
Deterministic Approximation Algorithms for the Nearest Codeword Problem

Noga Alon
Tel Aviv University and

Institute for Advanced Study
nogaa@tau.ac.il

Rina Panigrahy
Microsoft Research
rina@microsoft.com

Sergey Yekhanin
Microsoft Research

yekhanin@microsoft.com

Abstract

The Nearest Codeword Problem (NCP) is a basic algorithmic question in thetheory of error-correcting codes.
Given a pointv ∈ F

n
2 and a linear spaceL ⊆ F

n
2 of dimensionk NCP asks to find a pointl ∈ L that minimizes

the (Hamming) distance fromv. It is well-known that the nearest codeword problem is NP-hard. Therefore ap-
proximation algorithms are of interest. The best efficient approximation algorithms for the NCP to date are due to
Berman and Karpinski. They are a deterministic algorithm that achieves anapproximation ratio ofO(k/c) for an
arbitrary constantc, and a randomized algorithm that achieves an approximation ratio ofO(k/ log n).

In this paper we present new deterministic algorithms for approximating the NCP that improve substantially
upon the earlier work. Specifically, we obtain:

• A polynomial timeO(n/ log n)-approximation algorithm;

• An nO(s) timeO(k log(s) n/ log n)-approximation algorithm, wherelog(s) n stands fors iterations oflog,
e.g.,log(2) n = log log n;

• AnnO(log∗ n) timeO(k/ log n)-approximation algorithm.

We also initiate a study of the following Remote Point Problem (RPP). Given a linear spaceL ⊆ F
n
2 of dimen-

sionk RPP asks to find a pointv ∈ F
n
2 that is far fromL. We say that an algorithm achieves a remoteness ofr

for the RPP if it always outputs a pointv that is at leastr-far from L. In this paper we present a deterministic
polynomial time algorithm that achieves a remoteness ofΩ(n log k/k) for all k ≤ n/2. We motivate the remote
point problem by relating it to both the nearest codeword problem and the matrix rigidity approach to circuit lower
bounds in computational complexity theory.

1 Introduction

The Nearest Codeword Problem (NCP) is a basic algorithmic question in the theory of error-correcting codes.
Given a pointv ∈ F

n
2 and a linear spaceL ⊆ F

n
2 of dimensionk NCP asks to find a pointl ∈ L that minimizes the

(Hamming) distance fromv. The nearest codeword problem is equivalent to the problem of finding avectorx ∈ F
k
2

that minimizes the number of unsatisfied linear equations in the systemxG = v, given a matrixG ∈ F
k×n
2 and a

vectorv ∈ F
n
2 . It is well-known that the NCP is NP-hard. Therefore approximation algorithms are of interest.

The best efficient approximation algorithms for the NCP to date are due to Berman and Karpinski [3]. They
are a deterministic algorithm that achieves an approximation ratio ofO(k/c) for an arbitrary constantc, and a

Electronic Colloquium on Computational Complexity, Report No. 65 (2008)

ISSN 1433-8092

randomized algorithm that achieves an approximation ratio ofO(k/ log n).1 There has been a substantial amount
of work on hardness of approximation for the NCP [2, 5, 4, 1]. The best result to date is due to Dinur et. al. [4].
It shows NP-hardness of approximating the NCP to withinnO(1/ log log n). Alekhnovich [1] has made a conjecture
that implies inapproximability of the NCP to withinn1−ε, for everyε > 0.

In this paper we develop newdeterministicalgorithms for approximating the NCP. Specifically, we obtain:

1. A polynomial timeO(n/ log n)-approximation algorithm;

2. An nO(s) time O(k log(s) n/ log n)-approximation algorithm, wherelog(s) n stands fors iterations oflog,
e.g.,log(2) n = log log n;

3. An nO(log∗ n) timeO(k/ log n)-approximation algorithm.

Our first algorithm matches the performance of the randomized algorithm of [3] for k = Ω(n). This is the
regime that is of primary importance for the coding theory applications. Our second algorithm improves substan-
tially upon the deterministic algorithm of [3], and nearly matches the randomized algorithm of [3] in terms of the
approximation ratio. Finally, our third algorithm has the same approximation ratio as the randomized algorithm
of [3] and a slightly super-polynomial running time. All our algorithms (as wellas other known algorithms for the
NCP in the literature) can be easily generalized to fields other thanF2.

Remote point problem. In this work we also initiate a study of the following Remote Point Problem (RPP).
Given a linear spaceL ⊆ F

n
2 of dimensionk RPP asks to find a pointv ∈ F

n
2 that is far fromL. We say that an

algorithm achieves a remoteness ofr for the RPP if it always outputs a pointv that is at leastr-far from L. We
present a deterministic polynomial time algorithm that achieves a remoteness ofΩ(n log k/k) for all k ≤ n/2.
Our algorithm for the remote point problem is closely related to our first approximation algorithm for the nearest
codeword problem.

We motivate the remote point problem by relating it to the matrix rigidity approach to circuit lower bounds in
computational complexity theory. The notion of matrix rigidity was introduced by Leslie Valiant in 1977 [10]. In
what follows we say that a setA ⊆ F

n
2 is r-far from a linear spaceL ⊆ F

n
2 if A contains a point that isr-far

from L. (Observe, that this is quite different from the usual notion of distance between sets.) Valiant called a set
A ⊆ F

n
2 rigid if for some fixedε > 0, A is nε-far from every linear spaceL ⊆ F

n
2 , dimL = n/2. Valiant showed

that if a setA ⊆ F
n
2 is rigid and|A| = O(n); then the linear transformation fromn bits to |A| bits induced by a

matrix whose rows are all elements ofA can not be computed by a circuit of XOR gates that simultaneously has
sizeO(n) and depthO(log n).2

Valiant’s work naturally led to the challenge of constructing a small explicit rigidsetA, (since such a set yields
an explicit linear map, for that we have a circuit lower bound). This challenge has triggered a long line of work.
For references see [6, 7, 8, 9]. Unfortunately, after more than threedecades of efforts, we are still nowhere close to
constructing an explicit rigid set with the parameters needed to get implications incomplexity theory. In particular
there are no known constructions of setsA ⊆ F

n
2 of sizeO(n) that areω(1)-far from every linear spaceL ⊆ F

n
2 ,

dimL = n/2. Moreover if we restrict ourselves to setsA of sizen; then we do not know how to construct an
explicit set that is just3-far from every linear space of dimensionn/2, despite the fact that a random setA of
cardinalityn is Ω(n)-far from every such space with an overwhelming probability.

1In fact, Berman and Karpinski [3] only claim that their randomized algorithm achieves aO(k/ log k) approximation. However it is
immediate from their analysis that they also get aO(k/ log n) approximation.

2The original paper of Valinat [10] and the follow-up papers use a somewhat different language. Specifically, they talk about matrices
A whose rank remains no less thann/2 even after every row is modified in less thannε coordinates; rather than about setsA that for every
linear spaceL ⊆ F

n
2 , dim L = n/2 contain a pointa ∈ A that isnε-far from L. However, it is not hard to verify that the two concepts

above are equivalent.

In this paper we propose the remote point problem as an intermediate challenge that is less daunting than the
challenge of designing a small rigid set, and yet could help us develop some insight into the structure of rigid sets.
Recall that a rigid set is a set that is simultaneouslynε-far from everylinear spaceL, dimL = n/2. Given the
state of art with constructions of explicit rigid sets we find it natural to consider an easier algorithmic Remote Set
Problem (RSP) where we are given a single linear spaceL, and our goal is to design anO(n)-sized setAL ⊆ F

n
2

that isnε-far fromL. Clearly, if we knew how to construct explicit rigid sets, we could solve the RSP without even
looking at the input. The remote point problem is a natural special case of the remote set problem. Here we are
given a linear spaceL ⊆ F

n
2 and need to find a single point that is far fromL.

In this paper we present an algorithm that for every linear spaceL ⊆ F
n
2 , dimL = n/2 generates a point that

is Ω(log n)-far from L. (For spacesL of dimensionk < n/2, our algorithm generates a point of distance at least
Ω(n log k/k) from L.) We are not aware of efficient algorithms to generate points (orO(n)-sized collections of
points) further away from a given arbitrary linear space of dimensionn/2.

Organization. We present our first approximation algorithm for the NCP in section 2. We present our second
and third algorithms in section 3. We present our algorithm for the remote pointproblem in section 4.

2 An O(n/ log n)-approximation algorithm

We start with the formal statements of the NCP and of our main result.

Nearest codeword problem.

• INSTANCE: A linear codeL = {xG | x ∈ F
k
2} given by a generator matrixG ∈ F

k×n
2 and a vectorv ∈ F

n
2 .

• SOLUTION: A codewordl ∈ L.

• OBJECTIVE FUNCTION (to be minimized): The Hamming distanced(l, v).

Theorem 1 Letc ≥ 1 be an arbitrary constant. There exists a deterministicnO(c) timedn/c log ne-approximation
algorithm for the NCP.

In order to proceed with the proof we need the following notation:

• For a positive integerd, let Bd = {x ∈ F
n
2 | d(0n, x) ≤ d} denote a Hamming ball of radiusd.

• For a collection of vectorsM ⊆ F
n
2 , let Span(M) denote the smallest linear subspace ofF

n
2 containingM.

• For setsA, B ⊆ F
n
2 , we defineA + B = {a + b | a ∈ A, b ∈ B}.

The next lemma is the core of our algorithm. It shows that ad-neighborhood of a linear spaceL can be covered
by a (small) number of linear spacesMS of larger dimension, in such a way that no linear spaceMS contains
points that are too far fromL.

Lemma 2 Let L be a linear space, andd ≤ t be positive integers. LetB1 \ {0n} =
t
⋃

i=1
Bi

1 be an arbitrary

partition of the set ofn unit vectors intot disjoint classes each of sizedn/te or bn/tc. For everyS ⊆ [t] such that
|S| = d let MS = Span

(

L ∪
(
⋃

i∈S Bi
1

))

. Then

L + Bd ⊆
⋃

S

MS ⊆ L + Bddn/te, (1)

whereS runs over all subsets of[t] of cardinalityd.

Proof: We first show the left containment. Letv be an arbitrary vector inL+Bd. We havev = l+ej1 +. . .+ejd′
,

whered′ ≤ d, all ejr are unit vectors andl ∈ L. For everyr ∈ [d′] let ir ∈ [t] be such thatjr ∈ Bir
1 . Consider a

setS ⊆ [t] such that|S| = d andi1, . . . , id′ ∈ S. It is easy to see thatv ∈ MS .
We proceed to the right containment. LetS = {i1, . . . , id} be an arbitrary subset of[t] of cardinalityd. Recall

that the cardinality of every setBir
1 , r ∈ [d] is at mostdn/te. Therefore every elementv ∈ MS can be expressed

as a sumv = l + y, wherel ∈ L andy is a sum of at mostddn/te unit vectors. Thusv ∈ L + Bddn/te.

We are now ready to proceed with the proof of the theorem.

Proof of theorem 1: Observe that if the pointv is more thanc log n-far fromL; then any vector inL (for instance,
the origin) is andn/c log ne-approximation forv. Let us assume thatd(v, L) ≤ c log n and sett = dc log ne. Our
algorithm iterates over valuesd ∈ [0, dc log ne]. For eachd we generate all linear spacesMS , S ⊆ [t], |S| = d as
defined in lemma 2. We check whetherv is contained in one of those spaces. Lemma 2 implies that after at most
d(v, L) iterations we getv ∈ MS , for someS = {i1, . . . , id}. We expandv as a sumv = l + y wherel ∈ L andy
is a sum of at mostddn/c log ne unit vectors from

⋃d
r=1 Bir

1 . Obviously,d(v, l) ≤ d(v, L)dn/c log ne. We report
l as ourdn/c log ne-approximation forv. The pseudo-code is below.

Set t = dc log ne;
For everyd ∈ [0, c log n]

For everyS = {i1, . . . , id} ⊆ [t] such that|S| = d
If v ∈ MS Then

Begin
Representv asv = l + y, wherel ∈ L andy is a sum of unit vectors from

⋃d
r=1 Bir

1 ;
Output l;
Terminate;

End
Output 0n;

It is easy to see that the algorithm above runs in timenO(c). The first loop makesO(c log n) iterations. The
second loop makes at most2dc log ne = nO(c) iterations. Finally, the internal computation runs innO(1) time.

3 A recursive O(k log(s) n/ log n)-approximation algorithm

The goal of this section is to prove the following

Theorem 3 Let s ≥ 1 be an integer andc ≥ 1 be an arbitrary constant. There exists a deterministicnO(cs) time
dk log(s) n/c log ne-approximation algorithm for the NCP, where the constant inside theO-notation is absolute
andlog(s) n denotess iterations of thelog function.

Proof: Our proof goes by induction ons and combines ideas from ourO(n/ log n)-approximation algorithm of
section 2 with ideas from the deterministic approximation algorithm of Berman and Karpinski [3]. We start with
some notation.

• Let x∗G = l∗ ∈ L denote some fixed optimal approximation ofv by a vector inL.

• Let E = {i ∈ [n] | l∗i 6= vi} be the set of coordinates wherel∗ differs fromv.

• In what follows we slightly abuse the notation and use the letterG to denote the multi-set of columns of the
generator matrix ofL (as well as the generator matrix itself).

• We call a partition of the multi-setG =
h
⋃

i
Gi into disjoint setsregular if for every i ∈ [h], the vectors inGi

are linearly independent and:

Span(Gi) = Span

h
⋃

j≥i

Gj

 . (2)

Again, in what follows we slightly abuse the notation and use symbolsGi, i ∈ [h] to denote the sets of
columns of the generator matrix, the corresponding subsets of[n], and the sub-matrices of the generator
matrix ofL.

• We denote the restriction of a vectoru ∈ F
n
2 to coordinates in a setS ⊆ [n], by u |S ∈ F

|S|
2 .

The following claim (due to Berman and Karpinski [3]) constitutes the base case of the induction. We include
the proof for the sake of completeness.

Base case of the induction: Let c ≥ 1 be an arbitrary constant. There exists a deterministicnO(c) time
dk/ce-approximation algorithm for the NCP.

Proof of the base case: We start with an informal description of the algorithm. Our goal is to ”approximately”
recoverx∗ from v (which is a ”noisy” version ofl∗). Recall thatl∗ andv differ in coordinates that belong toE.
We assume that|E| < n/dk/ce since otherwise any vector in the spaceL is a validdk/ce-approximation forv.
The algorithm has two phases. During the first phase we compute a regularpartition of the multi-setG. Note that
such a partition necessarily has at leasth ≥ n/k classes. Therefore there is a classGi, i ∈ [h] such that

|Gi ∩ E| ≤ (n/dk/ce)/(n/k) ≤ c.

During the second phase we iterate over all classesGi, i ∈ [h] of the regular partition, trying to ”fix” the differences
betweenv |Gi

andl∗ |Gi
and thus ”approximately” recoverx∗. More specifically, for everyi ∈ [h] we solve the

systemxGi = u for x, for everyu that differs fromv |Gi
in up to c coordinates. (In cases when the system

xGi = u happens to be under-determined we take an arbitrary single solution.) This way every class in the
regular partition gives us a number of candidate vectorsx. In the end we select a single vector that yields the best
approximation forv.

To see that the algorithm indeed produces a validdk/ce-approximation forv, consider the smallest indexi such
that|Gi ∩E| ≤ c. Note that one of the linear systems that we are going to solve while processingthei-th class of
the regular partition isxGi = l∗ |Gi

. Let x be an arbitrary solution of the above system. Clearly,

d(xG, v) =
i−1
∑

j=1

d
(

xGj , v |Gj

)

+
h
∑

j=i

d
(

xGj , v |Gj

)

. (3)

However for everyj ≤ i − 1 we have

d
(

xGj , v |Gj

)

≤ k ≤ cdk/ce ≤ d
(

l∗ |Gj
, v |Gj

)

dk/ce, (4)

by our choice ofi. Also, xGi = l∗ |Gi
and formula (2) yield

xGj = l∗ |Gj
, (5)

for all j ≥ i. Combining formulae (4), (5) and (3) we getd(xG, v) ≤ d(l∗, v)dk/ce and thusxG is a dk/ce-
approximation forv. The pseudo-code of the algorithm is below:

Obtain a regular partitionG =
⋃

i∈h Gi;
Set xbest = 0k;
For everyi ∈ [h]

For every vectory in F
|Gi|
2 such that the Hamming weight ofy is at mostc

Begin
Find anx ∈ F

k
2 such thatxGi = v |Gi

+ y;

If d(xG, v) < d(xbestG, v) Then Set xbest = x;
End

Output xbestG;

It is easy to see that the algorithm above runs in timenO(c). The first loop makesO(n) iterations. The second
loop makes at mostnc iterations. Finally, obtaining a regular partition and the internal computation bothrun in
nO(1) time.

We now proceed to the induction step.

Induction step: Let s ≥ 1 be an integer andc ≥ 1 be an arbitrary constant. Suppose there exists a deterministic
nO(cs−c) time dk log(s−1) n/c log ne-approximation algorithm for the NCP; then there exists deterministicnO(cs)

time dk log(s) n/c log ne-approximation algorithm for the NCP.

Proof of the induction step: The high level idea behind our algorithm is to reduce the nearest codeword
problem on an instance(G, v) to nO(c) (smaller) instances of the problem and to solve those instances using the
algorithm from the induction hypothesis.

We start in a manner similar to the proof of the base case. Our goal is to ”approximately” recover the vectorx∗

fromv (which is a ”noisy” version ofl∗). Recall thatl∗ andv differ in coordinates that belong toE. We assume that
|E| < n/dk log(s) n/c log ne since otherwise any vector in the spaceL is a validdk log(s) /c log ne-approximation
for v. Our algorithm has two phases. During the first phase we compute a regularpartition of the multi-setG. Note
that such a partition necessarily has at leasth ≥ n/k classes. Therefore there is a classGi, i ∈ [h] such that

|Gi ∩ E| ≤ (n/dk log(s) n/c log ne)/(n/k) ≤ c log n/ log(s) n.

During the second phase we iterate over all classesGi, i ∈ [h] of the regular partition, trying to locate a large
subsetW ⊆ Gi such thatl∗ |W = v |W . We use such a subset to restrict our optimization problem tox ∈ F

k
2 that

satisfyxG |W = v |W and thus obtain a smaller instance of the NCP. More formally, during the second phase we:

1. Set

b =

⌊

c log n

log(s) n

⌋

, t =

⌈

2c log n log(s−1) n

log(s) n

⌉

. (6)

2. Setxbest = 0k.

3. For everyi ∈ [h] :

4. SetG′ =
⋃

j≥i Gj .

(a) If k ≥ t then

i. Split the classGi into a disjoint union oft setsGi =
t
⋃

r=1
Gr

i , each of sized|Gi|/te or b|Gi|/tc.

ii. For everyS ⊆ [t] such that|S| = b, setW =
⋃

r∈[t]\S Gr
i :

iii. Consider an affine optimization problem of finding anx ∈ F
k
2 that minimizesd (xG′, v |G′) ,

subject toxG |W = v |W . Properties of the regular partition imply that here we are minimizing

over an affine spaceL′ of dimension|Gi| − |W |, in F
|G′|
2 .

iv. Turn the problem above into a form of an NCP (inF
n
2 , padding both the target vectorv and the

matrix G′ with zeros) and solve it approximately forx using the algorithm from the induction
hypothesis. (Note that every affine optimization problem of minimizingd(xJ + z, v) over x
for J ∈ F

k×n
2 andz, v ∈ F

n
2 , can be easily turned into a form of an NCP, i.e., the problem of

minimizingd(xJ, v + z) overx ∈ F
k
2.

v. If d(xG, v) < d(xbestG, v) then setxbest = x.

(b) Else

i. For every vectory in F
|Gi|
2 such that the Hamming weight ofy is at mostb :

ii. Find anx ∈ F
k
2 such thatxGi = v |Gi

+ y;

iii. If d(xG, v) < d(xbestG, v) then setxbest = x.

5. OutputxbestG.

We now argue that the algorithm above indeed obtains a validdk log(s) n/c log ne-approximation for the NCP.
We first consider (the easier) case whenk < t. Our analysis is similar to the analysis of the base case of the
induction. Leti ∈ [h] be the smallest index such that|Gi ∩ E| ≤ bc log n/ log(s) nc = b. Note that one of the
linear systems that we are going to solve while processing thei-th class of the regular partition isxGi = l∗ |Gi

.
Let x be an arbitrary solution of the above system. We need to boundd(xG, v) from above. Clearly,

d(xG, v) =
i−1
∑

j=1

d
(

xGj , v |Gj

)

+ d
(

xG′, v |G′

)

. (7)

However for everyj ≤ i − 1 we have

d
(

xGj , v |Gj

)

≤ k ≤
c log n

log(s) n

⌈

k /

(

c log n

log(s) n

)⌉

≤ d
(

l∗ |Gj
, v |Gj

)

⌈

k log(s) n

c log n

⌉

, (8)

by our choice ofi. Also, xGi = l∗ |Gi
and formula (2) yield

xG′ = l∗ |G′ , (9)

Combining formulae (8), (9) and (7) we getd(xG, v) ≤ d(l∗, v)dk log(s) n/c log ne.
We now proceed to thek ≥ t case. Again, leti ∈ [h] be the smallest index such that|Gi ∩ E| ≤ b. Note that

one of the setsW ⊆ Gi considered when processing the classGi will necessarily have an empty intersection with
the setE. Let x ∈ F

k
2 be an approximate solution of the corresponding problem of minimizingd (xG′, v |G′) ,

subject toxG |W = v |W , produced by an algorithm from the induction hypothesis. We need to boundd(xG, v)
from above. Formulae (7) and (8) reduce our task to boundingd (xG′, v |G′) . Observe that when minimizing
d (xG′, v |G′) , subject toxG |W = v |W , we are minimizing over an affine space of dimensionk′, where

k′ ≤ dk/teb ≤

⌈

k log(s) n

2c log n log(s−1) n

⌉

c log n

log(s) n
.

Note thatk ≥ t implies
⌈

k log(s) n

2c log n log(s−1) n

⌉

≤
k log(s) n

c log n log(s−1) n
.

Thereforek′ ≤ k/ log(s−1) n and the approximation algorithm from the induction hypothesis yields adk/c log ne-
approximate solution, i.e.,

d
(

xG′, v |G′

)

≤ d (l∗ |G′ , v |G′) dk/c log ne. (10)

Combining formulae (8), (10) and (7) we getd(xG, v) ≤ d(l∗, v)dk log(s) n/c log ne.

To estimate the running time note that the external loop of our algorithm makesO(n) iterations and the internal
loop makes at most

(

t
b

)

iterations where each iteration involves a recursivenO(cs−c) time call if k ≥ t. It is easy
to see that

(

t

b

)

≤ (et/b)b ≤

(

4ec log n log(s−1) n

log(s) n

c log(s) n

log n

)c log n/ log(s) n

= nO(c),

where the second inequality follows fromb ≤ t/2 andt ≤ 4c log n log(s−1) n/ log(s) n. Combining the estimates
above we conclude that the total running time of our algorithm isnO(cs).

Choosings = dlog∗ ne in theorem 3 we obtain

Theorem 4 Let c ≥ 1 be an arbitrary constant. There exists a deterministicnO(c log∗ n) time dk/c log ne-
approximation algorithm for the NCP.

4 The remote point problem

We start with a formal statement of the remote point problem.

Remote point problem.

• INSTANCE: A linear codeL = {xG | x ∈ F
k
2} given by a generator matrixG ∈ F

k×n
2 .

• SOLUTION: A pointv ∈ F
n
2 .

• OBJECTIVE FUNCTION (to be maximized): The Hamming distanced(L, v) from the codeL to a pointv.

We start with an algorithm that generatesc log n-remote points for linear spaces of dimensionk ≤ n/2.

Theorem 5 Let c ≥ 1 be an arbitrary constant. There exists a deterministicnO(c) time algorithm that for a given
linear spaceL ⊆ F

n
2 , dimL ≤ n/2 generates a pointv such thatd(L, v) ≥ c log n, providedn is large enough.

Proof: At the first phase of our algorithm we setd = dc log ne, t = d4c log ne and use lemma 2 to obtain a
family of

(

t
d

)

= nO(c) linear spacesMS , S ⊆ [t], |S| = d such that

L + Bdc log ne ⊆
⋃

S

MS .

It is readily seen from the construction of lemma 2 that the dimension of every spaceMS is at mostn/2 + n/3 =
5n/6, providedn is large enough.

At the second phase of our algorithm we generate a pointv that is not contained in the union
⋃

S MS , (and
therefore isdc log ne-remote fromL.) We consider a potential functionΦ that for every setW ⊆ F

n
2 returns

Φ(W) =
∑

S

|W ∩ MS |,

where the sum is over allS ⊆ [t], |S| = d. We assume thatn is large enough, so that

Φ(Fn
2) =

∑

S

|MS | =

(

t

d

)

|MS | < 2n.

We initially setW = F
n
2 and iteratively reduce the size ofW by a factor of two (cuttingW with coordinate

hyperplanes). At every iteration the value ofΦ(W) gets reduced by a factor of two or more. Therefore aftern
iterations we arrive at a setW that contains a single pointv such thatΦ({v}) = 0. That point isdc log ne-remote
from L. For a setW ⊆ F

n
2 , i ∈ [n], andb ∈ F2 let W |xi=b denote the set{x ∈ W | xi = b}. The pseudo-code of

our algorithm is below:

Set t = d4c log ne andd = dc log ne;

Obtain
(

t
d

)

linear spacesMS as defined in lemma 2.
Set W = F

n
2 ;

For everyi in [n]
If Φ(W |xi=0) ≤ Φ(W |xi=1) Set W = W |xi=0; Else Set W = W |xi=1;

Output the single element ofW ;

Note that every evaluation of the potential functionΦ in our algorithm takesnO(c) time, since all we need to do
is compute the dimensions of

(

t
d

)

= nO(c) affine spacesW ∩ MS . The algorithm involves2n such computations
and therefore runs innO(c) time.

Remark 6 It is easy to see that the algorithm of theorem 5 can be extended to generatepoints that arec log n-far
from a given linear space of dimension up to(1 − ε)n for any constantε > 0.

We now present our algorithm for the remote point problem in its full generality.

Theorem 7 Let c ≥ 1 be an arbitrary constant. There exists a deterministicnO(c) time algorithm that for a given
linear spaceL ⊆ F

n
2 , dimL = k ≤ n/2 generates a pointv such thatd(L, v) ≥ bn/2kcd2c log ke, providedn is

large enough.

Proof: We partition the multi-set of columns of the matrixG in h = dn/2ke multi-setsGi, i ∈ [h] in such a way
that every multi-setGi, (with possibly a single exception) has size exactly2k. Next for all multi-setsGi of size2k
we use the algorithm of theorem 5 to obtain a pointvi that is2c log k-remote from the space{xGi | x ∈ F

k
2} ⊆ F

2k
2 .

Finally, we concatenate all vectorsvi together (possibly padding the result with less than2k zeros) to obtain a
vectorv ∈ that isbn/2kcd2c log ke-remote fromL.

5 Conclusion

In this paper we have given three new deterministic approximation algorithms for the nearest codeword problem.
Our algorithms improve substantially upon the (previously best known) deterministic algorithm of [3]. Moreover,
our algorithms approach (though do not match) the performance of the randomized algorithm of [3]. Obtaining a
complete derandomization remains a challenging open problem.

We have also initiated a study of the remote point problem that asks to find a point far from a given linear space
L ⊆ F

n
2 . We presented an algorithm that achieves a remoteness ofΩ(n log k/k) for linear spaces of dimension

k ≤ n/2. We consider further research on the remote point problem (and the related remote set problem) to be a
promising approach to constructing explicit rigid matrices in the sense of Valiant [10].

Acknowledgement

Sergey Yekhanin would like to thank Venkat Guruswami for many helpful discussions regarding this work.

References

[1] M. Alekhnovich, “More on average case vs. approximation complexity,” In Proc. of the 44rd IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 298-307, 2003.

[2] S. Arora, L. Babai, J. Stern, and Z. Sweedy, “Hardness of approximate optima in lattices, codes, and linear
systems,”Journal of Computer and System Sciences,vol. 54, issue 2, pp. 317-331, 1997.

[3] P. Berman and M. Karpinski, “Approximating minimum unsatisfiability of linearequations,” InProc. of
ACM-SIAM Symposium on Discrete Algorithms (SODA),pp. 514-516, 2002.

[4] I. Dinur, G. Kindler, R. Raz, and S. Safra, “Approximating CVP to within almost-polynomial factors is
NP-hard,”Combinatorica,vol. 23, issue 2, pp. 205-243, 2003.

[5] I. Dumer, D. Miccancio, and M. Sudan, “Hardness of approximatingthe minimum distance of a linear code,”
IEEE Transactions on Information Theory,vol. 49, issue 1, pp. 22-37, 2003.

[6] J. Friedman, “A note on matrix rigidity,”Combinatorica,vol. 13, issue 2, pp. 235-239, 1993.

[7] B. Kashin and A. Razborov, “Improved lower bounds on the rigidity of Hadamard matrices,”Mathematical
Notes,vol. 63, issue 4, pp. 471-475, 1998.

[8] S. Lokam, “Spectral methods for matrix rigidity with applications to size-depth trade-offs and communica-
tion complexity,”Journal of Computer and System Sciences,vol. 63, issue 3, pp. 449-473, 2001.

[9] M. Shokrollahi, D. Speilman, and V. Stemann, “A remark on matrix rigidity,”Information Processing Letters,
vol. 64, issue 6, pp. 283-285, 1997.

[10] L. Valiant, “Graph-theoretic arguments in low level complexity,”Proc. of 6th Symposium on Mathematical
Foundations of Computer Science (MFCS), pp. 162-176, 1977.

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

