)] = E
x

[
∏
i∈U

xi] =
∏
i∈U

E
x

[xi],

and each E[xi] = 0. Finally, we deduce

(5) =
∑

S4T=∅
f̂(S)f̂(T ) =

∑

S⊆[n]

f̂(S)2,

as claimed.

(By the way, you can use Parseval to deduce the uniqueness mentioned Proposition 1.1; the
proof is an exercise.)

Using linearity of expectation and Facts 2.1 and 2.2, we can easily derive the following formula
for the Fourier coefficients of f :
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Fact 2.3. For any f : {−1, 1}n → R and S ⊆ [n],

f̂(S) = E
x
[f(x)χS(x)].

Finally, for ordinary boolean functions f : {−1, 1}n → {−1, 1} we have f(x)2 = 1 for every x;
hence Parseval has the following very important corollary:

Fact 2.4. If f : {−1, 1}n → {−1, 1} then

∑

S⊆[n]

f̂(S)2 = 1.

2.2 Weights

So we have the nice property that a boolean function’s squared Fourier coefficients sum to 1. We
think of a boolean function as inducing a set of nonnegative “weights” on the subsets S ⊆ [n],
where:

Definition 2.5. The “(Fourier) weight” of f on S is f̂(S)2.

By Fact 2.4, the total weight is 1. It can be helpful to try to keep a mental picture of a function’s
weight distribution on the “poset” of subsets S ⊆ [n]. For example, for the Maj3 function we have
the following distribution of weights,

with white circles indicating weight 0 and shaded circles indicating weight 1/4. We also frequently
stratify the subsets S ⊆ [n] according to their cardinality:

Definition 2.6. The “weight of f at level 0 ≤ k ≤ n” is

Wk(f) :=
∑

S⊆[n]
|S|=k

f̂(S)2.

2.3 Cast of characters

Let’s now review some important n-bit boolean functions:

• The two constant functions, Const1(x) = 1 and Const−1(x) = −1.

• The n Dictator functions, Dicti(x) = xi, for i ∈ [n].
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• Parity(x) = χ[n](x) = x1x2 · · · xn, which is −1 iff an odd number of input bits are −1. More
generally, for S ⊆ [n], ParityS(x) = χS(x) is the function which is −1 iff an odd number of
the input bits in coordinates S are −1.

• The Majority function, Majn(x) = sgn(
∑

xi), defined for odd n.

• The “Electoral College” function, EC(51)(x), defined by breaking up the input bits into 51
“states” of size n/51, taking Majority on each state, and then taking Majority of the 51
results. (For simplicity we imagine the 50 states and DC have the same population and 1
electoral college vote each.)

• The “Tribes” function [8], which is a fan-in-s OR of disjoint fan-in-t ANDs. The parameters s
and t are arranged so that Prx[Tribesn(x) = 1] ≈ 1/2; this involves taking t ≈ log n− log lnn
and s ≈ n/ log n.

The Fourier expansion of the Constant, Dictator, and ParityS functions are plain from their
definitions above. All of these functions have their Fourier weight concentrated on a single set; for
example, D̂icti({i}) = 1, D̂icti(S) = 0 for S 6= {i}. Indeed, the following is an easy exercise:

Fact 2.7. If f : {−1, 1}n → {−1, 1} has W1(f) = 1 then f is either a Dictator or a negated-
Dictator.

The Majority function plays a central role in the analysis of boolean functions. There is an
explicit formula for the Fourier coefficients of Majn in terms of binomial coefficients [27], and several
elegant formulas giving estimates as n → ∞. We’ll mention here just enough so as to give a picture
of the Fourier weight distribution for Majn. First, another exercise:

Fact 2.8. If f : {−1, 1}n → {−1, 1} is “odd”, i.e. f(−x) = −f(x) for all x, then f̂(S) is nonzero
only for odd |S|.

The Majority functions are odd, so they have Wk(Majn) = 0 for all even k. It’s also easy to

convince yourself that M̂ajn(S) depends only on |S|, using the total symmetry of the n coordinates.
More interestingly, as we will see in Section 3.2:

Fact 2.9. lim
n→∞

W1(Majn) = 2/π.

In fact, in several ways Majn’s Fourier expansion “converges” as n → ∞, so much so that we
often speak a little vaguely of “the” Majority function, meaning “Majn in the large n limit”. For
example, we tend to think of Fact 2.9 as saying “Majority has weight 2/π at level 1”. Continuing
to speak casually, it holds more generally that for each odd k, Wk(“Maj”) = (2/πk)3/2 + o(k−3/2),
and hence:

Fact 2.10. For constant d, ∑

k≥d

Wk(“Maj”) = Θ(1/
√

d).

In other words, we say that Majority has all but ε of its Fourier weight below level O(1/ε2).
Actually, the same is true [36] for any “weighted majority” function, f(x) = sgn(

∑
aixi), and

this fact has played an important role in machine learning — see, e.g., [23]. Below is a weight
distribution picture you might keep in mind for “the” Majority function, generalizing the previous
picture for Maj3; darkness corresponds to weight.
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For the remaining two functions defined above, Electoral College and Tribes, the Fourier expan-
sion is a little more complicated. For Tribes, explicit formulas for the Fourier coefficients appear
in [33]; we’ll content ourselves with noting that the weight structure of Tribes is much different
from that of Majority: Wk(Tribesn) = on(1) for all 0 ≤ k ≤ n.

3 Concepts via voting

In this section we explain some interesting quantities associated with a boolean function: bias,
influences, energy, and noise stability. Each of these is easily computed from the function’s Fourier
coefficients. We can motivate these quantities by thinking of f : {−1, 1}n → {−1, 1} as a voting
rule. Imagine an election between two parties named −1 and 1. There are n voters, ordered 1,
2, . . . , n. We model the ith voter as voting for xi ∈ {−1, 1} uniformly at random, independent
of the other voters. (This is the Impartial Culture Assumption [14]. It may seem unrealistic, but
it is frequently used in the theory of Social Choice. You can think of it as providing a basis for
comparing voting rules in the absence of other information.) Finally, we view f as a rule which
takes the n votes cast as input, and outputs the winner of the election.

Majority is a popular election rule, but is far from the only possible one. Indeed, looking over
the functions from Section 2.3, one can see Electoral College, Dictators, and Constants all occurring
“in practice”. Even the Tribes function is a vaguely plausible scheme. Only Parity seems unlikely
to have ever been used in an actual election. Let’s now look at some properties of voting rules
f : {−1, 1}n → {−1, 1}, by which we can distinguish them.

3.1 Bias

Definition 3.1. The “bias” of f : {−1, 1}n → {−1, 1} is

E[f ] := E
x

[f(x)] = Pr
x

[f(x) = 1] − Pr
x

[f(x) = −1].

This measures how inherently biased the rule f is in favor of candidate 1 or −1. The connection
to Fourier coefficients is immediate from Fact 2.3:

Fact 3.2. E[f ] = f̂(∅).

The constant functions Const±1 have bias ±1, whereas Dictators, Majority, Electoral College,
and Parity all have bias 0. The bias of Tribesn is on(1). Having zero bias is probably a necessary
(but not sufficient) condition for a voting rule f to seem “fair”. Losing a little information, we can
think of f̂(∅)2 = W0(f) as measuring the “imbalance” of f , with W0(f) = 0 meaning f has no
bias, and W0(f) near 1 meaning f is highly biased.
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3.2 Influences

Think of yourself as the ith voter in an election using f . What is the probability your vote makes
a difference?

Definition 3.3. The “influence” of coordinate i on f : {−1, 1}n → {−1, 1} is

Infi(f) = Pr
x

[f(x) 6= f(x⊕i)],

where x⊕i denotes x with the ith bit negated.

This notion of the “influence” or “power” of a voter was first introduced by Penrose [35]; it was
later rediscovered by the lawyer Banzhaf [5] and is usually called the “Banzhaf Power Index” in
the Social Choice literature. It has played a role in several United States court decisions [11].

A proof along the lines of Parseval’s yields:

Fact 3.4. Infi(f) =
∑

S3i f̂(S)2.

In other words, the influence of i on f is equal to the sum of f ’s weights on sets containing i.
Sometimes another formula can be used:

Fact 3.5. Suppose f : {−1, 1}n → {−1, 1} is a “monotone” function, meaning f(x) ≥ f(y)
whenever x ≥ y pointwise. Then Infi(f) = f̂({i}).

Monotonicity is another condition that is probably necessary for a sensible election function f :
it means that a vote changing from −1 to 1 can only change the outcome from −1 to 1, and vice
versa.

From the definition we can easily see that the n influences on Const±1 are 0, the n influences
on the Parity function are 1, and that i is the only coordinate with any influence on Dicti, having
influence 1. You can check that these facts square with Fact 3.4. Also, the fact that Infi(Parity) =

1 6= 0 = P̂arity({i}) shows that the assumption of monotonicity in Fact 3.5 is necessary.
For Majn, the ith voter’s vote makes a difference if and only if the other n−1 votes split exactly

evenly. This happens with probability
( n−1
(n−1)/2

)
21−n, which by Stirling’s formula is asymptotic to

√
2/π 1√

n
. Since Majority is a monotone function we conclude from from Fact 3.5 that M̂ajn({i})2 ∼

(2/π) 1
n for each i, and thus can derive Fact 2.9.

Finally, for the remaining two functions we’ve discussed: Infi(EC(51)) ≈ (2/π) 1√
n

for each i,

influences slightly smaller than those in Majority; and, Infi(Tribes) = Θ( log n
n ) for each i, influences

much smaller than those in Majority.

3.3 Energy

We now come to the quantity with the most aliases:

Definition 3.6. The “energy” of f : {−1, 1}n → {−1, 1} (AKA average sensitivity, total influence,
normalized edge boundary, or responsiveness, among other pseudonyms) is

E(f) =

n∑

i=1

Infi(f) = E
x
[# of i s.t. f(x) 6= f(x⊕i)]. (6)

The second equality is just linearity of expectation. From Fact 3.4 we immediately deduce:
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Fact 3.7. E(f) =
∑

S |S|f̂(S)2.

In other words, the energy of f is the “average” level of its Fourier weight. Having already
calculated influences, we get some examples. E(Const±1) = 0 and E(Dicti) = 1. Parity is the most
energetic function, E(Parity) = n. Using Fact 3.5 you can show that Majority is the most energetic
monotone function, E(Majn) ∼

√
2/π

√
n. This fact can be incorporated into the mental picture

of Majority’s Fourier weight distribution from Section 2.3. By contrast, E(Tribesn) = Θ(log n); in
Section 4.3 we will discuss a sense in which Tribes is the least energetic “fair” voting scheme.

Other interpretations of energy follow easily from (6): Thinking of f as a partition of {−1, 1}n

into two parts, E(f) is the average number of boundary edges per vertex. Thinking of f as an
election rule, E(f) is the average number of “swing voters”. Further, if f is monotone then E(f) is
the expected difference between the votes in favor of the winning candidate and the votes against.

3.4 Noise stability

In a well-run election, the voters’ opinions x1, . . . ,xn are directly fed into f , and f(x) is declared
the winner. Nothing is perfect, though, and we can conceive that when the ith voter goes to the
ballot box, their true vote xi has a chance of being misrecorded. (Perhaps they tick the wrong
box, or the voting machine makes an error.) Denoting the recorded votes by y1, . . . ,yn, we can ask
for the probability that the announced winner, f(y), is actually the same as the “true” winner,
f(x). Of course this depends on our “noise model” for how y is generated from x; we’ll consider
the simplest possible model, where each vote is independently misrecorded with probability ε:

Definition 3.8. Given 0 ≤ ε ≤ 1 we say that x,y ∈ {−1, 1}n are “(1 − 2ε)-correlated” random
strings if x is uniformly random and y is generated from x by negating each of its bits independently
with probability ε.

The “1 − 2ε” here is because for each i,

E[xiyi] = Pr[xi = yi] − Pr[xi 6= yi] = 1 − 2ε.

Regarding whether the “true winner wins”, we make the following definition:

Definition 3.9. The “noise stability of f at 1 − 2ε” is

Stab1−2ε(f) = E
x,y

(1 − 2ε)-correlated

[f(x)f(y)]

= Pr[f(x) = f(y)] − Pr[f(x) 6= f(y)].

Once again, we can express noise stability in terms of Fourier weights via an easy proof along
the line of Parseval’s:

Fact 3.10. Stab1−2ε(f) =
∑

S⊆[n]

(1 − 2ε)|S|f̂(S)2

=

n∑

k=0

(1 − 2ε)kWk(f).

I.e., the noise stability of f at 1 − 2ε is the sum of f ’s Fourier weights, attenuated by a factor
decreasing exponentially with their level. Note also that we can write

Pr
x,y

(1 − 2ε)-correlated

[f(x) = f(y)] = 1
2 + 1

2Stab1−2ε(f).
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Let’s do some examples. Clearly, Stab1−2ε(Const±1) = 1; noise in the votes can’t possibly
change the outcome. For any Dictator we have Stab1−2ε(Dicti) = 1 − 2ε; in a dictatorial election,
the wrong candidate wins if and only if the Dictator’s vote is misrecorded, which happens in our
model with probability ε. Parity is the next easiest function to consider: using Fact 3.10 and the
fact that Parity has all its weight on the set [n], we get that Stab1−2ε(Parity) = (1 − 2ε)n. This
is extremely close to 0 assuming n � 1/ε. In other words, in a (strange!) election where Parity is
the election rule, even a little noise in the votes means the announced winner will have almost no
correlation with the true winner — they agree with probability only 1

2 + 1
2(1 − 2ε)n.

The most natural case, when f = Majn, is very interesting; we have the following perhaps
surprising-looking formula:

Fact 3.11. For all 0 ≤ ε ≤ 1, as n → ∞,

Stab1−2ε(Majn) → 1 − 2
π arccos(1 − 2ε).

This fact is well known in the Social Choice literature. The proof has two parts: First, apply
the Central Limit Theorem (a 2-dimensional version) to the pair of random variables

∑
xi and∑

yi. Second, use the following formula proved by Sheppard in 1899 [38]: If X and Y are standard
Gaussian random variables with Cov[X,Y ] = 1−2ε, then Pr[sgn(X) 6= sgn(Y )] = 1

π arccos(1−2ε).
(The algorithmic-minded reader might also recognize this fact from the Goe-mans-Williamson Max-
Cut algorithm analysis [16].)

Being a bit less precise, we can use arccos(1 − 2ε) ∼ 2
√

ε for small ε and hence

Stab1−2ε(“Maj”) ∼ 1 − 4
π

√
ε for small ε.

(This fact, combined with Fact 3.10, yields Fact 2.10.) In other words, with majority rule, ε-noise
in the recording of votes leads to about a 2

π

√
ε chance of the wrong winner. With some more

probabilistic considerations we can determine that for the Electoral College rule,

Stab1−2ε(“EC(51)”) ∼ 1 − 2
(

2
π

)3/2 √
51

√
ε,

assuming 51 � 1/ε � n. In other words, with the electoral college system there is about a
(2/π)3/2

√
51

√
ε chance that ε-noise leads to the wrong winner, higher than that under direct ma-

jority by a factor of about 5.7.
For a thorough discussion of the connection between Fourier analysis and Social Choice, see the

survey of Kalai [25].

4 Arrow’s Theorem, Fair Elections

4.1 Arrow’s Theorem

Social Choice theory asks how the preferences of a large population can be aggregated into single
choices for society as a whole. This question significantly occupied the Marquis de Condorcet, an
eighteenth-century French mathematician and early political scientist. In his 1785 Essay on the
Application of Analysis to the Probability of Majority Decisions [10] he suggested a method for
holding an election between three candidates, say A, B, and C. The method is to take the majority
preference in each of the pairwise comparisons, A vs. B, B vs. C, and C vs. A, and to use the
outcomes as a global ranking of the three candidates. As discussed earlier, we might consider other
voting rules besides Majority; given any boolean f : {−1, 1}n → {−1, 1}, let’s say the 3-candidate
“Condorcet election” works as follows:
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1 2 · · · n Society:

A vs. B +1 +1 · · · −1 =: x f(x)
B vs. C −1 +1 · · · +1 =: y f(y)
C vs. A +1 −1 · · · +1 =: z f(z)

Here voter 1’s preference is C > A > B, voter 2’s preference is A > B > C, etc. Note that each
column (xi, yi, zi) will be one of the six triples

{ (+1,+1,−1), (+1,−1,+1), (+1,−1,−1),

(−1,+1,+1), (−1,+1,−1), (−1,−1,+1) }.
We call these the “NAE triples”, NAE standing for “Not All Equal”.

There is a problem with the Condorcet election, as Condorcet himself noted: it can lead to a
cycle in the social preference — i.e., the output triple (f(x), f(y), f(z)) may not be NAE! In fact,
this occurs in the above example if n = 3 and f = Maj3: the output triple is (+1,+1,+1), meaning
society seems to rank A > B > C > A. This is termed an “irrational outcome”, and the fact that it
can occur is known as “Condorcet’s Paradox”. It’s not just when f = Majn that this can happen:
165 years later, Arrow famously showed [4] that the Condorcet Paradox can only be avoided in an
unappealing way:

Arrow’s Impossibility Theorem. Let f : {−1, 1}n → {−1, 1} be used for a 3-candidate
Condorcet election, and assume f satisfies “unanimity”, meaning that f(1, 1, . . . , 1) = 1 and
f(−1,−1, . . . ,−1) = −1. If f is such that the social outcome is never irrational, then f is a
Dictator.

The assumption that a Condorcet election is used is called “independence of irrelevant alterna-
tives” in the usual statement of Arrow’s Theorem. The original theorem also allows for using three
different aggregating functions f , g, h but it is easy to show that unanimity and no irrationality
imply f = g = h (hint: x, y = −x, and z = (f(x), . . . , f(x)) always consist of NAE input triples,
and this implies g(−x) must equal −f(x). . . ).

There are very short combinatorial proofs of Arrow’s Theorem (see, e.g., [15]). But as we’ll see,
Gil Kalai’s Fourier-analytic proof yields a much more robust conclusion:

Proof. (Kalai [24]) Suppose we use some f : {−1, 1}n → {−1, 1} (not necessarily satisfying una-
nimity, even) and ask for the probability of an irrational outcome when the n voters’ rankings are
independent and uniformly random. In other words, the three elections occur with strings x, y, and
z where each triple of bits (xi,yi,zi) is independently chosen to an NAE triple, with probability
1/6 each. Let NAE : {−1, 1}3 → {0, 1} denote the indicator function of the NAE triples; then we
can write

NAE(a, b, c) =
3

4
− 1

4
ab − 1

4
ac − 1

4
bc.

(This is in fact the Fourier expansion of NAE!) Hence

Pr
x,y,z

[rational outcome] = E
x,y,z

[NAE(f(x), f(y), f(z))]

=
3

4
− 1

4
E[f(x)f(y)] − 1

4
E[f(x)f(z)] − 1

4
E[f(y)f(z)].
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Since (x,z) and (y,z) have the same joint distribution as (x,y), the last three terms are equal;
hence the above is

3

4
− 3

4
E[f(x)f(y)].

Now in isolation, what is the distribution on the pair of strings (x,y)? When (xi,yi,zi) is a random
NAE triple, xi is uniformly random and yi = xi with probability 1/3. Thus (x,y) is precisely a
pair of 1/3 − 2/3 = (−1/3)-correlated strings! Hence:

Fact 4.1. In a 3-candidate Condorcet election,

Pr[f yields a rational outcome] =
3

4
− 3

4
Stab−1/3(f)

=
3

4
− 3

4
W0(f) +

1

4
W1(f) − 1

12
W2(f) +

1

36
W3(f) − · · ·

The second equality uses Fact 3.10. Since the sum of all Wk(f)’s is 1, it’s clear that if f is to
be rational with probability 1 (i.e., if the above quantity is 1), it must be the case that all of f ’s
weight is on level 1. But Fact 2.7 says that W1(f) = 1 means f is a Dictator or a negated-Dictator,
and if f is to have the unanimity property only the former is possible.

4.2 Robustness of Kalai’s proof

Using Fact 4.1 and Fact 3.11 we have:

Fact 4.2. In a Condorcet election using Majn, as n → ∞ the probability of a rational outcome
approaches:

3

4
− 3

4

(
1 − 2

π
arccos(−1/3)

)
=

3arccos(−1/3)

2π
≈ .912.

This was first stated in 1952 by Guilbaud [18] and first proved by Garman and Kamien [14]. For
brevity, we’ll henceforth write simply .912 for “Guilbaud’s number”, instead of 3 arccos(−1/3)/2π.

So with random voting, Condorcet’s Paradox occurs with probability about 8.8% under Majority
— small, but not tiny. We might hope that for some other, reasonable non-dictatorial f , the
probability of Condorcet’s Paradox is negligibly small. The statement of Arrow’s Theorem does
not rule this out — but Kalai’s proof has a robustness which does:

Theorem 4.3. ([25]) Suppose that using f : {−1, 1}n → {−1, 1} in a 3-candidate Condorcet
election, the probability of a rational outcome is at least 1 − ε. Then f is O(ε)-close to being a
Dictator or a negated-Dictator.

Here we are using the following definition:

Definition 4.4. Boolean functions f and g are “δ-close” if Prx[f(x) 6= g(x)] ≤ δ.

To prove Theorem 4.3, Kalai first uses Fact 4.1 to deduce:

Proposition 4.5. In a 3-candidate Condorcet election using f , if the probability of a rational
outcome is at least 1 − ε, then W1(f) ≥ 1 − (9/2)ε.

This is easy to see: if you’re limited in how much weight you can put on level 1, your second-
best bet is to put it on level 3. To complete the proof, Kalai uses the following “robust” version of
Fact 2.7, proven by Friedgut, Kalai, and Naor [13]:

11



FKN Theorem. Suppose f : {−1, 1}n → {−1, 1} satisfies W1(f) ≥ 1 − δ. Then f is O(δ)-close
to being a Dictator or a negated-Dictator. (In fact, O(δ) can be replaced by δ/2 + O(δ2).)

4.3 Noise stability and small influences

Theorem 4.3 tells us that we can’t hope for any fair election rule that evades Condorcet Paradox
with probability close to 1. Given this, we might at least look for the fair election rule that has
the highest probability of rational outcomes. To do this, though, we first have to decide what we
mean by “fair”.

We’ve already seen a few criteria that seem necessary for an election rule f : {−1, 1}n → {−1, 1}
to be fair: its bias should be 0 and it should be monotone. So far these criteria don’t rule out the
Dictators, so more is necessary. One way to rule them out would be to require symmetry on on
the voters/coordinates. If we insist on total symmetry — i.e., the requirement that f(π(x)) = f(x)
for every permutation π ∈ Sn — then f = Majn is the only possibility. (Actually, if n is even
then there is no bias-0, monotone, totally symmetric function.) We can relax this by asking merely
for “transitive symmetry”. Informally, this is the requirement that “no voter is in a distinguished
position”; more formally it means that for every i, j ∈ [n] there is a permutation π on the coordinates
under which f is invariant and which has π(i) = j. The Electoral College and Tribes functions are
transitive symmetric.

It turns out that an even weaker requirement can be used to effectively rule out Dictators —
this is the condition of having “small influences”.

Definition 4.6. We say a function f : {−1, 1}n → {−1, 1} has “τ -small influences” if Infi(f) ≤ τ
for all i ∈ [n].

Most frequently we informally take τ to be “o(1) with respect to n”; Majority, Electoral College,
and Tribes all have o(1)-small influences, whereas the Dictators most assuredly do not.

The class of functions with small influences plays an extremely important role in analysis of
boolean functions, and many of the more advanced theorems in the field are devoted to properties
of this class. Historically, the first such result in the field, due to Kahn, Kalai, and Linial [22], was
the following:

KKL Theorem. No function f : {−1, 1}n → {−1, 1} with bias 0 has o
(

log n
n

)
-small influences.

More generally (cf. Talagrand [39], Friedgut [12]), if f is an unbiased boolean functions with τ -small
influences then E(f) ≥ Ω(log(1/τ)).

Since the Tribesn function has Infi(Tribesn) = Θ( log n
n ) for all i, the KKL Theorem is sharp up

to constant factors.
Among the 3-candidate Condorcet election rules f with o(1)-small influences, which one has

the highest probability of rational outcomes? By Fact 4.1 we want the f such that Stab−1/3(f)
is most negative. If f is assumed to be odd (which is also a reasonable requirement for a sensible
election rule), Fact 2.8 tells us that Stab−ρ(f) = −Stabρ(f). Hence we might instead look for the
odd f with o(1)-small influences such that Stab1/3(f) is largest. Indeed, this problem is interesting
for other positive values of ρ 6= 1/3, especially ones close to 1: it is the question of finding a
“fair” voting rule which is stablest with respect to noise in the recording of votes. To answer these
questions, we have the following result [34]:
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Majority Is Stablest Theorem. If f : {−1, 1}n → {−1, 1} has o(1)-small influences, E[f ] = 0,
and 0 ≤ ρ ≤ 1, then Stabρ(f) ≤ 1 − 2

π arccos(ρ) + o(1). If −1 ≤ ρ ≤ 0, then Stabρ(f) ≥
1 − 2

π arccos(ρ) − o(1) and the assumption E[f ] = 0 is unnecessary.

The name of the theorem makes reference to Fact 3.11. We immediately conclude that no f
with o(1) influences can be “more rational” than Majority, up to an additive o(1).

It’s important in the Majority Is Stablest Theorem that 0 ≤ ρ ≤ 1 is first fixed to be a
“constant” and that the o(1)-smallness of the influences is independent of ρ. In fact, it’s not too
hard to check that if we fix n and let ε → 0, the quantity Stab1−2ε(f) approaches 1 − 2ε · E(f).
Thus in this regime, maximizing noise stability becomes minimizing energy. This leads us to the
question of which function f with o(1)-small influences and E[f ] = 0 has least energy. The answer
(up to constants) is provided by the KKL Theorem: Tribes, with energy Θ(log n).

5 Hypercontractivity

Several of the more advanced theorems in the analysis of boolean functions — e.g., the FKN The-
orem, the KKL Theorem, and the Majority Is Stablest Theorem — make use of a result called
the “Bonami-Beckner Inequality”. This inequality was proved first by Bonami [9], proved indepen-
dently by Gross [17], and then misattributed to Beckner [6] in [22] (Beckner proved generalizations).
Due to this confusion of attribution, it might be better to refer to the result by its alternative name,
the “Hypercontractive Inequality”. The Hypercontractive Inequality has sometimes been described
as “deep” or “mysterious”; in this section we hope to demystify it somewhat by explaining it as a
generalization of the familiar Hoeffding-Chernoff bounds. A good source for the results appearing
in this section is Janson [21].

5.1 The statement

The Hypercontractive Inequality is equivalent to the following (although it is often stated differ-
ently):

Hypercontractive Inequality. Let

f(x) =
∑

|S|≤d

f̂(S)χS(x)

denote an arbitrary multilinear polynomial over x1, . . . , xn of degree (at most) d. Let F = f(x1, . . . ,xn),
where as usual the xi’s are independent, uniformly random ±1 bits. Then for all q ≥ p ≥ 1,

‖F ‖q ≤
(√

q−1
p−1

)d

‖F ‖p,

where ‖F ‖r denotes (E[|F |r])1/r.

It’s not hard to prove (say, using Hölder’s Inequality) that ‖F ‖r ≥ ‖F ‖r′ whenever r ≥ r′ ≥ 1.
The “hyper” in the “Hypercontractive Inequality” refers to the fact that the higher q-norm can be
bounded by the lower p-norm — up to a “constant” — if f has low degree.

The special case when q = 4 and p = 2 is especially useful; in fact, the FKN, KKL, and Majority
Is Stablest Theorems only need this case:
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Corollary 5.1. In the setting of the Hypercontractive Inequality,

E[F 4] ≤ 9dE[F 2]2. (7)

5.2 Large deviation bounds

One version of the Hoeffding-Chernoff bound says:

Theorem 5.2. Let F = c1x1+c2x2+· · ·+cnxn, where the xi’s are independent, uniformly random
±1 bits. Then for all s ≥ 0,

Pr[F ≥ s] ≤ exp

(
−s2

/
2

n∑
i=1

c2
i

)
. (8)

We can simplify the above statement by writing the parameter s in terms of F ’s standard
deviation. Thinking of F = f(x), where f : {−1, 1}n → R is the linear polynomial f(x) =
c1x1 + · · · + cnxn, Parseval tells us that E[f(x)2] =

∑
c2
i . So

σ := stddev(F ) =
√

E[F 2] − E[F ]2 =
√∑

c2
i , (9)

and we can rewrite (8) as
Pr[F ≥ tσ] ≤ exp(−t2/2). (10)

Thinking of t as large, Hoeffding-Chernoff gives us a very strong upper bound on the probability
of a large deviation of F from its mean, 0.

The setup of Theorem 5.2 is just as in the Hypercontractive Inequality with d = 1. In this case,
Corollary 5.1 tells us that E[F 2] ≤ 9E[F 2]2 = 9σ4. Actually, it is a nice exercise to check that
something slightly better is true:

Proposition 5.3. E[F 4] ≤ 3σ4 = 3E[F 2]2.

In any case, either bound already gives us a weak version of (10); using Markov’s inequality:

Pr[|F | ≥ tσ] = Pr[F 4 ≥ t4σ4] ≤ E[F 4]

t4σ4
≤ 3σ4

t4σ4
=

3

t4
.

So we don’t get an exponentially small bound, but we still get something polynomially small, better
than the 1/t2 we’d get from Chebyshev (at least for t >

√
3).

A slightly more complicated (but still elementary) exercise shows that E[F 6] ≤ 15σ6, from
which the Markov trick yields the large-deviation bound Pr[|F | ≥ tσ] ≤ 15/t6. This is even better
than 3/t4, assuming t is large enough. The pattern can be extended for all even integer moments,
and qualitatively, being able to bound large moments of F is equivalent to having good “tail
bounds” for F . (Really, the standard proof of Chernoff’s bound works the same way, controlling
all moments simultaneously via the Taylor expansion of exp(λF ).)

Hypercontractivity gives us similar large-deviation bounds for higher degree multilinear poly-
nomials over random ±1 bits. As in the statement of the Hypercontractive Inequality, let f(x)
denote an arbitrary multilinear polynomial over x1, . . . , xn of degree (at most) d, and write F =
f(x1, . . . ,xn). By subtracting a constant, assume E[F ] = 0, in which case

σ := stddev(F ) =
√

E[F 2] =

√∑
f̂(S)2,

just as in (9). Now, for example, Corollary 5.1 and Markov’s inequality imply that Pr[|F | ≥
tσ] ≤ 9d/t4, a most useful result when d is small. Choosing p = 2 and q = q(t) carefully, the full
Hypercontractive Inequality yields:
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Theorem 5.4. For all t ≥ (2e)d/2 it holds that

Pr[|F | ≥ tσ] ≤ exp
(
−(d/2e) · t2/d

)
.

5.3 Proof of (4,2)-hypercontractivity

We conclude our discussion of the Hypercontractive Inequality with a simple proof of Corollary 5.1.
To the best of our knowledge, this proof first appeared in [34]. Bonami [9] gave a proof somewhat
along the same lines for all even integers q ≥ 4. However, she noted that one has to resort to a
more complicated method to prove the Hypercontractive Inequality in its full generality.

Proof. By induction on n (not d!). The base case is n = 0. In this case f is just a constant
polynomial, f̂(∅); and even with d = 0, both sides of (7) equal f̂(∅)4.

For the inductive step, we can express the multilinear polynomial f as

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xnh(x1, . . . , xn−1),

where g is a multilinear polynomial of degree at most d and h is a multilinear polynomial of degree
at most d − 1. Introduce the random variables G = g(x1, . . . ,xn−1) and H = h(x1, . . . ,xn−1).
Now

E[F 4] = E[(G + xnH)4]

= E[G4] + 3E[xn]E[G3H] + 6E[x2
n]E[G2H2]

+ 3E[x3
n]E[GH3] + E[x4

n]E[H4]

= E[G4] + 6E[G2H2] + E[H4],

where the second step used the fact that xn is independent of G and H. Obviously we should use
the induction hypothesis for the first and third terms here; the only “trick” in this proof is to use
Cauchy-Schwarz on the middle term. This gives E[G2H2] ≤

√
E[G4]

√
E[H4] and we can now use

the induction hypothesis four times, and continue the above:

≤ 9dE[G2]2 + 6
√

9dE[G2]2
√

9d−1E[H2]2 + 9d−1E[H2]2

= 9d
(
E[G2]2 + 2E[G2]E[H2] + 1

9E[H2]2
)

≤ 9d
(
E[G2] + E[H2]

)2
.

But this last quantity is precisely 9dE[F 2]2, since

E[F 2] = E[(G + xnH)2]

= E[G2] + 2E[xn]E[GH] + E[x2
n]E[H2]

= E[G2] + E[H2],

and this completes the induction.
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6 Hardness of approximation

6.1 Overview

Analysis of boolean functions is a very powerful tool for constructing hard instances for approxi-
mation algorithms, and for proving NP-hardness of approximation. The canonical example of this
occurs in H̊astad’s 1 − δ vs. 1/2 + δ NP-hardness result for Max-3Lin [20].2 Max-3Lin is the con-
straint satisfaction problem (CSP) over boolean variables v1, . . . , vn in which the constraints are of
the form vivjvk = ±1. (The “Lin” part of the name comes from thinking of boolean values as 0
and 1 mod 2, in which case the constraints are linear: vi + vj + vk = 0/1 mod 2.) The “optimum
value” of a Max-3Lin instance is the fraction of constraints satisfied by the best assignment. A “c
vs. s” NP-hardness result for Max-3Lin means that there is no polynomial-time algorithm which
can distinguish instances with optimum value at least c from instances with optimum value less
than s — unless P = NP. In particular, there can be no s/c-factor approximation algorithm. It’s
very easy to see that H̊astad’s 1− δ vs. 1/2 + δ NP-hardness is best possible, in that the gap can’t
be widened to c = 1 or s = 1/2.

Since H̊astad’s result, the methodology for proving such strong “inapproximability” results has
become almost standardized. We will discuss it an extremely high level in Section 6.4. Briefly,
the key to proving inapproximability for a certain CSP is to design a “gadget instance” of that
CSP with appropriate properties. Further, for certain reasons having to do with locally testable
codes [7], these gadget instances are invariably based on “Dictator vs. Small-influence tests” — a
topic tailor-made for the analysis of boolean functions.

6.2 Dictator vs. Small-influences tests

A Dictator vs. Small-influences test is a highly specific kind of Property Testing algorithm. The
object to be tested is an unknown boolean function f : {−1, 1}n → {−1, 1}. The property to be
tested is that of being one of the n Dictator functions. Finally, there is a severe restriction on the
number of queries: we usually want just 2 or 3, and they must be “nonadaptive”. To compensate for
this, we relax the goal even more than is usual in Property Testing: we only need to reject with high
probability the functions that are “very non-dictatorial”. Specifically, we use the small-influences
criterion discussed in Section 4.3.

Definition 6.1. A q-query “Dictator vs. Small-influences test” using the predicate φ : {−1, 1}q →
{pass, fail} consists of a randomized procedure for choosing strings x1, . . . ,xq ∈ {−1, 1}n. The
probability that a function f : {−1, 1}n → {−1, 1} “passes the test” is Pr[φ(f(x1), . . . , f(xq)) =
pass]. We say the test has “completeness” c if the n dictator functions pass with probability at least
c. We say the test has “soundness” s if all f having o(1)-small influences3 pass with probability at
most s + o(1). We then say that the test is a “c vs. s Dictator vs. Small-influences test”.

Let’s see some examples of Dictator vs. Small-influences tests. Our first example might already
be obvious, given the discussion in Section 4. Since we are looking for a way to distinguish dic-
tatorships from non-dictatorships with, say, 3 queries/applications of f , Arrow’s Theorem springs
immediately to mind. Specifically, the 3-candidate Condorcet election gives such a distinguisher;
we call it the “NAE Test”:

2Throughout this section, δ denotes a positive constant that can be made arbitrarily small.
3The o(1) here is with respect to n; we are being slightly informal so as to eliminate additional quantifiers and

parameters.
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NAE Test: Simulate a random 3-candidate Condorcet election with f (as in Kalai’s proof of
Arrow’s Theorem). Pass/fail f using the predicate φ = NAE.

If f is a Dictator function then the NAE Test passes with probability 1; the Majority Is Stablest
Theorem implies that if f has o(1)-small influences it passes the NAE Test with probability at most
.912+o(1). Hence the NAE Test is a 1 vs. .912 Dictator vs. Small-Influences test using the predicate
NAE.

Our second example is quite similar; it is a 2-query test using the predicate φ = “6=”.

Noise Stability Test: Pick x and y to be (−1+2ε)-correlated strings and pass f iff f(x) 6= f(y).

Here 0 ≤ ε ≤ 1/2 is thought of as smallish, so x and y are very “anti-correlated”. By definition,
the probability some f passes this test is 1

2 − 1
2Stab−1+2ε(f). If f is a Dictator then this probability

is 1− ε. Again, from the Majority Is Stablest Theorem it follows that if f has o(1)-small influences,
it passes with probability at most

arccos(−1 + 2ε)/π + o(1) = 1 − arccos(1 − 2ε)/π + o(1).

Hence this is a 1− ε vs. 1− arccos(1− 2ε)/π Dictator vs. Small-influences test using the predicate
φ = “6=”.

Finally, H̊astad’s inapproximability result for Max-3Lin is based on the following:

H̊astad’s Test: Pick x,y ∈ {−1, 1}n uniformly and independently and let z be a random string
which is (1 − 2δ)-correlated to the string x ◦ y. (Here x ◦ y is the string whose ith coordinate is
xiyi.) Also pick b ∈ {−1, 1} uniformly. Pass f iff f(x)f(y)f(bz) = b.

It’s easy to check that Dictators pass this test with probability 1 − δ. More generally, a proof
along the lines of Parseval’s yields that

Pr[fpasses H̊astad’s test]

= 1
2 + 1

2

∑

|S| odd

(1 − 2δ)|S|f̂(S)3

≤ 1
2 + 1

2 max
|S| odd

{(1 − 2δ)|S||f̂(S)|} ·
∑

S⊆[n]

f̂(S)2

= 1
2 + 1

2 max
|S| odd

{(1 − 2δ)|S||f̂(S)|}.

If f has o(1)-small influences then |f̂(S)| must be o(1) for all S 6= ∅, in particular for all S with
|S| odd — this is because of Fact 3.4. Hence every o(1)-small influences f passes H̊astad’s test
with probability at most 1/2 + o(1). In other words, H̊astad’s Test is a 1 − δ vs. 1/2 Dictator vs.
Small-influences test using the two 3-bit predicates “vivjvk = 1” and “vivjvk = −1”.

(You might wonder why we don’t just take δ = 0. The reason is that for proving NP-hardness-
of-approximation results we technically need something slightly stronger than Dictator vs. Small-
influences tests. Specifically, we also need the tests to fail functions which merely have o(1) “low-
degree influences”; roughly speaking, those f for which

∑
S3i(1 − o(1))|S|f̂(S)2 is o(1) for each i.)

6.3 Hard instances

Before describing how Dictator vs. Small-influences tests fit into NP-hardness reductions, it’s useful
to see how they can at least be viewed as “hard instances” for algorithmic problems. By a hard
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instance we mean one for which a fixed, standard algorithm — usually LP rounding or SDP rounding
— finds a significantly suboptimal solution. (Note that this is different from an “LP/SDP integrality
gap” instance.)

Let’s see this for one of our Dictator vs. Small-influences tests — say the NAE Test. In prepara-
tion for our discussion of inapproximability, we’ll talk about testing “K”-bit functions rather than
“n”-bit functions. If we were to explicitly write down all possible checks the NAE Test does for a
function f : {−1, 1}K → {−1, 1}, it would look like this:

check: w.p.:

NAE( f(1, 1, . . . , 1), f(1, 1, . . . , 1), f(−1, −1, . . . , −1) ) 1/6K

NAE( f(1, 1, . . . , 1), f(1, 1, . . . , −1), f(−1, −1, . . . , 1) ) 1/6K

NAE( f(1, 1, . . . , 1), f(1, 1, . . . , −1), f(−1, −1, . . . , −1) ) 1/6K

· · · · · ·

Now imagine you are an algorithm trying to assign the 2K values of f so as to maximize the
probability it passes this test. Stepping back for a moment, what you are faced with is an instance
of the CSP over boolean variables in which each constraint is a 3-variable NAE predicate. This CSP
is variously called “Max-3NAE-Sat (with no negations)”, “Max-3-Set-Splitting”, or “2-coloring a
3-uniform hypergraph”. We’ll call it simply Max-NAE; not the most famous algorithmic problem,
perhaps, but a well-studied one nevertheless [26, 1, 41, 42, 19].

Why is the particular instance given by the NAE Test a “hard instance” of Max-NAE? On one
hand, its optimal value is 1. (Indeed it has 2K optimal solutions, the Dictators and the negated-
Dictators.) On the other hand, you can show that for this instance, the best known approximation
algorithm (semidefinite programming [42]) may give a solution whose expected value is only .912,
Guilbaud’s number.

The reason for this is that the SDP may find the optimal feasible vector solution in which each
“variable” f(x) gets mapped to the K-dimensional unit vector x/

√
K. In this case the rounding

algorithm will output the solution f(x) = sgn(
∑

gixi), where the gi’s are independent Gaussian
random variables — a random “weighted majority” function. With high probability over the gi’s,
this function will have o(1)-small influences and thus pass the NAE Test with probability at most
.912 + o(1). In other words, as a solution to the Max-NAE instance, it will have value at most
.912 + o(1).

Actually, this is the worst possible such instance for Max-NAE: analysis of Zwick [41] shows
that the SDP algorithm achieves value at least .912 on Max-NAE instances with optimal value 1.

6.4 NP-hardness results

Having seen that Dictator vs. Small-influences tests can provide hard instances for CSPs, we’ll
briefly explain how inapproximability technology can turn these hard instances into actual NP-
hardness results. For more detailed explanations, see the surveys of Trevisan and Khot [40, 29].

Most strong NP-hardness-of-approximation results are reductions from a problem known as
“Label-Cover with K Labels”. This problem is known to be NP-hard even to slightly approximate,
thanks to the PCP Theorem [3, 2] and the Parallel Repetition Theorem [37]. To reduce from
Label-Cover to c vs. s hardness of the CSP “Max-φ”, you use “gadgets” to encode the K different
“labels”. These gadgets should be instances of Max-φ with the following two properties (vaguely
stated): one, they should have K distinct “pure solutions” of value at least c; two, any “generic
mixture” of these pure solutions should have value at most s. These are exactly the properties that
Dictator vs. Small-influences tests have, when viewed as “hard instances”: the Dictators are the
pure solutions and the small-influence functions are the generic mixtures.
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It is beyond the scope of this article to go into more details; we will content ourselves with the
following two statements. First, in some cases a c vs. s Dictator vs. Small-influences test using the
predicate φ can be used as a gadget in a reduction from Label-Cover to conclude c vs. s + δ NP-
hardness-of-approximation for Max-φ. This is exactly how H̊astad’s 1− δ vs. 1/2 + δ NP-hardness
for Max-3Lin works, using his Dictator vs. Small-influences test. Whether or not a Dictator test
can be plugged into Label-Cover to get the equivalent hardness result depends in a technical way
on the properties of the test.

In all cases (modulo minor technical details; see [30]), a c vs. s Dictator vs. Small-influences
test using the predicate φ can be used as a “Unique-Label-Cover” gadget to conclude c− δ vs. s+ δ
hardness-of-approximation for Max-φ. However the “Unique-Label-Cover” problem is not known
to actually have the same extreme inapproximability as “Label-Cover” — this is the content of
Khot’s notorious “Unique Games Conjecture (UGC)” [28]. Thus we can only get NP-hardness
results in this way assuming the unproven UGC.

As examples, assuming UGC, the NAE Test gives 1 − δ vs. .912 + δ hardness for Max-NAE,
essentially matching the approximation algorithm of Zwick [41]. (Getting 1 vs. .912 + δ hardness
subject to a UGC-like conjecture is an interesting open problem.) Similarly, assuming UGC, the
Noise Stability Test yields 1− ε− δ vs. 1− arccos(1− 2ε)/π + δ hardness for the “Max-6=” problem
— i.e., Max-Cut — for any 0 < ε < 1/2. Taking ε ≈ .155 we get .845 vs. .742 hardness, for a ratio
of .878 which matches the approximation guarantee of the Goemans-Williamson algorithm [16].
Taking ε very small, we get the reduction forming the basis of Khot and Vishnoi’s unconditional
(UGC-less) proof that negative-type metrics do not embed into `1 with constant distortion [31].
Krauthgamer and Rabani’s quantitative improvement of this result [32] used the related fact that
Tribes is the unbiased small-influences function with least energy.

The reason the reliance on UGC is becoming widespread is the fact that it converts Dictator vs.
Small-influences tests into NP-hardness results in a “black-box” fashion. This reduces the whole
question of inapproximability into Property Testing problems, a domain where analysis of boolean
functions plays a central role. Perhaps analysis of boolean functions will play a key role in the
resolution of the Unique Games Conjecture itself.
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