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Abstract

In 1990, Linial and Nisan asked if any polylog-wise independent
distribution fools any function in AC

0. In a recent remarkable devel-
opment, Bazzi solved this problem for the case of DNF formulas. The
aim of this note is to present a simplified version of his proof.

In the 1990s, it was shown in a series of papers [LMN93, BRS91, ABFR94]
that Boolean functions computable by constant depth polynomial size cir-
cuits can be well approximated (in various contexts) by low degree poly-
nomials. Around the same time, Linial and Nisan [LN90] conjectured that
any such function can be fooled by a polylog-wise1 independent probability
distribution. By linear duality, this conjecture is an approximation problem
of precisely the kind considered in [LMN93, BRS91, ABFR94]. Therefore,
it is quite remarkable that the only noticeable progress in this direction was
achieved only last year by Bazzi [Baz07]. Namely, he showed that any DNF
formula of polynomial size is fooled by (any) O(log n)2-independent distri-
bution. We refer the reader to [Baz07] for motivations and applications of
this result; the purpose of this note is to give a simplified version of Bazzi’s
proof.

For a probability distribution µ on {0, 1}n and a function f : {0, 1}n −→
R, Eµ(f) is the expected value of f w.r.t. this distribution (in particular, if f :
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1As literally stated in [LN90] the conjecture is false [LV96], so we relax the parameters
appropriately.

1

Electronic Colloquium on Computational Complexity, Report No. 81 (2008)

ISSN 1433-8092




{0, 1}n −→ {0, 1} is a Boolean function then Eµ(f) = Px∼µ[f(x) = 1] is the
probability that f(x) = 1). If µ is uniform on {0, 1}n, Eµ(f) is abbreviated
to E(f). The bias of f w.r.t. µ is defined as |Eµ(f) − E(f)|, and for an

integer k ≥ 0, bias(f ; k)
def
= maxµ |Eµ(f) − E(f)|, where the maximum is

taken over all k-independent probability distributions on {0, 1}n.

In this note we give a simplified proof of the following theorem:

Theorem 1 (Bazzi [Baz07]) If the Boolean function f : {0, 1}n −→ {0, 1}
is computable by an m-term DNF formula then bias(f ; k) ≤ mO(1) exp(−Ω(

√
k)).

From now on we will identify a DNF formula F = A1 ∨ . . .∨Am and the
Boolean function it represents. The first step in the proof of Theorem 1 is
to reduce the problem to the case when every conjunctive term Ai has only
a few variables, that is F is an s-DNF for a sufficiently small s. This simple
step is borrowed from [Baz07] without any changes:

Lemma 2 ([Baz07]) Let k ≥ s ≥ 1 be integers, and F be an m-term DNF.

Then

bias(F ; k) ≤ max
G

bias(G; k) + m2−s,

where the maximum is taken over all m-terms s-DNF G.

The next relatively simple step in Bazzi’s proof that we also reproduce
here without alterations is to estimate the bias of an s-DNF F in terms of a
constrained version of `2-approximation by low degree polynomials called in
[Baz07] zero-energy. Let us first recall the unconstrained version.

Definition 3 For a function f : {0, 1}n −→ R and an integer t ≥ 0, let

energy(f ; t)
def
= min

deg(g)≤t
E((f − g)2).

This quantity is equal to the sum of squares
∑

|S|>t f̂(S)2 of high order
Fourier coefficients of f . But we do not need this interpretation in our proof,
besides making connection to the following celebrated result by Linial, Man-
sour and Nisan [LMN93]:

Lemma 4 ([LMN93]) If f is a Boolean function computable by an {¬,∧,∨}-
circuit of size m and depth d then for any t > 0,

energy(f ; t) ≤ 2m · 2−t1/d/20.
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Definition 5 ([Baz07])

zeroEnergy(f ; t)
def
= min

deg(g)≤t
E((f − g)2),

where this time the minimum is taken over all degree ≤ d polynomials g
that satisfy one additional zero-constraint: g(x) = 0 whenever f(x) = 0
(x ∈ {0, 1}n).

Clearly, energy(f ; t) ≤ zeroEnergy(f ; t). Also, bias is related to zero-
energy with the following lemma:

Lemma 6 ([Baz07]) Let F be an m-term s-DNF formula and let k ≥ s be

an integer. Then

bias(F ; k) ≤ m · zeroEnergy (F ; b(k − s)/2c) .

In the opposite direction, bounding zero-energy in terms of energy of certain
auxiliary functions is where the bulk of work is done in Bazzi’s proof. And
this is where our simplification comes in:

Theorem 7 Let F be an m-term s-DNF and t be an integer. Then

zeroEnergy(F ; t) ≤ m2 · max
G

energy(G; t − s), (1)

where the maximum is again taken over all m-term s-DNF formulas G.

Proof. Let F = A1 ∨ . . . ∨ Am, where Ai are conjunctive terms of size ≤ s
each. We claim that F can be expressed in the form

F =
m∑

i=1

Ai(1 − E[Gi]), (2)

where Gi are specially constructed random sub-DNFs of F and the expec-

tation sign is understood pointwise: E[G] (x)
def
= E[G(x)] (x ∈ {0, 1})n. But

before exhibiting the distributions of Gi with this property, let us see why
their mere existence already implies the statement of Theorem 7.

Indeed, denoting the maximum maxG energy(G; t−s) in (1) by ε, we have
(random) polynomials gi of degree ≤ t− s such that with probability one we
have the bound E((Gi − gi)

2) ≤ ε. And now we simply let

g
def
=

m∑

i=1

Ai(1 −E[gi]).
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Since every term Ai has at most s variables, deg(g) ≤ t. F (x) = 0 implies
∀i ∈ [m](Ai(x) = 0) which in turn implies g(x) = 0. Therefore, g satisfies the
zero-constraint. And we bound the `2-distance between F and g as follows:

E((F − g)2) = E




(

m∑

i=1

Ai · E[Gi − gi]

)2




≤Cauchy-Schwartz m ·
m∑

i=1

E
(
(Ai · E[Gi − gi])

2
)

≤since |Ai|≤1 m ·
m∑

i=1

E
(
E[Gi − gi]

2
)

≤Cauchy-Schwartz m ·
m∑

i=1

E
(
E
[
(Gi − gi)

2
])

= m ·
m∑

i=1

E
[
E
(
(Gi − gi)

2
)]

≤ εm2.

It remains to exhibit G1, . . . , Gm such that the identity (2) holds. For
that purpose, we first pick p ∈ [0, 1] uniformly at random. And then we let
Gi be the sub-DNF of (A1∨ . . .∨Ai−1∨Ai+1 ∨ . . .∨Am) in which every term
is removed, independently of others, with probability p and kept alive with
probability 1 − p.

Fix an input x ∈ {0, 1}n, and let w
def
= | {i ∈ [m] | Ai(x) = 1} |. If w = 0

then both sides of (2) are equal to 0.
If, on the other hand, w > 0 then there are precisely w non-zero terms in

the expression
∑m

i=1 Ai(x)(1−E[Gi] (x)). And every one of them contributes
to the sum precisely

∫ 1

0
(1−E[Gi(x) |p = p ])dp =

∫ 1

0
P[Gi(x) = 0 |p = p ] dp =

∫ 1

0
pw−1dp =

1

w
.

Thus,
∑m

i=1 Ai(x)(1 − E[Gi] (x)) = 1 (w > 0), and this completes the proof
of (2) and of Theorem 7.

Like in Bazzi’s proof, Theorem 1 immediately follows from Lemma 2,
Lemma 6, Theorem 7 and Lemma 4.

Remark. After the preliminary version of this note was disseminated,
Avi Wigderson observed that the proof can be further simplified by (deter-
ministically!) letting Gi in (2) be equal A1 ∨ . . . ∨ Ai−1. This is definitely
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simpler, but our version has the potential advantage of being more symmet-
ric.
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