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Abstract

We give a polynomial time algorithm that computes a decomposition of a finite group G given in the

form of its multiplication table. That is, given G, the algorithm outputs two subgroups A and B of G

such that G is the direct product of A and B, if such a decomposition exists.

1 Introduction

Given two groups A and B one of the most natural ways to form a new group is the direct product, denoted
A × B. As a set, the direct product group is the Cartesian product of A and B consisting of ordered pairs
(a, b) and the group operation is component-wise.

(a1, b1) · (a2, b2) = (a1 · a2, b1 · b2).

Given groups A and B, its trivial to compute the group G = A × B. In this article, we consider the inverse
problem of factoring or decomposing a group G as a direct product of two of its subgroups. There are some
very natural motivations for such a study. The fundamental theorem of finite abelian groups (Theorem 2)
states that any finite abelian group can be written uniquely upto permutation as the direct product of cyclic
groups of prime power order. This theorem means that the problem of finding an isomorphism between two
given abelian groups [Kav07] is essentially the same as the problem of factoring an abelian group. In the
general case, the Remak-Krull-Shimidt theorem (Theorem 3) tells us that the factorization of a group as
a direct product of indecomposable groups is “unique” in the sense that the isomorphism class of each of
the components of the factorization is uniquely determined. This means that all such decompositions are
structurally the same. This motivates us to devise an efficient algorithm which finds such a factorization.

Algorithm outline.

Notice that if we have an algorithm that computes any nontrivial factorization G = A×B, we can efficiently
compute the complete factorization of G into indecomposable subgroups by recursing on A and B. Therefore
we formulate our problem as follows: given a group G, find subgroups A and B such that G = A × B and
both A and B are nontrivial subgroups of G. The algorithm is devised in stages, at each stage we solve a
progressively harder version of the GroupDecomposition problem until we arrive at a complete solution
to the problem. Each stage uses the solution of the previous stage as a subroutine.

• G is abelian. The proof of the fundamental theorem of finite abelian groups (Theorem 2) is constructive
and gives a polynomial-time algorithm. This case has also been studied previously and a linear time
algorithm is given in [CF07].

• The subgroup A is known. In this case we have to just find a B such that G = A × B. We call it the
GroupDivision problem and in section 4, an algorithm is devised in two substages.
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– B is abelian.

– B is nonabelian.

• A is unknown but an abelian A exists. We call this the SemiAbelianGroupDecomposition problem
and the algorithm is given in section 5.

• A is unknown and all indecomposable direct factors of G are nonabelian. In section 6 we describe the
algorithm for this most general form of GroupDecomposition .

Let us now assume that we have an efficient algorithm for both GroupDivision and for SemiAbelian-

GroupDecomposition and outline the algorithm for solving GroupDecomposition using these subrou-
tines. One of the main sources of difficulty in devising an efficient algorithm is that the decomposition of a
group is not unique. Indeed, there can be superpolynomially many different decompositions of G. We first
analyze the different ways a group can decompose and come up with some invariants which do not depend
on the particular decomposition at hand.

Invariants of decomposition (Corollary 6). Let G be a finite group with

G = G1 × G2 × . . . × Gt

with each Gi indecomposable. If G has another decomposition

G = H1 × H2 × . . . × Ht

with each Hj indecomposable, then after an appropriate reindexing of the Hj ’s, we have that
∀i ∈ [t] : Gi

∼= Hi and also

∀i ∈ [t] : CommG(
∏

j 6=i

Gj) = CommG(
∏

j 6=i

Hj),

where for any A ⊆ G, CommG(A) is the subgroup of G consisting of all the elements of G that
commutes with every element of A.

With this set of “invariants” in mind, let us proceed to describe the algorithm. Assume G is decomposable
and let us fix a decomposition of G,

G = G1 × G2 × . . . × Gt.

with each Gi indecomposable. Let Z1
def
= CommG(G2×. . .×Gt) . We claim that it is enough to compute Z1 in

order to solve GroupDecomposition . To see this, notice that Z1 = G1×Cent(G2×. . .×Gt). By a repeated
application of the subroutine SemiAbelianGroupDecomposition , we can obtain a decomposition of Z1

into
Z1 = H1 × Y,

where Y is an abelian group and H1 has no abelian direct factors. In theorem 5 we show that any such
decomposition of Z1 has the following properties:

1. H1 is indecomposable and isomorphic to G1.

2. ∃Y1 E G such that G = H1 × Y1.

Having obtained H1, we obtain an appropriate Y1 by invoking GroupDivision on (G, H1) and thereby get
a decomposition of G.
We will now outline the procedure used to compute Z1. From the given group G, we construct a graph ΓG

which has the following properties:

1. The nodes of G correspond to conjugacy classes of G; however not all conjugacy classes of G are nodes
of ΓG. For a connected component Λ of ΓG, let Elts(Λ) ⊆ G denote the set of all g ∈ G that are
members of some conjugacy class occuring in Λ.
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2. (Proposition 13). If a decomposition of G contains t nonabelian indecomposable components then the
number of connected components in ΓG is at least t.

3. (Proposition 13). Let G = G1 × . . . × Gt, with each Gi indecomposable. There exists a partition

[s] = S1 ] . . . ] St

such that for any i,

Gi (mod Z) =
∏

j∈Si

〈Elts(Λj)〉 (mod Z).

4. (Proposition 15). Let Z be the center of G and let Λ1, . . . , Λs be the set of connected components of
ΓG. Then s ≤ log |G| and G/Z has a decomposition given by

G/Z = 〈Elts(Λ1)〉 (mod Z) × . . . × 〈Elts(Λs)〉 (mod Z).

Now given only the group G and the constructed graph ΓG, we do not apriori know what the set S1 ⊆ [s] is.
But s = O(log |G|), so we can simply iterate over all possible sets S1 in just |G| iterations. Let us therefore
assume that we have the appropriate S1. Then the sought-after set Z1 can be obtained as follows:

Z1
def
= CommG(

⋃

j /∈S1

Elts(Λj)).

This completes the outline of the algorithm. Let us summarize the algorithm.

Algorithm I. GroupDecomposition

Input. A group G in the form of a Cayley table.

1. Construct the conjugacy class graph ΓG associated to the group G.

2. Compute the connected components Λ1, . . . , Λs of ΓG.

3. For each S1 ⊆ [s] do the following:

(a) Let Z1
def
= CommG(

〈

⋃

j /∈S1
Elts(Λj)

〉

).

(b) By repeated invocations to SemiAbelianGroupDecomposition deter-
mine H1, Y E G such that Z1 = H1 × Y and H1 has no abelian direct
factors and Y is abelian.

(c) Invoke GroupDivision on (G, H1) to determine if there exists a Y1 E G
such that G = H1 × Y1. If such a Y1 is found then output (H1, Y1).

4. If no decomposition has been found, output NO SUCH DECOMPOSITION.

The rest of this article is organized as follows. In section 3 we analyze the different ways that a group can
decompose and specify some invariants. In section 4 we give the algorithm for GroupDivision and prove
its correctness. In section 5, we give the algorithm for SemiAbelianGroupDecomposition and prove its
correctness. In section 6 we describe the construction of the graph ΓG and prove the properties claimed
above. We complete the proof of correctness of our algorithm for GroupDecomposition in section 7. In
section 8 we conclude with some open problems.

2 Preliminaries.

2.1 Notation and Terminology.

For a positive integer n, [n] denotes the set {1, 2, . . . , n}. Cent(G) will denote the center of a group G and
|G| its size. For an element a ∈ G, we will denote |〈a〉| by ord(a). We will denote the conjugacy class of the
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element a by Ca, i.e.

Ca
def
= {g · a · g−1 | g ∈ G} ⊂ G.

Let A, B ⊆ G. We write A ≤ G when A is a subgroup of G and A E G when A is a normal subgroup of G.
The subgroup of G generated by the elements of A is denoted as 〈A〉. CommG(A) will denote the subgroup
of elements of G that commute with every element of A. i.e.

CommG(A)
def
= {g ∈ G | a · g = g · a ∀a ∈ A}.

We will denote by [A, B] the subgroup of G generated by the set of elements

{a · b · a−1 · b−1|a ∈ A, b ∈ B}.

We shall denote by A · B the set
{a · b | a ∈ A, b ∈ B} ⊆ G.

We say that a group G is decomposable if there exist nontrivial subgroups A and B such that G = A × B
and indecomposable otherwise. When A is a normal subroup of G we will denote by B (mod A) the set of
cosets {A · b | b ∈ B} of the quotient group G/A. We will say that a subgroup A of G is a direct factor of G
if there exists another subgroup B of G such that G = A × B and we will call B a direct complement of A.
The canonical projection endomorphisms. When a group G has a decomposition

G = G1 × G2 × . . . × Gt

then associated with this decomposition is a set of endomorphisms π1, . . . , πt of G with

πi : G 7→ Gi, πi(g1 · g2 · . . . · gt) = gi.

where g = g1 · g2 · . . . · gt ∈ G (∀i ∈ [t] : gi ∈ Gi) is an arbitary element of G. The πi’s we call the canonical
projection endomorphisms of the above decomposition.

2.2 Background.

Theorem 1. (Expressing G as a diret product of A and B, cf. [Her75]) Let G be a finite group and A, B
be subgroups of G. Then G = A × B if and only if the following three conditions hold:

• Both A and B are normal subgroups of G.

• |G| = |A| · |B|.

• A
⋂

B = {e}.

Theorem 2. (The fundamental theorem of finite abelian groups, cf. [Her75]) Every finite abelian group G
can be as the written product of cyclic groups of prime power order.

Theorem 3. (Remak-Krull-Schmidt, cf. [Hun74]) Let G be a finite group. If

G = G1 × G2 × . . . × Gs

and
G = H1 × H2 × . . . × Ht

with each Gi, Hj indecomposable, then s = t and after reindexing Gi
∼= Hi for every i and for each r < t,

G = G1 × . . . × Gr × Hr+1 × . . . × Ht.

Notice that the uniqueness statement is stronger than simply saying that the indecomposable factors are
determined upto isomorphism.
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3 Invariants of group factorization.

The main source of difficulty in devising an efficient algorithm for the decomposition of a group lies in the
fact that the decomposition need not be unique. Let us therefore analyze what one decomposition should
be in reference of another.

Lemma 4. For a group G, suppose that G = A × B. Then for a subset C ⊂ G,

G = C × B ⇐⇒ C = {α · φ(α) | α ∈ A}, where φ : A 7→ Cent(B) is a homomorphism.

Proof. (⇐). We have C = {α · φ(α) | α ∈ A}, where φ : A 7→ Cent(B) is a homomorphism.

Claim 4.1. C is a normal subgroup of G.

Proof of Claim 4.1: Let g = a · b with a ∈ A, b ∈ B be an arbitary element of G. For an arbitary element
c = α · φ(α) ∈ C, we have

g · c · g−1 = (a · b) · (α · φ(α)) · (a−1 · b−1)
= (a · α · a−1) · (b · φ(α) · b−1)
= (a · α · a−1) · (φ(α)) since φ(α) ∈ Cent(B)
= (a · α · a−1) · (φ(a) · φ(α) · φ(a)−1) since φ(α) ∈ Cent(B)
= (a · α · a−1) · φ(a · α · a−1) since φ is a homomorphism
∈ C

�

To verify the second requirement of Theorem 1, we have |G| = |A| · |B| = |C| · |B|.

Claim 4.2. C
⋂

B = {e}.

Proof of Claim 4.2: Suppose that c = α · φ(α) ∈ C also belongs to B. Since c ∈ B and G = A × B, the
A-component of c must be e. That is α = e and therefore φ(α) = e since φ is a homomorphism. Thus c = e
and hence C

⋂

B = {e}. �

By an application of Theorem 1, we get G = C × B, as required.
(⇒). Assume that G = A×B = C ×B. Fix the decomposition G = A×B as a reference. Since any element
of C commutes with every element of B, the B-coordinate of every element of C must be in the center of B
and furthermore the set of A-coordinates of C must be all of A. Also for every α ∈ A, there must exist a
unique element of C whose A-coordinate is α. So let C = {α · φ(α) | α ∈ A} with φ(α) ∈ Cent(B). We need
to show that φ is a homomorphism. C is closed under multiplication and therefore for any two elements
(α1 · φ(α1)) and (α2 · φ(α2)) of C, we must have

(α1 · φ(α1)) · (α2 · φ(α2)) = (α1 · α2) · (φ(α1) · φ(α2)) ∈ C.

In this way, we would get two different elements of C, viz. (α1 ·α2) · (φ(α1) ·φ(α2)) and (α1 ·α2) · (φ(α1 ·α2))
which have the same A-component unless

φ(α1 · α2) = φ(α1) · φ(α2).

Thus, φ : A 7→ Cent(B) is a homomorphism, as required.

Theorem 5. (Characterization of the various decompositions of a group.) Let G be a finite group with

G = G1 × G2 × . . . × Gt (1)

with each Gi indecomposable. For i ∈ [t], define Mi to be the normal subgroup of G as follows:

Mi
def
= G1 × . . . × Gi−1 × Gi+1 × . . . × Gt,
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so that G = Gi × Mi∀i ∈ [t]. If G has another decomposition

G = H1 × H2 × . . . × Ht (2)

(the number of Hj’s must equal t by Theorem 3) with each Hj indecomposable, then there exist t homomor-
phisms {φr : Gr 7→ Cent(Mr)}r∈[t] so that after reindexing, for each r ∈ [t],

Hr = {α · φr(α) | α ∈ Gr, φr(α) ∈ Cent(Mr)}

Proof. Corresponding to the decomposition of G in equation (1), let πi : G 7→ Gi be the i-th canonical
projection endomorphism. Similarly, coresponding to the decomposition of G in equation (2), let σj : G 7→ Hj

be the j-th canonical projection endomorphism of G.

Claim 5.1. There exists a reindexing of the Hj’s such that for all i ∈ [t], both the maps

πi |Hi
: Hi 7→ Gi and σi |Gi

: Gi 7→ Hi

are isomorphisms.

Sketch of proof of Claim 5.1: The claim follows from the proof of Theorem 3 (cf. [Hun74]). We sketch it
below. Call an endomorphism θ : G 7→ G a normal endomorphism if ∀a, g ∈ G, g · θ(a) · g−1 = θ(g · a · g−1).
It is easily verified that the canonical projection endomorphisms πi’s and σj ’s are all normal endomorphisms
of G. The composition of any two normal endomorphisms is also a normal endomorphism. Thus for any i
and j, both the maps πi ·σj and σj ·πi are normal endomorphisms. In particular (πi ·σj) |Gi

, the restriction
of (πi · σj) to the subgroup Gi of G is a normal endomorphism of Gi and similarly (σj · πi) |Hj

is a normal
endomorphism of Hj . For any normal endomorphism θ of a finite group A, there exists an integer n ∈ Z≥1

such that
A = Im(θn) × Ker(θn).

By the indecomposability of the Gi’s and the Hj ’s we have that each (πi ·σj) |Gi
and (σj ·πi) |Hj

is either an
automorphism or is nilpotent (a nilpotent endomorphism θ is an endomorphism which satisfies Im(θn) = {e}
for some positive integer n). Fix an i ∈ [t]. If for some j, (πi ·σj) |Gi

is an automorphism then it follows that
σj |Gi

and πi |Hj
are both isomorphisms from Gi to Hj and from Hj to Gi respectively. Suppose not, then

it must be that both (πi · σj) |Gi
and (σj · πi) |Hj

are nilpotent endomorphisms of Gi and Hj respectively.
For any two endomorphisms θ1 : A 7→ A and θ2 : A 7→ A of a group A, define their sum as folows:

∀a ∈ A : (θ1 + θ2)(a) = θ1(a) · θ2(a).

In general, the sum of two endomorphisms of G need not be an endomorphism of G. Nevertheless, if θ1

and θ2 are both nilpotent endomorphisms and if their sum is an endomorphism then it is also a nilpotent
endomorphism. Now consider the set of endomorphisms (πi · σj) |Gi

of Gi. Their sum is the identity
endomorphism of Gi so that not all of them can be nilpotent. In this way, for every i we get a j such that
σj |Gi

and πi |Hj
are both isomorphisms from Gi to Hj and from Hj to Gi respectively. Continuing this

reasoning we get that there exists a reindexing of the Hj ’s such that for all i ∈ [t], both the maps

πi |Hi
: Hi 7→ Gi and σi |Gi

: Gi 7→ Hi

are isomorphisms. �

Lets fix the reindexing provided by the above claim. Now consider an arbitary Hr with respect to the
reference decomposition G = Gr × Mr. Since the projection map πr |Hr

: Hr 7→ Gr is an isomorphism, it is
in particular a bijection so that for every α ∈ Gr, there exists a unique element of Hr, whose Gr-coordinate
is α. Thus, there exists a map φr : Gr 7→ Mr such that the set Hr is of the form

Hr := {α · φr(α) | α ∈ Gr, φr(α) ∈ Mr}.
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Also, since Hr is closed under multiplication, it follows that φr is a homomorphism from Gr to Mr. Now fix
β = α ·φr(α) ∈ Hr and a j 6= r. Since β is in in Hr, it commutes with every element of Hj and therefore for
all γ ∈ Hj , we have

β · γ · β−1 = γ
⇒ πj(β · γ · β−1) = πj(γ)
⇒ β · πj(γ) · β−1 = πj(γ)

Now since πj |Hj
: Hj 7→ Gj is an isomorphism we have that ∀θ ∈ Gj

β · θ · β−1 = θ
⇒ α · φr(α) · θ · φr(α)−1 · α−1 = θ
⇒ φr(α) · θ · φr(α)−1 = θ

and thus φ(α) ∈ Mr commutes with every element of Gj for j 6= r. Since

Mr =
∏

j 6=r

Gj ,

it follows that φr(α) ∈ Cent(Mr). In this way,

Hr = {α · φr(α) | α ∈ Gr , φr(α) ∈ Cent(Mr)}

Corollary 6. (Invariants of decompositions). Let G be a finite group with center Z and

G = G1 × G2 × . . . × Gt (3)

with each Gi indecomposable. If G has another decomposition

G = H1 × H2 × . . . × Ht (4)

with each Hj indecomposable, then after an appropriate reindexing of the Hj’s, we have:

1. Gi (mod Z) = Hi (mod Z).

2. ∀i ∈ [t] : CommG(
∏

j 6=i Gj) = CommG(
∏

j 6=i Hj).

Proof. Fix a reindexing of the Hj ’s as demonstrated by the above theorem. Notice that

Z
def
= Cent(G) = Cent(G1) × Cent(G2) × . . . × Cent(Gt).

As in the theorem above let Mi be defined as Mi
def
=

∏

j 6=i Gj so that ∀i ∈ [t],

Cent(Mi) = Cent(
∏

j 6=i

Gj) ⊆ Z

Now ∀i ∈ [t], we have Hi = {α · φi(α) | α ∈ Gi, φi(α) ∈ Cent(Mi)}. But Cent(Mi) E Z so that

Gi (mod Z) = Hi (mod Z).

This proves part 1 of the corollary.
Now consider an arbitary g ∈

∏

j 6=i Gj . By part 1, we have that for any suich g, there exists a z ∈ Z
such that g · z ∈

∏

j 6=i Hj . Since the set of elements that commutes with g is the same as the set of elements
that commutes with g · z, we get that

CommG(
∏

j 6=i

Gj) = CommG(
∏

j 6=i

Hj).

This completes the proof of part 2 of the corollary.

This corollary gives some quantities which are invariant across different decompositions the group G. Indeed,
our decomposition algorithm computes these invariants as an intermediate step on the way to obtaining a
decomposition of G.

7



4 An algorithm for GroupDivision

In this section we solve the group division problem which is used in step 3 of Algorithm I. Let us recall that
GroupDivision is the following problem: given a group G and a normal subgroup A E G, find a B E G
such that G = A × B, if such a decomposition exists. We will solve this problem itself in two stages. First,
we devise an efficient algorithm assuming that the quotient group G/A is abelian and then use this as a
subroutine in the algorithm for the general case.

4.1 When the quotient group G/A is abelian.

In this case we can assume that G = A × B where B is abelian. Observe that in this case, for every coset
A · g of A in G, we can pick an element b ∈ A · g such that b ∈ Cent(G) and ordG(b) = ordG/A(A · g). Also,
the quotient group G/A is abelian and therefore using the abelian group decomposition algorithm, we can
efficiently find a complete decomposition of G/A. So let

G/A = 〈A · g1〉 × . . . × 〈A · gt〉

Now from each coset A · gi we pick a representative element bi such that bi ∈ Cent(G) and ordG(bi) =
ordG/A(A · bi). For any such set of bi’s, its an easy verification that G = A × 〈b1〉 × . . . × 〈bt〉.

4.2 When the quotient group G/A is nonabelian.

We first give the algorithm and then prove its correctness.

Algorithm II. GroupDivision

Input. A group G and a normal subgroup A of G.
Output. A subgroup C of G such that G = A × C, if such a C exists.

1. Compute T
def
=

〈

{a · g · a−1 · g−1 | a ∈ CommG(A), g ∈ G}
〉

.

2. If T is not a normal subgroup of G then output NO SUCH DECOMPOSITION.

3. Compute G̃
def
= G/T and Ã

def
= {T · a | a ∈ A} E G̃.

4. Verify that T
⋂

A = {e}. If not, output NO SUCH DECOMPOSITION. If yes,
then we deduce that the canonical map a 7→ Ta is an isomorphism from A to Ã.

5. Using the abelian group division algorithm given above, determine if there ex-
ists a B̃ E G̃, with B̃ abelian, so that G̃ = Ã × B̃. If so, determine elements
Tg1, T g2, . . . , T gt ∈ G/T such that

G̃ = Ã × 〈Tg1〉 × 〈Tg2〉 × . . . × 〈Tgt〉 .

6. From each coset Tgi, pick any representative element ci. Compute C
def
=

〈T
⋃

{c1, . . . , ct}〉 ≤ G.

7. If G = A × C then output C else output NO SUCH DECOMPOSITION.

The algorithm clearly has polynomial running time and it remains for us to prove its correctness. To see
whats going on in the algorithm above, let us assume that G = A × B and fix this decomposition of G. Its
easy to verify that the subgroup T computed in step 1 is a normal subgroup of G and T = [B, B]. Also,
T = [B, B] ⊆ B and therefore A

⋂

T must be {e}. This implies that the canonical mapping a 7→ T · a is an
isomorphism from A to Ã This explains step 4 of the algorithm. Observe that the G̃ computed in step 3 has
the decomposition

G̃ = Ã × (B/[B, B]).
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But B/[B, B] is an abelian group so we can use the previous algorithm and decompose G̃ into product of Ã
times a number of cyclic groups. By the end of step 6, we would have computed c1, . . . , ct ∈ G such that

G̃ = Ã × C̃, where C̃
def
= 〈Tc1〉 × 〈Tc2〉 × . . . × 〈Tct〉 ≤ G.

Proposition 7. C E G and the elements of C and A together generate G. Furthermore, C
⋂

A = {e}.

Proof. From the construction of C its clear that T ≤ C and that C (mod T ) = C̃. So let us look at C̃ as a
subgroup of G̃. Observe that in G̃, the subgroup C̃ being an abelian subgroup and a direct factor of G̃ is in
the center of G̃. So for any g ∈ G and c ∈ C we have

(Tg) · (Tc) = (Tc) · (Tg)
⇒ (Tg) · (Tc) · (Tg)−1 = Tc
⇒ T (g · c · g−1) = Tc
⇒ (g · c · g−1) ∈ Tc
⇒ (g · c · g−1) = c · t, for some t ∈ T
⇒ (g · c · g−1) ∈ C (since c, t ∈ C)

Thus C is a normal subgroup of G. Now suppose that g ∈ A
⋂

C. It also means that Tg ∈ Ã ∩ C̃ so that
Tg = T . This means g ∈ T ⊆ B. Thus g ∈ A

⋂

B which means that g = e.

Summarizing, we have A and C are normal subgroups of G that span G and have a trivial intersection
which means that G = A × C, as required to prove the correctness of the algorithm.

5 An algorithm for SemiAbelianGroupDecomposition

In this section, we solve the special case of GroupDecomposition when some of the indecomposable
components of G are abelian groups. That is given G, we wish to find an abelian subgroup B and another
subgroup A of G so that

G = A × B, where B is abelian. (5)

Since B is abelian, it has a decomposition into a direct product of cyclic groups. So let

B = 〈b1〉 × . . . × 〈bt〉 .

so that G becomes
G = A × 〈b1〉 × . . . × 〈bt〉 .

Thus, if G has a decomposition of the form (5) then there exists a b ∈ G such that 〈b〉 is a direct factor of G.
Conversely, to find a decomposition of the form (5) it is sufficient to find a b such that 〈b〉 is a direct factor
of G. Knowing B, we can find an appropriate direct complement of 〈b〉 efficiently using the algorithm for
GroupDivision given previously. Lastly, given the group G, we find an appropriate b in polynomial-time
by iterating over all the elements of G and using the algorithm for GroupDivision to verify whether 〈b〉 is
a direct factor of G or not.

6 The conjugacy class graph of a group and its properties.

Here we give the construction of the conjugacy class graph of a group. Consider a group G which has a
decomposition

G = A × B.

Fixing this decomposition, consider the conjugacy class Cg of an arbitary element g = α · β ∈ G, where
α ∈ A, β ∈ B. Observe that Cg = Cα · Cβ and the elements of Cα and Cβ commute. More generally, we have

Observation 8. If G = G1 × . . . × Gt and g = g1 · . . . · gt is an arbitary element of G, with each gi ∈ Gi

then
Cg = Cg1

· Cg2
· . . . · Cgt

.

Furthermore for all i 6= j each element of Cgi
commutes with every element of Cgj

.

9



For the rest of this section, we fix the group G and a reference decomposition

G = G1 × G2 × . . . × Gt.

Let {πi : G 7→ Gi | i ∈ [t]} be the set of canonical projection endomorphisms associated with the above
decomposition. If any of the Gi’s are abelian groups then we can obtain a decomposition of G using the
algorithm for SemiAbelianGroupDecomposition given in section 5. So henceforth we will assume that
all the Gi’s are nonabelian. Observation 8 above motivates the following definitions.

Definition 9. We say that two conjugacy classes Ca and Cb commute when for every α ∈ Ca and β ∈ Cb, α
and β commute.

Definition 10. Call a conjugacy class reducible Cg if it is either a conjugacy class of an element from the
center of G, or there exist two conjugacy classes Ca and Cb such that

• Neither a nor b belongs to the center of G.

• Ca and Cb commute.

• Cg = Ca · Cb

• |Cg| = |Ca| · |Cb|

If a conjugacy class is not reducible, then call it irreducible.

Proposition 11. If a conjugacy class Cg is irreducible then there exists a unique i ∈ [t] such that πi(g) /∈
Cent(Gi).

Proof. If it happens that for all i ∈ [t], πi(g) ∈ Cent(Gi) then g ∈ Cent(G) so that the conjugacy class Cg

is reducible by definition. If more than one πi(G) are noncentral elements then by observation 8, we would
get that Cg is reducible.

The converse of this proposition is not true in general. The above proposition implies that corresponding to
a conjugacy class Cg, there exists a unique Gi such that πi(g) /∈ Cent(Gi). Let us call this subgroup Gi the
indecomposable component associated to the conjugacy class Cg. Let us now define the conjugacy class graph
ΓG associated to a group G.

Definition 12. The graph of a group G (denoted ΓG) is a graph with irreducible conjugacy classes as nodes
and such that a pair of nodes is connected by an edge iff the corresponding pair of conjugacy classes does not
commute.

The connected components of Γg can be computed efficiently and they give us information about the direct
factors of G.

Proposition 13. Let Λ1, . . . , Λs be the connected components of ΓG. Then s ≥ t and there is a partition

[s] = S1 ] S2 ] . . . ] St

such that
〈

∪i∈Sj
Elts(Λi)

〉

(mod Z) = Gj (mod Z) for all j where Z = Cent(G).

Proof. Let us consider two irreducible conjugacy classes Cg and Ch. Let the indecomposable components
associated with Cg and Ch be Gi and Gj respectively. Suppose that i 6= j. Then πj(g) and πi(h) are
central elements of G so that every element of Cg commutes with every other element of Ch. Thus there
is no edge between the nodes corresponding to Cg and Ch. This implies that if Cg and Ch are in the same
connected component of ΓG then the indecomposable components associated with Cg and Ch are the same.
Each nonabelian component of G gives rise to at least one irreducible conjugacy class so that the number of
connected components s of ΓG is at least the number of indecomposable nonabelian components of G. The
above argument shows that there exists a partition of [s] into Si such that

〈

∪i∈Sj
Λi

〉

(mod Z) ⊆ Gj (mod Z)
for all j. The inclusion is in fact an equality because all the irreducible conjugacy classes generate all the
noncentral elements of G by construction.
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In general it is not true that the number of connected components of ΓG equals the number of indecomposable
nonabelian groups in the factorization of G. The irreducible conjugacy classes of each of the Gi may be
divided into more than one component. However we have the following:

Proposition 14. If the center of group G is trivial, then the number of connected components of its graph is
equal to the number of indecomposable groups in the factorization of G. Moreover, the subgroups generated
by the conjugacy classes of each of the components are normal disjoint subgroups which together span G;
thus we have the factorization of G.

Proof. The subgroups generated by conjugacy classes of each of the connected components of the graph are
normal because the sets of generators are closed under conjugation. All of the subgroups together span
the entire group because they are generated by all irreducible conjugacy classes which themselves span
all reducible conjugacy classes. To show that the subgroups are pairwise disjoint: Suppose that two such
subgroups have an element in common. Then the element can be expressed in terms of the generators of
either of the two subgroups: g1g2 · · · gk = h1h2 · · ·hl where gi are some generators of the first subgroup
and hi are some generators of the second subgroup. Since gi and hi commute with every element of other
components than their own, so do their products. It follows that g1g2 · · · gk = h1h2 · · ·hl commutes with
every element of each of the components. Because the components generate the group, the common element
must be in the center of the group–hence identity.

This gives us a factorization of G, although we don’t yet know that the factors are indecomposable
subgroups. Suppose there is a factorization of greater length, i.e. with greater number of factors. Since each
of the factors will give rise to at least one connected component of the graph, the number of factors cannot
be greater than the number of components. Thus, the factorization that we obtained is a factorization into
indecomposable subgroups.

Using the proposition we can efficiently factor a group with a trivial center. When the center of the group is
non-trivial it is no longer the case that each component of ΓG generates one of the factors in the factorization
of G. We would need to search through the partitions of the set of connected components to find the
components associated to an indecomposable factor, say G1. For that we need a bound on the number of
components of the graph:

Proposition 15. The number of connected components is bounded by log |G|.

Proof. Let Z be the center of G. We will prove that the components of the graph of G will correspond
to the indecomposable factors of G/Z. The subgroups generated by the cosets of the elements of each of
the components are normal since the sets of generators are closed under conjugation. Together they span
the whole group G/Z since they spanned G before we took quotient (and they spanned G because they
spanned Z and they spanned all the reducible conjugacy classes). Now let’s show that the subgroups are
pairwise disjoint. Suppose that there is an element in common: Zg1g2 · · · gk = Zh1h2 · · ·hl where gi and hi

are from different components. Since the cosets are equal then for every c1 ∈ Z, there is a c2 ∈ Z, so that
c1g1g2 · · · gk = c2h1h2 · · ·hl. As in the previous proposition we can show that this element must lie in Z,
so the common coset is in fact a coset of the identity, hence the subgroups are pairwise disjoint. Then the
G/Z is isomorphic to the direct product of the subgroups. As each subgroup is nontrivial, we have that the
number of the subgroups is bounded by log |G/Z|. As the number of the subgroups is equal to the number
of connected components of the graph of G the claim follows.

7 Putting everything together

We now have all the component steps of Algorithm I. So let us conclude with the proof of correctness of
Algoritm I.

Theorem 16. If the input to Algorithm I is a decomposable group G then it necessarily computes a nontrivial
decomposition of G, otherwise it outputs NO SUCH DECOMPOSITION. Moreover, Algorithm I has running
time polynomial in |G|.
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Proof. Clearly, if the group is indecomposable our algorithm outputs NO SUCH DECOMPOSITION. By
Proposition 15, s ≤ log |G| so that the number of iterations in step 3 is at most |G|. All the operations inside
the loop (steps 3a to 3c) are polynomial-time computable so that the overall running time also poly(|G|). It
remains to show that if G is decomposable then our algorithm outputs a nontrivial decomposition. Let the
given group G have a decomposition

G = G1 × . . . × Gt (6)

with each Gi indecomposable. Let Z be the center of G. In the algorithm we iterate over all subsets of
the connected components of ΓG so let us assume that we have found the subset S1 of indices of connected
components corresponding to conjugacy class of elements of G1. By Proposition 15 we have

G2 × G3 × . . . × Gt (mod Z) =
〈

∪j /∈S1
Elts(Λj)

〉

(mod Z).

This means that in step 3a we would have computed

Z1
def
= CommG(

〈

∪j /∈S1
Elts(Λj)

〉

)

= CommG(G2 × G3 × . . . × Gt)

= G1 × Cent(G2) × Cent(G3) × . . . × Cent(Gt)

Let us now consider the decomposition Z1 = H1 × Y obtained in step 3b of Algorithm I. By the Remak-
Krull-Schmidt theorem (Theorem 3), all decompositions of Z1 are isomorphic so that if H1 is any direct
factor of Z1 which has no abelian direct factors then H1 must be indecomposable and isomorphic to G1.
Furthermore by an application of theorem 5, we must have that H1 must be of the form

H1 = {α · φ(α) | α ∈ G1, φ(α) ∈ (Cent(G2) × Cent(G3) × . . . × Cent(Gt))},

where φ : H1 7→ Cent(G2) × Cent(G3) × . . . × Cent(Gt) is a homomorphism. By lemma 4, we can replace
G1 by H1 in the factorization (6) so that in fact

G = H1 × G2 × G3 × . . . × Gt.

In particular, this means that H1 is a direct factor of G so that in step (3c), using the algorithm for
GroupDivision , we necessarily recover a nontrivial factorization of G.

8 Conclusion

In this article we showed how to decompose a given group G into a direct product of two subgroups. The
original problem which motivated our problem is that of GroupIsomorphism .

Open Problem. GroupIsomorphism : Devise an efficient algorithm that given two groups G and H in
the form of their Cayley tables (multiplication tables), determines whether they are isomorphic or not.

The Remak-Krull-Schmidt theorem (Theorem 3) together with our decomposition algorithm implies that
it is necessary and sufficient to solve the GroupIsomorphism problem for indecomposable groups. Thus
our algorithm can be viewed as a first towards an eventual solution to the GroupIsomorphism problem.
There already exists a complete characterization of finite simple groups (i.e. groups which have no normal
subgroups at all) and it is conceivable that some such algorithmic characterization can be formulated even
for finite indecomposable groups which would lead to an eventual solution of GroupIsomorphism . There
are many possible directions in which this work can be extended and algorithms sought for. For example,
it would also be very interesting to extend our results to compactly represented groups such as permutation
groups and matrix groups. A permutation group G is a subgroup of Sn, the group of permutations on the
set {1, 2, . . . , n}. The typical representation of a permutation group is by means of a generating set which
consists of permutations σ1, σ2, . . . , σt ∈ Sn. A matrix group is specified by means of a set of generating
matrices over some finite field Fpr . We mention some of these algorithmic problems below.

1. SemidirectDecomposition : Given a group G, compute two subgroups A and B of G such that G
is the semidirect product of A by B.
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2. PermutationGroupDivision : Given G ≤ Sn and A E G, determine whether there exists a B E G
such that G = A × B.

3. PermutationGroupDecomposition : Given a group G ≤ Sn, compute A, B E G such that G =
A × B.

4. MatrixGroupDivision : Given G ≤ (Ft×t
pr )∗ and A E G, determine whether there exists a B E G

such that G = A × B.

5. MatrixGroupDecomposition : Given a group G ≤ (Ft×t
pr )∗, compute A, BEG such that G = A×B.
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